]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/ubifs/sb.c
Merge tag 'powerpc-5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-hirsute-kernel.git] / fs / ubifs / sb.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23 /*
24 * This file implements UBIFS superblock. The superblock is stored at the first
25 * LEB of the volume and is never changed by UBIFS. Only user-space tools may
26 * change it. The superblock node mostly contains geometry information.
27 */
28
29 #include "ubifs.h"
30 #include <linux/slab.h>
31 #include <linux/math64.h>
32 #include <linux/uuid.h>
33
34 /*
35 * Default journal size in logical eraseblocks as a percent of total
36 * flash size.
37 */
38 #define DEFAULT_JNL_PERCENT 5
39
40 /* Default maximum journal size in bytes */
41 #define DEFAULT_MAX_JNL (32*1024*1024)
42
43 /* Default indexing tree fanout */
44 #define DEFAULT_FANOUT 8
45
46 /* Default number of data journal heads */
47 #define DEFAULT_JHEADS_CNT 1
48
49 /* Default positions of different LEBs in the main area */
50 #define DEFAULT_IDX_LEB 0
51 #define DEFAULT_DATA_LEB 1
52 #define DEFAULT_GC_LEB 2
53
54 /* Default number of LEB numbers in LPT's save table */
55 #define DEFAULT_LSAVE_CNT 256
56
57 /* Default reserved pool size as a percent of maximum free space */
58 #define DEFAULT_RP_PERCENT 5
59
60 /* The default maximum size of reserved pool in bytes */
61 #define DEFAULT_MAX_RP_SIZE (5*1024*1024)
62
63 /* Default time granularity in nanoseconds */
64 #define DEFAULT_TIME_GRAN 1000000000
65
66 static int get_default_compressor(struct ubifs_info *c)
67 {
68 if (ubifs_compr_present(c, UBIFS_COMPR_LZO))
69 return UBIFS_COMPR_LZO;
70
71 if (ubifs_compr_present(c, UBIFS_COMPR_ZLIB))
72 return UBIFS_COMPR_ZLIB;
73
74 return UBIFS_COMPR_NONE;
75 }
76
77 /**
78 * create_default_filesystem - format empty UBI volume.
79 * @c: UBIFS file-system description object
80 *
81 * This function creates default empty file-system. Returns zero in case of
82 * success and a negative error code in case of failure.
83 */
84 static int create_default_filesystem(struct ubifs_info *c)
85 {
86 struct ubifs_sb_node *sup;
87 struct ubifs_mst_node *mst;
88 struct ubifs_idx_node *idx;
89 struct ubifs_branch *br;
90 struct ubifs_ino_node *ino;
91 struct ubifs_cs_node *cs;
92 union ubifs_key key;
93 int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
94 int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
95 int min_leb_cnt = UBIFS_MIN_LEB_CNT;
96 int idx_node_size;
97 long long tmp64, main_bytes;
98 __le64 tmp_le64;
99 __le32 tmp_le32;
100 struct timespec64 ts;
101 u8 hash[UBIFS_HASH_ARR_SZ];
102 u8 hash_lpt[UBIFS_HASH_ARR_SZ];
103
104 /* Some functions called from here depend on the @c->key_len filed */
105 c->key_len = UBIFS_SK_LEN;
106
107 /*
108 * First of all, we have to calculate default file-system geometry -
109 * log size, journal size, etc.
110 */
111 if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
112 /* We can first multiply then divide and have no overflow */
113 jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
114 else
115 jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
116
117 if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
118 jnl_lebs = UBIFS_MIN_JNL_LEBS;
119 if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
120 jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
121
122 /*
123 * The log should be large enough to fit reference nodes for all bud
124 * LEBs. Because buds do not have to start from the beginning of LEBs
125 * (half of the LEB may contain committed data), the log should
126 * generally be larger, make it twice as large.
127 */
128 tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
129 log_lebs = tmp / c->leb_size;
130 /* Plus one LEB reserved for commit */
131 log_lebs += 1;
132 if (c->leb_cnt - min_leb_cnt > 8) {
133 /* And some extra space to allow writes while committing */
134 log_lebs += 1;
135 min_leb_cnt += 1;
136 }
137
138 max_buds = jnl_lebs - log_lebs;
139 if (max_buds < UBIFS_MIN_BUD_LEBS)
140 max_buds = UBIFS_MIN_BUD_LEBS;
141
142 /*
143 * Orphan nodes are stored in a separate area. One node can store a lot
144 * of orphan inode numbers, but when new orphan comes we just add a new
145 * orphan node. At some point the nodes are consolidated into one
146 * orphan node.
147 */
148 orph_lebs = UBIFS_MIN_ORPH_LEBS;
149 if (c->leb_cnt - min_leb_cnt > 1)
150 /*
151 * For debugging purposes it is better to have at least 2
152 * orphan LEBs, because the orphan subsystem would need to do
153 * consolidations and would be stressed more.
154 */
155 orph_lebs += 1;
156
157 main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
158 main_lebs -= orph_lebs;
159
160 lpt_first = UBIFS_LOG_LNUM + log_lebs;
161 c->lsave_cnt = DEFAULT_LSAVE_CNT;
162 c->max_leb_cnt = c->leb_cnt;
163 err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
164 &big_lpt, hash_lpt);
165 if (err)
166 return err;
167
168 dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
169 lpt_first + lpt_lebs - 1);
170
171 main_first = c->leb_cnt - main_lebs;
172
173 sup = kzalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_KERNEL);
174 mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
175 idx_node_size = ubifs_idx_node_sz(c, 1);
176 idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
177 ino = kzalloc(ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size), GFP_KERNEL);
178 cs = kzalloc(ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size), GFP_KERNEL);
179
180 if (!sup || !mst || !idx || !ino || !cs) {
181 err = -ENOMEM;
182 goto out;
183 }
184
185 /* Create default superblock */
186
187 tmp64 = (long long)max_buds * c->leb_size;
188 if (big_lpt)
189 sup_flags |= UBIFS_FLG_BIGLPT;
190 sup_flags |= UBIFS_FLG_DOUBLE_HASH;
191
192 if (ubifs_authenticated(c)) {
193 sup_flags |= UBIFS_FLG_AUTHENTICATION;
194 sup->hash_algo = cpu_to_le16(c->auth_hash_algo);
195 err = ubifs_hmac_wkm(c, sup->hmac_wkm);
196 if (err)
197 goto out;
198 } else {
199 sup->hash_algo = 0xffff;
200 }
201
202 sup->ch.node_type = UBIFS_SB_NODE;
203 sup->key_hash = UBIFS_KEY_HASH_R5;
204 sup->flags = cpu_to_le32(sup_flags);
205 sup->min_io_size = cpu_to_le32(c->min_io_size);
206 sup->leb_size = cpu_to_le32(c->leb_size);
207 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
208 sup->max_leb_cnt = cpu_to_le32(c->max_leb_cnt);
209 sup->max_bud_bytes = cpu_to_le64(tmp64);
210 sup->log_lebs = cpu_to_le32(log_lebs);
211 sup->lpt_lebs = cpu_to_le32(lpt_lebs);
212 sup->orph_lebs = cpu_to_le32(orph_lebs);
213 sup->jhead_cnt = cpu_to_le32(DEFAULT_JHEADS_CNT);
214 sup->fanout = cpu_to_le32(DEFAULT_FANOUT);
215 sup->lsave_cnt = cpu_to_le32(c->lsave_cnt);
216 sup->fmt_version = cpu_to_le32(UBIFS_FORMAT_VERSION);
217 sup->time_gran = cpu_to_le32(DEFAULT_TIME_GRAN);
218 if (c->mount_opts.override_compr)
219 sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
220 else
221 sup->default_compr = cpu_to_le16(get_default_compressor(c));
222
223 generate_random_uuid(sup->uuid);
224
225 main_bytes = (long long)main_lebs * c->leb_size;
226 tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
227 if (tmp64 > DEFAULT_MAX_RP_SIZE)
228 tmp64 = DEFAULT_MAX_RP_SIZE;
229 sup->rp_size = cpu_to_le64(tmp64);
230 sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
231
232 dbg_gen("default superblock created at LEB 0:0");
233
234 /* Create default master node */
235
236 mst->ch.node_type = UBIFS_MST_NODE;
237 mst->log_lnum = cpu_to_le32(UBIFS_LOG_LNUM);
238 mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
239 mst->cmt_no = 0;
240 mst->root_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
241 mst->root_offs = 0;
242 tmp = ubifs_idx_node_sz(c, 1);
243 mst->root_len = cpu_to_le32(tmp);
244 mst->gc_lnum = cpu_to_le32(main_first + DEFAULT_GC_LEB);
245 mst->ihead_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
246 mst->ihead_offs = cpu_to_le32(ALIGN(tmp, c->min_io_size));
247 mst->index_size = cpu_to_le64(ALIGN(tmp, 8));
248 mst->lpt_lnum = cpu_to_le32(c->lpt_lnum);
249 mst->lpt_offs = cpu_to_le32(c->lpt_offs);
250 mst->nhead_lnum = cpu_to_le32(c->nhead_lnum);
251 mst->nhead_offs = cpu_to_le32(c->nhead_offs);
252 mst->ltab_lnum = cpu_to_le32(c->ltab_lnum);
253 mst->ltab_offs = cpu_to_le32(c->ltab_offs);
254 mst->lsave_lnum = cpu_to_le32(c->lsave_lnum);
255 mst->lsave_offs = cpu_to_le32(c->lsave_offs);
256 mst->lscan_lnum = cpu_to_le32(main_first);
257 mst->empty_lebs = cpu_to_le32(main_lebs - 2);
258 mst->idx_lebs = cpu_to_le32(1);
259 mst->leb_cnt = cpu_to_le32(c->leb_cnt);
260 ubifs_copy_hash(c, hash_lpt, mst->hash_lpt);
261
262 /* Calculate lprops statistics */
263 tmp64 = main_bytes;
264 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
265 tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
266 mst->total_free = cpu_to_le64(tmp64);
267
268 tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
269 ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
270 UBIFS_INO_NODE_SZ;
271 tmp64 += ino_waste;
272 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
273 mst->total_dirty = cpu_to_le64(tmp64);
274
275 /* The indexing LEB does not contribute to dark space */
276 tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
277 mst->total_dark = cpu_to_le64(tmp64);
278
279 mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
280
281 dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
282
283 /* Create the root indexing node */
284
285 c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
286 c->key_hash = key_r5_hash;
287
288 idx->ch.node_type = UBIFS_IDX_NODE;
289 idx->child_cnt = cpu_to_le16(1);
290 ino_key_init(c, &key, UBIFS_ROOT_INO);
291 br = ubifs_idx_branch(c, idx, 0);
292 key_write_idx(c, &key, &br->key);
293 br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
294 br->len = cpu_to_le32(UBIFS_INO_NODE_SZ);
295
296 dbg_gen("default root indexing node created LEB %d:0",
297 main_first + DEFAULT_IDX_LEB);
298
299 /* Create default root inode */
300
301 ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
302 ino->ch.node_type = UBIFS_INO_NODE;
303 ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
304 ino->nlink = cpu_to_le32(2);
305
306 ktime_get_real_ts64(&ts);
307 ts = timespec64_trunc(ts, DEFAULT_TIME_GRAN);
308 tmp_le64 = cpu_to_le64(ts.tv_sec);
309 ino->atime_sec = tmp_le64;
310 ino->ctime_sec = tmp_le64;
311 ino->mtime_sec = tmp_le64;
312 tmp_le32 = cpu_to_le32(ts.tv_nsec);
313 ino->atime_nsec = tmp_le32;
314 ino->ctime_nsec = tmp_le32;
315 ino->mtime_nsec = tmp_le32;
316 ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
317 ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
318
319 /* Set compression enabled by default */
320 ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
321
322 dbg_gen("root inode created at LEB %d:0",
323 main_first + DEFAULT_DATA_LEB);
324
325 /*
326 * The first node in the log has to be the commit start node. This is
327 * always the case during normal file-system operation. Write a fake
328 * commit start node to the log.
329 */
330
331 cs->ch.node_type = UBIFS_CS_NODE;
332
333 err = ubifs_write_node_hmac(c, sup, UBIFS_SB_NODE_SZ, 0, 0,
334 offsetof(struct ubifs_sb_node, hmac));
335 if (err)
336 goto out;
337
338 err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
339 main_first + DEFAULT_DATA_LEB, 0);
340 if (err)
341 goto out;
342
343 ubifs_node_calc_hash(c, ino, hash);
344 ubifs_copy_hash(c, hash, ubifs_branch_hash(c, br));
345
346 err = ubifs_write_node(c, idx, idx_node_size, main_first + DEFAULT_IDX_LEB, 0);
347 if (err)
348 goto out;
349
350 ubifs_node_calc_hash(c, idx, hash);
351 ubifs_copy_hash(c, hash, mst->hash_root_idx);
352
353 err = ubifs_write_node_hmac(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0,
354 offsetof(struct ubifs_mst_node, hmac));
355 if (err)
356 goto out;
357
358 err = ubifs_write_node_hmac(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
359 0, offsetof(struct ubifs_mst_node, hmac));
360 if (err)
361 goto out;
362
363 err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
364 if (err)
365 goto out;
366
367 ubifs_msg(c, "default file-system created");
368
369 err = 0;
370 out:
371 kfree(sup);
372 kfree(mst);
373 kfree(idx);
374 kfree(ino);
375 kfree(cs);
376
377 return err;
378 }
379
380 /**
381 * validate_sb - validate superblock node.
382 * @c: UBIFS file-system description object
383 * @sup: superblock node
384 *
385 * This function validates superblock node @sup. Since most of data was read
386 * from the superblock and stored in @c, the function validates fields in @c
387 * instead. Returns zero in case of success and %-EINVAL in case of validation
388 * failure.
389 */
390 static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
391 {
392 long long max_bytes;
393 int err = 1, min_leb_cnt;
394
395 if (!c->key_hash) {
396 err = 2;
397 goto failed;
398 }
399
400 if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
401 err = 3;
402 goto failed;
403 }
404
405 if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
406 ubifs_err(c, "min. I/O unit mismatch: %d in superblock, %d real",
407 le32_to_cpu(sup->min_io_size), c->min_io_size);
408 goto failed;
409 }
410
411 if (le32_to_cpu(sup->leb_size) != c->leb_size) {
412 ubifs_err(c, "LEB size mismatch: %d in superblock, %d real",
413 le32_to_cpu(sup->leb_size), c->leb_size);
414 goto failed;
415 }
416
417 if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
418 c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
419 c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
420 c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
421 err = 4;
422 goto failed;
423 }
424
425 /*
426 * Calculate minimum allowed amount of main area LEBs. This is very
427 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
428 * have just read from the superblock.
429 */
430 min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
431 min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
432
433 if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
434 ubifs_err(c, "bad LEB count: %d in superblock, %d on UBI volume, %d minimum required",
435 c->leb_cnt, c->vi.size, min_leb_cnt);
436 goto failed;
437 }
438
439 if (c->max_leb_cnt < c->leb_cnt) {
440 ubifs_err(c, "max. LEB count %d less than LEB count %d",
441 c->max_leb_cnt, c->leb_cnt);
442 goto failed;
443 }
444
445 if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
446 ubifs_err(c, "too few main LEBs count %d, must be at least %d",
447 c->main_lebs, UBIFS_MIN_MAIN_LEBS);
448 goto failed;
449 }
450
451 max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
452 if (c->max_bud_bytes < max_bytes) {
453 ubifs_err(c, "too small journal (%lld bytes), must be at least %lld bytes",
454 c->max_bud_bytes, max_bytes);
455 goto failed;
456 }
457
458 max_bytes = (long long)c->leb_size * c->main_lebs;
459 if (c->max_bud_bytes > max_bytes) {
460 ubifs_err(c, "too large journal size (%lld bytes), only %lld bytes available in the main area",
461 c->max_bud_bytes, max_bytes);
462 goto failed;
463 }
464
465 if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
466 c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
467 err = 9;
468 goto failed;
469 }
470
471 if (c->fanout < UBIFS_MIN_FANOUT ||
472 ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
473 err = 10;
474 goto failed;
475 }
476
477 if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
478 c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
479 c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
480 err = 11;
481 goto failed;
482 }
483
484 if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
485 c->orph_lebs + c->main_lebs != c->leb_cnt) {
486 err = 12;
487 goto failed;
488 }
489
490 if (c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
491 err = 13;
492 goto failed;
493 }
494
495 if (c->rp_size < 0 || max_bytes < c->rp_size) {
496 err = 14;
497 goto failed;
498 }
499
500 if (le32_to_cpu(sup->time_gran) > 1000000000 ||
501 le32_to_cpu(sup->time_gran) < 1) {
502 err = 15;
503 goto failed;
504 }
505
506 if (!c->double_hash && c->fmt_version >= 5) {
507 err = 16;
508 goto failed;
509 }
510
511 if (c->encrypted && c->fmt_version < 5) {
512 err = 17;
513 goto failed;
514 }
515
516 return 0;
517
518 failed:
519 ubifs_err(c, "bad superblock, error %d", err);
520 ubifs_dump_node(c, sup);
521 return -EINVAL;
522 }
523
524 /**
525 * ubifs_read_sb_node - read superblock node.
526 * @c: UBIFS file-system description object
527 *
528 * This function returns a pointer to the superblock node or a negative error
529 * code. Note, the user of this function is responsible of kfree()'ing the
530 * returned superblock buffer.
531 */
532 static struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
533 {
534 struct ubifs_sb_node *sup;
535 int err;
536
537 sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
538 if (!sup)
539 return ERR_PTR(-ENOMEM);
540
541 err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
542 UBIFS_SB_LNUM, 0);
543 if (err) {
544 kfree(sup);
545 return ERR_PTR(err);
546 }
547
548 return sup;
549 }
550
551 static int authenticate_sb_node(struct ubifs_info *c,
552 const struct ubifs_sb_node *sup)
553 {
554 unsigned int sup_flags = le32_to_cpu(sup->flags);
555 u8 hmac_wkm[UBIFS_HMAC_ARR_SZ];
556 int authenticated = !!(sup_flags & UBIFS_FLG_AUTHENTICATION);
557 int hash_algo;
558 int err;
559
560 if (c->authenticated && !authenticated) {
561 ubifs_err(c, "authenticated FS forced, but found FS without authentication");
562 return -EINVAL;
563 }
564
565 if (!c->authenticated && authenticated) {
566 ubifs_err(c, "authenticated FS found, but no key given");
567 return -EINVAL;
568 }
569
570 ubifs_msg(c, "Mounting in %sauthenticated mode",
571 c->authenticated ? "" : "un");
572
573 if (!c->authenticated)
574 return 0;
575
576 if (!IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION))
577 return -EOPNOTSUPP;
578
579 hash_algo = le16_to_cpu(sup->hash_algo);
580 if (hash_algo >= HASH_ALGO__LAST) {
581 ubifs_err(c, "superblock uses unknown hash algo %d",
582 hash_algo);
583 return -EINVAL;
584 }
585
586 if (strcmp(hash_algo_name[hash_algo], c->auth_hash_name)) {
587 ubifs_err(c, "This filesystem uses %s for hashing,"
588 " but %s is specified", hash_algo_name[hash_algo],
589 c->auth_hash_name);
590 return -EINVAL;
591 }
592
593 err = ubifs_hmac_wkm(c, hmac_wkm);
594 if (err)
595 return err;
596
597 if (ubifs_check_hmac(c, hmac_wkm, sup->hmac_wkm)) {
598 ubifs_err(c, "provided key does not fit");
599 return -ENOKEY;
600 }
601
602 err = ubifs_node_verify_hmac(c, sup, sizeof(*sup),
603 offsetof(struct ubifs_sb_node, hmac));
604 if (err)
605 ubifs_err(c, "Failed to authenticate superblock: %d", err);
606
607 return err;
608 }
609
610 /**
611 * ubifs_write_sb_node - write superblock node.
612 * @c: UBIFS file-system description object
613 * @sup: superblock node read with 'ubifs_read_sb_node()'
614 *
615 * This function returns %0 on success and a negative error code on failure.
616 */
617 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
618 {
619 int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
620 int err;
621
622 err = ubifs_prepare_node_hmac(c, sup, UBIFS_SB_NODE_SZ,
623 offsetof(struct ubifs_sb_node, hmac), 1);
624 if (err)
625 return err;
626
627 return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
628 }
629
630 /**
631 * ubifs_read_superblock - read superblock.
632 * @c: UBIFS file-system description object
633 *
634 * This function finds, reads and checks the superblock. If an empty UBI volume
635 * is being mounted, this function creates default superblock. Returns zero in
636 * case of success, and a negative error code in case of failure.
637 */
638 int ubifs_read_superblock(struct ubifs_info *c)
639 {
640 int err, sup_flags;
641 struct ubifs_sb_node *sup;
642
643 if (c->empty) {
644 err = create_default_filesystem(c);
645 if (err)
646 return err;
647 }
648
649 sup = ubifs_read_sb_node(c);
650 if (IS_ERR(sup))
651 return PTR_ERR(sup);
652
653 c->sup_node = sup;
654
655 c->fmt_version = le32_to_cpu(sup->fmt_version);
656 c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
657
658 /*
659 * The software supports all previous versions but not future versions,
660 * due to the unavailability of time-travelling equipment.
661 */
662 if (c->fmt_version > UBIFS_FORMAT_VERSION) {
663 ubifs_assert(c, !c->ro_media || c->ro_mount);
664 if (!c->ro_mount ||
665 c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
666 ubifs_err(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
667 c->fmt_version, c->ro_compat_version,
668 UBIFS_FORMAT_VERSION,
669 UBIFS_RO_COMPAT_VERSION);
670 if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
671 ubifs_msg(c, "only R/O mounting is possible");
672 err = -EROFS;
673 } else
674 err = -EINVAL;
675 goto out;
676 }
677
678 /*
679 * The FS is mounted R/O, and the media format is
680 * R/O-compatible with the UBIFS implementation, so we can
681 * mount.
682 */
683 c->rw_incompat = 1;
684 }
685
686 if (c->fmt_version < 3) {
687 ubifs_err(c, "on-flash format version %d is not supported",
688 c->fmt_version);
689 err = -EINVAL;
690 goto out;
691 }
692
693 switch (sup->key_hash) {
694 case UBIFS_KEY_HASH_R5:
695 c->key_hash = key_r5_hash;
696 c->key_hash_type = UBIFS_KEY_HASH_R5;
697 break;
698
699 case UBIFS_KEY_HASH_TEST:
700 c->key_hash = key_test_hash;
701 c->key_hash_type = UBIFS_KEY_HASH_TEST;
702 break;
703 }
704
705 c->key_fmt = sup->key_fmt;
706
707 switch (c->key_fmt) {
708 case UBIFS_SIMPLE_KEY_FMT:
709 c->key_len = UBIFS_SK_LEN;
710 break;
711 default:
712 ubifs_err(c, "unsupported key format");
713 err = -EINVAL;
714 goto out;
715 }
716
717 c->leb_cnt = le32_to_cpu(sup->leb_cnt);
718 c->max_leb_cnt = le32_to_cpu(sup->max_leb_cnt);
719 c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
720 c->log_lebs = le32_to_cpu(sup->log_lebs);
721 c->lpt_lebs = le32_to_cpu(sup->lpt_lebs);
722 c->orph_lebs = le32_to_cpu(sup->orph_lebs);
723 c->jhead_cnt = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
724 c->fanout = le32_to_cpu(sup->fanout);
725 c->lsave_cnt = le32_to_cpu(sup->lsave_cnt);
726 c->rp_size = le64_to_cpu(sup->rp_size);
727 c->rp_uid = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid));
728 c->rp_gid = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid));
729 sup_flags = le32_to_cpu(sup->flags);
730 if (!c->mount_opts.override_compr)
731 c->default_compr = le16_to_cpu(sup->default_compr);
732
733 c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
734 memcpy(&c->uuid, &sup->uuid, 16);
735 c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
736 c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
737 c->double_hash = !!(sup_flags & UBIFS_FLG_DOUBLE_HASH);
738 c->encrypted = !!(sup_flags & UBIFS_FLG_ENCRYPTION);
739
740 err = authenticate_sb_node(c, sup);
741 if (err)
742 goto out;
743
744 if ((sup_flags & ~UBIFS_FLG_MASK) != 0) {
745 ubifs_err(c, "Unknown feature flags found: %#x",
746 sup_flags & ~UBIFS_FLG_MASK);
747 err = -EINVAL;
748 goto out;
749 }
750
751 if (!IS_ENABLED(CONFIG_UBIFS_FS_ENCRYPTION) && c->encrypted) {
752 ubifs_err(c, "file system contains encrypted files but UBIFS"
753 " was built without crypto support.");
754 err = -EINVAL;
755 goto out;
756 }
757
758 /* Automatically increase file system size to the maximum size */
759 c->old_leb_cnt = c->leb_cnt;
760 if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
761 c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
762 if (c->ro_mount)
763 dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
764 c->old_leb_cnt, c->leb_cnt);
765 else {
766 dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
767 c->old_leb_cnt, c->leb_cnt);
768 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
769 err = ubifs_write_sb_node(c, sup);
770 if (err)
771 goto out;
772 c->old_leb_cnt = c->leb_cnt;
773 }
774 }
775
776 c->log_bytes = (long long)c->log_lebs * c->leb_size;
777 c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
778 c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
779 c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
780 c->orph_first = c->lpt_last + 1;
781 c->orph_last = c->orph_first + c->orph_lebs - 1;
782 c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
783 c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
784 c->main_first = c->leb_cnt - c->main_lebs;
785
786 err = validate_sb(c, sup);
787 out:
788 return err;
789 }
790
791 /**
792 * fixup_leb - fixup/unmap an LEB containing free space.
793 * @c: UBIFS file-system description object
794 * @lnum: the LEB number to fix up
795 * @len: number of used bytes in LEB (starting at offset 0)
796 *
797 * This function reads the contents of the given LEB number @lnum, then fixes
798 * it up, so that empty min. I/O units in the end of LEB are actually erased on
799 * flash (rather than being just all-0xff real data). If the LEB is completely
800 * empty, it is simply unmapped.
801 */
802 static int fixup_leb(struct ubifs_info *c, int lnum, int len)
803 {
804 int err;
805
806 ubifs_assert(c, len >= 0);
807 ubifs_assert(c, len % c->min_io_size == 0);
808 ubifs_assert(c, len < c->leb_size);
809
810 if (len == 0) {
811 dbg_mnt("unmap empty LEB %d", lnum);
812 return ubifs_leb_unmap(c, lnum);
813 }
814
815 dbg_mnt("fixup LEB %d, data len %d", lnum, len);
816 err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
817 if (err)
818 return err;
819
820 return ubifs_leb_change(c, lnum, c->sbuf, len);
821 }
822
823 /**
824 * fixup_free_space - find & remap all LEBs containing free space.
825 * @c: UBIFS file-system description object
826 *
827 * This function walks through all LEBs in the filesystem and fiexes up those
828 * containing free/empty space.
829 */
830 static int fixup_free_space(struct ubifs_info *c)
831 {
832 int lnum, err = 0;
833 struct ubifs_lprops *lprops;
834
835 ubifs_get_lprops(c);
836
837 /* Fixup LEBs in the master area */
838 for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
839 err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
840 if (err)
841 goto out;
842 }
843
844 /* Unmap unused log LEBs */
845 lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
846 while (lnum != c->ltail_lnum) {
847 err = fixup_leb(c, lnum, 0);
848 if (err)
849 goto out;
850 lnum = ubifs_next_log_lnum(c, lnum);
851 }
852
853 /*
854 * Fixup the log head which contains the only a CS node at the
855 * beginning.
856 */
857 err = fixup_leb(c, c->lhead_lnum,
858 ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
859 if (err)
860 goto out;
861
862 /* Fixup LEBs in the LPT area */
863 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
864 int free = c->ltab[lnum - c->lpt_first].free;
865
866 if (free > 0) {
867 err = fixup_leb(c, lnum, c->leb_size - free);
868 if (err)
869 goto out;
870 }
871 }
872
873 /* Unmap LEBs in the orphans area */
874 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
875 err = fixup_leb(c, lnum, 0);
876 if (err)
877 goto out;
878 }
879
880 /* Fixup LEBs in the main area */
881 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
882 lprops = ubifs_lpt_lookup(c, lnum);
883 if (IS_ERR(lprops)) {
884 err = PTR_ERR(lprops);
885 goto out;
886 }
887
888 if (lprops->free > 0) {
889 err = fixup_leb(c, lnum, c->leb_size - lprops->free);
890 if (err)
891 goto out;
892 }
893 }
894
895 out:
896 ubifs_release_lprops(c);
897 return err;
898 }
899
900 /**
901 * ubifs_fixup_free_space - find & fix all LEBs with free space.
902 * @c: UBIFS file-system description object
903 *
904 * This function fixes up LEBs containing free space on first mount, if the
905 * appropriate flag was set when the FS was created. Each LEB with one or more
906 * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
907 * the free space is actually erased. E.g., this is necessary for some NAND
908 * chips, since the free space may have been programmed like real "0xff" data
909 * (generating a non-0xff ECC), causing future writes to the not-really-erased
910 * NAND pages to behave badly. After the space is fixed up, the superblock flag
911 * is cleared, so that this is skipped for all future mounts.
912 */
913 int ubifs_fixup_free_space(struct ubifs_info *c)
914 {
915 int err;
916 struct ubifs_sb_node *sup = c->sup_node;
917
918 ubifs_assert(c, c->space_fixup);
919 ubifs_assert(c, !c->ro_mount);
920
921 ubifs_msg(c, "start fixing up free space");
922
923 err = fixup_free_space(c);
924 if (err)
925 return err;
926
927 /* Free-space fixup is no longer required */
928 c->space_fixup = 0;
929 sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
930
931 err = ubifs_write_sb_node(c, sup);
932 if (err)
933 return err;
934
935 ubifs_msg(c, "free space fixup complete");
936 return err;
937 }
938
939 int ubifs_enable_encryption(struct ubifs_info *c)
940 {
941 int err;
942 struct ubifs_sb_node *sup = c->sup_node;
943
944 if (!IS_ENABLED(CONFIG_UBIFS_FS_ENCRYPTION))
945 return -EOPNOTSUPP;
946
947 if (c->encrypted)
948 return 0;
949
950 if (c->ro_mount || c->ro_media)
951 return -EROFS;
952
953 if (c->fmt_version < 5) {
954 ubifs_err(c, "on-flash format version 5 is needed for encryption");
955 return -EINVAL;
956 }
957
958 sup->flags |= cpu_to_le32(UBIFS_FLG_ENCRYPTION);
959
960 err = ubifs_write_sb_node(c, sup);
961 if (!err)
962 c->encrypted = 1;
963
964 return err;
965 }