]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ubifs/super.c
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / fs / ubifs / super.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23 /*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40
41 /*
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
44 */
45 #define UBIFS_KMALLOC_OK (128*1024)
46
47 /* Slab cache for UBIFS inodes */
48 static struct kmem_cache *ubifs_inode_slab;
49
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 .scan_objects = ubifs_shrink_scan,
53 .count_objects = ubifs_shrink_count,
54 .seeks = DEFAULT_SEEKS,
55 };
56
57 /**
58 * validate_inode - validate inode.
59 * @c: UBIFS file-system description object
60 * @inode: the inode to validate
61 *
62 * This is a helper function for 'ubifs_iget()' which validates various fields
63 * of a newly built inode to make sure they contain sane values and prevent
64 * possible vulnerabilities. Returns zero if the inode is all right and
65 * a non-zero error code if not.
66 */
67 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68 {
69 int err;
70 const struct ubifs_inode *ui = ubifs_inode(inode);
71
72 if (inode->i_size > c->max_inode_sz) {
73 ubifs_err(c, "inode is too large (%lld)",
74 (long long)inode->i_size);
75 return 1;
76 }
77
78 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 ubifs_err(c, "unknown compression type %d", ui->compr_type);
80 return 2;
81 }
82
83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 return 3;
85
86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 return 4;
88
89 if (ui->xattr && !S_ISREG(inode->i_mode))
90 return 5;
91
92 if (!ubifs_compr_present(ui->compr_type)) {
93 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
94 inode->i_ino, ubifs_compr_name(ui->compr_type));
95 }
96
97 err = dbg_check_dir(c, inode);
98 return err;
99 }
100
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 int err;
104 union ubifs_key key;
105 struct ubifs_ino_node *ino;
106 struct ubifs_info *c = sb->s_fs_info;
107 struct inode *inode;
108 struct ubifs_inode *ui;
109
110 dbg_gen("inode %lu", inum);
111
112 inode = iget_locked(sb, inum);
113 if (!inode)
114 return ERR_PTR(-ENOMEM);
115 if (!(inode->i_state & I_NEW))
116 return inode;
117 ui = ubifs_inode(inode);
118
119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 if (!ino) {
121 err = -ENOMEM;
122 goto out;
123 }
124
125 ino_key_init(c, &key, inode->i_ino);
126
127 err = ubifs_tnc_lookup(c, &key, ino);
128 if (err)
129 goto out_ino;
130
131 inode->i_flags |= S_NOCMTIME;
132 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
133 inode->i_flags |= S_NOATIME;
134 #endif
135 set_nlink(inode, le32_to_cpu(ino->nlink));
136 i_uid_write(inode, le32_to_cpu(ino->uid));
137 i_gid_write(inode, le32_to_cpu(ino->gid));
138 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
139 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
140 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
141 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
142 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
143 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
144 inode->i_mode = le32_to_cpu(ino->mode);
145 inode->i_size = le64_to_cpu(ino->size);
146
147 ui->data_len = le32_to_cpu(ino->data_len);
148 ui->flags = le32_to_cpu(ino->flags);
149 ui->compr_type = le16_to_cpu(ino->compr_type);
150 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
151 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
152 ui->xattr_size = le32_to_cpu(ino->xattr_size);
153 ui->xattr_names = le32_to_cpu(ino->xattr_names);
154 ui->synced_i_size = ui->ui_size = inode->i_size;
155
156 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
157
158 err = validate_inode(c, inode);
159 if (err)
160 goto out_invalid;
161
162 switch (inode->i_mode & S_IFMT) {
163 case S_IFREG:
164 inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 inode->i_op = &ubifs_file_inode_operations;
166 inode->i_fop = &ubifs_file_operations;
167 if (ui->xattr) {
168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 if (!ui->data) {
170 err = -ENOMEM;
171 goto out_ino;
172 }
173 memcpy(ui->data, ino->data, ui->data_len);
174 ((char *)ui->data)[ui->data_len] = '\0';
175 } else if (ui->data_len != 0) {
176 err = 10;
177 goto out_invalid;
178 }
179 break;
180 case S_IFDIR:
181 inode->i_op = &ubifs_dir_inode_operations;
182 inode->i_fop = &ubifs_dir_operations;
183 if (ui->data_len != 0) {
184 err = 11;
185 goto out_invalid;
186 }
187 break;
188 case S_IFLNK:
189 inode->i_op = &ubifs_symlink_inode_operations;
190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 err = 12;
192 goto out_invalid;
193 }
194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 if (!ui->data) {
196 err = -ENOMEM;
197 goto out_ino;
198 }
199 memcpy(ui->data, ino->data, ui->data_len);
200 ((char *)ui->data)[ui->data_len] = '\0';
201 break;
202 case S_IFBLK:
203 case S_IFCHR:
204 {
205 dev_t rdev;
206 union ubifs_dev_desc *dev;
207
208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 if (!ui->data) {
210 err = -ENOMEM;
211 goto out_ino;
212 }
213
214 dev = (union ubifs_dev_desc *)ino->data;
215 if (ui->data_len == sizeof(dev->new))
216 rdev = new_decode_dev(le32_to_cpu(dev->new));
217 else if (ui->data_len == sizeof(dev->huge))
218 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 else {
220 err = 13;
221 goto out_invalid;
222 }
223 memcpy(ui->data, ino->data, ui->data_len);
224 inode->i_op = &ubifs_file_inode_operations;
225 init_special_inode(inode, inode->i_mode, rdev);
226 break;
227 }
228 case S_IFSOCK:
229 case S_IFIFO:
230 inode->i_op = &ubifs_file_inode_operations;
231 init_special_inode(inode, inode->i_mode, 0);
232 if (ui->data_len != 0) {
233 err = 14;
234 goto out_invalid;
235 }
236 break;
237 default:
238 err = 15;
239 goto out_invalid;
240 }
241
242 kfree(ino);
243 ubifs_set_inode_flags(inode);
244 unlock_new_inode(inode);
245 return inode;
246
247 out_invalid:
248 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
249 ubifs_dump_node(c, ino);
250 ubifs_dump_inode(c, inode);
251 err = -EINVAL;
252 out_ino:
253 kfree(ino);
254 out:
255 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
256 iget_failed(inode);
257 return ERR_PTR(err);
258 }
259
260 static struct inode *ubifs_alloc_inode(struct super_block *sb)
261 {
262 struct ubifs_inode *ui;
263
264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 if (!ui)
266 return NULL;
267
268 memset((void *)ui + sizeof(struct inode), 0,
269 sizeof(struct ubifs_inode) - sizeof(struct inode));
270 mutex_init(&ui->ui_mutex);
271 spin_lock_init(&ui->ui_lock);
272 return &ui->vfs_inode;
273 };
274
275 static void ubifs_i_callback(struct rcu_head *head)
276 {
277 struct inode *inode = container_of(head, struct inode, i_rcu);
278 struct ubifs_inode *ui = ubifs_inode(inode);
279 kmem_cache_free(ubifs_inode_slab, ui);
280 }
281
282 static void ubifs_destroy_inode(struct inode *inode)
283 {
284 struct ubifs_inode *ui = ubifs_inode(inode);
285
286 kfree(ui->data);
287 call_rcu(&inode->i_rcu, ubifs_i_callback);
288 }
289
290 /*
291 * Note, Linux write-back code calls this without 'i_mutex'.
292 */
293 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
294 {
295 int err = 0;
296 struct ubifs_info *c = inode->i_sb->s_fs_info;
297 struct ubifs_inode *ui = ubifs_inode(inode);
298
299 ubifs_assert(!ui->xattr);
300 if (is_bad_inode(inode))
301 return 0;
302
303 mutex_lock(&ui->ui_mutex);
304 /*
305 * Due to races between write-back forced by budgeting
306 * (see 'sync_some_inodes()') and background write-back, the inode may
307 * have already been synchronized, do not do this again. This might
308 * also happen if it was synchronized in an VFS operation, e.g.
309 * 'ubifs_link()'.
310 */
311 if (!ui->dirty) {
312 mutex_unlock(&ui->ui_mutex);
313 return 0;
314 }
315
316 /*
317 * As an optimization, do not write orphan inodes to the media just
318 * because this is not needed.
319 */
320 dbg_gen("inode %lu, mode %#x, nlink %u",
321 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
322 if (inode->i_nlink) {
323 err = ubifs_jnl_write_inode(c, inode);
324 if (err)
325 ubifs_err(c, "can't write inode %lu, error %d",
326 inode->i_ino, err);
327 else
328 err = dbg_check_inode_size(c, inode, ui->ui_size);
329 }
330
331 ui->dirty = 0;
332 mutex_unlock(&ui->ui_mutex);
333 ubifs_release_dirty_inode_budget(c, ui);
334 return err;
335 }
336
337 static void ubifs_evict_inode(struct inode *inode)
338 {
339 int err;
340 struct ubifs_info *c = inode->i_sb->s_fs_info;
341 struct ubifs_inode *ui = ubifs_inode(inode);
342
343 if (ui->xattr)
344 /*
345 * Extended attribute inode deletions are fully handled in
346 * 'ubifs_removexattr()'. These inodes are special and have
347 * limited usage, so there is nothing to do here.
348 */
349 goto out;
350
351 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
352 ubifs_assert(!atomic_read(&inode->i_count));
353
354 truncate_inode_pages_final(&inode->i_data);
355
356 if (inode->i_nlink)
357 goto done;
358
359 if (is_bad_inode(inode))
360 goto out;
361
362 ui->ui_size = inode->i_size = 0;
363 err = ubifs_jnl_delete_inode(c, inode);
364 if (err)
365 /*
366 * Worst case we have a lost orphan inode wasting space, so a
367 * simple error message is OK here.
368 */
369 ubifs_err(c, "can't delete inode %lu, error %d",
370 inode->i_ino, err);
371
372 out:
373 if (ui->dirty)
374 ubifs_release_dirty_inode_budget(c, ui);
375 else {
376 /* We've deleted something - clean the "no space" flags */
377 c->bi.nospace = c->bi.nospace_rp = 0;
378 smp_wmb();
379 }
380 done:
381 clear_inode(inode);
382 #ifdef CONFIG_UBIFS_FS_ENCRYPTION
383 fscrypt_put_encryption_info(inode, NULL);
384 #endif
385 }
386
387 static void ubifs_dirty_inode(struct inode *inode, int flags)
388 {
389 struct ubifs_inode *ui = ubifs_inode(inode);
390
391 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
392 if (!ui->dirty) {
393 ui->dirty = 1;
394 dbg_gen("inode %lu", inode->i_ino);
395 }
396 }
397
398 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
399 {
400 struct ubifs_info *c = dentry->d_sb->s_fs_info;
401 unsigned long long free;
402 __le32 *uuid = (__le32 *)c->uuid;
403
404 free = ubifs_get_free_space(c);
405 dbg_gen("free space %lld bytes (%lld blocks)",
406 free, free >> UBIFS_BLOCK_SHIFT);
407
408 buf->f_type = UBIFS_SUPER_MAGIC;
409 buf->f_bsize = UBIFS_BLOCK_SIZE;
410 buf->f_blocks = c->block_cnt;
411 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
412 if (free > c->report_rp_size)
413 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
414 else
415 buf->f_bavail = 0;
416 buf->f_files = 0;
417 buf->f_ffree = 0;
418 buf->f_namelen = UBIFS_MAX_NLEN;
419 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
420 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
421 ubifs_assert(buf->f_bfree <= c->block_cnt);
422 return 0;
423 }
424
425 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
426 {
427 struct ubifs_info *c = root->d_sb->s_fs_info;
428
429 if (c->mount_opts.unmount_mode == 2)
430 seq_puts(s, ",fast_unmount");
431 else if (c->mount_opts.unmount_mode == 1)
432 seq_puts(s, ",norm_unmount");
433
434 if (c->mount_opts.bulk_read == 2)
435 seq_puts(s, ",bulk_read");
436 else if (c->mount_opts.bulk_read == 1)
437 seq_puts(s, ",no_bulk_read");
438
439 if (c->mount_opts.chk_data_crc == 2)
440 seq_puts(s, ",chk_data_crc");
441 else if (c->mount_opts.chk_data_crc == 1)
442 seq_puts(s, ",no_chk_data_crc");
443
444 if (c->mount_opts.override_compr) {
445 seq_printf(s, ",compr=%s",
446 ubifs_compr_name(c->mount_opts.compr_type));
447 }
448
449 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
450
451 return 0;
452 }
453
454 static int ubifs_sync_fs(struct super_block *sb, int wait)
455 {
456 int i, err;
457 struct ubifs_info *c = sb->s_fs_info;
458
459 /*
460 * Zero @wait is just an advisory thing to help the file system shove
461 * lots of data into the queues, and there will be the second
462 * '->sync_fs()' call, with non-zero @wait.
463 */
464 if (!wait)
465 return 0;
466
467 /*
468 * Synchronize write buffers, because 'ubifs_run_commit()' does not
469 * do this if it waits for an already running commit.
470 */
471 for (i = 0; i < c->jhead_cnt; i++) {
472 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
473 if (err)
474 return err;
475 }
476
477 /*
478 * Strictly speaking, it is not necessary to commit the journal here,
479 * synchronizing write-buffers would be enough. But committing makes
480 * UBIFS free space predictions much more accurate, so we want to let
481 * the user be able to get more accurate results of 'statfs()' after
482 * they synchronize the file system.
483 */
484 err = ubifs_run_commit(c);
485 if (err)
486 return err;
487
488 return ubi_sync(c->vi.ubi_num);
489 }
490
491 /**
492 * init_constants_early - initialize UBIFS constants.
493 * @c: UBIFS file-system description object
494 *
495 * This function initialize UBIFS constants which do not need the superblock to
496 * be read. It also checks that the UBI volume satisfies basic UBIFS
497 * requirements. Returns zero in case of success and a negative error code in
498 * case of failure.
499 */
500 static int init_constants_early(struct ubifs_info *c)
501 {
502 if (c->vi.corrupted) {
503 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
504 c->ro_media = 1;
505 }
506
507 if (c->di.ro_mode) {
508 ubifs_msg(c, "read-only UBI device");
509 c->ro_media = 1;
510 }
511
512 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
513 ubifs_msg(c, "static UBI volume - read-only mode");
514 c->ro_media = 1;
515 }
516
517 c->leb_cnt = c->vi.size;
518 c->leb_size = c->vi.usable_leb_size;
519 c->leb_start = c->di.leb_start;
520 c->half_leb_size = c->leb_size / 2;
521 c->min_io_size = c->di.min_io_size;
522 c->min_io_shift = fls(c->min_io_size) - 1;
523 c->max_write_size = c->di.max_write_size;
524 c->max_write_shift = fls(c->max_write_size) - 1;
525
526 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
527 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
528 c->leb_size, UBIFS_MIN_LEB_SZ);
529 return -EINVAL;
530 }
531
532 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
533 ubifs_errc(c, "too few LEBs (%d), min. is %d",
534 c->leb_cnt, UBIFS_MIN_LEB_CNT);
535 return -EINVAL;
536 }
537
538 if (!is_power_of_2(c->min_io_size)) {
539 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
540 return -EINVAL;
541 }
542
543 /*
544 * Maximum write size has to be greater or equivalent to min. I/O
545 * size, and be multiple of min. I/O size.
546 */
547 if (c->max_write_size < c->min_io_size ||
548 c->max_write_size % c->min_io_size ||
549 !is_power_of_2(c->max_write_size)) {
550 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
551 c->max_write_size, c->min_io_size);
552 return -EINVAL;
553 }
554
555 /*
556 * UBIFS aligns all node to 8-byte boundary, so to make function in
557 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
558 * less than 8.
559 */
560 if (c->min_io_size < 8) {
561 c->min_io_size = 8;
562 c->min_io_shift = 3;
563 if (c->max_write_size < c->min_io_size) {
564 c->max_write_size = c->min_io_size;
565 c->max_write_shift = c->min_io_shift;
566 }
567 }
568
569 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
570 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
571
572 /*
573 * Initialize node length ranges which are mostly needed for node
574 * length validation.
575 */
576 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
577 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
578 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
579 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
580 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
581 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
582
583 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
584 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
585 c->ranges[UBIFS_ORPH_NODE].min_len =
586 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
587 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
588 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
589 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
590 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
591 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
592 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
593 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
594 /*
595 * Minimum indexing node size is amended later when superblock is
596 * read and the key length is known.
597 */
598 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
599 /*
600 * Maximum indexing node size is amended later when superblock is
601 * read and the fanout is known.
602 */
603 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
604
605 /*
606 * Initialize dead and dark LEB space watermarks. See gc.c for comments
607 * about these values.
608 */
609 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
610 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
611
612 /*
613 * Calculate how many bytes would be wasted at the end of LEB if it was
614 * fully filled with data nodes of maximum size. This is used in
615 * calculations when reporting free space.
616 */
617 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
618
619 /* Buffer size for bulk-reads */
620 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
621 if (c->max_bu_buf_len > c->leb_size)
622 c->max_bu_buf_len = c->leb_size;
623 return 0;
624 }
625
626 /**
627 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
628 * @c: UBIFS file-system description object
629 * @lnum: LEB the write-buffer was synchronized to
630 * @free: how many free bytes left in this LEB
631 * @pad: how many bytes were padded
632 *
633 * This is a callback function which is called by the I/O unit when the
634 * write-buffer is synchronized. We need this to correctly maintain space
635 * accounting in bud logical eraseblocks. This function returns zero in case of
636 * success and a negative error code in case of failure.
637 *
638 * This function actually belongs to the journal, but we keep it here because
639 * we want to keep it static.
640 */
641 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
642 {
643 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
644 }
645
646 /*
647 * init_constants_sb - initialize UBIFS constants.
648 * @c: UBIFS file-system description object
649 *
650 * This is a helper function which initializes various UBIFS constants after
651 * the superblock has been read. It also checks various UBIFS parameters and
652 * makes sure they are all right. Returns zero in case of success and a
653 * negative error code in case of failure.
654 */
655 static int init_constants_sb(struct ubifs_info *c)
656 {
657 int tmp, err;
658 long long tmp64;
659
660 c->main_bytes = (long long)c->main_lebs * c->leb_size;
661 c->max_znode_sz = sizeof(struct ubifs_znode) +
662 c->fanout * sizeof(struct ubifs_zbranch);
663
664 tmp = ubifs_idx_node_sz(c, 1);
665 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
666 c->min_idx_node_sz = ALIGN(tmp, 8);
667
668 tmp = ubifs_idx_node_sz(c, c->fanout);
669 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
670 c->max_idx_node_sz = ALIGN(tmp, 8);
671
672 /* Make sure LEB size is large enough to fit full commit */
673 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
674 tmp = ALIGN(tmp, c->min_io_size);
675 if (tmp > c->leb_size) {
676 ubifs_err(c, "too small LEB size %d, at least %d needed",
677 c->leb_size, tmp);
678 return -EINVAL;
679 }
680
681 /*
682 * Make sure that the log is large enough to fit reference nodes for
683 * all buds plus one reserved LEB.
684 */
685 tmp64 = c->max_bud_bytes + c->leb_size - 1;
686 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
687 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
688 tmp /= c->leb_size;
689 tmp += 1;
690 if (c->log_lebs < tmp) {
691 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
692 c->log_lebs, tmp);
693 return -EINVAL;
694 }
695
696 /*
697 * When budgeting we assume worst-case scenarios when the pages are not
698 * be compressed and direntries are of the maximum size.
699 *
700 * Note, data, which may be stored in inodes is budgeted separately, so
701 * it is not included into 'c->bi.inode_budget'.
702 */
703 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
704 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
705 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
706
707 /*
708 * When the amount of flash space used by buds becomes
709 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
710 * The writers are unblocked when the commit is finished. To avoid
711 * writers to be blocked UBIFS initiates background commit in advance,
712 * when number of bud bytes becomes above the limit defined below.
713 */
714 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
715
716 /*
717 * Ensure minimum journal size. All the bytes in the journal heads are
718 * considered to be used, when calculating the current journal usage.
719 * Consequently, if the journal is too small, UBIFS will treat it as
720 * always full.
721 */
722 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
723 if (c->bg_bud_bytes < tmp64)
724 c->bg_bud_bytes = tmp64;
725 if (c->max_bud_bytes < tmp64 + c->leb_size)
726 c->max_bud_bytes = tmp64 + c->leb_size;
727
728 err = ubifs_calc_lpt_geom(c);
729 if (err)
730 return err;
731
732 /* Initialize effective LEB size used in budgeting calculations */
733 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
734 return 0;
735 }
736
737 /*
738 * init_constants_master - initialize UBIFS constants.
739 * @c: UBIFS file-system description object
740 *
741 * This is a helper function which initializes various UBIFS constants after
742 * the master node has been read. It also checks various UBIFS parameters and
743 * makes sure they are all right.
744 */
745 static void init_constants_master(struct ubifs_info *c)
746 {
747 long long tmp64;
748
749 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
750 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
751
752 /*
753 * Calculate total amount of FS blocks. This number is not used
754 * internally because it does not make much sense for UBIFS, but it is
755 * necessary to report something for the 'statfs()' call.
756 *
757 * Subtract the LEB reserved for GC, the LEB which is reserved for
758 * deletions, minimum LEBs for the index, and assume only one journal
759 * head is available.
760 */
761 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
762 tmp64 *= (long long)c->leb_size - c->leb_overhead;
763 tmp64 = ubifs_reported_space(c, tmp64);
764 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
765 }
766
767 /**
768 * take_gc_lnum - reserve GC LEB.
769 * @c: UBIFS file-system description object
770 *
771 * This function ensures that the LEB reserved for garbage collection is marked
772 * as "taken" in lprops. We also have to set free space to LEB size and dirty
773 * space to zero, because lprops may contain out-of-date information if the
774 * file-system was un-mounted before it has been committed. This function
775 * returns zero in case of success and a negative error code in case of
776 * failure.
777 */
778 static int take_gc_lnum(struct ubifs_info *c)
779 {
780 int err;
781
782 if (c->gc_lnum == -1) {
783 ubifs_err(c, "no LEB for GC");
784 return -EINVAL;
785 }
786
787 /* And we have to tell lprops that this LEB is taken */
788 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
789 LPROPS_TAKEN, 0, 0);
790 return err;
791 }
792
793 /**
794 * alloc_wbufs - allocate write-buffers.
795 * @c: UBIFS file-system description object
796 *
797 * This helper function allocates and initializes UBIFS write-buffers. Returns
798 * zero in case of success and %-ENOMEM in case of failure.
799 */
800 static int alloc_wbufs(struct ubifs_info *c)
801 {
802 int i, err;
803
804 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
805 GFP_KERNEL);
806 if (!c->jheads)
807 return -ENOMEM;
808
809 /* Initialize journal heads */
810 for (i = 0; i < c->jhead_cnt; i++) {
811 INIT_LIST_HEAD(&c->jheads[i].buds_list);
812 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
813 if (err)
814 return err;
815
816 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
817 c->jheads[i].wbuf.jhead = i;
818 c->jheads[i].grouped = 1;
819 }
820
821 /*
822 * Garbage Collector head does not need to be synchronized by timer.
823 * Also GC head nodes are not grouped.
824 */
825 c->jheads[GCHD].wbuf.no_timer = 1;
826 c->jheads[GCHD].grouped = 0;
827
828 return 0;
829 }
830
831 /**
832 * free_wbufs - free write-buffers.
833 * @c: UBIFS file-system description object
834 */
835 static void free_wbufs(struct ubifs_info *c)
836 {
837 int i;
838
839 if (c->jheads) {
840 for (i = 0; i < c->jhead_cnt; i++) {
841 kfree(c->jheads[i].wbuf.buf);
842 kfree(c->jheads[i].wbuf.inodes);
843 }
844 kfree(c->jheads);
845 c->jheads = NULL;
846 }
847 }
848
849 /**
850 * free_orphans - free orphans.
851 * @c: UBIFS file-system description object
852 */
853 static void free_orphans(struct ubifs_info *c)
854 {
855 struct ubifs_orphan *orph;
856
857 while (c->orph_dnext) {
858 orph = c->orph_dnext;
859 c->orph_dnext = orph->dnext;
860 list_del(&orph->list);
861 kfree(orph);
862 }
863
864 while (!list_empty(&c->orph_list)) {
865 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
866 list_del(&orph->list);
867 kfree(orph);
868 ubifs_err(c, "orphan list not empty at unmount");
869 }
870
871 vfree(c->orph_buf);
872 c->orph_buf = NULL;
873 }
874
875 /**
876 * free_buds - free per-bud objects.
877 * @c: UBIFS file-system description object
878 */
879 static void free_buds(struct ubifs_info *c)
880 {
881 struct ubifs_bud *bud, *n;
882
883 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
884 kfree(bud);
885 }
886
887 /**
888 * check_volume_empty - check if the UBI volume is empty.
889 * @c: UBIFS file-system description object
890 *
891 * This function checks if the UBIFS volume is empty by looking if its LEBs are
892 * mapped or not. The result of checking is stored in the @c->empty variable.
893 * Returns zero in case of success and a negative error code in case of
894 * failure.
895 */
896 static int check_volume_empty(struct ubifs_info *c)
897 {
898 int lnum, err;
899
900 c->empty = 1;
901 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
902 err = ubifs_is_mapped(c, lnum);
903 if (unlikely(err < 0))
904 return err;
905 if (err == 1) {
906 c->empty = 0;
907 break;
908 }
909
910 cond_resched();
911 }
912
913 return 0;
914 }
915
916 /*
917 * UBIFS mount options.
918 *
919 * Opt_fast_unmount: do not run a journal commit before un-mounting
920 * Opt_norm_unmount: run a journal commit before un-mounting
921 * Opt_bulk_read: enable bulk-reads
922 * Opt_no_bulk_read: disable bulk-reads
923 * Opt_chk_data_crc: check CRCs when reading data nodes
924 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
925 * Opt_override_compr: override default compressor
926 * Opt_err: just end of array marker
927 */
928 enum {
929 Opt_fast_unmount,
930 Opt_norm_unmount,
931 Opt_bulk_read,
932 Opt_no_bulk_read,
933 Opt_chk_data_crc,
934 Opt_no_chk_data_crc,
935 Opt_override_compr,
936 Opt_ignore,
937 Opt_err,
938 };
939
940 static const match_table_t tokens = {
941 {Opt_fast_unmount, "fast_unmount"},
942 {Opt_norm_unmount, "norm_unmount"},
943 {Opt_bulk_read, "bulk_read"},
944 {Opt_no_bulk_read, "no_bulk_read"},
945 {Opt_chk_data_crc, "chk_data_crc"},
946 {Opt_no_chk_data_crc, "no_chk_data_crc"},
947 {Opt_override_compr, "compr=%s"},
948 {Opt_ignore, "ubi=%s"},
949 {Opt_ignore, "vol=%s"},
950 {Opt_err, NULL},
951 };
952
953 /**
954 * parse_standard_option - parse a standard mount option.
955 * @option: the option to parse
956 *
957 * Normally, standard mount options like "sync" are passed to file-systems as
958 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
959 * be present in the options string. This function tries to deal with this
960 * situation and parse standard options. Returns 0 if the option was not
961 * recognized, and the corresponding integer flag if it was.
962 *
963 * UBIFS is only interested in the "sync" option, so do not check for anything
964 * else.
965 */
966 static int parse_standard_option(const char *option)
967 {
968
969 pr_notice("UBIFS: parse %s\n", option);
970 if (!strcmp(option, "sync"))
971 return MS_SYNCHRONOUS;
972 return 0;
973 }
974
975 /**
976 * ubifs_parse_options - parse mount parameters.
977 * @c: UBIFS file-system description object
978 * @options: parameters to parse
979 * @is_remount: non-zero if this is FS re-mount
980 *
981 * This function parses UBIFS mount options and returns zero in case success
982 * and a negative error code in case of failure.
983 */
984 static int ubifs_parse_options(struct ubifs_info *c, char *options,
985 int is_remount)
986 {
987 char *p;
988 substring_t args[MAX_OPT_ARGS];
989
990 if (!options)
991 return 0;
992
993 while ((p = strsep(&options, ","))) {
994 int token;
995
996 if (!*p)
997 continue;
998
999 token = match_token(p, tokens, args);
1000 switch (token) {
1001 /*
1002 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1003 * We accept them in order to be backward-compatible. But this
1004 * should be removed at some point.
1005 */
1006 case Opt_fast_unmount:
1007 c->mount_opts.unmount_mode = 2;
1008 break;
1009 case Opt_norm_unmount:
1010 c->mount_opts.unmount_mode = 1;
1011 break;
1012 case Opt_bulk_read:
1013 c->mount_opts.bulk_read = 2;
1014 c->bulk_read = 1;
1015 break;
1016 case Opt_no_bulk_read:
1017 c->mount_opts.bulk_read = 1;
1018 c->bulk_read = 0;
1019 break;
1020 case Opt_chk_data_crc:
1021 c->mount_opts.chk_data_crc = 2;
1022 c->no_chk_data_crc = 0;
1023 break;
1024 case Opt_no_chk_data_crc:
1025 c->mount_opts.chk_data_crc = 1;
1026 c->no_chk_data_crc = 1;
1027 break;
1028 case Opt_override_compr:
1029 {
1030 char *name = match_strdup(&args[0]);
1031
1032 if (!name)
1033 return -ENOMEM;
1034 if (!strcmp(name, "none"))
1035 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1036 else if (!strcmp(name, "lzo"))
1037 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1038 else if (!strcmp(name, "zlib"))
1039 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1040 else {
1041 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1042 kfree(name);
1043 return -EINVAL;
1044 }
1045 kfree(name);
1046 c->mount_opts.override_compr = 1;
1047 c->default_compr = c->mount_opts.compr_type;
1048 break;
1049 }
1050 case Opt_ignore:
1051 break;
1052 default:
1053 {
1054 unsigned long flag;
1055 struct super_block *sb = c->vfs_sb;
1056
1057 flag = parse_standard_option(p);
1058 if (!flag) {
1059 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1060 p);
1061 return -EINVAL;
1062 }
1063 sb->s_flags |= flag;
1064 break;
1065 }
1066 }
1067 }
1068
1069 return 0;
1070 }
1071
1072 /**
1073 * destroy_journal - destroy journal data structures.
1074 * @c: UBIFS file-system description object
1075 *
1076 * This function destroys journal data structures including those that may have
1077 * been created by recovery functions.
1078 */
1079 static void destroy_journal(struct ubifs_info *c)
1080 {
1081 while (!list_empty(&c->unclean_leb_list)) {
1082 struct ubifs_unclean_leb *ucleb;
1083
1084 ucleb = list_entry(c->unclean_leb_list.next,
1085 struct ubifs_unclean_leb, list);
1086 list_del(&ucleb->list);
1087 kfree(ucleb);
1088 }
1089 while (!list_empty(&c->old_buds)) {
1090 struct ubifs_bud *bud;
1091
1092 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1093 list_del(&bud->list);
1094 kfree(bud);
1095 }
1096 ubifs_destroy_idx_gc(c);
1097 ubifs_destroy_size_tree(c);
1098 ubifs_tnc_close(c);
1099 free_buds(c);
1100 }
1101
1102 /**
1103 * bu_init - initialize bulk-read information.
1104 * @c: UBIFS file-system description object
1105 */
1106 static void bu_init(struct ubifs_info *c)
1107 {
1108 ubifs_assert(c->bulk_read == 1);
1109
1110 if (c->bu.buf)
1111 return; /* Already initialized */
1112
1113 again:
1114 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1115 if (!c->bu.buf) {
1116 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1117 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1118 goto again;
1119 }
1120
1121 /* Just disable bulk-read */
1122 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1123 c->max_bu_buf_len);
1124 c->mount_opts.bulk_read = 1;
1125 c->bulk_read = 0;
1126 return;
1127 }
1128 }
1129
1130 /**
1131 * check_free_space - check if there is enough free space to mount.
1132 * @c: UBIFS file-system description object
1133 *
1134 * This function makes sure UBIFS has enough free space to be mounted in
1135 * read/write mode. UBIFS must always have some free space to allow deletions.
1136 */
1137 static int check_free_space(struct ubifs_info *c)
1138 {
1139 ubifs_assert(c->dark_wm > 0);
1140 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1141 ubifs_err(c, "insufficient free space to mount in R/W mode");
1142 ubifs_dump_budg(c, &c->bi);
1143 ubifs_dump_lprops(c);
1144 return -ENOSPC;
1145 }
1146 return 0;
1147 }
1148
1149 /**
1150 * mount_ubifs - mount UBIFS file-system.
1151 * @c: UBIFS file-system description object
1152 *
1153 * This function mounts UBIFS file system. Returns zero in case of success and
1154 * a negative error code in case of failure.
1155 */
1156 static int mount_ubifs(struct ubifs_info *c)
1157 {
1158 int err;
1159 long long x, y;
1160 size_t sz;
1161
1162 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1163 /* Suppress error messages while probing if MS_SILENT is set */
1164 c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1165
1166 err = init_constants_early(c);
1167 if (err)
1168 return err;
1169
1170 err = ubifs_debugging_init(c);
1171 if (err)
1172 return err;
1173
1174 err = check_volume_empty(c);
1175 if (err)
1176 goto out_free;
1177
1178 if (c->empty && (c->ro_mount || c->ro_media)) {
1179 /*
1180 * This UBI volume is empty, and read-only, or the file system
1181 * is mounted read-only - we cannot format it.
1182 */
1183 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1184 c->ro_media ? "UBI volume" : "mount");
1185 err = -EROFS;
1186 goto out_free;
1187 }
1188
1189 if (c->ro_media && !c->ro_mount) {
1190 ubifs_err(c, "cannot mount read-write - read-only media");
1191 err = -EROFS;
1192 goto out_free;
1193 }
1194
1195 /*
1196 * The requirement for the buffer is that it should fit indexing B-tree
1197 * height amount of integers. We assume the height if the TNC tree will
1198 * never exceed 64.
1199 */
1200 err = -ENOMEM;
1201 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1202 if (!c->bottom_up_buf)
1203 goto out_free;
1204
1205 c->sbuf = vmalloc(c->leb_size);
1206 if (!c->sbuf)
1207 goto out_free;
1208
1209 if (!c->ro_mount) {
1210 c->ileb_buf = vmalloc(c->leb_size);
1211 if (!c->ileb_buf)
1212 goto out_free;
1213 }
1214
1215 if (c->bulk_read == 1)
1216 bu_init(c);
1217
1218 if (!c->ro_mount) {
1219 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1220 UBIFS_CIPHER_BLOCK_SIZE,
1221 GFP_KERNEL);
1222 if (!c->write_reserve_buf)
1223 goto out_free;
1224 }
1225
1226 c->mounting = 1;
1227
1228 err = ubifs_read_superblock(c);
1229 if (err)
1230 goto out_free;
1231
1232 c->probing = 0;
1233
1234 /*
1235 * Make sure the compressor which is set as default in the superblock
1236 * or overridden by mount options is actually compiled in.
1237 */
1238 if (!ubifs_compr_present(c->default_compr)) {
1239 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1240 ubifs_compr_name(c->default_compr));
1241 err = -ENOTSUPP;
1242 goto out_free;
1243 }
1244
1245 err = init_constants_sb(c);
1246 if (err)
1247 goto out_free;
1248
1249 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1250 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1251 c->cbuf = kmalloc(sz, GFP_NOFS);
1252 if (!c->cbuf) {
1253 err = -ENOMEM;
1254 goto out_free;
1255 }
1256
1257 err = alloc_wbufs(c);
1258 if (err)
1259 goto out_cbuf;
1260
1261 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1262 if (!c->ro_mount) {
1263 /* Create background thread */
1264 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1265 if (IS_ERR(c->bgt)) {
1266 err = PTR_ERR(c->bgt);
1267 c->bgt = NULL;
1268 ubifs_err(c, "cannot spawn \"%s\", error %d",
1269 c->bgt_name, err);
1270 goto out_wbufs;
1271 }
1272 wake_up_process(c->bgt);
1273 }
1274
1275 err = ubifs_read_master(c);
1276 if (err)
1277 goto out_master;
1278
1279 init_constants_master(c);
1280
1281 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1282 ubifs_msg(c, "recovery needed");
1283 c->need_recovery = 1;
1284 }
1285
1286 if (c->need_recovery && !c->ro_mount) {
1287 err = ubifs_recover_inl_heads(c, c->sbuf);
1288 if (err)
1289 goto out_master;
1290 }
1291
1292 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1293 if (err)
1294 goto out_master;
1295
1296 if (!c->ro_mount && c->space_fixup) {
1297 err = ubifs_fixup_free_space(c);
1298 if (err)
1299 goto out_lpt;
1300 }
1301
1302 if (!c->ro_mount && !c->need_recovery) {
1303 /*
1304 * Set the "dirty" flag so that if we reboot uncleanly we
1305 * will notice this immediately on the next mount.
1306 */
1307 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1308 err = ubifs_write_master(c);
1309 if (err)
1310 goto out_lpt;
1311 }
1312
1313 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1314 if (err)
1315 goto out_lpt;
1316
1317 err = ubifs_replay_journal(c);
1318 if (err)
1319 goto out_journal;
1320
1321 /* Calculate 'min_idx_lebs' after journal replay */
1322 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1323
1324 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1325 if (err)
1326 goto out_orphans;
1327
1328 if (!c->ro_mount) {
1329 int lnum;
1330
1331 err = check_free_space(c);
1332 if (err)
1333 goto out_orphans;
1334
1335 /* Check for enough log space */
1336 lnum = c->lhead_lnum + 1;
1337 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1338 lnum = UBIFS_LOG_LNUM;
1339 if (lnum == c->ltail_lnum) {
1340 err = ubifs_consolidate_log(c);
1341 if (err)
1342 goto out_orphans;
1343 }
1344
1345 if (c->need_recovery) {
1346 err = ubifs_recover_size(c);
1347 if (err)
1348 goto out_orphans;
1349 err = ubifs_rcvry_gc_commit(c);
1350 if (err)
1351 goto out_orphans;
1352 } else {
1353 err = take_gc_lnum(c);
1354 if (err)
1355 goto out_orphans;
1356
1357 /*
1358 * GC LEB may contain garbage if there was an unclean
1359 * reboot, and it should be un-mapped.
1360 */
1361 err = ubifs_leb_unmap(c, c->gc_lnum);
1362 if (err)
1363 goto out_orphans;
1364 }
1365
1366 err = dbg_check_lprops(c);
1367 if (err)
1368 goto out_orphans;
1369 } else if (c->need_recovery) {
1370 err = ubifs_recover_size(c);
1371 if (err)
1372 goto out_orphans;
1373 } else {
1374 /*
1375 * Even if we mount read-only, we have to set space in GC LEB
1376 * to proper value because this affects UBIFS free space
1377 * reporting. We do not want to have a situation when
1378 * re-mounting from R/O to R/W changes amount of free space.
1379 */
1380 err = take_gc_lnum(c);
1381 if (err)
1382 goto out_orphans;
1383 }
1384
1385 spin_lock(&ubifs_infos_lock);
1386 list_add_tail(&c->infos_list, &ubifs_infos);
1387 spin_unlock(&ubifs_infos_lock);
1388
1389 if (c->need_recovery) {
1390 if (c->ro_mount)
1391 ubifs_msg(c, "recovery deferred");
1392 else {
1393 c->need_recovery = 0;
1394 ubifs_msg(c, "recovery completed");
1395 /*
1396 * GC LEB has to be empty and taken at this point. But
1397 * the journal head LEBs may also be accounted as
1398 * "empty taken" if they are empty.
1399 */
1400 ubifs_assert(c->lst.taken_empty_lebs > 0);
1401 }
1402 } else
1403 ubifs_assert(c->lst.taken_empty_lebs > 0);
1404
1405 err = dbg_check_filesystem(c);
1406 if (err)
1407 goto out_infos;
1408
1409 err = dbg_debugfs_init_fs(c);
1410 if (err)
1411 goto out_infos;
1412
1413 c->mounting = 0;
1414
1415 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1416 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1417 c->ro_mount ? ", R/O mode" : "");
1418 x = (long long)c->main_lebs * c->leb_size;
1419 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1420 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1421 c->leb_size, c->leb_size >> 10, c->min_io_size,
1422 c->max_write_size);
1423 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1424 x, x >> 20, c->main_lebs,
1425 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1426 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1427 c->report_rp_size, c->report_rp_size >> 10);
1428 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1429 c->fmt_version, c->ro_compat_version,
1430 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1431 c->big_lpt ? ", big LPT model" : ", small LPT model");
1432
1433 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr));
1434 dbg_gen("data journal heads: %d",
1435 c->jhead_cnt - NONDATA_JHEADS_CNT);
1436 dbg_gen("log LEBs: %d (%d - %d)",
1437 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1438 dbg_gen("LPT area LEBs: %d (%d - %d)",
1439 c->lpt_lebs, c->lpt_first, c->lpt_last);
1440 dbg_gen("orphan area LEBs: %d (%d - %d)",
1441 c->orph_lebs, c->orph_first, c->orph_last);
1442 dbg_gen("main area LEBs: %d (%d - %d)",
1443 c->main_lebs, c->main_first, c->leb_cnt - 1);
1444 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1445 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1446 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1447 c->bi.old_idx_sz >> 20);
1448 dbg_gen("key hash type: %d", c->key_hash_type);
1449 dbg_gen("tree fanout: %d", c->fanout);
1450 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1451 dbg_gen("max. znode size %d", c->max_znode_sz);
1452 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1453 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1454 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1455 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1456 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1457 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1458 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1459 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1460 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1461 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1462 dbg_gen("dead watermark: %d", c->dead_wm);
1463 dbg_gen("dark watermark: %d", c->dark_wm);
1464 dbg_gen("LEB overhead: %d", c->leb_overhead);
1465 x = (long long)c->main_lebs * c->dark_wm;
1466 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1467 x, x >> 10, x >> 20);
1468 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1469 c->max_bud_bytes, c->max_bud_bytes >> 10,
1470 c->max_bud_bytes >> 20);
1471 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1472 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1473 c->bg_bud_bytes >> 20);
1474 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1475 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1476 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1477 dbg_gen("commit number: %llu", c->cmt_no);
1478
1479 return 0;
1480
1481 out_infos:
1482 spin_lock(&ubifs_infos_lock);
1483 list_del(&c->infos_list);
1484 spin_unlock(&ubifs_infos_lock);
1485 out_orphans:
1486 free_orphans(c);
1487 out_journal:
1488 destroy_journal(c);
1489 out_lpt:
1490 ubifs_lpt_free(c, 0);
1491 out_master:
1492 kfree(c->mst_node);
1493 kfree(c->rcvrd_mst_node);
1494 if (c->bgt)
1495 kthread_stop(c->bgt);
1496 out_wbufs:
1497 free_wbufs(c);
1498 out_cbuf:
1499 kfree(c->cbuf);
1500 out_free:
1501 kfree(c->write_reserve_buf);
1502 kfree(c->bu.buf);
1503 vfree(c->ileb_buf);
1504 vfree(c->sbuf);
1505 kfree(c->bottom_up_buf);
1506 ubifs_debugging_exit(c);
1507 return err;
1508 }
1509
1510 /**
1511 * ubifs_umount - un-mount UBIFS file-system.
1512 * @c: UBIFS file-system description object
1513 *
1514 * Note, this function is called to free allocated resourced when un-mounting,
1515 * as well as free resources when an error occurred while we were half way
1516 * through mounting (error path cleanup function). So it has to make sure the
1517 * resource was actually allocated before freeing it.
1518 */
1519 static void ubifs_umount(struct ubifs_info *c)
1520 {
1521 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1522 c->vi.vol_id);
1523
1524 dbg_debugfs_exit_fs(c);
1525 spin_lock(&ubifs_infos_lock);
1526 list_del(&c->infos_list);
1527 spin_unlock(&ubifs_infos_lock);
1528
1529 if (c->bgt)
1530 kthread_stop(c->bgt);
1531
1532 destroy_journal(c);
1533 free_wbufs(c);
1534 free_orphans(c);
1535 ubifs_lpt_free(c, 0);
1536
1537 kfree(c->cbuf);
1538 kfree(c->rcvrd_mst_node);
1539 kfree(c->mst_node);
1540 kfree(c->write_reserve_buf);
1541 kfree(c->bu.buf);
1542 vfree(c->ileb_buf);
1543 vfree(c->sbuf);
1544 kfree(c->bottom_up_buf);
1545 ubifs_debugging_exit(c);
1546 }
1547
1548 /**
1549 * ubifs_remount_rw - re-mount in read-write mode.
1550 * @c: UBIFS file-system description object
1551 *
1552 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1553 * mode. This function allocates the needed resources and re-mounts UBIFS in
1554 * read-write mode.
1555 */
1556 static int ubifs_remount_rw(struct ubifs_info *c)
1557 {
1558 int err, lnum;
1559
1560 if (c->rw_incompat) {
1561 ubifs_err(c, "the file-system is not R/W-compatible");
1562 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1563 c->fmt_version, c->ro_compat_version,
1564 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1565 return -EROFS;
1566 }
1567
1568 mutex_lock(&c->umount_mutex);
1569 dbg_save_space_info(c);
1570 c->remounting_rw = 1;
1571 c->ro_mount = 0;
1572
1573 if (c->space_fixup) {
1574 err = ubifs_fixup_free_space(c);
1575 if (err)
1576 goto out;
1577 }
1578
1579 err = check_free_space(c);
1580 if (err)
1581 goto out;
1582
1583 if (c->old_leb_cnt != c->leb_cnt) {
1584 struct ubifs_sb_node *sup;
1585
1586 sup = ubifs_read_sb_node(c);
1587 if (IS_ERR(sup)) {
1588 err = PTR_ERR(sup);
1589 goto out;
1590 }
1591 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1592 err = ubifs_write_sb_node(c, sup);
1593 kfree(sup);
1594 if (err)
1595 goto out;
1596 }
1597
1598 if (c->need_recovery) {
1599 ubifs_msg(c, "completing deferred recovery");
1600 err = ubifs_write_rcvrd_mst_node(c);
1601 if (err)
1602 goto out;
1603 err = ubifs_recover_size(c);
1604 if (err)
1605 goto out;
1606 err = ubifs_clean_lebs(c, c->sbuf);
1607 if (err)
1608 goto out;
1609 err = ubifs_recover_inl_heads(c, c->sbuf);
1610 if (err)
1611 goto out;
1612 } else {
1613 /* A readonly mount is not allowed to have orphans */
1614 ubifs_assert(c->tot_orphans == 0);
1615 err = ubifs_clear_orphans(c);
1616 if (err)
1617 goto out;
1618 }
1619
1620 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1621 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1622 err = ubifs_write_master(c);
1623 if (err)
1624 goto out;
1625 }
1626
1627 c->ileb_buf = vmalloc(c->leb_size);
1628 if (!c->ileb_buf) {
1629 err = -ENOMEM;
1630 goto out;
1631 }
1632
1633 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1634 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1635 if (!c->write_reserve_buf) {
1636 err = -ENOMEM;
1637 goto out;
1638 }
1639
1640 err = ubifs_lpt_init(c, 0, 1);
1641 if (err)
1642 goto out;
1643
1644 /* Create background thread */
1645 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1646 if (IS_ERR(c->bgt)) {
1647 err = PTR_ERR(c->bgt);
1648 c->bgt = NULL;
1649 ubifs_err(c, "cannot spawn \"%s\", error %d",
1650 c->bgt_name, err);
1651 goto out;
1652 }
1653 wake_up_process(c->bgt);
1654
1655 c->orph_buf = vmalloc(c->leb_size);
1656 if (!c->orph_buf) {
1657 err = -ENOMEM;
1658 goto out;
1659 }
1660
1661 /* Check for enough log space */
1662 lnum = c->lhead_lnum + 1;
1663 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1664 lnum = UBIFS_LOG_LNUM;
1665 if (lnum == c->ltail_lnum) {
1666 err = ubifs_consolidate_log(c);
1667 if (err)
1668 goto out;
1669 }
1670
1671 if (c->need_recovery)
1672 err = ubifs_rcvry_gc_commit(c);
1673 else
1674 err = ubifs_leb_unmap(c, c->gc_lnum);
1675 if (err)
1676 goto out;
1677
1678 dbg_gen("re-mounted read-write");
1679 c->remounting_rw = 0;
1680
1681 if (c->need_recovery) {
1682 c->need_recovery = 0;
1683 ubifs_msg(c, "deferred recovery completed");
1684 } else {
1685 /*
1686 * Do not run the debugging space check if the were doing
1687 * recovery, because when we saved the information we had the
1688 * file-system in a state where the TNC and lprops has been
1689 * modified in memory, but all the I/O operations (including a
1690 * commit) were deferred. So the file-system was in
1691 * "non-committed" state. Now the file-system is in committed
1692 * state, and of course the amount of free space will change
1693 * because, for example, the old index size was imprecise.
1694 */
1695 err = dbg_check_space_info(c);
1696 }
1697
1698 mutex_unlock(&c->umount_mutex);
1699 return err;
1700
1701 out:
1702 c->ro_mount = 1;
1703 vfree(c->orph_buf);
1704 c->orph_buf = NULL;
1705 if (c->bgt) {
1706 kthread_stop(c->bgt);
1707 c->bgt = NULL;
1708 }
1709 free_wbufs(c);
1710 kfree(c->write_reserve_buf);
1711 c->write_reserve_buf = NULL;
1712 vfree(c->ileb_buf);
1713 c->ileb_buf = NULL;
1714 ubifs_lpt_free(c, 1);
1715 c->remounting_rw = 0;
1716 mutex_unlock(&c->umount_mutex);
1717 return err;
1718 }
1719
1720 /**
1721 * ubifs_remount_ro - re-mount in read-only mode.
1722 * @c: UBIFS file-system description object
1723 *
1724 * We assume VFS has stopped writing. Possibly the background thread could be
1725 * running a commit, however kthread_stop will wait in that case.
1726 */
1727 static void ubifs_remount_ro(struct ubifs_info *c)
1728 {
1729 int i, err;
1730
1731 ubifs_assert(!c->need_recovery);
1732 ubifs_assert(!c->ro_mount);
1733
1734 mutex_lock(&c->umount_mutex);
1735 if (c->bgt) {
1736 kthread_stop(c->bgt);
1737 c->bgt = NULL;
1738 }
1739
1740 dbg_save_space_info(c);
1741
1742 for (i = 0; i < c->jhead_cnt; i++)
1743 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1744
1745 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1746 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1747 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1748 err = ubifs_write_master(c);
1749 if (err)
1750 ubifs_ro_mode(c, err);
1751
1752 vfree(c->orph_buf);
1753 c->orph_buf = NULL;
1754 kfree(c->write_reserve_buf);
1755 c->write_reserve_buf = NULL;
1756 vfree(c->ileb_buf);
1757 c->ileb_buf = NULL;
1758 ubifs_lpt_free(c, 1);
1759 c->ro_mount = 1;
1760 err = dbg_check_space_info(c);
1761 if (err)
1762 ubifs_ro_mode(c, err);
1763 mutex_unlock(&c->umount_mutex);
1764 }
1765
1766 static void ubifs_put_super(struct super_block *sb)
1767 {
1768 int i;
1769 struct ubifs_info *c = sb->s_fs_info;
1770
1771 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1772
1773 /*
1774 * The following asserts are only valid if there has not been a failure
1775 * of the media. For example, there will be dirty inodes if we failed
1776 * to write them back because of I/O errors.
1777 */
1778 if (!c->ro_error) {
1779 ubifs_assert(c->bi.idx_growth == 0);
1780 ubifs_assert(c->bi.dd_growth == 0);
1781 ubifs_assert(c->bi.data_growth == 0);
1782 }
1783
1784 /*
1785 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1786 * and file system un-mount. Namely, it prevents the shrinker from
1787 * picking this superblock for shrinking - it will be just skipped if
1788 * the mutex is locked.
1789 */
1790 mutex_lock(&c->umount_mutex);
1791 if (!c->ro_mount) {
1792 /*
1793 * First of all kill the background thread to make sure it does
1794 * not interfere with un-mounting and freeing resources.
1795 */
1796 if (c->bgt) {
1797 kthread_stop(c->bgt);
1798 c->bgt = NULL;
1799 }
1800
1801 /*
1802 * On fatal errors c->ro_error is set to 1, in which case we do
1803 * not write the master node.
1804 */
1805 if (!c->ro_error) {
1806 int err;
1807
1808 /* Synchronize write-buffers */
1809 for (i = 0; i < c->jhead_cnt; i++)
1810 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1811
1812 /*
1813 * We are being cleanly unmounted which means the
1814 * orphans were killed - indicate this in the master
1815 * node. Also save the reserved GC LEB number.
1816 */
1817 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1818 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1819 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1820 err = ubifs_write_master(c);
1821 if (err)
1822 /*
1823 * Recovery will attempt to fix the master area
1824 * next mount, so we just print a message and
1825 * continue to unmount normally.
1826 */
1827 ubifs_err(c, "failed to write master node, error %d",
1828 err);
1829 } else {
1830 for (i = 0; i < c->jhead_cnt; i++)
1831 /* Make sure write-buffer timers are canceled */
1832 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1833 }
1834 }
1835
1836 ubifs_umount(c);
1837 ubi_close_volume(c->ubi);
1838 mutex_unlock(&c->umount_mutex);
1839 }
1840
1841 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1842 {
1843 int err;
1844 struct ubifs_info *c = sb->s_fs_info;
1845
1846 sync_filesystem(sb);
1847 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1848
1849 err = ubifs_parse_options(c, data, 1);
1850 if (err) {
1851 ubifs_err(c, "invalid or unknown remount parameter");
1852 return err;
1853 }
1854
1855 if (c->ro_mount && !(*flags & MS_RDONLY)) {
1856 if (c->ro_error) {
1857 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1858 return -EROFS;
1859 }
1860 if (c->ro_media) {
1861 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1862 return -EROFS;
1863 }
1864 err = ubifs_remount_rw(c);
1865 if (err)
1866 return err;
1867 } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1868 if (c->ro_error) {
1869 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1870 return -EROFS;
1871 }
1872 ubifs_remount_ro(c);
1873 }
1874
1875 if (c->bulk_read == 1)
1876 bu_init(c);
1877 else {
1878 dbg_gen("disable bulk-read");
1879 mutex_lock(&c->bu_mutex);
1880 kfree(c->bu.buf);
1881 c->bu.buf = NULL;
1882 mutex_unlock(&c->bu_mutex);
1883 }
1884
1885 ubifs_assert(c->lst.taken_empty_lebs > 0);
1886 return 0;
1887 }
1888
1889 const struct super_operations ubifs_super_operations = {
1890 .alloc_inode = ubifs_alloc_inode,
1891 .destroy_inode = ubifs_destroy_inode,
1892 .put_super = ubifs_put_super,
1893 .write_inode = ubifs_write_inode,
1894 .evict_inode = ubifs_evict_inode,
1895 .statfs = ubifs_statfs,
1896 .dirty_inode = ubifs_dirty_inode,
1897 .remount_fs = ubifs_remount_fs,
1898 .show_options = ubifs_show_options,
1899 .sync_fs = ubifs_sync_fs,
1900 };
1901
1902 /**
1903 * open_ubi - parse UBI device name string and open the UBI device.
1904 * @name: UBI volume name
1905 * @mode: UBI volume open mode
1906 *
1907 * The primary method of mounting UBIFS is by specifying the UBI volume
1908 * character device node path. However, UBIFS may also be mounted withoug any
1909 * character device node using one of the following methods:
1910 *
1911 * o ubiX_Y - mount UBI device number X, volume Y;
1912 * o ubiY - mount UBI device number 0, volume Y;
1913 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1914 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1915 *
1916 * Alternative '!' separator may be used instead of ':' (because some shells
1917 * like busybox may interpret ':' as an NFS host name separator). This function
1918 * returns UBI volume description object in case of success and a negative
1919 * error code in case of failure.
1920 */
1921 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1922 {
1923 struct ubi_volume_desc *ubi;
1924 int dev, vol;
1925 char *endptr;
1926
1927 /* First, try to open using the device node path method */
1928 ubi = ubi_open_volume_path(name, mode);
1929 if (!IS_ERR(ubi))
1930 return ubi;
1931
1932 /* Try the "nodev" method */
1933 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1934 return ERR_PTR(-EINVAL);
1935
1936 /* ubi:NAME method */
1937 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1938 return ubi_open_volume_nm(0, name + 4, mode);
1939
1940 if (!isdigit(name[3]))
1941 return ERR_PTR(-EINVAL);
1942
1943 dev = simple_strtoul(name + 3, &endptr, 0);
1944
1945 /* ubiY method */
1946 if (*endptr == '\0')
1947 return ubi_open_volume(0, dev, mode);
1948
1949 /* ubiX_Y method */
1950 if (*endptr == '_' && isdigit(endptr[1])) {
1951 vol = simple_strtoul(endptr + 1, &endptr, 0);
1952 if (*endptr != '\0')
1953 return ERR_PTR(-EINVAL);
1954 return ubi_open_volume(dev, vol, mode);
1955 }
1956
1957 /* ubiX:NAME method */
1958 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1959 return ubi_open_volume_nm(dev, ++endptr, mode);
1960
1961 return ERR_PTR(-EINVAL);
1962 }
1963
1964 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1965 {
1966 struct ubifs_info *c;
1967
1968 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1969 if (c) {
1970 spin_lock_init(&c->cnt_lock);
1971 spin_lock_init(&c->cs_lock);
1972 spin_lock_init(&c->buds_lock);
1973 spin_lock_init(&c->space_lock);
1974 spin_lock_init(&c->orphan_lock);
1975 init_rwsem(&c->commit_sem);
1976 mutex_init(&c->lp_mutex);
1977 mutex_init(&c->tnc_mutex);
1978 mutex_init(&c->log_mutex);
1979 mutex_init(&c->umount_mutex);
1980 mutex_init(&c->bu_mutex);
1981 mutex_init(&c->write_reserve_mutex);
1982 init_waitqueue_head(&c->cmt_wq);
1983 c->buds = RB_ROOT;
1984 c->old_idx = RB_ROOT;
1985 c->size_tree = RB_ROOT;
1986 c->orph_tree = RB_ROOT;
1987 INIT_LIST_HEAD(&c->infos_list);
1988 INIT_LIST_HEAD(&c->idx_gc);
1989 INIT_LIST_HEAD(&c->replay_list);
1990 INIT_LIST_HEAD(&c->replay_buds);
1991 INIT_LIST_HEAD(&c->uncat_list);
1992 INIT_LIST_HEAD(&c->empty_list);
1993 INIT_LIST_HEAD(&c->freeable_list);
1994 INIT_LIST_HEAD(&c->frdi_idx_list);
1995 INIT_LIST_HEAD(&c->unclean_leb_list);
1996 INIT_LIST_HEAD(&c->old_buds);
1997 INIT_LIST_HEAD(&c->orph_list);
1998 INIT_LIST_HEAD(&c->orph_new);
1999 c->no_chk_data_crc = 1;
2000
2001 c->highest_inum = UBIFS_FIRST_INO;
2002 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2003
2004 ubi_get_volume_info(ubi, &c->vi);
2005 ubi_get_device_info(c->vi.ubi_num, &c->di);
2006 }
2007 return c;
2008 }
2009
2010 #ifndef CONFIG_UBIFS_FS_ENCRYPTION
2011 const struct fscrypt_operations ubifs_crypt_operations = {
2012 .is_encrypted = __ubifs_crypt_is_encrypted,
2013 };
2014 #endif
2015
2016 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2017 {
2018 struct ubifs_info *c = sb->s_fs_info;
2019 struct inode *root;
2020 int err;
2021
2022 c->vfs_sb = sb;
2023 /* Re-open the UBI device in read-write mode */
2024 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2025 if (IS_ERR(c->ubi)) {
2026 err = PTR_ERR(c->ubi);
2027 goto out;
2028 }
2029
2030 err = ubifs_parse_options(c, data, 0);
2031 if (err)
2032 goto out_close;
2033
2034 /*
2035 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2036 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2037 * which means the user would have to wait not just for their own I/O
2038 * but the read-ahead I/O as well i.e. completely pointless.
2039 *
2040 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2041 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2042 * writeback happening.
2043 */
2044 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2045 c->vi.vol_id);
2046 if (err)
2047 goto out_close;
2048
2049 sb->s_fs_info = c;
2050 sb->s_magic = UBIFS_SUPER_MAGIC;
2051 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2052 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2053 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2054 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2055 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2056 sb->s_op = &ubifs_super_operations;
2057 sb->s_xattr = ubifs_xattr_handlers;
2058 sb->s_cop = &ubifs_crypt_operations;
2059
2060 mutex_lock(&c->umount_mutex);
2061 err = mount_ubifs(c);
2062 if (err) {
2063 ubifs_assert(err < 0);
2064 goto out_unlock;
2065 }
2066
2067 /* Read the root inode */
2068 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2069 if (IS_ERR(root)) {
2070 err = PTR_ERR(root);
2071 goto out_umount;
2072 }
2073
2074 sb->s_root = d_make_root(root);
2075 if (!sb->s_root) {
2076 err = -ENOMEM;
2077 goto out_umount;
2078 }
2079
2080 mutex_unlock(&c->umount_mutex);
2081 return 0;
2082
2083 out_umount:
2084 ubifs_umount(c);
2085 out_unlock:
2086 mutex_unlock(&c->umount_mutex);
2087 out_close:
2088 ubi_close_volume(c->ubi);
2089 out:
2090 return err;
2091 }
2092
2093 static int sb_test(struct super_block *sb, void *data)
2094 {
2095 struct ubifs_info *c1 = data;
2096 struct ubifs_info *c = sb->s_fs_info;
2097
2098 return c->vi.cdev == c1->vi.cdev;
2099 }
2100
2101 static int sb_set(struct super_block *sb, void *data)
2102 {
2103 sb->s_fs_info = data;
2104 return set_anon_super(sb, NULL);
2105 }
2106
2107 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2108 const char *name, void *data)
2109 {
2110 struct ubi_volume_desc *ubi;
2111 struct ubifs_info *c;
2112 struct super_block *sb;
2113 int err;
2114
2115 dbg_gen("name %s, flags %#x", name, flags);
2116
2117 /*
2118 * Get UBI device number and volume ID. Mount it read-only so far
2119 * because this might be a new mount point, and UBI allows only one
2120 * read-write user at a time.
2121 */
2122 ubi = open_ubi(name, UBI_READONLY);
2123 if (IS_ERR(ubi)) {
2124 if (!(flags & MS_SILENT))
2125 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2126 current->pid, name, (int)PTR_ERR(ubi));
2127 return ERR_CAST(ubi);
2128 }
2129
2130 c = alloc_ubifs_info(ubi);
2131 if (!c) {
2132 err = -ENOMEM;
2133 goto out_close;
2134 }
2135
2136 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2137
2138 sb = sget(fs_type, sb_test, sb_set, flags, c);
2139 if (IS_ERR(sb)) {
2140 err = PTR_ERR(sb);
2141 kfree(c);
2142 goto out_close;
2143 }
2144
2145 if (sb->s_root) {
2146 struct ubifs_info *c1 = sb->s_fs_info;
2147 kfree(c);
2148 /* A new mount point for already mounted UBIFS */
2149 dbg_gen("this ubi volume is already mounted");
2150 if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2151 err = -EBUSY;
2152 goto out_deact;
2153 }
2154 } else {
2155 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2156 if (err)
2157 goto out_deact;
2158 /* We do not support atime */
2159 sb->s_flags |= MS_ACTIVE;
2160 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
2161 sb->s_flags |= MS_NOATIME;
2162 #else
2163 ubifs_msg(c, "full atime support is enabled.");
2164 #endif
2165 }
2166
2167 /* 'fill_super()' opens ubi again so we must close it here */
2168 ubi_close_volume(ubi);
2169
2170 return dget(sb->s_root);
2171
2172 out_deact:
2173 deactivate_locked_super(sb);
2174 out_close:
2175 ubi_close_volume(ubi);
2176 return ERR_PTR(err);
2177 }
2178
2179 static void kill_ubifs_super(struct super_block *s)
2180 {
2181 struct ubifs_info *c = s->s_fs_info;
2182 kill_anon_super(s);
2183 kfree(c);
2184 }
2185
2186 static struct file_system_type ubifs_fs_type = {
2187 .name = "ubifs",
2188 .owner = THIS_MODULE,
2189 .mount = ubifs_mount,
2190 .kill_sb = kill_ubifs_super,
2191 };
2192 MODULE_ALIAS_FS("ubifs");
2193
2194 /*
2195 * Inode slab cache constructor.
2196 */
2197 static void inode_slab_ctor(void *obj)
2198 {
2199 struct ubifs_inode *ui = obj;
2200 inode_init_once(&ui->vfs_inode);
2201 }
2202
2203 static int __init ubifs_init(void)
2204 {
2205 int err;
2206
2207 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2208
2209 /* Make sure node sizes are 8-byte aligned */
2210 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2211 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2212 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2213 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2214 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2215 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2216 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2217 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2218 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2219 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2220 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2221
2222 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2223 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2224 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2225 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2226 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2227 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2228
2229 /* Check min. node size */
2230 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2231 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2232 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2233 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2234
2235 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2236 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2237 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2238 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2239
2240 /* Defined node sizes */
2241 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2242 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2243 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2244 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2245
2246 /*
2247 * We use 2 bit wide bit-fields to store compression type, which should
2248 * be amended if more compressors are added. The bit-fields are:
2249 * @compr_type in 'struct ubifs_inode', @default_compr in
2250 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2251 */
2252 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2253
2254 /*
2255 * We require that PAGE_SIZE is greater-than-or-equal-to
2256 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2257 */
2258 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2259 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2260 current->pid, (unsigned int)PAGE_SIZE);
2261 return -EINVAL;
2262 }
2263
2264 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2265 sizeof(struct ubifs_inode), 0,
2266 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2267 SLAB_ACCOUNT, &inode_slab_ctor);
2268 if (!ubifs_inode_slab)
2269 return -ENOMEM;
2270
2271 err = register_shrinker(&ubifs_shrinker_info);
2272 if (err)
2273 goto out_slab;
2274
2275 err = ubifs_compressors_init();
2276 if (err)
2277 goto out_shrinker;
2278
2279 err = dbg_debugfs_init();
2280 if (err)
2281 goto out_compr;
2282
2283 err = register_filesystem(&ubifs_fs_type);
2284 if (err) {
2285 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2286 current->pid, err);
2287 goto out_dbg;
2288 }
2289 return 0;
2290
2291 out_dbg:
2292 dbg_debugfs_exit();
2293 out_compr:
2294 ubifs_compressors_exit();
2295 out_shrinker:
2296 unregister_shrinker(&ubifs_shrinker_info);
2297 out_slab:
2298 kmem_cache_destroy(ubifs_inode_slab);
2299 return err;
2300 }
2301 /* late_initcall to let compressors initialize first */
2302 late_initcall(ubifs_init);
2303
2304 static void __exit ubifs_exit(void)
2305 {
2306 ubifs_assert(list_empty(&ubifs_infos));
2307 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2308
2309 dbg_debugfs_exit();
2310 ubifs_compressors_exit();
2311 unregister_shrinker(&ubifs_shrinker_info);
2312
2313 /*
2314 * Make sure all delayed rcu free inodes are flushed before we
2315 * destroy cache.
2316 */
2317 rcu_barrier();
2318 kmem_cache_destroy(ubifs_inode_slab);
2319 unregister_filesystem(&ubifs_fs_type);
2320 }
2321 module_exit(ubifs_exit);
2322
2323 MODULE_LICENSE("GPL");
2324 MODULE_VERSION(__stringify(UBIFS_VERSION));
2325 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2326 MODULE_DESCRIPTION("UBIFS - UBI File System");