]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/ubifs/super.c
afs: Fix double inc of vnode->cb_break
[mirror_ubuntu-eoan-kernel.git] / fs / ubifs / super.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23 /*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40
41 /*
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
44 */
45 #define UBIFS_KMALLOC_OK (128*1024)
46
47 /* Slab cache for UBIFS inodes */
48 static struct kmem_cache *ubifs_inode_slab;
49
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 .scan_objects = ubifs_shrink_scan,
53 .count_objects = ubifs_shrink_count,
54 .seeks = DEFAULT_SEEKS,
55 };
56
57 /**
58 * validate_inode - validate inode.
59 * @c: UBIFS file-system description object
60 * @inode: the inode to validate
61 *
62 * This is a helper function for 'ubifs_iget()' which validates various fields
63 * of a newly built inode to make sure they contain sane values and prevent
64 * possible vulnerabilities. Returns zero if the inode is all right and
65 * a non-zero error code if not.
66 */
67 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68 {
69 int err;
70 const struct ubifs_inode *ui = ubifs_inode(inode);
71
72 if (inode->i_size > c->max_inode_sz) {
73 ubifs_err(c, "inode is too large (%lld)",
74 (long long)inode->i_size);
75 return 1;
76 }
77
78 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 ubifs_err(c, "unknown compression type %d", ui->compr_type);
80 return 2;
81 }
82
83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 return 3;
85
86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 return 4;
88
89 if (ui->xattr && !S_ISREG(inode->i_mode))
90 return 5;
91
92 if (!ubifs_compr_present(c, ui->compr_type)) {
93 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
94 inode->i_ino, ubifs_compr_name(c, ui->compr_type));
95 }
96
97 err = dbg_check_dir(c, inode);
98 return err;
99 }
100
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 int err;
104 union ubifs_key key;
105 struct ubifs_ino_node *ino;
106 struct ubifs_info *c = sb->s_fs_info;
107 struct inode *inode;
108 struct ubifs_inode *ui;
109
110 dbg_gen("inode %lu", inum);
111
112 inode = iget_locked(sb, inum);
113 if (!inode)
114 return ERR_PTR(-ENOMEM);
115 if (!(inode->i_state & I_NEW))
116 return inode;
117 ui = ubifs_inode(inode);
118
119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 if (!ino) {
121 err = -ENOMEM;
122 goto out;
123 }
124
125 ino_key_init(c, &key, inode->i_ino);
126
127 err = ubifs_tnc_lookup(c, &key, ino);
128 if (err)
129 goto out_ino;
130
131 inode->i_flags |= S_NOCMTIME;
132 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
133 inode->i_flags |= S_NOATIME;
134 #endif
135 set_nlink(inode, le32_to_cpu(ino->nlink));
136 i_uid_write(inode, le32_to_cpu(ino->uid));
137 i_gid_write(inode, le32_to_cpu(ino->gid));
138 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
139 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
140 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
141 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
142 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
143 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
144 inode->i_mode = le32_to_cpu(ino->mode);
145 inode->i_size = le64_to_cpu(ino->size);
146
147 ui->data_len = le32_to_cpu(ino->data_len);
148 ui->flags = le32_to_cpu(ino->flags);
149 ui->compr_type = le16_to_cpu(ino->compr_type);
150 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
151 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
152 ui->xattr_size = le32_to_cpu(ino->xattr_size);
153 ui->xattr_names = le32_to_cpu(ino->xattr_names);
154 ui->synced_i_size = ui->ui_size = inode->i_size;
155
156 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
157
158 err = validate_inode(c, inode);
159 if (err)
160 goto out_invalid;
161
162 switch (inode->i_mode & S_IFMT) {
163 case S_IFREG:
164 inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 inode->i_op = &ubifs_file_inode_operations;
166 inode->i_fop = &ubifs_file_operations;
167 if (ui->xattr) {
168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 if (!ui->data) {
170 err = -ENOMEM;
171 goto out_ino;
172 }
173 memcpy(ui->data, ino->data, ui->data_len);
174 ((char *)ui->data)[ui->data_len] = '\0';
175 } else if (ui->data_len != 0) {
176 err = 10;
177 goto out_invalid;
178 }
179 break;
180 case S_IFDIR:
181 inode->i_op = &ubifs_dir_inode_operations;
182 inode->i_fop = &ubifs_dir_operations;
183 if (ui->data_len != 0) {
184 err = 11;
185 goto out_invalid;
186 }
187 break;
188 case S_IFLNK:
189 inode->i_op = &ubifs_symlink_inode_operations;
190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 err = 12;
192 goto out_invalid;
193 }
194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 if (!ui->data) {
196 err = -ENOMEM;
197 goto out_ino;
198 }
199 memcpy(ui->data, ino->data, ui->data_len);
200 ((char *)ui->data)[ui->data_len] = '\0';
201 break;
202 case S_IFBLK:
203 case S_IFCHR:
204 {
205 dev_t rdev;
206 union ubifs_dev_desc *dev;
207
208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 if (!ui->data) {
210 err = -ENOMEM;
211 goto out_ino;
212 }
213
214 dev = (union ubifs_dev_desc *)ino->data;
215 if (ui->data_len == sizeof(dev->new))
216 rdev = new_decode_dev(le32_to_cpu(dev->new));
217 else if (ui->data_len == sizeof(dev->huge))
218 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 else {
220 err = 13;
221 goto out_invalid;
222 }
223 memcpy(ui->data, ino->data, ui->data_len);
224 inode->i_op = &ubifs_file_inode_operations;
225 init_special_inode(inode, inode->i_mode, rdev);
226 break;
227 }
228 case S_IFSOCK:
229 case S_IFIFO:
230 inode->i_op = &ubifs_file_inode_operations;
231 init_special_inode(inode, inode->i_mode, 0);
232 if (ui->data_len != 0) {
233 err = 14;
234 goto out_invalid;
235 }
236 break;
237 default:
238 err = 15;
239 goto out_invalid;
240 }
241
242 kfree(ino);
243 ubifs_set_inode_flags(inode);
244 unlock_new_inode(inode);
245 return inode;
246
247 out_invalid:
248 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
249 ubifs_dump_node(c, ino);
250 ubifs_dump_inode(c, inode);
251 err = -EINVAL;
252 out_ino:
253 kfree(ino);
254 out:
255 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
256 iget_failed(inode);
257 return ERR_PTR(err);
258 }
259
260 static struct inode *ubifs_alloc_inode(struct super_block *sb)
261 {
262 struct ubifs_inode *ui;
263
264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 if (!ui)
266 return NULL;
267
268 memset((void *)ui + sizeof(struct inode), 0,
269 sizeof(struct ubifs_inode) - sizeof(struct inode));
270 mutex_init(&ui->ui_mutex);
271 spin_lock_init(&ui->ui_lock);
272 return &ui->vfs_inode;
273 };
274
275 static void ubifs_free_inode(struct inode *inode)
276 {
277 struct ubifs_inode *ui = ubifs_inode(inode);
278
279 kfree(ui->data);
280 fscrypt_free_inode(inode);
281
282 kmem_cache_free(ubifs_inode_slab, ui);
283 }
284
285 /*
286 * Note, Linux write-back code calls this without 'i_mutex'.
287 */
288 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
289 {
290 int err = 0;
291 struct ubifs_info *c = inode->i_sb->s_fs_info;
292 struct ubifs_inode *ui = ubifs_inode(inode);
293
294 ubifs_assert(c, !ui->xattr);
295 if (is_bad_inode(inode))
296 return 0;
297
298 mutex_lock(&ui->ui_mutex);
299 /*
300 * Due to races between write-back forced by budgeting
301 * (see 'sync_some_inodes()') and background write-back, the inode may
302 * have already been synchronized, do not do this again. This might
303 * also happen if it was synchronized in an VFS operation, e.g.
304 * 'ubifs_link()'.
305 */
306 if (!ui->dirty) {
307 mutex_unlock(&ui->ui_mutex);
308 return 0;
309 }
310
311 /*
312 * As an optimization, do not write orphan inodes to the media just
313 * because this is not needed.
314 */
315 dbg_gen("inode %lu, mode %#x, nlink %u",
316 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
317 if (inode->i_nlink) {
318 err = ubifs_jnl_write_inode(c, inode);
319 if (err)
320 ubifs_err(c, "can't write inode %lu, error %d",
321 inode->i_ino, err);
322 else
323 err = dbg_check_inode_size(c, inode, ui->ui_size);
324 }
325
326 ui->dirty = 0;
327 mutex_unlock(&ui->ui_mutex);
328 ubifs_release_dirty_inode_budget(c, ui);
329 return err;
330 }
331
332 static void ubifs_evict_inode(struct inode *inode)
333 {
334 int err;
335 struct ubifs_info *c = inode->i_sb->s_fs_info;
336 struct ubifs_inode *ui = ubifs_inode(inode);
337
338 if (ui->xattr)
339 /*
340 * Extended attribute inode deletions are fully handled in
341 * 'ubifs_removexattr()'. These inodes are special and have
342 * limited usage, so there is nothing to do here.
343 */
344 goto out;
345
346 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
347 ubifs_assert(c, !atomic_read(&inode->i_count));
348
349 truncate_inode_pages_final(&inode->i_data);
350
351 if (inode->i_nlink)
352 goto done;
353
354 if (is_bad_inode(inode))
355 goto out;
356
357 ui->ui_size = inode->i_size = 0;
358 err = ubifs_jnl_delete_inode(c, inode);
359 if (err)
360 /*
361 * Worst case we have a lost orphan inode wasting space, so a
362 * simple error message is OK here.
363 */
364 ubifs_err(c, "can't delete inode %lu, error %d",
365 inode->i_ino, err);
366
367 out:
368 if (ui->dirty)
369 ubifs_release_dirty_inode_budget(c, ui);
370 else {
371 /* We've deleted something - clean the "no space" flags */
372 c->bi.nospace = c->bi.nospace_rp = 0;
373 smp_wmb();
374 }
375 done:
376 clear_inode(inode);
377 fscrypt_put_encryption_info(inode);
378 }
379
380 static void ubifs_dirty_inode(struct inode *inode, int flags)
381 {
382 struct ubifs_info *c = inode->i_sb->s_fs_info;
383 struct ubifs_inode *ui = ubifs_inode(inode);
384
385 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
386 if (!ui->dirty) {
387 ui->dirty = 1;
388 dbg_gen("inode %lu", inode->i_ino);
389 }
390 }
391
392 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
393 {
394 struct ubifs_info *c = dentry->d_sb->s_fs_info;
395 unsigned long long free;
396 __le32 *uuid = (__le32 *)c->uuid;
397
398 free = ubifs_get_free_space(c);
399 dbg_gen("free space %lld bytes (%lld blocks)",
400 free, free >> UBIFS_BLOCK_SHIFT);
401
402 buf->f_type = UBIFS_SUPER_MAGIC;
403 buf->f_bsize = UBIFS_BLOCK_SIZE;
404 buf->f_blocks = c->block_cnt;
405 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
406 if (free > c->report_rp_size)
407 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
408 else
409 buf->f_bavail = 0;
410 buf->f_files = 0;
411 buf->f_ffree = 0;
412 buf->f_namelen = UBIFS_MAX_NLEN;
413 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
414 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
415 ubifs_assert(c, buf->f_bfree <= c->block_cnt);
416 return 0;
417 }
418
419 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
420 {
421 struct ubifs_info *c = root->d_sb->s_fs_info;
422
423 if (c->mount_opts.unmount_mode == 2)
424 seq_puts(s, ",fast_unmount");
425 else if (c->mount_opts.unmount_mode == 1)
426 seq_puts(s, ",norm_unmount");
427
428 if (c->mount_opts.bulk_read == 2)
429 seq_puts(s, ",bulk_read");
430 else if (c->mount_opts.bulk_read == 1)
431 seq_puts(s, ",no_bulk_read");
432
433 if (c->mount_opts.chk_data_crc == 2)
434 seq_puts(s, ",chk_data_crc");
435 else if (c->mount_opts.chk_data_crc == 1)
436 seq_puts(s, ",no_chk_data_crc");
437
438 if (c->mount_opts.override_compr) {
439 seq_printf(s, ",compr=%s",
440 ubifs_compr_name(c, c->mount_opts.compr_type));
441 }
442
443 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
444 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
445
446 return 0;
447 }
448
449 static int ubifs_sync_fs(struct super_block *sb, int wait)
450 {
451 int i, err;
452 struct ubifs_info *c = sb->s_fs_info;
453
454 /*
455 * Zero @wait is just an advisory thing to help the file system shove
456 * lots of data into the queues, and there will be the second
457 * '->sync_fs()' call, with non-zero @wait.
458 */
459 if (!wait)
460 return 0;
461
462 /*
463 * Synchronize write buffers, because 'ubifs_run_commit()' does not
464 * do this if it waits for an already running commit.
465 */
466 for (i = 0; i < c->jhead_cnt; i++) {
467 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
468 if (err)
469 return err;
470 }
471
472 /*
473 * Strictly speaking, it is not necessary to commit the journal here,
474 * synchronizing write-buffers would be enough. But committing makes
475 * UBIFS free space predictions much more accurate, so we want to let
476 * the user be able to get more accurate results of 'statfs()' after
477 * they synchronize the file system.
478 */
479 err = ubifs_run_commit(c);
480 if (err)
481 return err;
482
483 return ubi_sync(c->vi.ubi_num);
484 }
485
486 /**
487 * init_constants_early - initialize UBIFS constants.
488 * @c: UBIFS file-system description object
489 *
490 * This function initialize UBIFS constants which do not need the superblock to
491 * be read. It also checks that the UBI volume satisfies basic UBIFS
492 * requirements. Returns zero in case of success and a negative error code in
493 * case of failure.
494 */
495 static int init_constants_early(struct ubifs_info *c)
496 {
497 if (c->vi.corrupted) {
498 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
499 c->ro_media = 1;
500 }
501
502 if (c->di.ro_mode) {
503 ubifs_msg(c, "read-only UBI device");
504 c->ro_media = 1;
505 }
506
507 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
508 ubifs_msg(c, "static UBI volume - read-only mode");
509 c->ro_media = 1;
510 }
511
512 c->leb_cnt = c->vi.size;
513 c->leb_size = c->vi.usable_leb_size;
514 c->leb_start = c->di.leb_start;
515 c->half_leb_size = c->leb_size / 2;
516 c->min_io_size = c->di.min_io_size;
517 c->min_io_shift = fls(c->min_io_size) - 1;
518 c->max_write_size = c->di.max_write_size;
519 c->max_write_shift = fls(c->max_write_size) - 1;
520
521 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
522 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
523 c->leb_size, UBIFS_MIN_LEB_SZ);
524 return -EINVAL;
525 }
526
527 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
528 ubifs_errc(c, "too few LEBs (%d), min. is %d",
529 c->leb_cnt, UBIFS_MIN_LEB_CNT);
530 return -EINVAL;
531 }
532
533 if (!is_power_of_2(c->min_io_size)) {
534 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
535 return -EINVAL;
536 }
537
538 /*
539 * Maximum write size has to be greater or equivalent to min. I/O
540 * size, and be multiple of min. I/O size.
541 */
542 if (c->max_write_size < c->min_io_size ||
543 c->max_write_size % c->min_io_size ||
544 !is_power_of_2(c->max_write_size)) {
545 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
546 c->max_write_size, c->min_io_size);
547 return -EINVAL;
548 }
549
550 /*
551 * UBIFS aligns all node to 8-byte boundary, so to make function in
552 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
553 * less than 8.
554 */
555 if (c->min_io_size < 8) {
556 c->min_io_size = 8;
557 c->min_io_shift = 3;
558 if (c->max_write_size < c->min_io_size) {
559 c->max_write_size = c->min_io_size;
560 c->max_write_shift = c->min_io_shift;
561 }
562 }
563
564 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
565 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
566
567 /*
568 * Initialize node length ranges which are mostly needed for node
569 * length validation.
570 */
571 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
572 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
573 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
574 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
575 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
576 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
577 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
578 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
579 UBIFS_MAX_HMAC_LEN;
580
581 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
582 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
583 c->ranges[UBIFS_ORPH_NODE].min_len =
584 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
585 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
586 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
587 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
588 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
589 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
590 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
591 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
592 /*
593 * Minimum indexing node size is amended later when superblock is
594 * read and the key length is known.
595 */
596 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
597 /*
598 * Maximum indexing node size is amended later when superblock is
599 * read and the fanout is known.
600 */
601 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
602
603 /*
604 * Initialize dead and dark LEB space watermarks. See gc.c for comments
605 * about these values.
606 */
607 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
608 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
609
610 /*
611 * Calculate how many bytes would be wasted at the end of LEB if it was
612 * fully filled with data nodes of maximum size. This is used in
613 * calculations when reporting free space.
614 */
615 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
616
617 /* Buffer size for bulk-reads */
618 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
619 if (c->max_bu_buf_len > c->leb_size)
620 c->max_bu_buf_len = c->leb_size;
621 return 0;
622 }
623
624 /**
625 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
626 * @c: UBIFS file-system description object
627 * @lnum: LEB the write-buffer was synchronized to
628 * @free: how many free bytes left in this LEB
629 * @pad: how many bytes were padded
630 *
631 * This is a callback function which is called by the I/O unit when the
632 * write-buffer is synchronized. We need this to correctly maintain space
633 * accounting in bud logical eraseblocks. This function returns zero in case of
634 * success and a negative error code in case of failure.
635 *
636 * This function actually belongs to the journal, but we keep it here because
637 * we want to keep it static.
638 */
639 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
640 {
641 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
642 }
643
644 /*
645 * init_constants_sb - initialize UBIFS constants.
646 * @c: UBIFS file-system description object
647 *
648 * This is a helper function which initializes various UBIFS constants after
649 * the superblock has been read. It also checks various UBIFS parameters and
650 * makes sure they are all right. Returns zero in case of success and a
651 * negative error code in case of failure.
652 */
653 static int init_constants_sb(struct ubifs_info *c)
654 {
655 int tmp, err;
656 long long tmp64;
657
658 c->main_bytes = (long long)c->main_lebs * c->leb_size;
659 c->max_znode_sz = sizeof(struct ubifs_znode) +
660 c->fanout * sizeof(struct ubifs_zbranch);
661
662 tmp = ubifs_idx_node_sz(c, 1);
663 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
664 c->min_idx_node_sz = ALIGN(tmp, 8);
665
666 tmp = ubifs_idx_node_sz(c, c->fanout);
667 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
668 c->max_idx_node_sz = ALIGN(tmp, 8);
669
670 /* Make sure LEB size is large enough to fit full commit */
671 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
672 tmp = ALIGN(tmp, c->min_io_size);
673 if (tmp > c->leb_size) {
674 ubifs_err(c, "too small LEB size %d, at least %d needed",
675 c->leb_size, tmp);
676 return -EINVAL;
677 }
678
679 /*
680 * Make sure that the log is large enough to fit reference nodes for
681 * all buds plus one reserved LEB.
682 */
683 tmp64 = c->max_bud_bytes + c->leb_size - 1;
684 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
685 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
686 tmp /= c->leb_size;
687 tmp += 1;
688 if (c->log_lebs < tmp) {
689 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
690 c->log_lebs, tmp);
691 return -EINVAL;
692 }
693
694 /*
695 * When budgeting we assume worst-case scenarios when the pages are not
696 * be compressed and direntries are of the maximum size.
697 *
698 * Note, data, which may be stored in inodes is budgeted separately, so
699 * it is not included into 'c->bi.inode_budget'.
700 */
701 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
702 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
703 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
704
705 /*
706 * When the amount of flash space used by buds becomes
707 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
708 * The writers are unblocked when the commit is finished. To avoid
709 * writers to be blocked UBIFS initiates background commit in advance,
710 * when number of bud bytes becomes above the limit defined below.
711 */
712 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
713
714 /*
715 * Ensure minimum journal size. All the bytes in the journal heads are
716 * considered to be used, when calculating the current journal usage.
717 * Consequently, if the journal is too small, UBIFS will treat it as
718 * always full.
719 */
720 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
721 if (c->bg_bud_bytes < tmp64)
722 c->bg_bud_bytes = tmp64;
723 if (c->max_bud_bytes < tmp64 + c->leb_size)
724 c->max_bud_bytes = tmp64 + c->leb_size;
725
726 err = ubifs_calc_lpt_geom(c);
727 if (err)
728 return err;
729
730 /* Initialize effective LEB size used in budgeting calculations */
731 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
732 return 0;
733 }
734
735 /*
736 * init_constants_master - initialize UBIFS constants.
737 * @c: UBIFS file-system description object
738 *
739 * This is a helper function which initializes various UBIFS constants after
740 * the master node has been read. It also checks various UBIFS parameters and
741 * makes sure they are all right.
742 */
743 static void init_constants_master(struct ubifs_info *c)
744 {
745 long long tmp64;
746
747 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
748 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
749
750 /*
751 * Calculate total amount of FS blocks. This number is not used
752 * internally because it does not make much sense for UBIFS, but it is
753 * necessary to report something for the 'statfs()' call.
754 *
755 * Subtract the LEB reserved for GC, the LEB which is reserved for
756 * deletions, minimum LEBs for the index, and assume only one journal
757 * head is available.
758 */
759 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
760 tmp64 *= (long long)c->leb_size - c->leb_overhead;
761 tmp64 = ubifs_reported_space(c, tmp64);
762 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
763 }
764
765 /**
766 * take_gc_lnum - reserve GC LEB.
767 * @c: UBIFS file-system description object
768 *
769 * This function ensures that the LEB reserved for garbage collection is marked
770 * as "taken" in lprops. We also have to set free space to LEB size and dirty
771 * space to zero, because lprops may contain out-of-date information if the
772 * file-system was un-mounted before it has been committed. This function
773 * returns zero in case of success and a negative error code in case of
774 * failure.
775 */
776 static int take_gc_lnum(struct ubifs_info *c)
777 {
778 int err;
779
780 if (c->gc_lnum == -1) {
781 ubifs_err(c, "no LEB for GC");
782 return -EINVAL;
783 }
784
785 /* And we have to tell lprops that this LEB is taken */
786 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
787 LPROPS_TAKEN, 0, 0);
788 return err;
789 }
790
791 /**
792 * alloc_wbufs - allocate write-buffers.
793 * @c: UBIFS file-system description object
794 *
795 * This helper function allocates and initializes UBIFS write-buffers. Returns
796 * zero in case of success and %-ENOMEM in case of failure.
797 */
798 static int alloc_wbufs(struct ubifs_info *c)
799 {
800 int i, err;
801
802 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
803 GFP_KERNEL);
804 if (!c->jheads)
805 return -ENOMEM;
806
807 /* Initialize journal heads */
808 for (i = 0; i < c->jhead_cnt; i++) {
809 INIT_LIST_HEAD(&c->jheads[i].buds_list);
810 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
811 if (err)
812 return err;
813
814 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
815 c->jheads[i].wbuf.jhead = i;
816 c->jheads[i].grouped = 1;
817 c->jheads[i].log_hash = ubifs_hash_get_desc(c);
818 if (IS_ERR(c->jheads[i].log_hash))
819 goto out;
820 }
821
822 /*
823 * Garbage Collector head does not need to be synchronized by timer.
824 * Also GC head nodes are not grouped.
825 */
826 c->jheads[GCHD].wbuf.no_timer = 1;
827 c->jheads[GCHD].grouped = 0;
828
829 return 0;
830
831 out:
832 while (i--)
833 kfree(c->jheads[i].log_hash);
834
835 return err;
836 }
837
838 /**
839 * free_wbufs - free write-buffers.
840 * @c: UBIFS file-system description object
841 */
842 static void free_wbufs(struct ubifs_info *c)
843 {
844 int i;
845
846 if (c->jheads) {
847 for (i = 0; i < c->jhead_cnt; i++) {
848 kfree(c->jheads[i].wbuf.buf);
849 kfree(c->jheads[i].wbuf.inodes);
850 kfree(c->jheads[i].log_hash);
851 }
852 kfree(c->jheads);
853 c->jheads = NULL;
854 }
855 }
856
857 /**
858 * free_orphans - free orphans.
859 * @c: UBIFS file-system description object
860 */
861 static void free_orphans(struct ubifs_info *c)
862 {
863 struct ubifs_orphan *orph;
864
865 while (c->orph_dnext) {
866 orph = c->orph_dnext;
867 c->orph_dnext = orph->dnext;
868 list_del(&orph->list);
869 kfree(orph);
870 }
871
872 while (!list_empty(&c->orph_list)) {
873 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
874 list_del(&orph->list);
875 kfree(orph);
876 ubifs_err(c, "orphan list not empty at unmount");
877 }
878
879 vfree(c->orph_buf);
880 c->orph_buf = NULL;
881 }
882
883 /**
884 * free_buds - free per-bud objects.
885 * @c: UBIFS file-system description object
886 */
887 static void free_buds(struct ubifs_info *c)
888 {
889 struct ubifs_bud *bud, *n;
890
891 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
892 kfree(bud);
893 }
894
895 /**
896 * check_volume_empty - check if the UBI volume is empty.
897 * @c: UBIFS file-system description object
898 *
899 * This function checks if the UBIFS volume is empty by looking if its LEBs are
900 * mapped or not. The result of checking is stored in the @c->empty variable.
901 * Returns zero in case of success and a negative error code in case of
902 * failure.
903 */
904 static int check_volume_empty(struct ubifs_info *c)
905 {
906 int lnum, err;
907
908 c->empty = 1;
909 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
910 err = ubifs_is_mapped(c, lnum);
911 if (unlikely(err < 0))
912 return err;
913 if (err == 1) {
914 c->empty = 0;
915 break;
916 }
917
918 cond_resched();
919 }
920
921 return 0;
922 }
923
924 /*
925 * UBIFS mount options.
926 *
927 * Opt_fast_unmount: do not run a journal commit before un-mounting
928 * Opt_norm_unmount: run a journal commit before un-mounting
929 * Opt_bulk_read: enable bulk-reads
930 * Opt_no_bulk_read: disable bulk-reads
931 * Opt_chk_data_crc: check CRCs when reading data nodes
932 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
933 * Opt_override_compr: override default compressor
934 * Opt_assert: set ubifs_assert() action
935 * Opt_auth_key: The key name used for authentication
936 * Opt_auth_hash_name: The hash type used for authentication
937 * Opt_err: just end of array marker
938 */
939 enum {
940 Opt_fast_unmount,
941 Opt_norm_unmount,
942 Opt_bulk_read,
943 Opt_no_bulk_read,
944 Opt_chk_data_crc,
945 Opt_no_chk_data_crc,
946 Opt_override_compr,
947 Opt_assert,
948 Opt_auth_key,
949 Opt_auth_hash_name,
950 Opt_ignore,
951 Opt_err,
952 };
953
954 static const match_table_t tokens = {
955 {Opt_fast_unmount, "fast_unmount"},
956 {Opt_norm_unmount, "norm_unmount"},
957 {Opt_bulk_read, "bulk_read"},
958 {Opt_no_bulk_read, "no_bulk_read"},
959 {Opt_chk_data_crc, "chk_data_crc"},
960 {Opt_no_chk_data_crc, "no_chk_data_crc"},
961 {Opt_override_compr, "compr=%s"},
962 {Opt_auth_key, "auth_key=%s"},
963 {Opt_auth_hash_name, "auth_hash_name=%s"},
964 {Opt_ignore, "ubi=%s"},
965 {Opt_ignore, "vol=%s"},
966 {Opt_assert, "assert=%s"},
967 {Opt_err, NULL},
968 };
969
970 /**
971 * parse_standard_option - parse a standard mount option.
972 * @option: the option to parse
973 *
974 * Normally, standard mount options like "sync" are passed to file-systems as
975 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
976 * be present in the options string. This function tries to deal with this
977 * situation and parse standard options. Returns 0 if the option was not
978 * recognized, and the corresponding integer flag if it was.
979 *
980 * UBIFS is only interested in the "sync" option, so do not check for anything
981 * else.
982 */
983 static int parse_standard_option(const char *option)
984 {
985
986 pr_notice("UBIFS: parse %s\n", option);
987 if (!strcmp(option, "sync"))
988 return SB_SYNCHRONOUS;
989 return 0;
990 }
991
992 /**
993 * ubifs_parse_options - parse mount parameters.
994 * @c: UBIFS file-system description object
995 * @options: parameters to parse
996 * @is_remount: non-zero if this is FS re-mount
997 *
998 * This function parses UBIFS mount options and returns zero in case success
999 * and a negative error code in case of failure.
1000 */
1001 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1002 int is_remount)
1003 {
1004 char *p;
1005 substring_t args[MAX_OPT_ARGS];
1006
1007 if (!options)
1008 return 0;
1009
1010 while ((p = strsep(&options, ","))) {
1011 int token;
1012
1013 if (!*p)
1014 continue;
1015
1016 token = match_token(p, tokens, args);
1017 switch (token) {
1018 /*
1019 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1020 * We accept them in order to be backward-compatible. But this
1021 * should be removed at some point.
1022 */
1023 case Opt_fast_unmount:
1024 c->mount_opts.unmount_mode = 2;
1025 break;
1026 case Opt_norm_unmount:
1027 c->mount_opts.unmount_mode = 1;
1028 break;
1029 case Opt_bulk_read:
1030 c->mount_opts.bulk_read = 2;
1031 c->bulk_read = 1;
1032 break;
1033 case Opt_no_bulk_read:
1034 c->mount_opts.bulk_read = 1;
1035 c->bulk_read = 0;
1036 break;
1037 case Opt_chk_data_crc:
1038 c->mount_opts.chk_data_crc = 2;
1039 c->no_chk_data_crc = 0;
1040 break;
1041 case Opt_no_chk_data_crc:
1042 c->mount_opts.chk_data_crc = 1;
1043 c->no_chk_data_crc = 1;
1044 break;
1045 case Opt_override_compr:
1046 {
1047 char *name = match_strdup(&args[0]);
1048
1049 if (!name)
1050 return -ENOMEM;
1051 if (!strcmp(name, "none"))
1052 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1053 else if (!strcmp(name, "lzo"))
1054 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1055 else if (!strcmp(name, "zlib"))
1056 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1057 else {
1058 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1059 kfree(name);
1060 return -EINVAL;
1061 }
1062 kfree(name);
1063 c->mount_opts.override_compr = 1;
1064 c->default_compr = c->mount_opts.compr_type;
1065 break;
1066 }
1067 case Opt_assert:
1068 {
1069 char *act = match_strdup(&args[0]);
1070
1071 if (!act)
1072 return -ENOMEM;
1073 if (!strcmp(act, "report"))
1074 c->assert_action = ASSACT_REPORT;
1075 else if (!strcmp(act, "read-only"))
1076 c->assert_action = ASSACT_RO;
1077 else if (!strcmp(act, "panic"))
1078 c->assert_action = ASSACT_PANIC;
1079 else {
1080 ubifs_err(c, "unknown assert action \"%s\"", act);
1081 kfree(act);
1082 return -EINVAL;
1083 }
1084 kfree(act);
1085 break;
1086 }
1087 case Opt_auth_key:
1088 c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL);
1089 if (!c->auth_key_name)
1090 return -ENOMEM;
1091 break;
1092 case Opt_auth_hash_name:
1093 c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL);
1094 if (!c->auth_hash_name)
1095 return -ENOMEM;
1096 break;
1097 case Opt_ignore:
1098 break;
1099 default:
1100 {
1101 unsigned long flag;
1102 struct super_block *sb = c->vfs_sb;
1103
1104 flag = parse_standard_option(p);
1105 if (!flag) {
1106 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1107 p);
1108 return -EINVAL;
1109 }
1110 sb->s_flags |= flag;
1111 break;
1112 }
1113 }
1114 }
1115
1116 return 0;
1117 }
1118
1119 /**
1120 * destroy_journal - destroy journal data structures.
1121 * @c: UBIFS file-system description object
1122 *
1123 * This function destroys journal data structures including those that may have
1124 * been created by recovery functions.
1125 */
1126 static void destroy_journal(struct ubifs_info *c)
1127 {
1128 while (!list_empty(&c->unclean_leb_list)) {
1129 struct ubifs_unclean_leb *ucleb;
1130
1131 ucleb = list_entry(c->unclean_leb_list.next,
1132 struct ubifs_unclean_leb, list);
1133 list_del(&ucleb->list);
1134 kfree(ucleb);
1135 }
1136 while (!list_empty(&c->old_buds)) {
1137 struct ubifs_bud *bud;
1138
1139 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1140 list_del(&bud->list);
1141 kfree(bud);
1142 }
1143 ubifs_destroy_idx_gc(c);
1144 ubifs_destroy_size_tree(c);
1145 ubifs_tnc_close(c);
1146 free_buds(c);
1147 }
1148
1149 /**
1150 * bu_init - initialize bulk-read information.
1151 * @c: UBIFS file-system description object
1152 */
1153 static void bu_init(struct ubifs_info *c)
1154 {
1155 ubifs_assert(c, c->bulk_read == 1);
1156
1157 if (c->bu.buf)
1158 return; /* Already initialized */
1159
1160 again:
1161 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1162 if (!c->bu.buf) {
1163 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1164 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1165 goto again;
1166 }
1167
1168 /* Just disable bulk-read */
1169 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1170 c->max_bu_buf_len);
1171 c->mount_opts.bulk_read = 1;
1172 c->bulk_read = 0;
1173 return;
1174 }
1175 }
1176
1177 /**
1178 * check_free_space - check if there is enough free space to mount.
1179 * @c: UBIFS file-system description object
1180 *
1181 * This function makes sure UBIFS has enough free space to be mounted in
1182 * read/write mode. UBIFS must always have some free space to allow deletions.
1183 */
1184 static int check_free_space(struct ubifs_info *c)
1185 {
1186 ubifs_assert(c, c->dark_wm > 0);
1187 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1188 ubifs_err(c, "insufficient free space to mount in R/W mode");
1189 ubifs_dump_budg(c, &c->bi);
1190 ubifs_dump_lprops(c);
1191 return -ENOSPC;
1192 }
1193 return 0;
1194 }
1195
1196 /**
1197 * mount_ubifs - mount UBIFS file-system.
1198 * @c: UBIFS file-system description object
1199 *
1200 * This function mounts UBIFS file system. Returns zero in case of success and
1201 * a negative error code in case of failure.
1202 */
1203 static int mount_ubifs(struct ubifs_info *c)
1204 {
1205 int err;
1206 long long x, y;
1207 size_t sz;
1208
1209 c->ro_mount = !!sb_rdonly(c->vfs_sb);
1210 /* Suppress error messages while probing if SB_SILENT is set */
1211 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1212
1213 err = init_constants_early(c);
1214 if (err)
1215 return err;
1216
1217 err = ubifs_debugging_init(c);
1218 if (err)
1219 return err;
1220
1221 err = check_volume_empty(c);
1222 if (err)
1223 goto out_free;
1224
1225 if (c->empty && (c->ro_mount || c->ro_media)) {
1226 /*
1227 * This UBI volume is empty, and read-only, or the file system
1228 * is mounted read-only - we cannot format it.
1229 */
1230 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1231 c->ro_media ? "UBI volume" : "mount");
1232 err = -EROFS;
1233 goto out_free;
1234 }
1235
1236 if (c->ro_media && !c->ro_mount) {
1237 ubifs_err(c, "cannot mount read-write - read-only media");
1238 err = -EROFS;
1239 goto out_free;
1240 }
1241
1242 /*
1243 * The requirement for the buffer is that it should fit indexing B-tree
1244 * height amount of integers. We assume the height if the TNC tree will
1245 * never exceed 64.
1246 */
1247 err = -ENOMEM;
1248 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1249 GFP_KERNEL);
1250 if (!c->bottom_up_buf)
1251 goto out_free;
1252
1253 c->sbuf = vmalloc(c->leb_size);
1254 if (!c->sbuf)
1255 goto out_free;
1256
1257 if (!c->ro_mount) {
1258 c->ileb_buf = vmalloc(c->leb_size);
1259 if (!c->ileb_buf)
1260 goto out_free;
1261 }
1262
1263 if (c->bulk_read == 1)
1264 bu_init(c);
1265
1266 if (!c->ro_mount) {
1267 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1268 UBIFS_CIPHER_BLOCK_SIZE,
1269 GFP_KERNEL);
1270 if (!c->write_reserve_buf)
1271 goto out_free;
1272 }
1273
1274 c->mounting = 1;
1275
1276 if (c->auth_key_name) {
1277 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1278 err = ubifs_init_authentication(c);
1279 if (err)
1280 goto out_free;
1281 } else {
1282 ubifs_err(c, "auth_key_name, but UBIFS is built without"
1283 " authentication support");
1284 err = -EINVAL;
1285 goto out_free;
1286 }
1287 }
1288
1289 err = ubifs_read_superblock(c);
1290 if (err)
1291 goto out_free;
1292
1293 c->probing = 0;
1294
1295 /*
1296 * Make sure the compressor which is set as default in the superblock
1297 * or overridden by mount options is actually compiled in.
1298 */
1299 if (!ubifs_compr_present(c, c->default_compr)) {
1300 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1301 ubifs_compr_name(c, c->default_compr));
1302 err = -ENOTSUPP;
1303 goto out_free;
1304 }
1305
1306 err = init_constants_sb(c);
1307 if (err)
1308 goto out_free;
1309
1310 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1311 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1312 c->cbuf = kmalloc(sz, GFP_NOFS);
1313 if (!c->cbuf) {
1314 err = -ENOMEM;
1315 goto out_free;
1316 }
1317
1318 err = alloc_wbufs(c);
1319 if (err)
1320 goto out_cbuf;
1321
1322 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1323 if (!c->ro_mount) {
1324 /* Create background thread */
1325 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1326 if (IS_ERR(c->bgt)) {
1327 err = PTR_ERR(c->bgt);
1328 c->bgt = NULL;
1329 ubifs_err(c, "cannot spawn \"%s\", error %d",
1330 c->bgt_name, err);
1331 goto out_wbufs;
1332 }
1333 wake_up_process(c->bgt);
1334 }
1335
1336 err = ubifs_read_master(c);
1337 if (err)
1338 goto out_master;
1339
1340 init_constants_master(c);
1341
1342 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1343 ubifs_msg(c, "recovery needed");
1344 c->need_recovery = 1;
1345 }
1346
1347 if (c->need_recovery && !c->ro_mount) {
1348 err = ubifs_recover_inl_heads(c, c->sbuf);
1349 if (err)
1350 goto out_master;
1351 }
1352
1353 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1354 if (err)
1355 goto out_master;
1356
1357 if (!c->ro_mount && c->space_fixup) {
1358 err = ubifs_fixup_free_space(c);
1359 if (err)
1360 goto out_lpt;
1361 }
1362
1363 if (!c->ro_mount && !c->need_recovery) {
1364 /*
1365 * Set the "dirty" flag so that if we reboot uncleanly we
1366 * will notice this immediately on the next mount.
1367 */
1368 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1369 err = ubifs_write_master(c);
1370 if (err)
1371 goto out_lpt;
1372 }
1373
1374 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1375 if (err)
1376 goto out_lpt;
1377
1378 err = ubifs_replay_journal(c);
1379 if (err)
1380 goto out_journal;
1381
1382 /* Calculate 'min_idx_lebs' after journal replay */
1383 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1384
1385 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1386 if (err)
1387 goto out_orphans;
1388
1389 if (!c->ro_mount) {
1390 int lnum;
1391
1392 err = check_free_space(c);
1393 if (err)
1394 goto out_orphans;
1395
1396 /* Check for enough log space */
1397 lnum = c->lhead_lnum + 1;
1398 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1399 lnum = UBIFS_LOG_LNUM;
1400 if (lnum == c->ltail_lnum) {
1401 err = ubifs_consolidate_log(c);
1402 if (err)
1403 goto out_orphans;
1404 }
1405
1406 if (c->need_recovery) {
1407 if (!ubifs_authenticated(c)) {
1408 err = ubifs_recover_size(c, true);
1409 if (err)
1410 goto out_orphans;
1411 }
1412
1413 err = ubifs_rcvry_gc_commit(c);
1414 if (err)
1415 goto out_orphans;
1416
1417 if (ubifs_authenticated(c)) {
1418 err = ubifs_recover_size(c, false);
1419 if (err)
1420 goto out_orphans;
1421 }
1422 } else {
1423 err = take_gc_lnum(c);
1424 if (err)
1425 goto out_orphans;
1426
1427 /*
1428 * GC LEB may contain garbage if there was an unclean
1429 * reboot, and it should be un-mapped.
1430 */
1431 err = ubifs_leb_unmap(c, c->gc_lnum);
1432 if (err)
1433 goto out_orphans;
1434 }
1435
1436 err = dbg_check_lprops(c);
1437 if (err)
1438 goto out_orphans;
1439 } else if (c->need_recovery) {
1440 err = ubifs_recover_size(c, false);
1441 if (err)
1442 goto out_orphans;
1443 } else {
1444 /*
1445 * Even if we mount read-only, we have to set space in GC LEB
1446 * to proper value because this affects UBIFS free space
1447 * reporting. We do not want to have a situation when
1448 * re-mounting from R/O to R/W changes amount of free space.
1449 */
1450 err = take_gc_lnum(c);
1451 if (err)
1452 goto out_orphans;
1453 }
1454
1455 spin_lock(&ubifs_infos_lock);
1456 list_add_tail(&c->infos_list, &ubifs_infos);
1457 spin_unlock(&ubifs_infos_lock);
1458
1459 if (c->need_recovery) {
1460 if (c->ro_mount)
1461 ubifs_msg(c, "recovery deferred");
1462 else {
1463 c->need_recovery = 0;
1464 ubifs_msg(c, "recovery completed");
1465 /*
1466 * GC LEB has to be empty and taken at this point. But
1467 * the journal head LEBs may also be accounted as
1468 * "empty taken" if they are empty.
1469 */
1470 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1471 }
1472 } else
1473 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1474
1475 err = dbg_check_filesystem(c);
1476 if (err)
1477 goto out_infos;
1478
1479 err = dbg_debugfs_init_fs(c);
1480 if (err)
1481 goto out_infos;
1482
1483 c->mounting = 0;
1484
1485 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1486 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1487 c->ro_mount ? ", R/O mode" : "");
1488 x = (long long)c->main_lebs * c->leb_size;
1489 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1490 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1491 c->leb_size, c->leb_size >> 10, c->min_io_size,
1492 c->max_write_size);
1493 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1494 x, x >> 20, c->main_lebs,
1495 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1496 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1497 c->report_rp_size, c->report_rp_size >> 10);
1498 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1499 c->fmt_version, c->ro_compat_version,
1500 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1501 c->big_lpt ? ", big LPT model" : ", small LPT model");
1502
1503 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr));
1504 dbg_gen("data journal heads: %d",
1505 c->jhead_cnt - NONDATA_JHEADS_CNT);
1506 dbg_gen("log LEBs: %d (%d - %d)",
1507 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1508 dbg_gen("LPT area LEBs: %d (%d - %d)",
1509 c->lpt_lebs, c->lpt_first, c->lpt_last);
1510 dbg_gen("orphan area LEBs: %d (%d - %d)",
1511 c->orph_lebs, c->orph_first, c->orph_last);
1512 dbg_gen("main area LEBs: %d (%d - %d)",
1513 c->main_lebs, c->main_first, c->leb_cnt - 1);
1514 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1515 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1516 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1517 c->bi.old_idx_sz >> 20);
1518 dbg_gen("key hash type: %d", c->key_hash_type);
1519 dbg_gen("tree fanout: %d", c->fanout);
1520 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1521 dbg_gen("max. znode size %d", c->max_znode_sz);
1522 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1523 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1524 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1525 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1526 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1527 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1528 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1529 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1530 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1531 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1532 dbg_gen("dead watermark: %d", c->dead_wm);
1533 dbg_gen("dark watermark: %d", c->dark_wm);
1534 dbg_gen("LEB overhead: %d", c->leb_overhead);
1535 x = (long long)c->main_lebs * c->dark_wm;
1536 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1537 x, x >> 10, x >> 20);
1538 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1539 c->max_bud_bytes, c->max_bud_bytes >> 10,
1540 c->max_bud_bytes >> 20);
1541 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1542 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1543 c->bg_bud_bytes >> 20);
1544 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1545 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1546 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1547 dbg_gen("commit number: %llu", c->cmt_no);
1548
1549 return 0;
1550
1551 out_infos:
1552 spin_lock(&ubifs_infos_lock);
1553 list_del(&c->infos_list);
1554 spin_unlock(&ubifs_infos_lock);
1555 out_orphans:
1556 free_orphans(c);
1557 out_journal:
1558 destroy_journal(c);
1559 out_lpt:
1560 ubifs_lpt_free(c, 0);
1561 out_master:
1562 kfree(c->mst_node);
1563 kfree(c->rcvrd_mst_node);
1564 if (c->bgt)
1565 kthread_stop(c->bgt);
1566 out_wbufs:
1567 free_wbufs(c);
1568 out_cbuf:
1569 kfree(c->cbuf);
1570 out_free:
1571 kfree(c->write_reserve_buf);
1572 kfree(c->bu.buf);
1573 vfree(c->ileb_buf);
1574 vfree(c->sbuf);
1575 kfree(c->bottom_up_buf);
1576 ubifs_debugging_exit(c);
1577 return err;
1578 }
1579
1580 /**
1581 * ubifs_umount - un-mount UBIFS file-system.
1582 * @c: UBIFS file-system description object
1583 *
1584 * Note, this function is called to free allocated resourced when un-mounting,
1585 * as well as free resources when an error occurred while we were half way
1586 * through mounting (error path cleanup function). So it has to make sure the
1587 * resource was actually allocated before freeing it.
1588 */
1589 static void ubifs_umount(struct ubifs_info *c)
1590 {
1591 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1592 c->vi.vol_id);
1593
1594 dbg_debugfs_exit_fs(c);
1595 spin_lock(&ubifs_infos_lock);
1596 list_del(&c->infos_list);
1597 spin_unlock(&ubifs_infos_lock);
1598
1599 if (c->bgt)
1600 kthread_stop(c->bgt);
1601
1602 destroy_journal(c);
1603 free_wbufs(c);
1604 free_orphans(c);
1605 ubifs_lpt_free(c, 0);
1606 ubifs_exit_authentication(c);
1607
1608 kfree(c->auth_key_name);
1609 kfree(c->auth_hash_name);
1610 kfree(c->cbuf);
1611 kfree(c->rcvrd_mst_node);
1612 kfree(c->mst_node);
1613 kfree(c->write_reserve_buf);
1614 kfree(c->bu.buf);
1615 vfree(c->ileb_buf);
1616 vfree(c->sbuf);
1617 kfree(c->bottom_up_buf);
1618 ubifs_debugging_exit(c);
1619 }
1620
1621 /**
1622 * ubifs_remount_rw - re-mount in read-write mode.
1623 * @c: UBIFS file-system description object
1624 *
1625 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1626 * mode. This function allocates the needed resources and re-mounts UBIFS in
1627 * read-write mode.
1628 */
1629 static int ubifs_remount_rw(struct ubifs_info *c)
1630 {
1631 int err, lnum;
1632
1633 if (c->rw_incompat) {
1634 ubifs_err(c, "the file-system is not R/W-compatible");
1635 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1636 c->fmt_version, c->ro_compat_version,
1637 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1638 return -EROFS;
1639 }
1640
1641 mutex_lock(&c->umount_mutex);
1642 dbg_save_space_info(c);
1643 c->remounting_rw = 1;
1644 c->ro_mount = 0;
1645
1646 if (c->space_fixup) {
1647 err = ubifs_fixup_free_space(c);
1648 if (err)
1649 goto out;
1650 }
1651
1652 err = check_free_space(c);
1653 if (err)
1654 goto out;
1655
1656 if (c->old_leb_cnt != c->leb_cnt) {
1657 struct ubifs_sb_node *sup = c->sup_node;
1658
1659 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1660 err = ubifs_write_sb_node(c, sup);
1661 if (err)
1662 goto out;
1663 }
1664
1665 if (c->need_recovery) {
1666 ubifs_msg(c, "completing deferred recovery");
1667 err = ubifs_write_rcvrd_mst_node(c);
1668 if (err)
1669 goto out;
1670 if (!ubifs_authenticated(c)) {
1671 err = ubifs_recover_size(c, true);
1672 if (err)
1673 goto out;
1674 }
1675 err = ubifs_clean_lebs(c, c->sbuf);
1676 if (err)
1677 goto out;
1678 err = ubifs_recover_inl_heads(c, c->sbuf);
1679 if (err)
1680 goto out;
1681 } else {
1682 /* A readonly mount is not allowed to have orphans */
1683 ubifs_assert(c, c->tot_orphans == 0);
1684 err = ubifs_clear_orphans(c);
1685 if (err)
1686 goto out;
1687 }
1688
1689 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1690 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1691 err = ubifs_write_master(c);
1692 if (err)
1693 goto out;
1694 }
1695
1696 c->ileb_buf = vmalloc(c->leb_size);
1697 if (!c->ileb_buf) {
1698 err = -ENOMEM;
1699 goto out;
1700 }
1701
1702 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1703 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1704 if (!c->write_reserve_buf) {
1705 err = -ENOMEM;
1706 goto out;
1707 }
1708
1709 err = ubifs_lpt_init(c, 0, 1);
1710 if (err)
1711 goto out;
1712
1713 /* Create background thread */
1714 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1715 if (IS_ERR(c->bgt)) {
1716 err = PTR_ERR(c->bgt);
1717 c->bgt = NULL;
1718 ubifs_err(c, "cannot spawn \"%s\", error %d",
1719 c->bgt_name, err);
1720 goto out;
1721 }
1722 wake_up_process(c->bgt);
1723
1724 c->orph_buf = vmalloc(c->leb_size);
1725 if (!c->orph_buf) {
1726 err = -ENOMEM;
1727 goto out;
1728 }
1729
1730 /* Check for enough log space */
1731 lnum = c->lhead_lnum + 1;
1732 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1733 lnum = UBIFS_LOG_LNUM;
1734 if (lnum == c->ltail_lnum) {
1735 err = ubifs_consolidate_log(c);
1736 if (err)
1737 goto out;
1738 }
1739
1740 if (c->need_recovery) {
1741 err = ubifs_rcvry_gc_commit(c);
1742 if (err)
1743 goto out;
1744
1745 if (ubifs_authenticated(c)) {
1746 err = ubifs_recover_size(c, false);
1747 if (err)
1748 goto out;
1749 }
1750 } else {
1751 err = ubifs_leb_unmap(c, c->gc_lnum);
1752 }
1753 if (err)
1754 goto out;
1755
1756 dbg_gen("re-mounted read-write");
1757 c->remounting_rw = 0;
1758
1759 if (c->need_recovery) {
1760 c->need_recovery = 0;
1761 ubifs_msg(c, "deferred recovery completed");
1762 } else {
1763 /*
1764 * Do not run the debugging space check if the were doing
1765 * recovery, because when we saved the information we had the
1766 * file-system in a state where the TNC and lprops has been
1767 * modified in memory, but all the I/O operations (including a
1768 * commit) were deferred. So the file-system was in
1769 * "non-committed" state. Now the file-system is in committed
1770 * state, and of course the amount of free space will change
1771 * because, for example, the old index size was imprecise.
1772 */
1773 err = dbg_check_space_info(c);
1774 }
1775
1776 mutex_unlock(&c->umount_mutex);
1777 return err;
1778
1779 out:
1780 c->ro_mount = 1;
1781 vfree(c->orph_buf);
1782 c->orph_buf = NULL;
1783 if (c->bgt) {
1784 kthread_stop(c->bgt);
1785 c->bgt = NULL;
1786 }
1787 free_wbufs(c);
1788 kfree(c->write_reserve_buf);
1789 c->write_reserve_buf = NULL;
1790 vfree(c->ileb_buf);
1791 c->ileb_buf = NULL;
1792 ubifs_lpt_free(c, 1);
1793 c->remounting_rw = 0;
1794 mutex_unlock(&c->umount_mutex);
1795 return err;
1796 }
1797
1798 /**
1799 * ubifs_remount_ro - re-mount in read-only mode.
1800 * @c: UBIFS file-system description object
1801 *
1802 * We assume VFS has stopped writing. Possibly the background thread could be
1803 * running a commit, however kthread_stop will wait in that case.
1804 */
1805 static void ubifs_remount_ro(struct ubifs_info *c)
1806 {
1807 int i, err;
1808
1809 ubifs_assert(c, !c->need_recovery);
1810 ubifs_assert(c, !c->ro_mount);
1811
1812 mutex_lock(&c->umount_mutex);
1813 if (c->bgt) {
1814 kthread_stop(c->bgt);
1815 c->bgt = NULL;
1816 }
1817
1818 dbg_save_space_info(c);
1819
1820 for (i = 0; i < c->jhead_cnt; i++) {
1821 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1822 if (err)
1823 ubifs_ro_mode(c, err);
1824 }
1825
1826 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1827 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1828 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1829 err = ubifs_write_master(c);
1830 if (err)
1831 ubifs_ro_mode(c, err);
1832
1833 vfree(c->orph_buf);
1834 c->orph_buf = NULL;
1835 kfree(c->write_reserve_buf);
1836 c->write_reserve_buf = NULL;
1837 vfree(c->ileb_buf);
1838 c->ileb_buf = NULL;
1839 ubifs_lpt_free(c, 1);
1840 c->ro_mount = 1;
1841 err = dbg_check_space_info(c);
1842 if (err)
1843 ubifs_ro_mode(c, err);
1844 mutex_unlock(&c->umount_mutex);
1845 }
1846
1847 static void ubifs_put_super(struct super_block *sb)
1848 {
1849 int i;
1850 struct ubifs_info *c = sb->s_fs_info;
1851
1852 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1853
1854 /*
1855 * The following asserts are only valid if there has not been a failure
1856 * of the media. For example, there will be dirty inodes if we failed
1857 * to write them back because of I/O errors.
1858 */
1859 if (!c->ro_error) {
1860 ubifs_assert(c, c->bi.idx_growth == 0);
1861 ubifs_assert(c, c->bi.dd_growth == 0);
1862 ubifs_assert(c, c->bi.data_growth == 0);
1863 }
1864
1865 /*
1866 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1867 * and file system un-mount. Namely, it prevents the shrinker from
1868 * picking this superblock for shrinking - it will be just skipped if
1869 * the mutex is locked.
1870 */
1871 mutex_lock(&c->umount_mutex);
1872 if (!c->ro_mount) {
1873 /*
1874 * First of all kill the background thread to make sure it does
1875 * not interfere with un-mounting and freeing resources.
1876 */
1877 if (c->bgt) {
1878 kthread_stop(c->bgt);
1879 c->bgt = NULL;
1880 }
1881
1882 /*
1883 * On fatal errors c->ro_error is set to 1, in which case we do
1884 * not write the master node.
1885 */
1886 if (!c->ro_error) {
1887 int err;
1888
1889 /* Synchronize write-buffers */
1890 for (i = 0; i < c->jhead_cnt; i++) {
1891 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1892 if (err)
1893 ubifs_ro_mode(c, err);
1894 }
1895
1896 /*
1897 * We are being cleanly unmounted which means the
1898 * orphans were killed - indicate this in the master
1899 * node. Also save the reserved GC LEB number.
1900 */
1901 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1902 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1903 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1904 err = ubifs_write_master(c);
1905 if (err)
1906 /*
1907 * Recovery will attempt to fix the master area
1908 * next mount, so we just print a message and
1909 * continue to unmount normally.
1910 */
1911 ubifs_err(c, "failed to write master node, error %d",
1912 err);
1913 } else {
1914 for (i = 0; i < c->jhead_cnt; i++)
1915 /* Make sure write-buffer timers are canceled */
1916 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1917 }
1918 }
1919
1920 ubifs_umount(c);
1921 ubi_close_volume(c->ubi);
1922 mutex_unlock(&c->umount_mutex);
1923 }
1924
1925 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1926 {
1927 int err;
1928 struct ubifs_info *c = sb->s_fs_info;
1929
1930 sync_filesystem(sb);
1931 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1932
1933 err = ubifs_parse_options(c, data, 1);
1934 if (err) {
1935 ubifs_err(c, "invalid or unknown remount parameter");
1936 return err;
1937 }
1938
1939 if (c->ro_mount && !(*flags & SB_RDONLY)) {
1940 if (c->ro_error) {
1941 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1942 return -EROFS;
1943 }
1944 if (c->ro_media) {
1945 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1946 return -EROFS;
1947 }
1948 err = ubifs_remount_rw(c);
1949 if (err)
1950 return err;
1951 } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1952 if (c->ro_error) {
1953 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1954 return -EROFS;
1955 }
1956 ubifs_remount_ro(c);
1957 }
1958
1959 if (c->bulk_read == 1)
1960 bu_init(c);
1961 else {
1962 dbg_gen("disable bulk-read");
1963 mutex_lock(&c->bu_mutex);
1964 kfree(c->bu.buf);
1965 c->bu.buf = NULL;
1966 mutex_unlock(&c->bu_mutex);
1967 }
1968
1969 if (!c->need_recovery)
1970 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1971
1972 return 0;
1973 }
1974
1975 const struct super_operations ubifs_super_operations = {
1976 .alloc_inode = ubifs_alloc_inode,
1977 .free_inode = ubifs_free_inode,
1978 .put_super = ubifs_put_super,
1979 .write_inode = ubifs_write_inode,
1980 .evict_inode = ubifs_evict_inode,
1981 .statfs = ubifs_statfs,
1982 .dirty_inode = ubifs_dirty_inode,
1983 .remount_fs = ubifs_remount_fs,
1984 .show_options = ubifs_show_options,
1985 .sync_fs = ubifs_sync_fs,
1986 };
1987
1988 /**
1989 * open_ubi - parse UBI device name string and open the UBI device.
1990 * @name: UBI volume name
1991 * @mode: UBI volume open mode
1992 *
1993 * The primary method of mounting UBIFS is by specifying the UBI volume
1994 * character device node path. However, UBIFS may also be mounted withoug any
1995 * character device node using one of the following methods:
1996 *
1997 * o ubiX_Y - mount UBI device number X, volume Y;
1998 * o ubiY - mount UBI device number 0, volume Y;
1999 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2000 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2001 *
2002 * Alternative '!' separator may be used instead of ':' (because some shells
2003 * like busybox may interpret ':' as an NFS host name separator). This function
2004 * returns UBI volume description object in case of success and a negative
2005 * error code in case of failure.
2006 */
2007 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2008 {
2009 struct ubi_volume_desc *ubi;
2010 int dev, vol;
2011 char *endptr;
2012
2013 if (!name || !*name)
2014 return ERR_PTR(-EINVAL);
2015
2016 /* First, try to open using the device node path method */
2017 ubi = ubi_open_volume_path(name, mode);
2018 if (!IS_ERR(ubi))
2019 return ubi;
2020
2021 /* Try the "nodev" method */
2022 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2023 return ERR_PTR(-EINVAL);
2024
2025 /* ubi:NAME method */
2026 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2027 return ubi_open_volume_nm(0, name + 4, mode);
2028
2029 if (!isdigit(name[3]))
2030 return ERR_PTR(-EINVAL);
2031
2032 dev = simple_strtoul(name + 3, &endptr, 0);
2033
2034 /* ubiY method */
2035 if (*endptr == '\0')
2036 return ubi_open_volume(0, dev, mode);
2037
2038 /* ubiX_Y method */
2039 if (*endptr == '_' && isdigit(endptr[1])) {
2040 vol = simple_strtoul(endptr + 1, &endptr, 0);
2041 if (*endptr != '\0')
2042 return ERR_PTR(-EINVAL);
2043 return ubi_open_volume(dev, vol, mode);
2044 }
2045
2046 /* ubiX:NAME method */
2047 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2048 return ubi_open_volume_nm(dev, ++endptr, mode);
2049
2050 return ERR_PTR(-EINVAL);
2051 }
2052
2053 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2054 {
2055 struct ubifs_info *c;
2056
2057 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2058 if (c) {
2059 spin_lock_init(&c->cnt_lock);
2060 spin_lock_init(&c->cs_lock);
2061 spin_lock_init(&c->buds_lock);
2062 spin_lock_init(&c->space_lock);
2063 spin_lock_init(&c->orphan_lock);
2064 init_rwsem(&c->commit_sem);
2065 mutex_init(&c->lp_mutex);
2066 mutex_init(&c->tnc_mutex);
2067 mutex_init(&c->log_mutex);
2068 mutex_init(&c->umount_mutex);
2069 mutex_init(&c->bu_mutex);
2070 mutex_init(&c->write_reserve_mutex);
2071 init_waitqueue_head(&c->cmt_wq);
2072 c->buds = RB_ROOT;
2073 c->old_idx = RB_ROOT;
2074 c->size_tree = RB_ROOT;
2075 c->orph_tree = RB_ROOT;
2076 INIT_LIST_HEAD(&c->infos_list);
2077 INIT_LIST_HEAD(&c->idx_gc);
2078 INIT_LIST_HEAD(&c->replay_list);
2079 INIT_LIST_HEAD(&c->replay_buds);
2080 INIT_LIST_HEAD(&c->uncat_list);
2081 INIT_LIST_HEAD(&c->empty_list);
2082 INIT_LIST_HEAD(&c->freeable_list);
2083 INIT_LIST_HEAD(&c->frdi_idx_list);
2084 INIT_LIST_HEAD(&c->unclean_leb_list);
2085 INIT_LIST_HEAD(&c->old_buds);
2086 INIT_LIST_HEAD(&c->orph_list);
2087 INIT_LIST_HEAD(&c->orph_new);
2088 c->no_chk_data_crc = 1;
2089 c->assert_action = ASSACT_RO;
2090
2091 c->highest_inum = UBIFS_FIRST_INO;
2092 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2093
2094 ubi_get_volume_info(ubi, &c->vi);
2095 ubi_get_device_info(c->vi.ubi_num, &c->di);
2096 }
2097 return c;
2098 }
2099
2100 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2101 {
2102 struct ubifs_info *c = sb->s_fs_info;
2103 struct inode *root;
2104 int err;
2105
2106 c->vfs_sb = sb;
2107 /* Re-open the UBI device in read-write mode */
2108 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2109 if (IS_ERR(c->ubi)) {
2110 err = PTR_ERR(c->ubi);
2111 goto out;
2112 }
2113
2114 err = ubifs_parse_options(c, data, 0);
2115 if (err)
2116 goto out_close;
2117
2118 /*
2119 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2120 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2121 * which means the user would have to wait not just for their own I/O
2122 * but the read-ahead I/O as well i.e. completely pointless.
2123 *
2124 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2125 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2126 * writeback happening.
2127 */
2128 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2129 c->vi.vol_id);
2130 if (err)
2131 goto out_close;
2132
2133 sb->s_fs_info = c;
2134 sb->s_magic = UBIFS_SUPER_MAGIC;
2135 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2136 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2137 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2138 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2139 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2140 sb->s_op = &ubifs_super_operations;
2141 #ifdef CONFIG_UBIFS_FS_XATTR
2142 sb->s_xattr = ubifs_xattr_handlers;
2143 #endif
2144 #ifdef CONFIG_FS_ENCRYPTION
2145 sb->s_cop = &ubifs_crypt_operations;
2146 #endif
2147
2148 mutex_lock(&c->umount_mutex);
2149 err = mount_ubifs(c);
2150 if (err) {
2151 ubifs_assert(c, err < 0);
2152 goto out_unlock;
2153 }
2154
2155 /* Read the root inode */
2156 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2157 if (IS_ERR(root)) {
2158 err = PTR_ERR(root);
2159 goto out_umount;
2160 }
2161
2162 sb->s_root = d_make_root(root);
2163 if (!sb->s_root) {
2164 err = -ENOMEM;
2165 goto out_umount;
2166 }
2167
2168 mutex_unlock(&c->umount_mutex);
2169 return 0;
2170
2171 out_umount:
2172 ubifs_umount(c);
2173 out_unlock:
2174 mutex_unlock(&c->umount_mutex);
2175 out_close:
2176 ubi_close_volume(c->ubi);
2177 out:
2178 return err;
2179 }
2180
2181 static int sb_test(struct super_block *sb, void *data)
2182 {
2183 struct ubifs_info *c1 = data;
2184 struct ubifs_info *c = sb->s_fs_info;
2185
2186 return c->vi.cdev == c1->vi.cdev;
2187 }
2188
2189 static int sb_set(struct super_block *sb, void *data)
2190 {
2191 sb->s_fs_info = data;
2192 return set_anon_super(sb, NULL);
2193 }
2194
2195 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2196 const char *name, void *data)
2197 {
2198 struct ubi_volume_desc *ubi;
2199 struct ubifs_info *c;
2200 struct super_block *sb;
2201 int err;
2202
2203 dbg_gen("name %s, flags %#x", name, flags);
2204
2205 /*
2206 * Get UBI device number and volume ID. Mount it read-only so far
2207 * because this might be a new mount point, and UBI allows only one
2208 * read-write user at a time.
2209 */
2210 ubi = open_ubi(name, UBI_READONLY);
2211 if (IS_ERR(ubi)) {
2212 if (!(flags & SB_SILENT))
2213 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2214 current->pid, name, (int)PTR_ERR(ubi));
2215 return ERR_CAST(ubi);
2216 }
2217
2218 c = alloc_ubifs_info(ubi);
2219 if (!c) {
2220 err = -ENOMEM;
2221 goto out_close;
2222 }
2223
2224 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2225
2226 sb = sget(fs_type, sb_test, sb_set, flags, c);
2227 if (IS_ERR(sb)) {
2228 err = PTR_ERR(sb);
2229 kfree(c);
2230 goto out_close;
2231 }
2232
2233 if (sb->s_root) {
2234 struct ubifs_info *c1 = sb->s_fs_info;
2235 kfree(c);
2236 /* A new mount point for already mounted UBIFS */
2237 dbg_gen("this ubi volume is already mounted");
2238 if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2239 err = -EBUSY;
2240 goto out_deact;
2241 }
2242 } else {
2243 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2244 if (err)
2245 goto out_deact;
2246 /* We do not support atime */
2247 sb->s_flags |= SB_ACTIVE;
2248 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
2249 sb->s_flags |= SB_NOATIME;
2250 #else
2251 ubifs_msg(c, "full atime support is enabled.");
2252 #endif
2253 }
2254
2255 /* 'fill_super()' opens ubi again so we must close it here */
2256 ubi_close_volume(ubi);
2257
2258 return dget(sb->s_root);
2259
2260 out_deact:
2261 deactivate_locked_super(sb);
2262 out_close:
2263 ubi_close_volume(ubi);
2264 return ERR_PTR(err);
2265 }
2266
2267 static void kill_ubifs_super(struct super_block *s)
2268 {
2269 struct ubifs_info *c = s->s_fs_info;
2270 kill_anon_super(s);
2271 kfree(c);
2272 }
2273
2274 static struct file_system_type ubifs_fs_type = {
2275 .name = "ubifs",
2276 .owner = THIS_MODULE,
2277 .mount = ubifs_mount,
2278 .kill_sb = kill_ubifs_super,
2279 };
2280 MODULE_ALIAS_FS("ubifs");
2281
2282 /*
2283 * Inode slab cache constructor.
2284 */
2285 static void inode_slab_ctor(void *obj)
2286 {
2287 struct ubifs_inode *ui = obj;
2288 inode_init_once(&ui->vfs_inode);
2289 }
2290
2291 static int __init ubifs_init(void)
2292 {
2293 int err;
2294
2295 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2296
2297 /* Make sure node sizes are 8-byte aligned */
2298 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2299 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2300 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2301 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2302 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2303 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2304 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2305 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2306 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2307 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2308 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2309
2310 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2311 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2312 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2313 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2314 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2315 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2316
2317 /* Check min. node size */
2318 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2319 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2320 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2321 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2322
2323 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2324 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2325 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2326 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2327
2328 /* Defined node sizes */
2329 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2330 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2331 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2332 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2333
2334 /*
2335 * We use 2 bit wide bit-fields to store compression type, which should
2336 * be amended if more compressors are added. The bit-fields are:
2337 * @compr_type in 'struct ubifs_inode', @default_compr in
2338 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2339 */
2340 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2341
2342 /*
2343 * We require that PAGE_SIZE is greater-than-or-equal-to
2344 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2345 */
2346 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2347 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2348 current->pid, (unsigned int)PAGE_SIZE);
2349 return -EINVAL;
2350 }
2351
2352 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2353 sizeof(struct ubifs_inode), 0,
2354 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2355 SLAB_ACCOUNT, &inode_slab_ctor);
2356 if (!ubifs_inode_slab)
2357 return -ENOMEM;
2358
2359 err = register_shrinker(&ubifs_shrinker_info);
2360 if (err)
2361 goto out_slab;
2362
2363 err = ubifs_compressors_init();
2364 if (err)
2365 goto out_shrinker;
2366
2367 err = dbg_debugfs_init();
2368 if (err)
2369 goto out_compr;
2370
2371 err = register_filesystem(&ubifs_fs_type);
2372 if (err) {
2373 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2374 current->pid, err);
2375 goto out_dbg;
2376 }
2377 return 0;
2378
2379 out_dbg:
2380 dbg_debugfs_exit();
2381 out_compr:
2382 ubifs_compressors_exit();
2383 out_shrinker:
2384 unregister_shrinker(&ubifs_shrinker_info);
2385 out_slab:
2386 kmem_cache_destroy(ubifs_inode_slab);
2387 return err;
2388 }
2389 /* late_initcall to let compressors initialize first */
2390 late_initcall(ubifs_init);
2391
2392 static void __exit ubifs_exit(void)
2393 {
2394 WARN_ON(!list_empty(&ubifs_infos));
2395 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2396
2397 dbg_debugfs_exit();
2398 ubifs_compressors_exit();
2399 unregister_shrinker(&ubifs_shrinker_info);
2400
2401 /*
2402 * Make sure all delayed rcu free inodes are flushed before we
2403 * destroy cache.
2404 */
2405 rcu_barrier();
2406 kmem_cache_destroy(ubifs_inode_slab);
2407 unregister_filesystem(&ubifs_fs_type);
2408 }
2409 module_exit(ubifs_exit);
2410
2411 MODULE_LICENSE("GPL");
2412 MODULE_VERSION(__stringify(UBIFS_VERSION));
2413 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2414 MODULE_DESCRIPTION("UBIFS - UBI File System");