2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
45 #define UBIFS_KMALLOC_OK (128*1024)
47 /* Slab cache for UBIFS inodes */
48 static struct kmem_cache
*ubifs_inode_slab
;
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info
= {
52 .scan_objects
= ubifs_shrink_scan
,
53 .count_objects
= ubifs_shrink_count
,
54 .seeks
= DEFAULT_SEEKS
,
58 * validate_inode - validate inode.
59 * @c: UBIFS file-system description object
60 * @inode: the inode to validate
62 * This is a helper function for 'ubifs_iget()' which validates various fields
63 * of a newly built inode to make sure they contain sane values and prevent
64 * possible vulnerabilities. Returns zero if the inode is all right and
65 * a non-zero error code if not.
67 static int validate_inode(struct ubifs_info
*c
, const struct inode
*inode
)
70 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
72 if (inode
->i_size
> c
->max_inode_sz
) {
73 ubifs_err(c
, "inode is too large (%lld)",
74 (long long)inode
->i_size
);
78 if (ui
->compr_type
>= UBIFS_COMPR_TYPES_CNT
) {
79 ubifs_err(c
, "unknown compression type %d", ui
->compr_type
);
83 if (ui
->xattr_names
+ ui
->xattr_cnt
> XATTR_LIST_MAX
)
86 if (ui
->data_len
< 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
)
89 if (ui
->xattr
&& !S_ISREG(inode
->i_mode
))
92 if (!ubifs_compr_present(ui
->compr_type
)) {
93 ubifs_warn(c
, "inode %lu uses '%s' compression, but it was not compiled in",
94 inode
->i_ino
, ubifs_compr_name(ui
->compr_type
));
97 err
= dbg_check_dir(c
, inode
);
101 struct inode
*ubifs_iget(struct super_block
*sb
, unsigned long inum
)
105 struct ubifs_ino_node
*ino
;
106 struct ubifs_info
*c
= sb
->s_fs_info
;
108 struct ubifs_inode
*ui
;
110 dbg_gen("inode %lu", inum
);
112 inode
= iget_locked(sb
, inum
);
114 return ERR_PTR(-ENOMEM
);
115 if (!(inode
->i_state
& I_NEW
))
117 ui
= ubifs_inode(inode
);
119 ino
= kmalloc(UBIFS_MAX_INO_NODE_SZ
, GFP_NOFS
);
125 ino_key_init(c
, &key
, inode
->i_ino
);
127 err
= ubifs_tnc_lookup(c
, &key
, ino
);
131 inode
->i_flags
|= S_NOCMTIME
;
132 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
133 inode
->i_flags
|= S_NOATIME
;
135 set_nlink(inode
, le32_to_cpu(ino
->nlink
));
136 i_uid_write(inode
, le32_to_cpu(ino
->uid
));
137 i_gid_write(inode
, le32_to_cpu(ino
->gid
));
138 inode
->i_atime
.tv_sec
= (int64_t)le64_to_cpu(ino
->atime_sec
);
139 inode
->i_atime
.tv_nsec
= le32_to_cpu(ino
->atime_nsec
);
140 inode
->i_mtime
.tv_sec
= (int64_t)le64_to_cpu(ino
->mtime_sec
);
141 inode
->i_mtime
.tv_nsec
= le32_to_cpu(ino
->mtime_nsec
);
142 inode
->i_ctime
.tv_sec
= (int64_t)le64_to_cpu(ino
->ctime_sec
);
143 inode
->i_ctime
.tv_nsec
= le32_to_cpu(ino
->ctime_nsec
);
144 inode
->i_mode
= le32_to_cpu(ino
->mode
);
145 inode
->i_size
= le64_to_cpu(ino
->size
);
147 ui
->data_len
= le32_to_cpu(ino
->data_len
);
148 ui
->flags
= le32_to_cpu(ino
->flags
);
149 ui
->compr_type
= le16_to_cpu(ino
->compr_type
);
150 ui
->creat_sqnum
= le64_to_cpu(ino
->creat_sqnum
);
151 ui
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
152 ui
->xattr_size
= le32_to_cpu(ino
->xattr_size
);
153 ui
->xattr_names
= le32_to_cpu(ino
->xattr_names
);
154 ui
->synced_i_size
= ui
->ui_size
= inode
->i_size
;
156 ui
->xattr
= (ui
->flags
& UBIFS_XATTR_FL
) ? 1 : 0;
158 err
= validate_inode(c
, inode
);
162 switch (inode
->i_mode
& S_IFMT
) {
164 inode
->i_mapping
->a_ops
= &ubifs_file_address_operations
;
165 inode
->i_op
= &ubifs_file_inode_operations
;
166 inode
->i_fop
= &ubifs_file_operations
;
168 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
173 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
174 ((char *)ui
->data
)[ui
->data_len
] = '\0';
175 } else if (ui
->data_len
!= 0) {
181 inode
->i_op
= &ubifs_dir_inode_operations
;
182 inode
->i_fop
= &ubifs_dir_operations
;
183 if (ui
->data_len
!= 0) {
189 inode
->i_op
= &ubifs_symlink_inode_operations
;
190 if (ui
->data_len
<= 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
) {
194 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
199 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
200 ((char *)ui
->data
)[ui
->data_len
] = '\0';
206 union ubifs_dev_desc
*dev
;
208 ui
->data
= kmalloc(sizeof(union ubifs_dev_desc
), GFP_NOFS
);
214 dev
= (union ubifs_dev_desc
*)ino
->data
;
215 if (ui
->data_len
== sizeof(dev
->new))
216 rdev
= new_decode_dev(le32_to_cpu(dev
->new));
217 else if (ui
->data_len
== sizeof(dev
->huge
))
218 rdev
= huge_decode_dev(le64_to_cpu(dev
->huge
));
223 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
224 inode
->i_op
= &ubifs_file_inode_operations
;
225 init_special_inode(inode
, inode
->i_mode
, rdev
);
230 inode
->i_op
= &ubifs_file_inode_operations
;
231 init_special_inode(inode
, inode
->i_mode
, 0);
232 if (ui
->data_len
!= 0) {
243 ubifs_set_inode_flags(inode
);
244 unlock_new_inode(inode
);
248 ubifs_err(c
, "inode %lu validation failed, error %d", inode
->i_ino
, err
);
249 ubifs_dump_node(c
, ino
);
250 ubifs_dump_inode(c
, inode
);
255 ubifs_err(c
, "failed to read inode %lu, error %d", inode
->i_ino
, err
);
260 static struct inode
*ubifs_alloc_inode(struct super_block
*sb
)
262 struct ubifs_inode
*ui
;
264 ui
= kmem_cache_alloc(ubifs_inode_slab
, GFP_NOFS
);
268 memset((void *)ui
+ sizeof(struct inode
), 0,
269 sizeof(struct ubifs_inode
) - sizeof(struct inode
));
270 mutex_init(&ui
->ui_mutex
);
271 spin_lock_init(&ui
->ui_lock
);
272 return &ui
->vfs_inode
;
275 static void ubifs_i_callback(struct rcu_head
*head
)
277 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
278 struct ubifs_inode
*ui
= ubifs_inode(inode
);
279 kmem_cache_free(ubifs_inode_slab
, ui
);
282 static void ubifs_destroy_inode(struct inode
*inode
)
284 struct ubifs_inode
*ui
= ubifs_inode(inode
);
287 call_rcu(&inode
->i_rcu
, ubifs_i_callback
);
291 * Note, Linux write-back code calls this without 'i_mutex'.
293 static int ubifs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
296 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
297 struct ubifs_inode
*ui
= ubifs_inode(inode
);
299 ubifs_assert(!ui
->xattr
);
300 if (is_bad_inode(inode
))
303 mutex_lock(&ui
->ui_mutex
);
305 * Due to races between write-back forced by budgeting
306 * (see 'sync_some_inodes()') and background write-back, the inode may
307 * have already been synchronized, do not do this again. This might
308 * also happen if it was synchronized in an VFS operation, e.g.
312 mutex_unlock(&ui
->ui_mutex
);
317 * As an optimization, do not write orphan inodes to the media just
318 * because this is not needed.
320 dbg_gen("inode %lu, mode %#x, nlink %u",
321 inode
->i_ino
, (int)inode
->i_mode
, inode
->i_nlink
);
322 if (inode
->i_nlink
) {
323 err
= ubifs_jnl_write_inode(c
, inode
);
325 ubifs_err(c
, "can't write inode %lu, error %d",
328 err
= dbg_check_inode_size(c
, inode
, ui
->ui_size
);
332 mutex_unlock(&ui
->ui_mutex
);
333 ubifs_release_dirty_inode_budget(c
, ui
);
337 static void ubifs_evict_inode(struct inode
*inode
)
340 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
341 struct ubifs_inode
*ui
= ubifs_inode(inode
);
345 * Extended attribute inode deletions are fully handled in
346 * 'ubifs_removexattr()'. These inodes are special and have
347 * limited usage, so there is nothing to do here.
351 dbg_gen("inode %lu, mode %#x", inode
->i_ino
, (int)inode
->i_mode
);
352 ubifs_assert(!atomic_read(&inode
->i_count
));
354 truncate_inode_pages_final(&inode
->i_data
);
359 if (is_bad_inode(inode
))
362 ui
->ui_size
= inode
->i_size
= 0;
363 err
= ubifs_jnl_delete_inode(c
, inode
);
366 * Worst case we have a lost orphan inode wasting space, so a
367 * simple error message is OK here.
369 ubifs_err(c
, "can't delete inode %lu, error %d",
374 ubifs_release_dirty_inode_budget(c
, ui
);
376 /* We've deleted something - clean the "no space" flags */
377 c
->bi
.nospace
= c
->bi
.nospace_rp
= 0;
382 #ifdef CONFIG_UBIFS_FS_ENCRYPTION
383 fscrypt_put_encryption_info(inode
, NULL
);
387 static void ubifs_dirty_inode(struct inode
*inode
, int flags
)
389 struct ubifs_inode
*ui
= ubifs_inode(inode
);
391 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
394 dbg_gen("inode %lu", inode
->i_ino
);
398 static int ubifs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
400 struct ubifs_info
*c
= dentry
->d_sb
->s_fs_info
;
401 unsigned long long free
;
402 __le32
*uuid
= (__le32
*)c
->uuid
;
404 free
= ubifs_get_free_space(c
);
405 dbg_gen("free space %lld bytes (%lld blocks)",
406 free
, free
>> UBIFS_BLOCK_SHIFT
);
408 buf
->f_type
= UBIFS_SUPER_MAGIC
;
409 buf
->f_bsize
= UBIFS_BLOCK_SIZE
;
410 buf
->f_blocks
= c
->block_cnt
;
411 buf
->f_bfree
= free
>> UBIFS_BLOCK_SHIFT
;
412 if (free
> c
->report_rp_size
)
413 buf
->f_bavail
= (free
- c
->report_rp_size
) >> UBIFS_BLOCK_SHIFT
;
418 buf
->f_namelen
= UBIFS_MAX_NLEN
;
419 buf
->f_fsid
.val
[0] = le32_to_cpu(uuid
[0]) ^ le32_to_cpu(uuid
[2]);
420 buf
->f_fsid
.val
[1] = le32_to_cpu(uuid
[1]) ^ le32_to_cpu(uuid
[3]);
421 ubifs_assert(buf
->f_bfree
<= c
->block_cnt
);
425 static int ubifs_show_options(struct seq_file
*s
, struct dentry
*root
)
427 struct ubifs_info
*c
= root
->d_sb
->s_fs_info
;
429 if (c
->mount_opts
.unmount_mode
== 2)
430 seq_puts(s
, ",fast_unmount");
431 else if (c
->mount_opts
.unmount_mode
== 1)
432 seq_puts(s
, ",norm_unmount");
434 if (c
->mount_opts
.bulk_read
== 2)
435 seq_puts(s
, ",bulk_read");
436 else if (c
->mount_opts
.bulk_read
== 1)
437 seq_puts(s
, ",no_bulk_read");
439 if (c
->mount_opts
.chk_data_crc
== 2)
440 seq_puts(s
, ",chk_data_crc");
441 else if (c
->mount_opts
.chk_data_crc
== 1)
442 seq_puts(s
, ",no_chk_data_crc");
444 if (c
->mount_opts
.override_compr
) {
445 seq_printf(s
, ",compr=%s",
446 ubifs_compr_name(c
->mount_opts
.compr_type
));
449 seq_printf(s
, ",ubi=%d,vol=%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
454 static int ubifs_sync_fs(struct super_block
*sb
, int wait
)
457 struct ubifs_info
*c
= sb
->s_fs_info
;
460 * Zero @wait is just an advisory thing to help the file system shove
461 * lots of data into the queues, and there will be the second
462 * '->sync_fs()' call, with non-zero @wait.
468 * Synchronize write buffers, because 'ubifs_run_commit()' does not
469 * do this if it waits for an already running commit.
471 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
472 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
478 * Strictly speaking, it is not necessary to commit the journal here,
479 * synchronizing write-buffers would be enough. But committing makes
480 * UBIFS free space predictions much more accurate, so we want to let
481 * the user be able to get more accurate results of 'statfs()' after
482 * they synchronize the file system.
484 err
= ubifs_run_commit(c
);
488 return ubi_sync(c
->vi
.ubi_num
);
492 * init_constants_early - initialize UBIFS constants.
493 * @c: UBIFS file-system description object
495 * This function initialize UBIFS constants which do not need the superblock to
496 * be read. It also checks that the UBI volume satisfies basic UBIFS
497 * requirements. Returns zero in case of success and a negative error code in
500 static int init_constants_early(struct ubifs_info
*c
)
502 if (c
->vi
.corrupted
) {
503 ubifs_warn(c
, "UBI volume is corrupted - read-only mode");
508 ubifs_msg(c
, "read-only UBI device");
512 if (c
->vi
.vol_type
== UBI_STATIC_VOLUME
) {
513 ubifs_msg(c
, "static UBI volume - read-only mode");
517 c
->leb_cnt
= c
->vi
.size
;
518 c
->leb_size
= c
->vi
.usable_leb_size
;
519 c
->leb_start
= c
->di
.leb_start
;
520 c
->half_leb_size
= c
->leb_size
/ 2;
521 c
->min_io_size
= c
->di
.min_io_size
;
522 c
->min_io_shift
= fls(c
->min_io_size
) - 1;
523 c
->max_write_size
= c
->di
.max_write_size
;
524 c
->max_write_shift
= fls(c
->max_write_size
) - 1;
526 if (c
->leb_size
< UBIFS_MIN_LEB_SZ
) {
527 ubifs_errc(c
, "too small LEBs (%d bytes), min. is %d bytes",
528 c
->leb_size
, UBIFS_MIN_LEB_SZ
);
532 if (c
->leb_cnt
< UBIFS_MIN_LEB_CNT
) {
533 ubifs_errc(c
, "too few LEBs (%d), min. is %d",
534 c
->leb_cnt
, UBIFS_MIN_LEB_CNT
);
538 if (!is_power_of_2(c
->min_io_size
)) {
539 ubifs_errc(c
, "bad min. I/O size %d", c
->min_io_size
);
544 * Maximum write size has to be greater or equivalent to min. I/O
545 * size, and be multiple of min. I/O size.
547 if (c
->max_write_size
< c
->min_io_size
||
548 c
->max_write_size
% c
->min_io_size
||
549 !is_power_of_2(c
->max_write_size
)) {
550 ubifs_errc(c
, "bad write buffer size %d for %d min. I/O unit",
551 c
->max_write_size
, c
->min_io_size
);
556 * UBIFS aligns all node to 8-byte boundary, so to make function in
557 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
560 if (c
->min_io_size
< 8) {
563 if (c
->max_write_size
< c
->min_io_size
) {
564 c
->max_write_size
= c
->min_io_size
;
565 c
->max_write_shift
= c
->min_io_shift
;
569 c
->ref_node_alsz
= ALIGN(UBIFS_REF_NODE_SZ
, c
->min_io_size
);
570 c
->mst_node_alsz
= ALIGN(UBIFS_MST_NODE_SZ
, c
->min_io_size
);
573 * Initialize node length ranges which are mostly needed for node
576 c
->ranges
[UBIFS_PAD_NODE
].len
= UBIFS_PAD_NODE_SZ
;
577 c
->ranges
[UBIFS_SB_NODE
].len
= UBIFS_SB_NODE_SZ
;
578 c
->ranges
[UBIFS_MST_NODE
].len
= UBIFS_MST_NODE_SZ
;
579 c
->ranges
[UBIFS_REF_NODE
].len
= UBIFS_REF_NODE_SZ
;
580 c
->ranges
[UBIFS_TRUN_NODE
].len
= UBIFS_TRUN_NODE_SZ
;
581 c
->ranges
[UBIFS_CS_NODE
].len
= UBIFS_CS_NODE_SZ
;
583 c
->ranges
[UBIFS_INO_NODE
].min_len
= UBIFS_INO_NODE_SZ
;
584 c
->ranges
[UBIFS_INO_NODE
].max_len
= UBIFS_MAX_INO_NODE_SZ
;
585 c
->ranges
[UBIFS_ORPH_NODE
].min_len
=
586 UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
);
587 c
->ranges
[UBIFS_ORPH_NODE
].max_len
= c
->leb_size
;
588 c
->ranges
[UBIFS_DENT_NODE
].min_len
= UBIFS_DENT_NODE_SZ
;
589 c
->ranges
[UBIFS_DENT_NODE
].max_len
= UBIFS_MAX_DENT_NODE_SZ
;
590 c
->ranges
[UBIFS_XENT_NODE
].min_len
= UBIFS_XENT_NODE_SZ
;
591 c
->ranges
[UBIFS_XENT_NODE
].max_len
= UBIFS_MAX_XENT_NODE_SZ
;
592 c
->ranges
[UBIFS_DATA_NODE
].min_len
= UBIFS_DATA_NODE_SZ
;
593 c
->ranges
[UBIFS_DATA_NODE
].max_len
= UBIFS_MAX_DATA_NODE_SZ
;
595 * Minimum indexing node size is amended later when superblock is
596 * read and the key length is known.
598 c
->ranges
[UBIFS_IDX_NODE
].min_len
= UBIFS_IDX_NODE_SZ
+ UBIFS_BRANCH_SZ
;
600 * Maximum indexing node size is amended later when superblock is
601 * read and the fanout is known.
603 c
->ranges
[UBIFS_IDX_NODE
].max_len
= INT_MAX
;
606 * Initialize dead and dark LEB space watermarks. See gc.c for comments
607 * about these values.
609 c
->dead_wm
= ALIGN(MIN_WRITE_SZ
, c
->min_io_size
);
610 c
->dark_wm
= ALIGN(UBIFS_MAX_NODE_SZ
, c
->min_io_size
);
613 * Calculate how many bytes would be wasted at the end of LEB if it was
614 * fully filled with data nodes of maximum size. This is used in
615 * calculations when reporting free space.
617 c
->leb_overhead
= c
->leb_size
% UBIFS_MAX_DATA_NODE_SZ
;
619 /* Buffer size for bulk-reads */
620 c
->max_bu_buf_len
= UBIFS_MAX_BULK_READ
* UBIFS_MAX_DATA_NODE_SZ
;
621 if (c
->max_bu_buf_len
> c
->leb_size
)
622 c
->max_bu_buf_len
= c
->leb_size
;
627 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
628 * @c: UBIFS file-system description object
629 * @lnum: LEB the write-buffer was synchronized to
630 * @free: how many free bytes left in this LEB
631 * @pad: how many bytes were padded
633 * This is a callback function which is called by the I/O unit when the
634 * write-buffer is synchronized. We need this to correctly maintain space
635 * accounting in bud logical eraseblocks. This function returns zero in case of
636 * success and a negative error code in case of failure.
638 * This function actually belongs to the journal, but we keep it here because
639 * we want to keep it static.
641 static int bud_wbuf_callback(struct ubifs_info
*c
, int lnum
, int free
, int pad
)
643 return ubifs_update_one_lp(c
, lnum
, free
, pad
, 0, 0);
647 * init_constants_sb - initialize UBIFS constants.
648 * @c: UBIFS file-system description object
650 * This is a helper function which initializes various UBIFS constants after
651 * the superblock has been read. It also checks various UBIFS parameters and
652 * makes sure they are all right. Returns zero in case of success and a
653 * negative error code in case of failure.
655 static int init_constants_sb(struct ubifs_info
*c
)
660 c
->main_bytes
= (long long)c
->main_lebs
* c
->leb_size
;
661 c
->max_znode_sz
= sizeof(struct ubifs_znode
) +
662 c
->fanout
* sizeof(struct ubifs_zbranch
);
664 tmp
= ubifs_idx_node_sz(c
, 1);
665 c
->ranges
[UBIFS_IDX_NODE
].min_len
= tmp
;
666 c
->min_idx_node_sz
= ALIGN(tmp
, 8);
668 tmp
= ubifs_idx_node_sz(c
, c
->fanout
);
669 c
->ranges
[UBIFS_IDX_NODE
].max_len
= tmp
;
670 c
->max_idx_node_sz
= ALIGN(tmp
, 8);
672 /* Make sure LEB size is large enough to fit full commit */
673 tmp
= UBIFS_CS_NODE_SZ
+ UBIFS_REF_NODE_SZ
* c
->jhead_cnt
;
674 tmp
= ALIGN(tmp
, c
->min_io_size
);
675 if (tmp
> c
->leb_size
) {
676 ubifs_err(c
, "too small LEB size %d, at least %d needed",
682 * Make sure that the log is large enough to fit reference nodes for
683 * all buds plus one reserved LEB.
685 tmp64
= c
->max_bud_bytes
+ c
->leb_size
- 1;
686 c
->max_bud_cnt
= div_u64(tmp64
, c
->leb_size
);
687 tmp
= (c
->ref_node_alsz
* c
->max_bud_cnt
+ c
->leb_size
- 1);
690 if (c
->log_lebs
< tmp
) {
691 ubifs_err(c
, "too small log %d LEBs, required min. %d LEBs",
697 * When budgeting we assume worst-case scenarios when the pages are not
698 * be compressed and direntries are of the maximum size.
700 * Note, data, which may be stored in inodes is budgeted separately, so
701 * it is not included into 'c->bi.inode_budget'.
703 c
->bi
.page_budget
= UBIFS_MAX_DATA_NODE_SZ
* UBIFS_BLOCKS_PER_PAGE
;
704 c
->bi
.inode_budget
= UBIFS_INO_NODE_SZ
;
705 c
->bi
.dent_budget
= UBIFS_MAX_DENT_NODE_SZ
;
708 * When the amount of flash space used by buds becomes
709 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
710 * The writers are unblocked when the commit is finished. To avoid
711 * writers to be blocked UBIFS initiates background commit in advance,
712 * when number of bud bytes becomes above the limit defined below.
714 c
->bg_bud_bytes
= (c
->max_bud_bytes
* 13) >> 4;
717 * Ensure minimum journal size. All the bytes in the journal heads are
718 * considered to be used, when calculating the current journal usage.
719 * Consequently, if the journal is too small, UBIFS will treat it as
722 tmp64
= (long long)(c
->jhead_cnt
+ 1) * c
->leb_size
+ 1;
723 if (c
->bg_bud_bytes
< tmp64
)
724 c
->bg_bud_bytes
= tmp64
;
725 if (c
->max_bud_bytes
< tmp64
+ c
->leb_size
)
726 c
->max_bud_bytes
= tmp64
+ c
->leb_size
;
728 err
= ubifs_calc_lpt_geom(c
);
732 /* Initialize effective LEB size used in budgeting calculations */
733 c
->idx_leb_size
= c
->leb_size
- c
->max_idx_node_sz
;
738 * init_constants_master - initialize UBIFS constants.
739 * @c: UBIFS file-system description object
741 * This is a helper function which initializes various UBIFS constants after
742 * the master node has been read. It also checks various UBIFS parameters and
743 * makes sure they are all right.
745 static void init_constants_master(struct ubifs_info
*c
)
749 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
750 c
->report_rp_size
= ubifs_reported_space(c
, c
->rp_size
);
753 * Calculate total amount of FS blocks. This number is not used
754 * internally because it does not make much sense for UBIFS, but it is
755 * necessary to report something for the 'statfs()' call.
757 * Subtract the LEB reserved for GC, the LEB which is reserved for
758 * deletions, minimum LEBs for the index, and assume only one journal
761 tmp64
= c
->main_lebs
- 1 - 1 - MIN_INDEX_LEBS
- c
->jhead_cnt
+ 1;
762 tmp64
*= (long long)c
->leb_size
- c
->leb_overhead
;
763 tmp64
= ubifs_reported_space(c
, tmp64
);
764 c
->block_cnt
= tmp64
>> UBIFS_BLOCK_SHIFT
;
768 * take_gc_lnum - reserve GC LEB.
769 * @c: UBIFS file-system description object
771 * This function ensures that the LEB reserved for garbage collection is marked
772 * as "taken" in lprops. We also have to set free space to LEB size and dirty
773 * space to zero, because lprops may contain out-of-date information if the
774 * file-system was un-mounted before it has been committed. This function
775 * returns zero in case of success and a negative error code in case of
778 static int take_gc_lnum(struct ubifs_info
*c
)
782 if (c
->gc_lnum
== -1) {
783 ubifs_err(c
, "no LEB for GC");
787 /* And we have to tell lprops that this LEB is taken */
788 err
= ubifs_change_one_lp(c
, c
->gc_lnum
, c
->leb_size
, 0,
794 * alloc_wbufs - allocate write-buffers.
795 * @c: UBIFS file-system description object
797 * This helper function allocates and initializes UBIFS write-buffers. Returns
798 * zero in case of success and %-ENOMEM in case of failure.
800 static int alloc_wbufs(struct ubifs_info
*c
)
804 c
->jheads
= kcalloc(c
->jhead_cnt
, sizeof(struct ubifs_jhead
),
809 /* Initialize journal heads */
810 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
811 INIT_LIST_HEAD(&c
->jheads
[i
].buds_list
);
812 err
= ubifs_wbuf_init(c
, &c
->jheads
[i
].wbuf
);
816 c
->jheads
[i
].wbuf
.sync_callback
= &bud_wbuf_callback
;
817 c
->jheads
[i
].wbuf
.jhead
= i
;
818 c
->jheads
[i
].grouped
= 1;
822 * Garbage Collector head does not need to be synchronized by timer.
823 * Also GC head nodes are not grouped.
825 c
->jheads
[GCHD
].wbuf
.no_timer
= 1;
826 c
->jheads
[GCHD
].grouped
= 0;
832 * free_wbufs - free write-buffers.
833 * @c: UBIFS file-system description object
835 static void free_wbufs(struct ubifs_info
*c
)
840 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
841 kfree(c
->jheads
[i
].wbuf
.buf
);
842 kfree(c
->jheads
[i
].wbuf
.inodes
);
850 * free_orphans - free orphans.
851 * @c: UBIFS file-system description object
853 static void free_orphans(struct ubifs_info
*c
)
855 struct ubifs_orphan
*orph
;
857 while (c
->orph_dnext
) {
858 orph
= c
->orph_dnext
;
859 c
->orph_dnext
= orph
->dnext
;
860 list_del(&orph
->list
);
864 while (!list_empty(&c
->orph_list
)) {
865 orph
= list_entry(c
->orph_list
.next
, struct ubifs_orphan
, list
);
866 list_del(&orph
->list
);
868 ubifs_err(c
, "orphan list not empty at unmount");
876 * free_buds - free per-bud objects.
877 * @c: UBIFS file-system description object
879 static void free_buds(struct ubifs_info
*c
)
881 struct ubifs_bud
*bud
, *n
;
883 rbtree_postorder_for_each_entry_safe(bud
, n
, &c
->buds
, rb
)
888 * check_volume_empty - check if the UBI volume is empty.
889 * @c: UBIFS file-system description object
891 * This function checks if the UBIFS volume is empty by looking if its LEBs are
892 * mapped or not. The result of checking is stored in the @c->empty variable.
893 * Returns zero in case of success and a negative error code in case of
896 static int check_volume_empty(struct ubifs_info
*c
)
901 for (lnum
= 0; lnum
< c
->leb_cnt
; lnum
++) {
902 err
= ubifs_is_mapped(c
, lnum
);
903 if (unlikely(err
< 0))
917 * UBIFS mount options.
919 * Opt_fast_unmount: do not run a journal commit before un-mounting
920 * Opt_norm_unmount: run a journal commit before un-mounting
921 * Opt_bulk_read: enable bulk-reads
922 * Opt_no_bulk_read: disable bulk-reads
923 * Opt_chk_data_crc: check CRCs when reading data nodes
924 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
925 * Opt_override_compr: override default compressor
926 * Opt_err: just end of array marker
940 static const match_table_t tokens
= {
941 {Opt_fast_unmount
, "fast_unmount"},
942 {Opt_norm_unmount
, "norm_unmount"},
943 {Opt_bulk_read
, "bulk_read"},
944 {Opt_no_bulk_read
, "no_bulk_read"},
945 {Opt_chk_data_crc
, "chk_data_crc"},
946 {Opt_no_chk_data_crc
, "no_chk_data_crc"},
947 {Opt_override_compr
, "compr=%s"},
948 {Opt_ignore
, "ubi=%s"},
949 {Opt_ignore
, "vol=%s"},
954 * parse_standard_option - parse a standard mount option.
955 * @option: the option to parse
957 * Normally, standard mount options like "sync" are passed to file-systems as
958 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
959 * be present in the options string. This function tries to deal with this
960 * situation and parse standard options. Returns 0 if the option was not
961 * recognized, and the corresponding integer flag if it was.
963 * UBIFS is only interested in the "sync" option, so do not check for anything
966 static int parse_standard_option(const char *option
)
969 pr_notice("UBIFS: parse %s\n", option
);
970 if (!strcmp(option
, "sync"))
971 return MS_SYNCHRONOUS
;
976 * ubifs_parse_options - parse mount parameters.
977 * @c: UBIFS file-system description object
978 * @options: parameters to parse
979 * @is_remount: non-zero if this is FS re-mount
981 * This function parses UBIFS mount options and returns zero in case success
982 * and a negative error code in case of failure.
984 static int ubifs_parse_options(struct ubifs_info
*c
, char *options
,
988 substring_t args
[MAX_OPT_ARGS
];
993 while ((p
= strsep(&options
, ","))) {
999 token
= match_token(p
, tokens
, args
);
1002 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1003 * We accept them in order to be backward-compatible. But this
1004 * should be removed at some point.
1006 case Opt_fast_unmount
:
1007 c
->mount_opts
.unmount_mode
= 2;
1009 case Opt_norm_unmount
:
1010 c
->mount_opts
.unmount_mode
= 1;
1013 c
->mount_opts
.bulk_read
= 2;
1016 case Opt_no_bulk_read
:
1017 c
->mount_opts
.bulk_read
= 1;
1020 case Opt_chk_data_crc
:
1021 c
->mount_opts
.chk_data_crc
= 2;
1022 c
->no_chk_data_crc
= 0;
1024 case Opt_no_chk_data_crc
:
1025 c
->mount_opts
.chk_data_crc
= 1;
1026 c
->no_chk_data_crc
= 1;
1028 case Opt_override_compr
:
1030 char *name
= match_strdup(&args
[0]);
1034 if (!strcmp(name
, "none"))
1035 c
->mount_opts
.compr_type
= UBIFS_COMPR_NONE
;
1036 else if (!strcmp(name
, "lzo"))
1037 c
->mount_opts
.compr_type
= UBIFS_COMPR_LZO
;
1038 else if (!strcmp(name
, "zlib"))
1039 c
->mount_opts
.compr_type
= UBIFS_COMPR_ZLIB
;
1041 ubifs_err(c
, "unknown compressor \"%s\"", name
); //FIXME: is c ready?
1046 c
->mount_opts
.override_compr
= 1;
1047 c
->default_compr
= c
->mount_opts
.compr_type
;
1055 struct super_block
*sb
= c
->vfs_sb
;
1057 flag
= parse_standard_option(p
);
1059 ubifs_err(c
, "unrecognized mount option \"%s\" or missing value",
1063 sb
->s_flags
|= flag
;
1073 * destroy_journal - destroy journal data structures.
1074 * @c: UBIFS file-system description object
1076 * This function destroys journal data structures including those that may have
1077 * been created by recovery functions.
1079 static void destroy_journal(struct ubifs_info
*c
)
1081 while (!list_empty(&c
->unclean_leb_list
)) {
1082 struct ubifs_unclean_leb
*ucleb
;
1084 ucleb
= list_entry(c
->unclean_leb_list
.next
,
1085 struct ubifs_unclean_leb
, list
);
1086 list_del(&ucleb
->list
);
1089 while (!list_empty(&c
->old_buds
)) {
1090 struct ubifs_bud
*bud
;
1092 bud
= list_entry(c
->old_buds
.next
, struct ubifs_bud
, list
);
1093 list_del(&bud
->list
);
1096 ubifs_destroy_idx_gc(c
);
1097 ubifs_destroy_size_tree(c
);
1103 * bu_init - initialize bulk-read information.
1104 * @c: UBIFS file-system description object
1106 static void bu_init(struct ubifs_info
*c
)
1108 ubifs_assert(c
->bulk_read
== 1);
1111 return; /* Already initialized */
1114 c
->bu
.buf
= kmalloc(c
->max_bu_buf_len
, GFP_KERNEL
| __GFP_NOWARN
);
1116 if (c
->max_bu_buf_len
> UBIFS_KMALLOC_OK
) {
1117 c
->max_bu_buf_len
= UBIFS_KMALLOC_OK
;
1121 /* Just disable bulk-read */
1122 ubifs_warn(c
, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1124 c
->mount_opts
.bulk_read
= 1;
1131 * check_free_space - check if there is enough free space to mount.
1132 * @c: UBIFS file-system description object
1134 * This function makes sure UBIFS has enough free space to be mounted in
1135 * read/write mode. UBIFS must always have some free space to allow deletions.
1137 static int check_free_space(struct ubifs_info
*c
)
1139 ubifs_assert(c
->dark_wm
> 0);
1140 if (c
->lst
.total_free
+ c
->lst
.total_dirty
< c
->dark_wm
) {
1141 ubifs_err(c
, "insufficient free space to mount in R/W mode");
1142 ubifs_dump_budg(c
, &c
->bi
);
1143 ubifs_dump_lprops(c
);
1150 * mount_ubifs - mount UBIFS file-system.
1151 * @c: UBIFS file-system description object
1153 * This function mounts UBIFS file system. Returns zero in case of success and
1154 * a negative error code in case of failure.
1156 static int mount_ubifs(struct ubifs_info
*c
)
1162 c
->ro_mount
= !!(c
->vfs_sb
->s_flags
& MS_RDONLY
);
1163 /* Suppress error messages while probing if MS_SILENT is set */
1164 c
->probing
= !!(c
->vfs_sb
->s_flags
& MS_SILENT
);
1166 err
= init_constants_early(c
);
1170 err
= ubifs_debugging_init(c
);
1174 err
= check_volume_empty(c
);
1178 if (c
->empty
&& (c
->ro_mount
|| c
->ro_media
)) {
1180 * This UBI volume is empty, and read-only, or the file system
1181 * is mounted read-only - we cannot format it.
1183 ubifs_err(c
, "can't format empty UBI volume: read-only %s",
1184 c
->ro_media
? "UBI volume" : "mount");
1189 if (c
->ro_media
&& !c
->ro_mount
) {
1190 ubifs_err(c
, "cannot mount read-write - read-only media");
1196 * The requirement for the buffer is that it should fit indexing B-tree
1197 * height amount of integers. We assume the height if the TNC tree will
1201 c
->bottom_up_buf
= kmalloc(BOTTOM_UP_HEIGHT
* sizeof(int), GFP_KERNEL
);
1202 if (!c
->bottom_up_buf
)
1205 c
->sbuf
= vmalloc(c
->leb_size
);
1210 c
->ileb_buf
= vmalloc(c
->leb_size
);
1215 if (c
->bulk_read
== 1)
1219 c
->write_reserve_buf
= kmalloc(COMPRESSED_DATA_NODE_BUF_SZ
+ \
1220 UBIFS_CIPHER_BLOCK_SIZE
,
1222 if (!c
->write_reserve_buf
)
1228 err
= ubifs_read_superblock(c
);
1235 * Make sure the compressor which is set as default in the superblock
1236 * or overridden by mount options is actually compiled in.
1238 if (!ubifs_compr_present(c
->default_compr
)) {
1239 ubifs_err(c
, "'compressor \"%s\" is not compiled in",
1240 ubifs_compr_name(c
->default_compr
));
1245 err
= init_constants_sb(c
);
1249 sz
= ALIGN(c
->max_idx_node_sz
, c
->min_io_size
);
1250 sz
= ALIGN(sz
+ c
->max_idx_node_sz
, c
->min_io_size
);
1251 c
->cbuf
= kmalloc(sz
, GFP_NOFS
);
1257 err
= alloc_wbufs(c
);
1261 sprintf(c
->bgt_name
, BGT_NAME_PATTERN
, c
->vi
.ubi_num
, c
->vi
.vol_id
);
1263 /* Create background thread */
1264 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1265 if (IS_ERR(c
->bgt
)) {
1266 err
= PTR_ERR(c
->bgt
);
1268 ubifs_err(c
, "cannot spawn \"%s\", error %d",
1272 wake_up_process(c
->bgt
);
1275 err
= ubifs_read_master(c
);
1279 init_constants_master(c
);
1281 if ((c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
)) != 0) {
1282 ubifs_msg(c
, "recovery needed");
1283 c
->need_recovery
= 1;
1286 if (c
->need_recovery
&& !c
->ro_mount
) {
1287 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1292 err
= ubifs_lpt_init(c
, 1, !c
->ro_mount
);
1296 if (!c
->ro_mount
&& c
->space_fixup
) {
1297 err
= ubifs_fixup_free_space(c
);
1302 if (!c
->ro_mount
&& !c
->need_recovery
) {
1304 * Set the "dirty" flag so that if we reboot uncleanly we
1305 * will notice this immediately on the next mount.
1307 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1308 err
= ubifs_write_master(c
);
1313 err
= dbg_check_idx_size(c
, c
->bi
.old_idx_sz
);
1317 err
= ubifs_replay_journal(c
);
1321 /* Calculate 'min_idx_lebs' after journal replay */
1322 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
1324 err
= ubifs_mount_orphans(c
, c
->need_recovery
, c
->ro_mount
);
1331 err
= check_free_space(c
);
1335 /* Check for enough log space */
1336 lnum
= c
->lhead_lnum
+ 1;
1337 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1338 lnum
= UBIFS_LOG_LNUM
;
1339 if (lnum
== c
->ltail_lnum
) {
1340 err
= ubifs_consolidate_log(c
);
1345 if (c
->need_recovery
) {
1346 err
= ubifs_recover_size(c
);
1349 err
= ubifs_rcvry_gc_commit(c
);
1353 err
= take_gc_lnum(c
);
1358 * GC LEB may contain garbage if there was an unclean
1359 * reboot, and it should be un-mapped.
1361 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1366 err
= dbg_check_lprops(c
);
1369 } else if (c
->need_recovery
) {
1370 err
= ubifs_recover_size(c
);
1375 * Even if we mount read-only, we have to set space in GC LEB
1376 * to proper value because this affects UBIFS free space
1377 * reporting. We do not want to have a situation when
1378 * re-mounting from R/O to R/W changes amount of free space.
1380 err
= take_gc_lnum(c
);
1385 spin_lock(&ubifs_infos_lock
);
1386 list_add_tail(&c
->infos_list
, &ubifs_infos
);
1387 spin_unlock(&ubifs_infos_lock
);
1389 if (c
->need_recovery
) {
1391 ubifs_msg(c
, "recovery deferred");
1393 c
->need_recovery
= 0;
1394 ubifs_msg(c
, "recovery completed");
1396 * GC LEB has to be empty and taken at this point. But
1397 * the journal head LEBs may also be accounted as
1398 * "empty taken" if they are empty.
1400 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1403 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1405 err
= dbg_check_filesystem(c
);
1409 err
= dbg_debugfs_init_fs(c
);
1415 ubifs_msg(c
, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1416 c
->vi
.ubi_num
, c
->vi
.vol_id
, c
->vi
.name
,
1417 c
->ro_mount
? ", R/O mode" : "");
1418 x
= (long long)c
->main_lebs
* c
->leb_size
;
1419 y
= (long long)c
->log_lebs
* c
->leb_size
+ c
->max_bud_bytes
;
1420 ubifs_msg(c
, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1421 c
->leb_size
, c
->leb_size
>> 10, c
->min_io_size
,
1423 ubifs_msg(c
, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1424 x
, x
>> 20, c
->main_lebs
,
1425 y
, y
>> 20, c
->log_lebs
+ c
->max_bud_cnt
);
1426 ubifs_msg(c
, "reserved for root: %llu bytes (%llu KiB)",
1427 c
->report_rp_size
, c
->report_rp_size
>> 10);
1428 ubifs_msg(c
, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1429 c
->fmt_version
, c
->ro_compat_version
,
1430 UBIFS_FORMAT_VERSION
, UBIFS_RO_COMPAT_VERSION
, c
->uuid
,
1431 c
->big_lpt
? ", big LPT model" : ", small LPT model");
1433 dbg_gen("default compressor: %s", ubifs_compr_name(c
->default_compr
));
1434 dbg_gen("data journal heads: %d",
1435 c
->jhead_cnt
- NONDATA_JHEADS_CNT
);
1436 dbg_gen("log LEBs: %d (%d - %d)",
1437 c
->log_lebs
, UBIFS_LOG_LNUM
, c
->log_last
);
1438 dbg_gen("LPT area LEBs: %d (%d - %d)",
1439 c
->lpt_lebs
, c
->lpt_first
, c
->lpt_last
);
1440 dbg_gen("orphan area LEBs: %d (%d - %d)",
1441 c
->orph_lebs
, c
->orph_first
, c
->orph_last
);
1442 dbg_gen("main area LEBs: %d (%d - %d)",
1443 c
->main_lebs
, c
->main_first
, c
->leb_cnt
- 1);
1444 dbg_gen("index LEBs: %d", c
->lst
.idx_lebs
);
1445 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1446 c
->bi
.old_idx_sz
, c
->bi
.old_idx_sz
>> 10,
1447 c
->bi
.old_idx_sz
>> 20);
1448 dbg_gen("key hash type: %d", c
->key_hash_type
);
1449 dbg_gen("tree fanout: %d", c
->fanout
);
1450 dbg_gen("reserved GC LEB: %d", c
->gc_lnum
);
1451 dbg_gen("max. znode size %d", c
->max_znode_sz
);
1452 dbg_gen("max. index node size %d", c
->max_idx_node_sz
);
1453 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1454 UBIFS_DATA_NODE_SZ
, UBIFS_INO_NODE_SZ
, UBIFS_DENT_NODE_SZ
);
1455 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1456 UBIFS_TRUN_NODE_SZ
, UBIFS_SB_NODE_SZ
, UBIFS_MST_NODE_SZ
);
1457 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1458 UBIFS_REF_NODE_SZ
, UBIFS_CS_NODE_SZ
, UBIFS_ORPH_NODE_SZ
);
1459 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1460 UBIFS_MAX_DATA_NODE_SZ
, UBIFS_MAX_INO_NODE_SZ
,
1461 UBIFS_MAX_DENT_NODE_SZ
, ubifs_idx_node_sz(c
, c
->fanout
));
1462 dbg_gen("dead watermark: %d", c
->dead_wm
);
1463 dbg_gen("dark watermark: %d", c
->dark_wm
);
1464 dbg_gen("LEB overhead: %d", c
->leb_overhead
);
1465 x
= (long long)c
->main_lebs
* c
->dark_wm
;
1466 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1467 x
, x
>> 10, x
>> 20);
1468 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1469 c
->max_bud_bytes
, c
->max_bud_bytes
>> 10,
1470 c
->max_bud_bytes
>> 20);
1471 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1472 c
->bg_bud_bytes
, c
->bg_bud_bytes
>> 10,
1473 c
->bg_bud_bytes
>> 20);
1474 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1475 c
->bud_bytes
, c
->bud_bytes
>> 10, c
->bud_bytes
>> 20);
1476 dbg_gen("max. seq. number: %llu", c
->max_sqnum
);
1477 dbg_gen("commit number: %llu", c
->cmt_no
);
1482 spin_lock(&ubifs_infos_lock
);
1483 list_del(&c
->infos_list
);
1484 spin_unlock(&ubifs_infos_lock
);
1490 ubifs_lpt_free(c
, 0);
1493 kfree(c
->rcvrd_mst_node
);
1495 kthread_stop(c
->bgt
);
1501 kfree(c
->write_reserve_buf
);
1505 kfree(c
->bottom_up_buf
);
1506 ubifs_debugging_exit(c
);
1511 * ubifs_umount - un-mount UBIFS file-system.
1512 * @c: UBIFS file-system description object
1514 * Note, this function is called to free allocated resourced when un-mounting,
1515 * as well as free resources when an error occurred while we were half way
1516 * through mounting (error path cleanup function). So it has to make sure the
1517 * resource was actually allocated before freeing it.
1519 static void ubifs_umount(struct ubifs_info
*c
)
1521 dbg_gen("un-mounting UBI device %d, volume %d", c
->vi
.ubi_num
,
1524 dbg_debugfs_exit_fs(c
);
1525 spin_lock(&ubifs_infos_lock
);
1526 list_del(&c
->infos_list
);
1527 spin_unlock(&ubifs_infos_lock
);
1530 kthread_stop(c
->bgt
);
1535 ubifs_lpt_free(c
, 0);
1538 kfree(c
->rcvrd_mst_node
);
1540 kfree(c
->write_reserve_buf
);
1544 kfree(c
->bottom_up_buf
);
1545 ubifs_debugging_exit(c
);
1549 * ubifs_remount_rw - re-mount in read-write mode.
1550 * @c: UBIFS file-system description object
1552 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1553 * mode. This function allocates the needed resources and re-mounts UBIFS in
1556 static int ubifs_remount_rw(struct ubifs_info
*c
)
1560 if (c
->rw_incompat
) {
1561 ubifs_err(c
, "the file-system is not R/W-compatible");
1562 ubifs_msg(c
, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1563 c
->fmt_version
, c
->ro_compat_version
,
1564 UBIFS_FORMAT_VERSION
, UBIFS_RO_COMPAT_VERSION
);
1568 mutex_lock(&c
->umount_mutex
);
1569 dbg_save_space_info(c
);
1570 c
->remounting_rw
= 1;
1573 if (c
->space_fixup
) {
1574 err
= ubifs_fixup_free_space(c
);
1579 err
= check_free_space(c
);
1583 if (c
->old_leb_cnt
!= c
->leb_cnt
) {
1584 struct ubifs_sb_node
*sup
;
1586 sup
= ubifs_read_sb_node(c
);
1591 sup
->leb_cnt
= cpu_to_le32(c
->leb_cnt
);
1592 err
= ubifs_write_sb_node(c
, sup
);
1598 if (c
->need_recovery
) {
1599 ubifs_msg(c
, "completing deferred recovery");
1600 err
= ubifs_write_rcvrd_mst_node(c
);
1603 err
= ubifs_recover_size(c
);
1606 err
= ubifs_clean_lebs(c
, c
->sbuf
);
1609 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1613 /* A readonly mount is not allowed to have orphans */
1614 ubifs_assert(c
->tot_orphans
== 0);
1615 err
= ubifs_clear_orphans(c
);
1620 if (!(c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
))) {
1621 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1622 err
= ubifs_write_master(c
);
1627 c
->ileb_buf
= vmalloc(c
->leb_size
);
1633 c
->write_reserve_buf
= kmalloc(COMPRESSED_DATA_NODE_BUF_SZ
+ \
1634 UBIFS_CIPHER_BLOCK_SIZE
, GFP_KERNEL
);
1635 if (!c
->write_reserve_buf
) {
1640 err
= ubifs_lpt_init(c
, 0, 1);
1644 /* Create background thread */
1645 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1646 if (IS_ERR(c
->bgt
)) {
1647 err
= PTR_ERR(c
->bgt
);
1649 ubifs_err(c
, "cannot spawn \"%s\", error %d",
1653 wake_up_process(c
->bgt
);
1655 c
->orph_buf
= vmalloc(c
->leb_size
);
1661 /* Check for enough log space */
1662 lnum
= c
->lhead_lnum
+ 1;
1663 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1664 lnum
= UBIFS_LOG_LNUM
;
1665 if (lnum
== c
->ltail_lnum
) {
1666 err
= ubifs_consolidate_log(c
);
1671 if (c
->need_recovery
)
1672 err
= ubifs_rcvry_gc_commit(c
);
1674 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1678 dbg_gen("re-mounted read-write");
1679 c
->remounting_rw
= 0;
1681 if (c
->need_recovery
) {
1682 c
->need_recovery
= 0;
1683 ubifs_msg(c
, "deferred recovery completed");
1686 * Do not run the debugging space check if the were doing
1687 * recovery, because when we saved the information we had the
1688 * file-system in a state where the TNC and lprops has been
1689 * modified in memory, but all the I/O operations (including a
1690 * commit) were deferred. So the file-system was in
1691 * "non-committed" state. Now the file-system is in committed
1692 * state, and of course the amount of free space will change
1693 * because, for example, the old index size was imprecise.
1695 err
= dbg_check_space_info(c
);
1698 mutex_unlock(&c
->umount_mutex
);
1706 kthread_stop(c
->bgt
);
1710 kfree(c
->write_reserve_buf
);
1711 c
->write_reserve_buf
= NULL
;
1714 ubifs_lpt_free(c
, 1);
1715 c
->remounting_rw
= 0;
1716 mutex_unlock(&c
->umount_mutex
);
1721 * ubifs_remount_ro - re-mount in read-only mode.
1722 * @c: UBIFS file-system description object
1724 * We assume VFS has stopped writing. Possibly the background thread could be
1725 * running a commit, however kthread_stop will wait in that case.
1727 static void ubifs_remount_ro(struct ubifs_info
*c
)
1731 ubifs_assert(!c
->need_recovery
);
1732 ubifs_assert(!c
->ro_mount
);
1734 mutex_lock(&c
->umount_mutex
);
1736 kthread_stop(c
->bgt
);
1740 dbg_save_space_info(c
);
1742 for (i
= 0; i
< c
->jhead_cnt
; i
++)
1743 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1745 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1746 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1747 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1748 err
= ubifs_write_master(c
);
1750 ubifs_ro_mode(c
, err
);
1754 kfree(c
->write_reserve_buf
);
1755 c
->write_reserve_buf
= NULL
;
1758 ubifs_lpt_free(c
, 1);
1760 err
= dbg_check_space_info(c
);
1762 ubifs_ro_mode(c
, err
);
1763 mutex_unlock(&c
->umount_mutex
);
1766 static void ubifs_put_super(struct super_block
*sb
)
1769 struct ubifs_info
*c
= sb
->s_fs_info
;
1771 ubifs_msg(c
, "un-mount UBI device %d", c
->vi
.ubi_num
);
1774 * The following asserts are only valid if there has not been a failure
1775 * of the media. For example, there will be dirty inodes if we failed
1776 * to write them back because of I/O errors.
1779 ubifs_assert(c
->bi
.idx_growth
== 0);
1780 ubifs_assert(c
->bi
.dd_growth
== 0);
1781 ubifs_assert(c
->bi
.data_growth
== 0);
1785 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1786 * and file system un-mount. Namely, it prevents the shrinker from
1787 * picking this superblock for shrinking - it will be just skipped if
1788 * the mutex is locked.
1790 mutex_lock(&c
->umount_mutex
);
1793 * First of all kill the background thread to make sure it does
1794 * not interfere with un-mounting and freeing resources.
1797 kthread_stop(c
->bgt
);
1802 * On fatal errors c->ro_error is set to 1, in which case we do
1803 * not write the master node.
1808 /* Synchronize write-buffers */
1809 for (i
= 0; i
< c
->jhead_cnt
; i
++)
1810 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1813 * We are being cleanly unmounted which means the
1814 * orphans were killed - indicate this in the master
1815 * node. Also save the reserved GC LEB number.
1817 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1818 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1819 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1820 err
= ubifs_write_master(c
);
1823 * Recovery will attempt to fix the master area
1824 * next mount, so we just print a message and
1825 * continue to unmount normally.
1827 ubifs_err(c
, "failed to write master node, error %d",
1830 for (i
= 0; i
< c
->jhead_cnt
; i
++)
1831 /* Make sure write-buffer timers are canceled */
1832 hrtimer_cancel(&c
->jheads
[i
].wbuf
.timer
);
1837 ubi_close_volume(c
->ubi
);
1838 mutex_unlock(&c
->umount_mutex
);
1841 static int ubifs_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
1844 struct ubifs_info
*c
= sb
->s_fs_info
;
1846 sync_filesystem(sb
);
1847 dbg_gen("old flags %#lx, new flags %#x", sb
->s_flags
, *flags
);
1849 err
= ubifs_parse_options(c
, data
, 1);
1851 ubifs_err(c
, "invalid or unknown remount parameter");
1855 if (c
->ro_mount
&& !(*flags
& MS_RDONLY
)) {
1857 ubifs_msg(c
, "cannot re-mount R/W due to prior errors");
1861 ubifs_msg(c
, "cannot re-mount R/W - UBI volume is R/O");
1864 err
= ubifs_remount_rw(c
);
1867 } else if (!c
->ro_mount
&& (*flags
& MS_RDONLY
)) {
1869 ubifs_msg(c
, "cannot re-mount R/O due to prior errors");
1872 ubifs_remount_ro(c
);
1875 if (c
->bulk_read
== 1)
1878 dbg_gen("disable bulk-read");
1879 mutex_lock(&c
->bu_mutex
);
1882 mutex_unlock(&c
->bu_mutex
);
1885 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1889 const struct super_operations ubifs_super_operations
= {
1890 .alloc_inode
= ubifs_alloc_inode
,
1891 .destroy_inode
= ubifs_destroy_inode
,
1892 .put_super
= ubifs_put_super
,
1893 .write_inode
= ubifs_write_inode
,
1894 .evict_inode
= ubifs_evict_inode
,
1895 .statfs
= ubifs_statfs
,
1896 .dirty_inode
= ubifs_dirty_inode
,
1897 .remount_fs
= ubifs_remount_fs
,
1898 .show_options
= ubifs_show_options
,
1899 .sync_fs
= ubifs_sync_fs
,
1903 * open_ubi - parse UBI device name string and open the UBI device.
1904 * @name: UBI volume name
1905 * @mode: UBI volume open mode
1907 * The primary method of mounting UBIFS is by specifying the UBI volume
1908 * character device node path. However, UBIFS may also be mounted withoug any
1909 * character device node using one of the following methods:
1911 * o ubiX_Y - mount UBI device number X, volume Y;
1912 * o ubiY - mount UBI device number 0, volume Y;
1913 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1914 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1916 * Alternative '!' separator may be used instead of ':' (because some shells
1917 * like busybox may interpret ':' as an NFS host name separator). This function
1918 * returns UBI volume description object in case of success and a negative
1919 * error code in case of failure.
1921 static struct ubi_volume_desc
*open_ubi(const char *name
, int mode
)
1923 struct ubi_volume_desc
*ubi
;
1927 /* First, try to open using the device node path method */
1928 ubi
= ubi_open_volume_path(name
, mode
);
1932 /* Try the "nodev" method */
1933 if (name
[0] != 'u' || name
[1] != 'b' || name
[2] != 'i')
1934 return ERR_PTR(-EINVAL
);
1936 /* ubi:NAME method */
1937 if ((name
[3] == ':' || name
[3] == '!') && name
[4] != '\0')
1938 return ubi_open_volume_nm(0, name
+ 4, mode
);
1940 if (!isdigit(name
[3]))
1941 return ERR_PTR(-EINVAL
);
1943 dev
= simple_strtoul(name
+ 3, &endptr
, 0);
1946 if (*endptr
== '\0')
1947 return ubi_open_volume(0, dev
, mode
);
1950 if (*endptr
== '_' && isdigit(endptr
[1])) {
1951 vol
= simple_strtoul(endptr
+ 1, &endptr
, 0);
1952 if (*endptr
!= '\0')
1953 return ERR_PTR(-EINVAL
);
1954 return ubi_open_volume(dev
, vol
, mode
);
1957 /* ubiX:NAME method */
1958 if ((*endptr
== ':' || *endptr
== '!') && endptr
[1] != '\0')
1959 return ubi_open_volume_nm(dev
, ++endptr
, mode
);
1961 return ERR_PTR(-EINVAL
);
1964 static struct ubifs_info
*alloc_ubifs_info(struct ubi_volume_desc
*ubi
)
1966 struct ubifs_info
*c
;
1968 c
= kzalloc(sizeof(struct ubifs_info
), GFP_KERNEL
);
1970 spin_lock_init(&c
->cnt_lock
);
1971 spin_lock_init(&c
->cs_lock
);
1972 spin_lock_init(&c
->buds_lock
);
1973 spin_lock_init(&c
->space_lock
);
1974 spin_lock_init(&c
->orphan_lock
);
1975 init_rwsem(&c
->commit_sem
);
1976 mutex_init(&c
->lp_mutex
);
1977 mutex_init(&c
->tnc_mutex
);
1978 mutex_init(&c
->log_mutex
);
1979 mutex_init(&c
->umount_mutex
);
1980 mutex_init(&c
->bu_mutex
);
1981 mutex_init(&c
->write_reserve_mutex
);
1982 init_waitqueue_head(&c
->cmt_wq
);
1984 c
->old_idx
= RB_ROOT
;
1985 c
->size_tree
= RB_ROOT
;
1986 c
->orph_tree
= RB_ROOT
;
1987 INIT_LIST_HEAD(&c
->infos_list
);
1988 INIT_LIST_HEAD(&c
->idx_gc
);
1989 INIT_LIST_HEAD(&c
->replay_list
);
1990 INIT_LIST_HEAD(&c
->replay_buds
);
1991 INIT_LIST_HEAD(&c
->uncat_list
);
1992 INIT_LIST_HEAD(&c
->empty_list
);
1993 INIT_LIST_HEAD(&c
->freeable_list
);
1994 INIT_LIST_HEAD(&c
->frdi_idx_list
);
1995 INIT_LIST_HEAD(&c
->unclean_leb_list
);
1996 INIT_LIST_HEAD(&c
->old_buds
);
1997 INIT_LIST_HEAD(&c
->orph_list
);
1998 INIT_LIST_HEAD(&c
->orph_new
);
1999 c
->no_chk_data_crc
= 1;
2001 c
->highest_inum
= UBIFS_FIRST_INO
;
2002 c
->lhead_lnum
= c
->ltail_lnum
= UBIFS_LOG_LNUM
;
2004 ubi_get_volume_info(ubi
, &c
->vi
);
2005 ubi_get_device_info(c
->vi
.ubi_num
, &c
->di
);
2010 #ifndef CONFIG_UBIFS_FS_ENCRYPTION
2011 const struct fscrypt_operations ubifs_crypt_operations
= {
2012 .is_encrypted
= __ubifs_crypt_is_encrypted
,
2016 static int ubifs_fill_super(struct super_block
*sb
, void *data
, int silent
)
2018 struct ubifs_info
*c
= sb
->s_fs_info
;
2023 /* Re-open the UBI device in read-write mode */
2024 c
->ubi
= ubi_open_volume(c
->vi
.ubi_num
, c
->vi
.vol_id
, UBI_READWRITE
);
2025 if (IS_ERR(c
->ubi
)) {
2026 err
= PTR_ERR(c
->ubi
);
2030 err
= ubifs_parse_options(c
, data
, 0);
2035 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2036 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2037 * which means the user would have to wait not just for their own I/O
2038 * but the read-ahead I/O as well i.e. completely pointless.
2040 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2041 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2042 * writeback happening.
2044 err
= super_setup_bdi_name(sb
, "ubifs_%d_%d", c
->vi
.ubi_num
,
2050 sb
->s_magic
= UBIFS_SUPER_MAGIC
;
2051 sb
->s_blocksize
= UBIFS_BLOCK_SIZE
;
2052 sb
->s_blocksize_bits
= UBIFS_BLOCK_SHIFT
;
2053 sb
->s_maxbytes
= c
->max_inode_sz
= key_max_inode_size(c
);
2054 if (c
->max_inode_sz
> MAX_LFS_FILESIZE
)
2055 sb
->s_maxbytes
= c
->max_inode_sz
= MAX_LFS_FILESIZE
;
2056 sb
->s_op
= &ubifs_super_operations
;
2057 sb
->s_xattr
= ubifs_xattr_handlers
;
2058 sb
->s_cop
= &ubifs_crypt_operations
;
2060 mutex_lock(&c
->umount_mutex
);
2061 err
= mount_ubifs(c
);
2063 ubifs_assert(err
< 0);
2067 /* Read the root inode */
2068 root
= ubifs_iget(sb
, UBIFS_ROOT_INO
);
2070 err
= PTR_ERR(root
);
2074 sb
->s_root
= d_make_root(root
);
2080 mutex_unlock(&c
->umount_mutex
);
2086 mutex_unlock(&c
->umount_mutex
);
2088 ubi_close_volume(c
->ubi
);
2093 static int sb_test(struct super_block
*sb
, void *data
)
2095 struct ubifs_info
*c1
= data
;
2096 struct ubifs_info
*c
= sb
->s_fs_info
;
2098 return c
->vi
.cdev
== c1
->vi
.cdev
;
2101 static int sb_set(struct super_block
*sb
, void *data
)
2103 sb
->s_fs_info
= data
;
2104 return set_anon_super(sb
, NULL
);
2107 static struct dentry
*ubifs_mount(struct file_system_type
*fs_type
, int flags
,
2108 const char *name
, void *data
)
2110 struct ubi_volume_desc
*ubi
;
2111 struct ubifs_info
*c
;
2112 struct super_block
*sb
;
2115 dbg_gen("name %s, flags %#x", name
, flags
);
2118 * Get UBI device number and volume ID. Mount it read-only so far
2119 * because this might be a new mount point, and UBI allows only one
2120 * read-write user at a time.
2122 ubi
= open_ubi(name
, UBI_READONLY
);
2124 if (!(flags
& MS_SILENT
))
2125 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2126 current
->pid
, name
, (int)PTR_ERR(ubi
));
2127 return ERR_CAST(ubi
);
2130 c
= alloc_ubifs_info(ubi
);
2136 dbg_gen("opened ubi%d_%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
2138 sb
= sget(fs_type
, sb_test
, sb_set
, flags
, c
);
2146 struct ubifs_info
*c1
= sb
->s_fs_info
;
2148 /* A new mount point for already mounted UBIFS */
2149 dbg_gen("this ubi volume is already mounted");
2150 if (!!(flags
& MS_RDONLY
) != c1
->ro_mount
) {
2155 err
= ubifs_fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
2158 /* We do not support atime */
2159 sb
->s_flags
|= MS_ACTIVE
;
2160 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
2161 sb
->s_flags
|= MS_NOATIME
;
2163 ubifs_msg(c
, "full atime support is enabled.");
2167 /* 'fill_super()' opens ubi again so we must close it here */
2168 ubi_close_volume(ubi
);
2170 return dget(sb
->s_root
);
2173 deactivate_locked_super(sb
);
2175 ubi_close_volume(ubi
);
2176 return ERR_PTR(err
);
2179 static void kill_ubifs_super(struct super_block
*s
)
2181 struct ubifs_info
*c
= s
->s_fs_info
;
2186 static struct file_system_type ubifs_fs_type
= {
2188 .owner
= THIS_MODULE
,
2189 .mount
= ubifs_mount
,
2190 .kill_sb
= kill_ubifs_super
,
2192 MODULE_ALIAS_FS("ubifs");
2195 * Inode slab cache constructor.
2197 static void inode_slab_ctor(void *obj
)
2199 struct ubifs_inode
*ui
= obj
;
2200 inode_init_once(&ui
->vfs_inode
);
2203 static int __init
ubifs_init(void)
2207 BUILD_BUG_ON(sizeof(struct ubifs_ch
) != 24);
2209 /* Make sure node sizes are 8-byte aligned */
2210 BUILD_BUG_ON(UBIFS_CH_SZ
& 7);
2211 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
& 7);
2212 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
& 7);
2213 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
& 7);
2214 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ
& 7);
2215 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
& 7);
2216 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
& 7);
2217 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
& 7);
2218 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
& 7);
2219 BUILD_BUG_ON(UBIFS_CS_NODE_SZ
& 7);
2220 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ
& 7);
2222 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
& 7);
2223 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
& 7);
2224 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
& 7);
2225 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
& 7);
2226 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ
& 7);
2227 BUILD_BUG_ON(MIN_WRITE_SZ
& 7);
2229 /* Check min. node size */
2230 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
< MIN_WRITE_SZ
);
2231 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
< MIN_WRITE_SZ
);
2232 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
< MIN_WRITE_SZ
);
2233 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
< MIN_WRITE_SZ
);
2235 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2236 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2237 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2238 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2240 /* Defined node sizes */
2241 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
!= 4096);
2242 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
!= 512);
2243 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
!= 160);
2244 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
!= 64);
2247 * We use 2 bit wide bit-fields to store compression type, which should
2248 * be amended if more compressors are added. The bit-fields are:
2249 * @compr_type in 'struct ubifs_inode', @default_compr in
2250 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2252 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT
> 4);
2255 * We require that PAGE_SIZE is greater-than-or-equal-to
2256 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2258 if (PAGE_SIZE
< UBIFS_BLOCK_SIZE
) {
2259 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2260 current
->pid
, (unsigned int)PAGE_SIZE
);
2264 ubifs_inode_slab
= kmem_cache_create("ubifs_inode_slab",
2265 sizeof(struct ubifs_inode
), 0,
2266 SLAB_MEM_SPREAD
| SLAB_RECLAIM_ACCOUNT
|
2267 SLAB_ACCOUNT
, &inode_slab_ctor
);
2268 if (!ubifs_inode_slab
)
2271 err
= register_shrinker(&ubifs_shrinker_info
);
2275 err
= ubifs_compressors_init();
2279 err
= dbg_debugfs_init();
2283 err
= register_filesystem(&ubifs_fs_type
);
2285 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2294 ubifs_compressors_exit();
2296 unregister_shrinker(&ubifs_shrinker_info
);
2298 kmem_cache_destroy(ubifs_inode_slab
);
2301 /* late_initcall to let compressors initialize first */
2302 late_initcall(ubifs_init
);
2304 static void __exit
ubifs_exit(void)
2306 ubifs_assert(list_empty(&ubifs_infos
));
2307 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt
) == 0);
2310 ubifs_compressors_exit();
2311 unregister_shrinker(&ubifs_shrinker_info
);
2314 * Make sure all delayed rcu free inodes are flushed before we
2318 kmem_cache_destroy(ubifs_inode_slab
);
2319 unregister_filesystem(&ubifs_fs_type
);
2321 module_exit(ubifs_exit
);
2323 MODULE_LICENSE("GPL");
2324 MODULE_VERSION(__stringify(UBIFS_VERSION
));
2325 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2326 MODULE_DESCRIPTION("UBIFS - UBI File System");