]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ubifs/tnc.c
scsi: cxgb4i: call neigh_event_send() to update MAC address
[mirror_ubuntu-artful-kernel.git] / fs / ubifs / tnc.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23 /*
24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25 * the UBIFS B-tree.
26 *
27 * At the moment the locking rules of the TNC tree are quite simple and
28 * straightforward. We just have a mutex and lock it when we traverse the
29 * tree. If a znode is not in memory, we read it from flash while still having
30 * the mutex locked.
31 */
32
33 #include <linux/crc32.h>
34 #include <linux/slab.h>
35 #include "ubifs.h"
36
37 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
38 int len, int lnum, int offs);
39 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
40 struct ubifs_zbranch *zbr, void *node);
41
42 /*
43 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
44 * @NAME_LESS: name corresponding to the first argument is less than second
45 * @NAME_MATCHES: names match
46 * @NAME_GREATER: name corresponding to the second argument is greater than
47 * first
48 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
49 *
50 * These constants were introduce to improve readability.
51 */
52 enum {
53 NAME_LESS = 0,
54 NAME_MATCHES = 1,
55 NAME_GREATER = 2,
56 NOT_ON_MEDIA = 3,
57 };
58
59 /**
60 * insert_old_idx - record an index node obsoleted since the last commit start.
61 * @c: UBIFS file-system description object
62 * @lnum: LEB number of obsoleted index node
63 * @offs: offset of obsoleted index node
64 *
65 * Returns %0 on success, and a negative error code on failure.
66 *
67 * For recovery, there must always be a complete intact version of the index on
68 * flash at all times. That is called the "old index". It is the index as at the
69 * time of the last successful commit. Many of the index nodes in the old index
70 * may be dirty, but they must not be erased until the next successful commit
71 * (at which point that index becomes the old index).
72 *
73 * That means that the garbage collection and the in-the-gaps method of
74 * committing must be able to determine if an index node is in the old index.
75 * Most of the old index nodes can be found by looking up the TNC using the
76 * 'lookup_znode()' function. However, some of the old index nodes may have
77 * been deleted from the current index or may have been changed so much that
78 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
79 * That is what this function does. The RB-tree is ordered by LEB number and
80 * offset because they uniquely identify the old index node.
81 */
82 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
83 {
84 struct ubifs_old_idx *old_idx, *o;
85 struct rb_node **p, *parent = NULL;
86
87 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
88 if (unlikely(!old_idx))
89 return -ENOMEM;
90 old_idx->lnum = lnum;
91 old_idx->offs = offs;
92
93 p = &c->old_idx.rb_node;
94 while (*p) {
95 parent = *p;
96 o = rb_entry(parent, struct ubifs_old_idx, rb);
97 if (lnum < o->lnum)
98 p = &(*p)->rb_left;
99 else if (lnum > o->lnum)
100 p = &(*p)->rb_right;
101 else if (offs < o->offs)
102 p = &(*p)->rb_left;
103 else if (offs > o->offs)
104 p = &(*p)->rb_right;
105 else {
106 ubifs_err(c, "old idx added twice!");
107 kfree(old_idx);
108 return 0;
109 }
110 }
111 rb_link_node(&old_idx->rb, parent, p);
112 rb_insert_color(&old_idx->rb, &c->old_idx);
113 return 0;
114 }
115
116 /**
117 * insert_old_idx_znode - record a znode obsoleted since last commit start.
118 * @c: UBIFS file-system description object
119 * @znode: znode of obsoleted index node
120 *
121 * Returns %0 on success, and a negative error code on failure.
122 */
123 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
124 {
125 if (znode->parent) {
126 struct ubifs_zbranch *zbr;
127
128 zbr = &znode->parent->zbranch[znode->iip];
129 if (zbr->len)
130 return insert_old_idx(c, zbr->lnum, zbr->offs);
131 } else
132 if (c->zroot.len)
133 return insert_old_idx(c, c->zroot.lnum,
134 c->zroot.offs);
135 return 0;
136 }
137
138 /**
139 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
140 * @c: UBIFS file-system description object
141 * @znode: znode of obsoleted index node
142 *
143 * Returns %0 on success, and a negative error code on failure.
144 */
145 static int ins_clr_old_idx_znode(struct ubifs_info *c,
146 struct ubifs_znode *znode)
147 {
148 int err;
149
150 if (znode->parent) {
151 struct ubifs_zbranch *zbr;
152
153 zbr = &znode->parent->zbranch[znode->iip];
154 if (zbr->len) {
155 err = insert_old_idx(c, zbr->lnum, zbr->offs);
156 if (err)
157 return err;
158 zbr->lnum = 0;
159 zbr->offs = 0;
160 zbr->len = 0;
161 }
162 } else
163 if (c->zroot.len) {
164 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
165 if (err)
166 return err;
167 c->zroot.lnum = 0;
168 c->zroot.offs = 0;
169 c->zroot.len = 0;
170 }
171 return 0;
172 }
173
174 /**
175 * destroy_old_idx - destroy the old_idx RB-tree.
176 * @c: UBIFS file-system description object
177 *
178 * During start commit, the old_idx RB-tree is used to avoid overwriting index
179 * nodes that were in the index last commit but have since been deleted. This
180 * is necessary for recovery i.e. the old index must be kept intact until the
181 * new index is successfully written. The old-idx RB-tree is used for the
182 * in-the-gaps method of writing index nodes and is destroyed every commit.
183 */
184 void destroy_old_idx(struct ubifs_info *c)
185 {
186 struct ubifs_old_idx *old_idx, *n;
187
188 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
189 kfree(old_idx);
190
191 c->old_idx = RB_ROOT;
192 }
193
194 /**
195 * copy_znode - copy a dirty znode.
196 * @c: UBIFS file-system description object
197 * @znode: znode to copy
198 *
199 * A dirty znode being committed may not be changed, so it is copied.
200 */
201 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
202 struct ubifs_znode *znode)
203 {
204 struct ubifs_znode *zn;
205
206 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
207 if (unlikely(!zn))
208 return ERR_PTR(-ENOMEM);
209
210 zn->cnext = NULL;
211 __set_bit(DIRTY_ZNODE, &zn->flags);
212 __clear_bit(COW_ZNODE, &zn->flags);
213
214 ubifs_assert(!ubifs_zn_obsolete(znode));
215 __set_bit(OBSOLETE_ZNODE, &znode->flags);
216
217 if (znode->level != 0) {
218 int i;
219 const int n = zn->child_cnt;
220
221 /* The children now have new parent */
222 for (i = 0; i < n; i++) {
223 struct ubifs_zbranch *zbr = &zn->zbranch[i];
224
225 if (zbr->znode)
226 zbr->znode->parent = zn;
227 }
228 }
229
230 atomic_long_inc(&c->dirty_zn_cnt);
231 return zn;
232 }
233
234 /**
235 * add_idx_dirt - add dirt due to a dirty znode.
236 * @c: UBIFS file-system description object
237 * @lnum: LEB number of index node
238 * @dirt: size of index node
239 *
240 * This function updates lprops dirty space and the new size of the index.
241 */
242 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
243 {
244 c->calc_idx_sz -= ALIGN(dirt, 8);
245 return ubifs_add_dirt(c, lnum, dirt);
246 }
247
248 /**
249 * dirty_cow_znode - ensure a znode is not being committed.
250 * @c: UBIFS file-system description object
251 * @zbr: branch of znode to check
252 *
253 * Returns dirtied znode on success or negative error code on failure.
254 */
255 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
256 struct ubifs_zbranch *zbr)
257 {
258 struct ubifs_znode *znode = zbr->znode;
259 struct ubifs_znode *zn;
260 int err;
261
262 if (!ubifs_zn_cow(znode)) {
263 /* znode is not being committed */
264 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
265 atomic_long_inc(&c->dirty_zn_cnt);
266 atomic_long_dec(&c->clean_zn_cnt);
267 atomic_long_dec(&ubifs_clean_zn_cnt);
268 err = add_idx_dirt(c, zbr->lnum, zbr->len);
269 if (unlikely(err))
270 return ERR_PTR(err);
271 }
272 return znode;
273 }
274
275 zn = copy_znode(c, znode);
276 if (IS_ERR(zn))
277 return zn;
278
279 if (zbr->len) {
280 err = insert_old_idx(c, zbr->lnum, zbr->offs);
281 if (unlikely(err))
282 return ERR_PTR(err);
283 err = add_idx_dirt(c, zbr->lnum, zbr->len);
284 } else
285 err = 0;
286
287 zbr->znode = zn;
288 zbr->lnum = 0;
289 zbr->offs = 0;
290 zbr->len = 0;
291
292 if (unlikely(err))
293 return ERR_PTR(err);
294 return zn;
295 }
296
297 /**
298 * lnc_add - add a leaf node to the leaf node cache.
299 * @c: UBIFS file-system description object
300 * @zbr: zbranch of leaf node
301 * @node: leaf node
302 *
303 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
304 * purpose of the leaf node cache is to save re-reading the same leaf node over
305 * and over again. Most things are cached by VFS, however the file system must
306 * cache directory entries for readdir and for resolving hash collisions. The
307 * present implementation of the leaf node cache is extremely simple, and
308 * allows for error returns that are not used but that may be needed if a more
309 * complex implementation is created.
310 *
311 * Note, this function does not add the @node object to LNC directly, but
312 * allocates a copy of the object and adds the copy to LNC. The reason for this
313 * is that @node has been allocated outside of the TNC subsystem and will be
314 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
315 * may be changed at any time, e.g. freed by the shrinker.
316 */
317 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
318 const void *node)
319 {
320 int err;
321 void *lnc_node;
322 const struct ubifs_dent_node *dent = node;
323
324 ubifs_assert(!zbr->leaf);
325 ubifs_assert(zbr->len != 0);
326 ubifs_assert(is_hash_key(c, &zbr->key));
327
328 err = ubifs_validate_entry(c, dent);
329 if (err) {
330 dump_stack();
331 ubifs_dump_node(c, dent);
332 return err;
333 }
334
335 lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
336 if (!lnc_node)
337 /* We don't have to have the cache, so no error */
338 return 0;
339
340 zbr->leaf = lnc_node;
341 return 0;
342 }
343
344 /**
345 * lnc_add_directly - add a leaf node to the leaf-node-cache.
346 * @c: UBIFS file-system description object
347 * @zbr: zbranch of leaf node
348 * @node: leaf node
349 *
350 * This function is similar to 'lnc_add()', but it does not create a copy of
351 * @node but inserts @node to TNC directly.
352 */
353 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
354 void *node)
355 {
356 int err;
357
358 ubifs_assert(!zbr->leaf);
359 ubifs_assert(zbr->len != 0);
360
361 err = ubifs_validate_entry(c, node);
362 if (err) {
363 dump_stack();
364 ubifs_dump_node(c, node);
365 return err;
366 }
367
368 zbr->leaf = node;
369 return 0;
370 }
371
372 /**
373 * lnc_free - remove a leaf node from the leaf node cache.
374 * @zbr: zbranch of leaf node
375 * @node: leaf node
376 */
377 static void lnc_free(struct ubifs_zbranch *zbr)
378 {
379 if (!zbr->leaf)
380 return;
381 kfree(zbr->leaf);
382 zbr->leaf = NULL;
383 }
384
385 /**
386 * tnc_read_hashed_node - read a "hashed" leaf node.
387 * @c: UBIFS file-system description object
388 * @zbr: key and position of the node
389 * @node: node is returned here
390 *
391 * This function reads a "hashed" node defined by @zbr from the leaf node cache
392 * (in it is there) or from the hash media, in which case the node is also
393 * added to LNC. Returns zero in case of success or a negative negative error
394 * code in case of failure.
395 */
396 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
397 void *node)
398 {
399 int err;
400
401 ubifs_assert(is_hash_key(c, &zbr->key));
402
403 if (zbr->leaf) {
404 /* Read from the leaf node cache */
405 ubifs_assert(zbr->len != 0);
406 memcpy(node, zbr->leaf, zbr->len);
407 return 0;
408 }
409
410 if (c->replaying) {
411 err = fallible_read_node(c, &zbr->key, zbr, node);
412 /*
413 * When the node was not found, return -ENOENT, 0 otherwise.
414 * Negative return codes stay as-is.
415 */
416 if (err == 0)
417 err = -ENOENT;
418 else if (err == 1)
419 err = 0;
420 } else {
421 err = ubifs_tnc_read_node(c, zbr, node);
422 }
423 if (err)
424 return err;
425
426 /* Add the node to the leaf node cache */
427 err = lnc_add(c, zbr, node);
428 return err;
429 }
430
431 /**
432 * try_read_node - read a node if it is a node.
433 * @c: UBIFS file-system description object
434 * @buf: buffer to read to
435 * @type: node type
436 * @len: node length (not aligned)
437 * @lnum: LEB number of node to read
438 * @offs: offset of node to read
439 *
440 * This function tries to read a node of known type and length, checks it and
441 * stores it in @buf. This function returns %1 if a node is present and %0 if
442 * a node is not present. A negative error code is returned for I/O errors.
443 * This function performs that same function as ubifs_read_node except that
444 * it does not require that there is actually a node present and instead
445 * the return code indicates if a node was read.
446 *
447 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
448 * is true (it is controlled by corresponding mount option). However, if
449 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
450 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
451 * because during mounting or re-mounting from R/O mode to R/W mode we may read
452 * journal nodes (when replying the journal or doing the recovery) and the
453 * journal nodes may potentially be corrupted, so checking is required.
454 */
455 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
456 int len, int lnum, int offs)
457 {
458 int err, node_len;
459 struct ubifs_ch *ch = buf;
460 uint32_t crc, node_crc;
461
462 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
463
464 err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
465 if (err) {
466 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
467 type, lnum, offs, err);
468 return err;
469 }
470
471 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
472 return 0;
473
474 if (ch->node_type != type)
475 return 0;
476
477 node_len = le32_to_cpu(ch->len);
478 if (node_len != len)
479 return 0;
480
481 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
482 !c->remounting_rw)
483 return 1;
484
485 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
486 node_crc = le32_to_cpu(ch->crc);
487 if (crc != node_crc)
488 return 0;
489
490 return 1;
491 }
492
493 /**
494 * fallible_read_node - try to read a leaf node.
495 * @c: UBIFS file-system description object
496 * @key: key of node to read
497 * @zbr: position of node
498 * @node: node returned
499 *
500 * This function tries to read a node and returns %1 if the node is read, %0
501 * if the node is not present, and a negative error code in the case of error.
502 */
503 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
504 struct ubifs_zbranch *zbr, void *node)
505 {
506 int ret;
507
508 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
509
510 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
511 zbr->offs);
512 if (ret == 1) {
513 union ubifs_key node_key;
514 struct ubifs_dent_node *dent = node;
515
516 /* All nodes have key in the same place */
517 key_read(c, &dent->key, &node_key);
518 if (keys_cmp(c, key, &node_key) != 0)
519 ret = 0;
520 }
521 if (ret == 0 && c->replaying)
522 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
523 zbr->lnum, zbr->offs, zbr->len);
524 return ret;
525 }
526
527 /**
528 * matches_name - determine if a direntry or xattr entry matches a given name.
529 * @c: UBIFS file-system description object
530 * @zbr: zbranch of dent
531 * @nm: name to match
532 *
533 * This function checks if xentry/direntry referred by zbranch @zbr matches name
534 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
535 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
536 * of failure, a negative error code is returned.
537 */
538 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
539 const struct fscrypt_name *nm)
540 {
541 struct ubifs_dent_node *dent;
542 int nlen, err;
543
544 /* If possible, match against the dent in the leaf node cache */
545 if (!zbr->leaf) {
546 dent = kmalloc(zbr->len, GFP_NOFS);
547 if (!dent)
548 return -ENOMEM;
549
550 err = ubifs_tnc_read_node(c, zbr, dent);
551 if (err)
552 goto out_free;
553
554 /* Add the node to the leaf node cache */
555 err = lnc_add_directly(c, zbr, dent);
556 if (err)
557 goto out_free;
558 } else
559 dent = zbr->leaf;
560
561 nlen = le16_to_cpu(dent->nlen);
562 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
563 if (err == 0) {
564 if (nlen == fname_len(nm))
565 return NAME_MATCHES;
566 else if (nlen < fname_len(nm))
567 return NAME_LESS;
568 else
569 return NAME_GREATER;
570 } else if (err < 0)
571 return NAME_LESS;
572 else
573 return NAME_GREATER;
574
575 out_free:
576 kfree(dent);
577 return err;
578 }
579
580 /**
581 * get_znode - get a TNC znode that may not be loaded yet.
582 * @c: UBIFS file-system description object
583 * @znode: parent znode
584 * @n: znode branch slot number
585 *
586 * This function returns the znode or a negative error code.
587 */
588 static struct ubifs_znode *get_znode(struct ubifs_info *c,
589 struct ubifs_znode *znode, int n)
590 {
591 struct ubifs_zbranch *zbr;
592
593 zbr = &znode->zbranch[n];
594 if (zbr->znode)
595 znode = zbr->znode;
596 else
597 znode = ubifs_load_znode(c, zbr, znode, n);
598 return znode;
599 }
600
601 /**
602 * tnc_next - find next TNC entry.
603 * @c: UBIFS file-system description object
604 * @zn: znode is passed and returned here
605 * @n: znode branch slot number is passed and returned here
606 *
607 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
608 * no next entry, or a negative error code otherwise.
609 */
610 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
611 {
612 struct ubifs_znode *znode = *zn;
613 int nn = *n;
614
615 nn += 1;
616 if (nn < znode->child_cnt) {
617 *n = nn;
618 return 0;
619 }
620 while (1) {
621 struct ubifs_znode *zp;
622
623 zp = znode->parent;
624 if (!zp)
625 return -ENOENT;
626 nn = znode->iip + 1;
627 znode = zp;
628 if (nn < znode->child_cnt) {
629 znode = get_znode(c, znode, nn);
630 if (IS_ERR(znode))
631 return PTR_ERR(znode);
632 while (znode->level != 0) {
633 znode = get_znode(c, znode, 0);
634 if (IS_ERR(znode))
635 return PTR_ERR(znode);
636 }
637 nn = 0;
638 break;
639 }
640 }
641 *zn = znode;
642 *n = nn;
643 return 0;
644 }
645
646 /**
647 * tnc_prev - find previous TNC entry.
648 * @c: UBIFS file-system description object
649 * @zn: znode is returned here
650 * @n: znode branch slot number is passed and returned here
651 *
652 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
653 * there is no next entry, or a negative error code otherwise.
654 */
655 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
656 {
657 struct ubifs_znode *znode = *zn;
658 int nn = *n;
659
660 if (nn > 0) {
661 *n = nn - 1;
662 return 0;
663 }
664 while (1) {
665 struct ubifs_znode *zp;
666
667 zp = znode->parent;
668 if (!zp)
669 return -ENOENT;
670 nn = znode->iip - 1;
671 znode = zp;
672 if (nn >= 0) {
673 znode = get_znode(c, znode, nn);
674 if (IS_ERR(znode))
675 return PTR_ERR(znode);
676 while (znode->level != 0) {
677 nn = znode->child_cnt - 1;
678 znode = get_znode(c, znode, nn);
679 if (IS_ERR(znode))
680 return PTR_ERR(znode);
681 }
682 nn = znode->child_cnt - 1;
683 break;
684 }
685 }
686 *zn = znode;
687 *n = nn;
688 return 0;
689 }
690
691 /**
692 * resolve_collision - resolve a collision.
693 * @c: UBIFS file-system description object
694 * @key: key of a directory or extended attribute entry
695 * @zn: znode is returned here
696 * @n: zbranch number is passed and returned here
697 * @nm: name of the entry
698 *
699 * This function is called for "hashed" keys to make sure that the found key
700 * really corresponds to the looked up node (directory or extended attribute
701 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
702 * %0 is returned if @nm is not found and @zn and @n are set to the previous
703 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
704 * This means that @n may be set to %-1 if the leftmost key in @zn is the
705 * previous one. A negative error code is returned on failures.
706 */
707 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
708 struct ubifs_znode **zn, int *n,
709 const struct fscrypt_name *nm)
710 {
711 int err;
712
713 err = matches_name(c, &(*zn)->zbranch[*n], nm);
714 if (unlikely(err < 0))
715 return err;
716 if (err == NAME_MATCHES)
717 return 1;
718
719 if (err == NAME_GREATER) {
720 /* Look left */
721 while (1) {
722 err = tnc_prev(c, zn, n);
723 if (err == -ENOENT) {
724 ubifs_assert(*n == 0);
725 *n = -1;
726 return 0;
727 }
728 if (err < 0)
729 return err;
730 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
731 /*
732 * We have found the branch after which we would
733 * like to insert, but inserting in this znode
734 * may still be wrong. Consider the following 3
735 * znodes, in the case where we are resolving a
736 * collision with Key2.
737 *
738 * znode zp
739 * ----------------------
740 * level 1 | Key0 | Key1 |
741 * -----------------------
742 * | |
743 * znode za | | znode zb
744 * ------------ ------------
745 * level 0 | Key0 | | Key2 |
746 * ------------ ------------
747 *
748 * The lookup finds Key2 in znode zb. Lets say
749 * there is no match and the name is greater so
750 * we look left. When we find Key0, we end up
751 * here. If we return now, we will insert into
752 * znode za at slot n = 1. But that is invalid
753 * according to the parent's keys. Key2 must
754 * be inserted into znode zb.
755 *
756 * Note, this problem is not relevant for the
757 * case when we go right, because
758 * 'tnc_insert()' would correct the parent key.
759 */
760 if (*n == (*zn)->child_cnt - 1) {
761 err = tnc_next(c, zn, n);
762 if (err) {
763 /* Should be impossible */
764 ubifs_assert(0);
765 if (err == -ENOENT)
766 err = -EINVAL;
767 return err;
768 }
769 ubifs_assert(*n == 0);
770 *n = -1;
771 }
772 return 0;
773 }
774 err = matches_name(c, &(*zn)->zbranch[*n], nm);
775 if (err < 0)
776 return err;
777 if (err == NAME_LESS)
778 return 0;
779 if (err == NAME_MATCHES)
780 return 1;
781 ubifs_assert(err == NAME_GREATER);
782 }
783 } else {
784 int nn = *n;
785 struct ubifs_znode *znode = *zn;
786
787 /* Look right */
788 while (1) {
789 err = tnc_next(c, &znode, &nn);
790 if (err == -ENOENT)
791 return 0;
792 if (err < 0)
793 return err;
794 if (keys_cmp(c, &znode->zbranch[nn].key, key))
795 return 0;
796 err = matches_name(c, &znode->zbranch[nn], nm);
797 if (err < 0)
798 return err;
799 if (err == NAME_GREATER)
800 return 0;
801 *zn = znode;
802 *n = nn;
803 if (err == NAME_MATCHES)
804 return 1;
805 ubifs_assert(err == NAME_LESS);
806 }
807 }
808 }
809
810 /**
811 * fallible_matches_name - determine if a dent matches a given name.
812 * @c: UBIFS file-system description object
813 * @zbr: zbranch of dent
814 * @nm: name to match
815 *
816 * This is a "fallible" version of 'matches_name()' function which does not
817 * panic if the direntry/xentry referred by @zbr does not exist on the media.
818 *
819 * This function checks if xentry/direntry referred by zbranch @zbr matches name
820 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
821 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
822 * if xentry/direntry referred by @zbr does not exist on the media. A negative
823 * error code is returned in case of failure.
824 */
825 static int fallible_matches_name(struct ubifs_info *c,
826 struct ubifs_zbranch *zbr,
827 const struct fscrypt_name *nm)
828 {
829 struct ubifs_dent_node *dent;
830 int nlen, err;
831
832 /* If possible, match against the dent in the leaf node cache */
833 if (!zbr->leaf) {
834 dent = kmalloc(zbr->len, GFP_NOFS);
835 if (!dent)
836 return -ENOMEM;
837
838 err = fallible_read_node(c, &zbr->key, zbr, dent);
839 if (err < 0)
840 goto out_free;
841 if (err == 0) {
842 /* The node was not present */
843 err = NOT_ON_MEDIA;
844 goto out_free;
845 }
846 ubifs_assert(err == 1);
847
848 err = lnc_add_directly(c, zbr, dent);
849 if (err)
850 goto out_free;
851 } else
852 dent = zbr->leaf;
853
854 nlen = le16_to_cpu(dent->nlen);
855 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
856 if (err == 0) {
857 if (nlen == fname_len(nm))
858 return NAME_MATCHES;
859 else if (nlen < fname_len(nm))
860 return NAME_LESS;
861 else
862 return NAME_GREATER;
863 } else if (err < 0)
864 return NAME_LESS;
865 else
866 return NAME_GREATER;
867
868 out_free:
869 kfree(dent);
870 return err;
871 }
872
873 /**
874 * fallible_resolve_collision - resolve a collision even if nodes are missing.
875 * @c: UBIFS file-system description object
876 * @key: key
877 * @zn: znode is returned here
878 * @n: branch number is passed and returned here
879 * @nm: name of directory entry
880 * @adding: indicates caller is adding a key to the TNC
881 *
882 * This is a "fallible" version of the 'resolve_collision()' function which
883 * does not panic if one of the nodes referred to by TNC does not exist on the
884 * media. This may happen when replaying the journal if a deleted node was
885 * Garbage-collected and the commit was not done. A branch that refers to a node
886 * that is not present is called a dangling branch. The following are the return
887 * codes for this function:
888 * o if @nm was found, %1 is returned and @zn and @n are set to the found
889 * branch;
890 * o if we are @adding and @nm was not found, %0 is returned;
891 * o if we are not @adding and @nm was not found, but a dangling branch was
892 * found, then %1 is returned and @zn and @n are set to the dangling branch;
893 * o a negative error code is returned in case of failure.
894 */
895 static int fallible_resolve_collision(struct ubifs_info *c,
896 const union ubifs_key *key,
897 struct ubifs_znode **zn, int *n,
898 const struct fscrypt_name *nm,
899 int adding)
900 {
901 struct ubifs_znode *o_znode = NULL, *znode = *zn;
902 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
903
904 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
905 if (unlikely(cmp < 0))
906 return cmp;
907 if (cmp == NAME_MATCHES)
908 return 1;
909 if (cmp == NOT_ON_MEDIA) {
910 o_znode = znode;
911 o_n = nn;
912 /*
913 * We are unlucky and hit a dangling branch straight away.
914 * Now we do not really know where to go to find the needed
915 * branch - to the left or to the right. Well, let's try left.
916 */
917 unsure = 1;
918 } else if (!adding)
919 unsure = 1; /* Remove a dangling branch wherever it is */
920
921 if (cmp == NAME_GREATER || unsure) {
922 /* Look left */
923 while (1) {
924 err = tnc_prev(c, zn, n);
925 if (err == -ENOENT) {
926 ubifs_assert(*n == 0);
927 *n = -1;
928 break;
929 }
930 if (err < 0)
931 return err;
932 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
933 /* See comments in 'resolve_collision()' */
934 if (*n == (*zn)->child_cnt - 1) {
935 err = tnc_next(c, zn, n);
936 if (err) {
937 /* Should be impossible */
938 ubifs_assert(0);
939 if (err == -ENOENT)
940 err = -EINVAL;
941 return err;
942 }
943 ubifs_assert(*n == 0);
944 *n = -1;
945 }
946 break;
947 }
948 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
949 if (err < 0)
950 return err;
951 if (err == NAME_MATCHES)
952 return 1;
953 if (err == NOT_ON_MEDIA) {
954 o_znode = *zn;
955 o_n = *n;
956 continue;
957 }
958 if (!adding)
959 continue;
960 if (err == NAME_LESS)
961 break;
962 else
963 unsure = 0;
964 }
965 }
966
967 if (cmp == NAME_LESS || unsure) {
968 /* Look right */
969 *zn = znode;
970 *n = nn;
971 while (1) {
972 err = tnc_next(c, &znode, &nn);
973 if (err == -ENOENT)
974 break;
975 if (err < 0)
976 return err;
977 if (keys_cmp(c, &znode->zbranch[nn].key, key))
978 break;
979 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
980 if (err < 0)
981 return err;
982 if (err == NAME_GREATER)
983 break;
984 *zn = znode;
985 *n = nn;
986 if (err == NAME_MATCHES)
987 return 1;
988 if (err == NOT_ON_MEDIA) {
989 o_znode = znode;
990 o_n = nn;
991 }
992 }
993 }
994
995 /* Never match a dangling branch when adding */
996 if (adding || !o_znode)
997 return 0;
998
999 dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
1000 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1001 o_znode->zbranch[o_n].len);
1002 *zn = o_znode;
1003 *n = o_n;
1004 return 1;
1005 }
1006
1007 /**
1008 * matches_position - determine if a zbranch matches a given position.
1009 * @zbr: zbranch of dent
1010 * @lnum: LEB number of dent to match
1011 * @offs: offset of dent to match
1012 *
1013 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1014 */
1015 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1016 {
1017 if (zbr->lnum == lnum && zbr->offs == offs)
1018 return 1;
1019 else
1020 return 0;
1021 }
1022
1023 /**
1024 * resolve_collision_directly - resolve a collision directly.
1025 * @c: UBIFS file-system description object
1026 * @key: key of directory entry
1027 * @zn: znode is passed and returned here
1028 * @n: zbranch number is passed and returned here
1029 * @lnum: LEB number of dent node to match
1030 * @offs: offset of dent node to match
1031 *
1032 * This function is used for "hashed" keys to make sure the found directory or
1033 * extended attribute entry node is what was looked for. It is used when the
1034 * flash address of the right node is known (@lnum:@offs) which makes it much
1035 * easier to resolve collisions (no need to read entries and match full
1036 * names). This function returns %1 and sets @zn and @n if the collision is
1037 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1038 * previous directory entry. Otherwise a negative error code is returned.
1039 */
1040 static int resolve_collision_directly(struct ubifs_info *c,
1041 const union ubifs_key *key,
1042 struct ubifs_znode **zn, int *n,
1043 int lnum, int offs)
1044 {
1045 struct ubifs_znode *znode;
1046 int nn, err;
1047
1048 znode = *zn;
1049 nn = *n;
1050 if (matches_position(&znode->zbranch[nn], lnum, offs))
1051 return 1;
1052
1053 /* Look left */
1054 while (1) {
1055 err = tnc_prev(c, &znode, &nn);
1056 if (err == -ENOENT)
1057 break;
1058 if (err < 0)
1059 return err;
1060 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1061 break;
1062 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1063 *zn = znode;
1064 *n = nn;
1065 return 1;
1066 }
1067 }
1068
1069 /* Look right */
1070 znode = *zn;
1071 nn = *n;
1072 while (1) {
1073 err = tnc_next(c, &znode, &nn);
1074 if (err == -ENOENT)
1075 return 0;
1076 if (err < 0)
1077 return err;
1078 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1079 return 0;
1080 *zn = znode;
1081 *n = nn;
1082 if (matches_position(&znode->zbranch[nn], lnum, offs))
1083 return 1;
1084 }
1085 }
1086
1087 /**
1088 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1089 * @c: UBIFS file-system description object
1090 * @znode: znode to dirty
1091 *
1092 * If we do not have a unique key that resides in a znode, then we cannot
1093 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1094 * This function records the path back to the last dirty ancestor, and then
1095 * dirties the znodes on that path.
1096 */
1097 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1098 struct ubifs_znode *znode)
1099 {
1100 struct ubifs_znode *zp;
1101 int *path = c->bottom_up_buf, p = 0;
1102
1103 ubifs_assert(c->zroot.znode);
1104 ubifs_assert(znode);
1105 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1106 kfree(c->bottom_up_buf);
1107 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1108 GFP_NOFS);
1109 if (!c->bottom_up_buf)
1110 return ERR_PTR(-ENOMEM);
1111 path = c->bottom_up_buf;
1112 }
1113 if (c->zroot.znode->level) {
1114 /* Go up until parent is dirty */
1115 while (1) {
1116 int n;
1117
1118 zp = znode->parent;
1119 if (!zp)
1120 break;
1121 n = znode->iip;
1122 ubifs_assert(p < c->zroot.znode->level);
1123 path[p++] = n;
1124 if (!zp->cnext && ubifs_zn_dirty(znode))
1125 break;
1126 znode = zp;
1127 }
1128 }
1129
1130 /* Come back down, dirtying as we go */
1131 while (1) {
1132 struct ubifs_zbranch *zbr;
1133
1134 zp = znode->parent;
1135 if (zp) {
1136 ubifs_assert(path[p - 1] >= 0);
1137 ubifs_assert(path[p - 1] < zp->child_cnt);
1138 zbr = &zp->zbranch[path[--p]];
1139 znode = dirty_cow_znode(c, zbr);
1140 } else {
1141 ubifs_assert(znode == c->zroot.znode);
1142 znode = dirty_cow_znode(c, &c->zroot);
1143 }
1144 if (IS_ERR(znode) || !p)
1145 break;
1146 ubifs_assert(path[p - 1] >= 0);
1147 ubifs_assert(path[p - 1] < znode->child_cnt);
1148 znode = znode->zbranch[path[p - 1]].znode;
1149 }
1150
1151 return znode;
1152 }
1153
1154 /**
1155 * ubifs_lookup_level0 - search for zero-level znode.
1156 * @c: UBIFS file-system description object
1157 * @key: key to lookup
1158 * @zn: znode is returned here
1159 * @n: znode branch slot number is returned here
1160 *
1161 * This function looks up the TNC tree and search for zero-level znode which
1162 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1163 * cases:
1164 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1165 * is returned and slot number of the matched branch is stored in @n;
1166 * o not exact match, which means that zero-level znode does not contain
1167 * @key, then %0 is returned and slot number of the closest branch is stored
1168 * in @n;
1169 * o @key is so small that it is even less than the lowest key of the
1170 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1171 *
1172 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1173 * function reads corresponding indexing nodes and inserts them to TNC. In
1174 * case of failure, a negative error code is returned.
1175 */
1176 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1177 struct ubifs_znode **zn, int *n)
1178 {
1179 int err, exact;
1180 struct ubifs_znode *znode;
1181 unsigned long time = get_seconds();
1182
1183 dbg_tnck(key, "search key ");
1184 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1185
1186 znode = c->zroot.znode;
1187 if (unlikely(!znode)) {
1188 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1189 if (IS_ERR(znode))
1190 return PTR_ERR(znode);
1191 }
1192
1193 znode->time = time;
1194
1195 while (1) {
1196 struct ubifs_zbranch *zbr;
1197
1198 exact = ubifs_search_zbranch(c, znode, key, n);
1199
1200 if (znode->level == 0)
1201 break;
1202
1203 if (*n < 0)
1204 *n = 0;
1205 zbr = &znode->zbranch[*n];
1206
1207 if (zbr->znode) {
1208 znode->time = time;
1209 znode = zbr->znode;
1210 continue;
1211 }
1212
1213 /* znode is not in TNC cache, load it from the media */
1214 znode = ubifs_load_znode(c, zbr, znode, *n);
1215 if (IS_ERR(znode))
1216 return PTR_ERR(znode);
1217 }
1218
1219 *zn = znode;
1220 if (exact || !is_hash_key(c, key) || *n != -1) {
1221 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1222 return exact;
1223 }
1224
1225 /*
1226 * Here is a tricky place. We have not found the key and this is a
1227 * "hashed" key, which may collide. The rest of the code deals with
1228 * situations like this:
1229 *
1230 * | 3 | 5 |
1231 * / \
1232 * | 3 | 5 | | 6 | 7 | (x)
1233 *
1234 * Or more a complex example:
1235 *
1236 * | 1 | 5 |
1237 * / \
1238 * | 1 | 3 | | 5 | 8 |
1239 * \ /
1240 * | 5 | 5 | | 6 | 7 | (x)
1241 *
1242 * In the examples, if we are looking for key "5", we may reach nodes
1243 * marked with "(x)". In this case what we have do is to look at the
1244 * left and see if there is "5" key there. If there is, we have to
1245 * return it.
1246 *
1247 * Note, this whole situation is possible because we allow to have
1248 * elements which are equivalent to the next key in the parent in the
1249 * children of current znode. For example, this happens if we split a
1250 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1251 * like this:
1252 * | 3 | 5 |
1253 * / \
1254 * | 3 | 5 | | 5 | 6 | 7 |
1255 * ^
1256 * And this becomes what is at the first "picture" after key "5" marked
1257 * with "^" is removed. What could be done is we could prohibit
1258 * splitting in the middle of the colliding sequence. Also, when
1259 * removing the leftmost key, we would have to correct the key of the
1260 * parent node, which would introduce additional complications. Namely,
1261 * if we changed the leftmost key of the parent znode, the garbage
1262 * collector would be unable to find it (GC is doing this when GC'ing
1263 * indexing LEBs). Although we already have an additional RB-tree where
1264 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1265 * after the commit. But anyway, this does not look easy to implement
1266 * so we did not try this.
1267 */
1268 err = tnc_prev(c, &znode, n);
1269 if (err == -ENOENT) {
1270 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1271 *n = -1;
1272 return 0;
1273 }
1274 if (unlikely(err < 0))
1275 return err;
1276 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1277 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1278 *n = -1;
1279 return 0;
1280 }
1281
1282 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1283 *zn = znode;
1284 return 1;
1285 }
1286
1287 /**
1288 * lookup_level0_dirty - search for zero-level znode dirtying.
1289 * @c: UBIFS file-system description object
1290 * @key: key to lookup
1291 * @zn: znode is returned here
1292 * @n: znode branch slot number is returned here
1293 *
1294 * This function looks up the TNC tree and search for zero-level znode which
1295 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1296 * cases:
1297 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1298 * is returned and slot number of the matched branch is stored in @n;
1299 * o not exact match, which means that zero-level znode does not contain @key
1300 * then %0 is returned and slot number of the closed branch is stored in
1301 * @n;
1302 * o @key is so small that it is even less than the lowest key of the
1303 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1304 *
1305 * Additionally all znodes in the path from the root to the located zero-level
1306 * znode are marked as dirty.
1307 *
1308 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1309 * function reads corresponding indexing nodes and inserts them to TNC. In
1310 * case of failure, a negative error code is returned.
1311 */
1312 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1313 struct ubifs_znode **zn, int *n)
1314 {
1315 int err, exact;
1316 struct ubifs_znode *znode;
1317 unsigned long time = get_seconds();
1318
1319 dbg_tnck(key, "search and dirty key ");
1320
1321 znode = c->zroot.znode;
1322 if (unlikely(!znode)) {
1323 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1324 if (IS_ERR(znode))
1325 return PTR_ERR(znode);
1326 }
1327
1328 znode = dirty_cow_znode(c, &c->zroot);
1329 if (IS_ERR(znode))
1330 return PTR_ERR(znode);
1331
1332 znode->time = time;
1333
1334 while (1) {
1335 struct ubifs_zbranch *zbr;
1336
1337 exact = ubifs_search_zbranch(c, znode, key, n);
1338
1339 if (znode->level == 0)
1340 break;
1341
1342 if (*n < 0)
1343 *n = 0;
1344 zbr = &znode->zbranch[*n];
1345
1346 if (zbr->znode) {
1347 znode->time = time;
1348 znode = dirty_cow_znode(c, zbr);
1349 if (IS_ERR(znode))
1350 return PTR_ERR(znode);
1351 continue;
1352 }
1353
1354 /* znode is not in TNC cache, load it from the media */
1355 znode = ubifs_load_znode(c, zbr, znode, *n);
1356 if (IS_ERR(znode))
1357 return PTR_ERR(znode);
1358 znode = dirty_cow_znode(c, zbr);
1359 if (IS_ERR(znode))
1360 return PTR_ERR(znode);
1361 }
1362
1363 *zn = znode;
1364 if (exact || !is_hash_key(c, key) || *n != -1) {
1365 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1366 return exact;
1367 }
1368
1369 /*
1370 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1371 * code.
1372 */
1373 err = tnc_prev(c, &znode, n);
1374 if (err == -ENOENT) {
1375 *n = -1;
1376 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1377 return 0;
1378 }
1379 if (unlikely(err < 0))
1380 return err;
1381 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1382 *n = -1;
1383 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1384 return 0;
1385 }
1386
1387 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1388 znode = dirty_cow_bottom_up(c, znode);
1389 if (IS_ERR(znode))
1390 return PTR_ERR(znode);
1391 }
1392
1393 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1394 *zn = znode;
1395 return 1;
1396 }
1397
1398 /**
1399 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1400 * @c: UBIFS file-system description object
1401 * @lnum: LEB number
1402 * @gc_seq1: garbage collection sequence number
1403 *
1404 * This function determines if @lnum may have been garbage collected since
1405 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1406 * %0 is returned.
1407 */
1408 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1409 {
1410 int gc_seq2, gced_lnum;
1411
1412 gced_lnum = c->gced_lnum;
1413 smp_rmb();
1414 gc_seq2 = c->gc_seq;
1415 /* Same seq means no GC */
1416 if (gc_seq1 == gc_seq2)
1417 return 0;
1418 /* Different by more than 1 means we don't know */
1419 if (gc_seq1 + 1 != gc_seq2)
1420 return 1;
1421 /*
1422 * We have seen the sequence number has increased by 1. Now we need to
1423 * be sure we read the right LEB number, so read it again.
1424 */
1425 smp_rmb();
1426 if (gced_lnum != c->gced_lnum)
1427 return 1;
1428 /* Finally we can check lnum */
1429 if (gced_lnum == lnum)
1430 return 1;
1431 return 0;
1432 }
1433
1434 /**
1435 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1436 * @c: UBIFS file-system description object
1437 * @key: node key to lookup
1438 * @node: the node is returned here
1439 * @lnum: LEB number is returned here
1440 * @offs: offset is returned here
1441 *
1442 * This function looks up and reads node with key @key. The caller has to make
1443 * sure the @node buffer is large enough to fit the node. Returns zero in case
1444 * of success, %-ENOENT if the node was not found, and a negative error code in
1445 * case of failure. The node location can be returned in @lnum and @offs.
1446 */
1447 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1448 void *node, int *lnum, int *offs)
1449 {
1450 int found, n, err, safely = 0, gc_seq1;
1451 struct ubifs_znode *znode;
1452 struct ubifs_zbranch zbr, *zt;
1453
1454 again:
1455 mutex_lock(&c->tnc_mutex);
1456 found = ubifs_lookup_level0(c, key, &znode, &n);
1457 if (!found) {
1458 err = -ENOENT;
1459 goto out;
1460 } else if (found < 0) {
1461 err = found;
1462 goto out;
1463 }
1464 zt = &znode->zbranch[n];
1465 if (lnum) {
1466 *lnum = zt->lnum;
1467 *offs = zt->offs;
1468 }
1469 if (is_hash_key(c, key)) {
1470 /*
1471 * In this case the leaf node cache gets used, so we pass the
1472 * address of the zbranch and keep the mutex locked
1473 */
1474 err = tnc_read_hashed_node(c, zt, node);
1475 goto out;
1476 }
1477 if (safely) {
1478 err = ubifs_tnc_read_node(c, zt, node);
1479 goto out;
1480 }
1481 /* Drop the TNC mutex prematurely and race with garbage collection */
1482 zbr = znode->zbranch[n];
1483 gc_seq1 = c->gc_seq;
1484 mutex_unlock(&c->tnc_mutex);
1485
1486 if (ubifs_get_wbuf(c, zbr.lnum)) {
1487 /* We do not GC journal heads */
1488 err = ubifs_tnc_read_node(c, &zbr, node);
1489 return err;
1490 }
1491
1492 err = fallible_read_node(c, key, &zbr, node);
1493 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1494 /*
1495 * The node may have been GC'ed out from under us so try again
1496 * while keeping the TNC mutex locked.
1497 */
1498 safely = 1;
1499 goto again;
1500 }
1501 return 0;
1502
1503 out:
1504 mutex_unlock(&c->tnc_mutex);
1505 return err;
1506 }
1507
1508 /**
1509 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1510 * @c: UBIFS file-system description object
1511 * @bu: bulk-read parameters and results
1512 *
1513 * Lookup consecutive data node keys for the same inode that reside
1514 * consecutively in the same LEB. This function returns zero in case of success
1515 * and a negative error code in case of failure.
1516 *
1517 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1518 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1519 * maximum possible amount of nodes for bulk-read.
1520 */
1521 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1522 {
1523 int n, err = 0, lnum = -1, uninitialized_var(offs);
1524 int uninitialized_var(len);
1525 unsigned int block = key_block(c, &bu->key);
1526 struct ubifs_znode *znode;
1527
1528 bu->cnt = 0;
1529 bu->blk_cnt = 0;
1530 bu->eof = 0;
1531
1532 mutex_lock(&c->tnc_mutex);
1533 /* Find first key */
1534 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1535 if (err < 0)
1536 goto out;
1537 if (err) {
1538 /* Key found */
1539 len = znode->zbranch[n].len;
1540 /* The buffer must be big enough for at least 1 node */
1541 if (len > bu->buf_len) {
1542 err = -EINVAL;
1543 goto out;
1544 }
1545 /* Add this key */
1546 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1547 bu->blk_cnt += 1;
1548 lnum = znode->zbranch[n].lnum;
1549 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1550 }
1551 while (1) {
1552 struct ubifs_zbranch *zbr;
1553 union ubifs_key *key;
1554 unsigned int next_block;
1555
1556 /* Find next key */
1557 err = tnc_next(c, &znode, &n);
1558 if (err)
1559 goto out;
1560 zbr = &znode->zbranch[n];
1561 key = &zbr->key;
1562 /* See if there is another data key for this file */
1563 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1564 key_type(c, key) != UBIFS_DATA_KEY) {
1565 err = -ENOENT;
1566 goto out;
1567 }
1568 if (lnum < 0) {
1569 /* First key found */
1570 lnum = zbr->lnum;
1571 offs = ALIGN(zbr->offs + zbr->len, 8);
1572 len = zbr->len;
1573 if (len > bu->buf_len) {
1574 err = -EINVAL;
1575 goto out;
1576 }
1577 } else {
1578 /*
1579 * The data nodes must be in consecutive positions in
1580 * the same LEB.
1581 */
1582 if (zbr->lnum != lnum || zbr->offs != offs)
1583 goto out;
1584 offs += ALIGN(zbr->len, 8);
1585 len = ALIGN(len, 8) + zbr->len;
1586 /* Must not exceed buffer length */
1587 if (len > bu->buf_len)
1588 goto out;
1589 }
1590 /* Allow for holes */
1591 next_block = key_block(c, key);
1592 bu->blk_cnt += (next_block - block - 1);
1593 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1594 goto out;
1595 block = next_block;
1596 /* Add this key */
1597 bu->zbranch[bu->cnt++] = *zbr;
1598 bu->blk_cnt += 1;
1599 /* See if we have room for more */
1600 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1601 goto out;
1602 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1603 goto out;
1604 }
1605 out:
1606 if (err == -ENOENT) {
1607 bu->eof = 1;
1608 err = 0;
1609 }
1610 bu->gc_seq = c->gc_seq;
1611 mutex_unlock(&c->tnc_mutex);
1612 if (err)
1613 return err;
1614 /*
1615 * An enormous hole could cause bulk-read to encompass too many
1616 * page cache pages, so limit the number here.
1617 */
1618 if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1619 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1620 /*
1621 * Ensure that bulk-read covers a whole number of page cache
1622 * pages.
1623 */
1624 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1625 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1626 return 0;
1627 if (bu->eof) {
1628 /* At the end of file we can round up */
1629 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1630 return 0;
1631 }
1632 /* Exclude data nodes that do not make up a whole page cache page */
1633 block = key_block(c, &bu->key) + bu->blk_cnt;
1634 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1635 while (bu->cnt) {
1636 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1637 break;
1638 bu->cnt -= 1;
1639 }
1640 return 0;
1641 }
1642
1643 /**
1644 * read_wbuf - bulk-read from a LEB with a wbuf.
1645 * @wbuf: wbuf that may overlap the read
1646 * @buf: buffer into which to read
1647 * @len: read length
1648 * @lnum: LEB number from which to read
1649 * @offs: offset from which to read
1650 *
1651 * This functions returns %0 on success or a negative error code on failure.
1652 */
1653 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1654 int offs)
1655 {
1656 const struct ubifs_info *c = wbuf->c;
1657 int rlen, overlap;
1658
1659 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1660 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1661 ubifs_assert(!(offs & 7) && offs < c->leb_size);
1662 ubifs_assert(offs + len <= c->leb_size);
1663
1664 spin_lock(&wbuf->lock);
1665 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1666 if (!overlap) {
1667 /* We may safely unlock the write-buffer and read the data */
1668 spin_unlock(&wbuf->lock);
1669 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1670 }
1671
1672 /* Don't read under wbuf */
1673 rlen = wbuf->offs - offs;
1674 if (rlen < 0)
1675 rlen = 0;
1676
1677 /* Copy the rest from the write-buffer */
1678 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1679 spin_unlock(&wbuf->lock);
1680
1681 if (rlen > 0)
1682 /* Read everything that goes before write-buffer */
1683 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1684
1685 return 0;
1686 }
1687
1688 /**
1689 * validate_data_node - validate data nodes for bulk-read.
1690 * @c: UBIFS file-system description object
1691 * @buf: buffer containing data node to validate
1692 * @zbr: zbranch of data node to validate
1693 *
1694 * This functions returns %0 on success or a negative error code on failure.
1695 */
1696 static int validate_data_node(struct ubifs_info *c, void *buf,
1697 struct ubifs_zbranch *zbr)
1698 {
1699 union ubifs_key key1;
1700 struct ubifs_ch *ch = buf;
1701 int err, len;
1702
1703 if (ch->node_type != UBIFS_DATA_NODE) {
1704 ubifs_err(c, "bad node type (%d but expected %d)",
1705 ch->node_type, UBIFS_DATA_NODE);
1706 goto out_err;
1707 }
1708
1709 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1710 if (err) {
1711 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1712 goto out;
1713 }
1714
1715 len = le32_to_cpu(ch->len);
1716 if (len != zbr->len) {
1717 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1718 goto out_err;
1719 }
1720
1721 /* Make sure the key of the read node is correct */
1722 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1723 if (!keys_eq(c, &zbr->key, &key1)) {
1724 ubifs_err(c, "bad key in node at LEB %d:%d",
1725 zbr->lnum, zbr->offs);
1726 dbg_tnck(&zbr->key, "looked for key ");
1727 dbg_tnck(&key1, "found node's key ");
1728 goto out_err;
1729 }
1730
1731 return 0;
1732
1733 out_err:
1734 err = -EINVAL;
1735 out:
1736 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1737 ubifs_dump_node(c, buf);
1738 dump_stack();
1739 return err;
1740 }
1741
1742 /**
1743 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1744 * @c: UBIFS file-system description object
1745 * @bu: bulk-read parameters and results
1746 *
1747 * This functions reads and validates the data nodes that were identified by the
1748 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1749 * -EAGAIN to indicate a race with GC, or another negative error code on
1750 * failure.
1751 */
1752 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1753 {
1754 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1755 struct ubifs_wbuf *wbuf;
1756 void *buf;
1757
1758 len = bu->zbranch[bu->cnt - 1].offs;
1759 len += bu->zbranch[bu->cnt - 1].len - offs;
1760 if (len > bu->buf_len) {
1761 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1762 return -EINVAL;
1763 }
1764
1765 /* Do the read */
1766 wbuf = ubifs_get_wbuf(c, lnum);
1767 if (wbuf)
1768 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1769 else
1770 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1771
1772 /* Check for a race with GC */
1773 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1774 return -EAGAIN;
1775
1776 if (err && err != -EBADMSG) {
1777 ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1778 lnum, offs, err);
1779 dump_stack();
1780 dbg_tnck(&bu->key, "key ");
1781 return err;
1782 }
1783
1784 /* Validate the nodes read */
1785 buf = bu->buf;
1786 for (i = 0; i < bu->cnt; i++) {
1787 err = validate_data_node(c, buf, &bu->zbranch[i]);
1788 if (err)
1789 return err;
1790 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1791 }
1792
1793 return 0;
1794 }
1795
1796 /**
1797 * do_lookup_nm- look up a "hashed" node.
1798 * @c: UBIFS file-system description object
1799 * @key: node key to lookup
1800 * @node: the node is returned here
1801 * @nm: node name
1802 *
1803 * This function looks up and reads a node which contains name hash in the key.
1804 * Since the hash may have collisions, there may be many nodes with the same
1805 * key, so we have to sequentially look to all of them until the needed one is
1806 * found. This function returns zero in case of success, %-ENOENT if the node
1807 * was not found, and a negative error code in case of failure.
1808 */
1809 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1810 void *node, const struct fscrypt_name *nm)
1811 {
1812 int found, n, err;
1813 struct ubifs_znode *znode;
1814
1815 //dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
1816 mutex_lock(&c->tnc_mutex);
1817 found = ubifs_lookup_level0(c, key, &znode, &n);
1818 if (!found) {
1819 err = -ENOENT;
1820 goto out_unlock;
1821 } else if (found < 0) {
1822 err = found;
1823 goto out_unlock;
1824 }
1825
1826 ubifs_assert(n >= 0);
1827
1828 err = resolve_collision(c, key, &znode, &n, nm);
1829 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1830 if (unlikely(err < 0))
1831 goto out_unlock;
1832 if (err == 0) {
1833 err = -ENOENT;
1834 goto out_unlock;
1835 }
1836
1837 err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1838
1839 out_unlock:
1840 mutex_unlock(&c->tnc_mutex);
1841 return err;
1842 }
1843
1844 /**
1845 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1846 * @c: UBIFS file-system description object
1847 * @key: node key to lookup
1848 * @node: the node is returned here
1849 * @nm: node name
1850 *
1851 * This function looks up and reads a node which contains name hash in the key.
1852 * Since the hash may have collisions, there may be many nodes with the same
1853 * key, so we have to sequentially look to all of them until the needed one is
1854 * found. This function returns zero in case of success, %-ENOENT if the node
1855 * was not found, and a negative error code in case of failure.
1856 */
1857 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1858 void *node, const struct fscrypt_name *nm)
1859 {
1860 int err, len;
1861 const struct ubifs_dent_node *dent = node;
1862
1863 /*
1864 * We assume that in most of the cases there are no name collisions and
1865 * 'ubifs_tnc_lookup()' returns us the right direntry.
1866 */
1867 err = ubifs_tnc_lookup(c, key, node);
1868 if (err)
1869 return err;
1870
1871 len = le16_to_cpu(dent->nlen);
1872 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1873 return 0;
1874
1875 /*
1876 * Unluckily, there are hash collisions and we have to iterate over
1877 * them look at each direntry with colliding name hash sequentially.
1878 */
1879
1880 return do_lookup_nm(c, key, node, nm);
1881 }
1882
1883 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1884 struct ubifs_dent_node *dent, uint32_t cookie)
1885 {
1886 int n, err, type = key_type(c, key);
1887 struct ubifs_znode *znode;
1888 struct ubifs_zbranch *zbr;
1889 union ubifs_key *dkey, start_key;
1890
1891 ubifs_assert(is_hash_key(c, key));
1892
1893 lowest_dent_key(c, &start_key, key_inum(c, key));
1894
1895 mutex_lock(&c->tnc_mutex);
1896 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1897 if (unlikely(err < 0))
1898 goto out_unlock;
1899
1900 for (;;) {
1901 if (!err) {
1902 err = tnc_next(c, &znode, &n);
1903 if (err)
1904 goto out_unlock;
1905 }
1906
1907 zbr = &znode->zbranch[n];
1908 dkey = &zbr->key;
1909
1910 if (key_inum(c, dkey) != key_inum(c, key) ||
1911 key_type(c, dkey) != type) {
1912 err = -ENOENT;
1913 goto out_unlock;
1914 }
1915
1916 err = tnc_read_hashed_node(c, zbr, dent);
1917 if (err)
1918 goto out_unlock;
1919
1920 if (key_hash(c, key) == key_hash(c, dkey) &&
1921 le32_to_cpu(dent->cookie) == cookie)
1922 goto out_unlock;
1923 }
1924
1925 out_unlock:
1926 mutex_unlock(&c->tnc_mutex);
1927 return err;
1928 }
1929
1930 /**
1931 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1932 * @c: UBIFS file-system description object
1933 * @key: node key to lookup
1934 * @node: the node is returned here
1935 * @cookie: node cookie for collision resolution
1936 *
1937 * This function looks up and reads a node which contains name hash in the key.
1938 * Since the hash may have collisions, there may be many nodes with the same
1939 * key, so we have to sequentially look to all of them until the needed one
1940 * with the same cookie value is found.
1941 * This function returns zero in case of success, %-ENOENT if the node
1942 * was not found, and a negative error code in case of failure.
1943 */
1944 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1945 void *node, uint32_t cookie)
1946 {
1947 int err;
1948 const struct ubifs_dent_node *dent = node;
1949
1950 if (!c->double_hash)
1951 return -EOPNOTSUPP;
1952
1953 /*
1954 * We assume that in most of the cases there are no name collisions and
1955 * 'ubifs_tnc_lookup()' returns us the right direntry.
1956 */
1957 err = ubifs_tnc_lookup(c, key, node);
1958 if (err)
1959 return err;
1960
1961 if (le32_to_cpu(dent->cookie) == cookie)
1962 return 0;
1963
1964 /*
1965 * Unluckily, there are hash collisions and we have to iterate over
1966 * them look at each direntry with colliding name hash sequentially.
1967 */
1968 return do_lookup_dh(c, key, node, cookie);
1969 }
1970
1971 /**
1972 * correct_parent_keys - correct parent znodes' keys.
1973 * @c: UBIFS file-system description object
1974 * @znode: znode to correct parent znodes for
1975 *
1976 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1977 * zbranch changes, keys of parent znodes have to be corrected. This helper
1978 * function is called in such situations and corrects the keys if needed.
1979 */
1980 static void correct_parent_keys(const struct ubifs_info *c,
1981 struct ubifs_znode *znode)
1982 {
1983 union ubifs_key *key, *key1;
1984
1985 ubifs_assert(znode->parent);
1986 ubifs_assert(znode->iip == 0);
1987
1988 key = &znode->zbranch[0].key;
1989 key1 = &znode->parent->zbranch[0].key;
1990
1991 while (keys_cmp(c, key, key1) < 0) {
1992 key_copy(c, key, key1);
1993 znode = znode->parent;
1994 znode->alt = 1;
1995 if (!znode->parent || znode->iip)
1996 break;
1997 key1 = &znode->parent->zbranch[0].key;
1998 }
1999 }
2000
2001 /**
2002 * insert_zbranch - insert a zbranch into a znode.
2003 * @znode: znode into which to insert
2004 * @zbr: zbranch to insert
2005 * @n: slot number to insert to
2006 *
2007 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2008 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2009 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2010 * slot, zbranches starting from @n have to be moved right.
2011 */
2012 static void insert_zbranch(struct ubifs_znode *znode,
2013 const struct ubifs_zbranch *zbr, int n)
2014 {
2015 int i;
2016
2017 ubifs_assert(ubifs_zn_dirty(znode));
2018
2019 if (znode->level) {
2020 for (i = znode->child_cnt; i > n; i--) {
2021 znode->zbranch[i] = znode->zbranch[i - 1];
2022 if (znode->zbranch[i].znode)
2023 znode->zbranch[i].znode->iip = i;
2024 }
2025 if (zbr->znode)
2026 zbr->znode->iip = n;
2027 } else
2028 for (i = znode->child_cnt; i > n; i--)
2029 znode->zbranch[i] = znode->zbranch[i - 1];
2030
2031 znode->zbranch[n] = *zbr;
2032 znode->child_cnt += 1;
2033
2034 /*
2035 * After inserting at slot zero, the lower bound of the key range of
2036 * this znode may have changed. If this znode is subsequently split
2037 * then the upper bound of the key range may change, and furthermore
2038 * it could change to be lower than the original lower bound. If that
2039 * happens, then it will no longer be possible to find this znode in the
2040 * TNC using the key from the index node on flash. That is bad because
2041 * if it is not found, we will assume it is obsolete and may overwrite
2042 * it. Then if there is an unclean unmount, we will start using the
2043 * old index which will be broken.
2044 *
2045 * So we first mark znodes that have insertions at slot zero, and then
2046 * if they are split we add their lnum/offs to the old_idx tree.
2047 */
2048 if (n == 0)
2049 znode->alt = 1;
2050 }
2051
2052 /**
2053 * tnc_insert - insert a node into TNC.
2054 * @c: UBIFS file-system description object
2055 * @znode: znode to insert into
2056 * @zbr: branch to insert
2057 * @n: slot number to insert new zbranch to
2058 *
2059 * This function inserts a new node described by @zbr into znode @znode. If
2060 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2061 * are splat as well if needed. Returns zero in case of success or a negative
2062 * error code in case of failure.
2063 */
2064 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2065 struct ubifs_zbranch *zbr, int n)
2066 {
2067 struct ubifs_znode *zn, *zi, *zp;
2068 int i, keep, move, appending = 0;
2069 union ubifs_key *key = &zbr->key, *key1;
2070
2071 ubifs_assert(n >= 0 && n <= c->fanout);
2072
2073 /* Implement naive insert for now */
2074 again:
2075 zp = znode->parent;
2076 if (znode->child_cnt < c->fanout) {
2077 ubifs_assert(n != c->fanout);
2078 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2079
2080 insert_zbranch(znode, zbr, n);
2081
2082 /* Ensure parent's key is correct */
2083 if (n == 0 && zp && znode->iip == 0)
2084 correct_parent_keys(c, znode);
2085
2086 return 0;
2087 }
2088
2089 /*
2090 * Unfortunately, @znode does not have more empty slots and we have to
2091 * split it.
2092 */
2093 dbg_tnck(key, "splitting level %d, key ", znode->level);
2094
2095 if (znode->alt)
2096 /*
2097 * We can no longer be sure of finding this znode by key, so we
2098 * record it in the old_idx tree.
2099 */
2100 ins_clr_old_idx_znode(c, znode);
2101
2102 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2103 if (!zn)
2104 return -ENOMEM;
2105 zn->parent = zp;
2106 zn->level = znode->level;
2107
2108 /* Decide where to split */
2109 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2110 /* Try not to split consecutive data keys */
2111 if (n == c->fanout) {
2112 key1 = &znode->zbranch[n - 1].key;
2113 if (key_inum(c, key1) == key_inum(c, key) &&
2114 key_type(c, key1) == UBIFS_DATA_KEY)
2115 appending = 1;
2116 } else
2117 goto check_split;
2118 } else if (appending && n != c->fanout) {
2119 /* Try not to split consecutive data keys */
2120 appending = 0;
2121 check_split:
2122 if (n >= (c->fanout + 1) / 2) {
2123 key1 = &znode->zbranch[0].key;
2124 if (key_inum(c, key1) == key_inum(c, key) &&
2125 key_type(c, key1) == UBIFS_DATA_KEY) {
2126 key1 = &znode->zbranch[n].key;
2127 if (key_inum(c, key1) != key_inum(c, key) ||
2128 key_type(c, key1) != UBIFS_DATA_KEY) {
2129 keep = n;
2130 move = c->fanout - keep;
2131 zi = znode;
2132 goto do_split;
2133 }
2134 }
2135 }
2136 }
2137
2138 if (appending) {
2139 keep = c->fanout;
2140 move = 0;
2141 } else {
2142 keep = (c->fanout + 1) / 2;
2143 move = c->fanout - keep;
2144 }
2145
2146 /*
2147 * Although we don't at present, we could look at the neighbors and see
2148 * if we can move some zbranches there.
2149 */
2150
2151 if (n < keep) {
2152 /* Insert into existing znode */
2153 zi = znode;
2154 move += 1;
2155 keep -= 1;
2156 } else {
2157 /* Insert into new znode */
2158 zi = zn;
2159 n -= keep;
2160 /* Re-parent */
2161 if (zn->level != 0)
2162 zbr->znode->parent = zn;
2163 }
2164
2165 do_split:
2166
2167 __set_bit(DIRTY_ZNODE, &zn->flags);
2168 atomic_long_inc(&c->dirty_zn_cnt);
2169
2170 zn->child_cnt = move;
2171 znode->child_cnt = keep;
2172
2173 dbg_tnc("moving %d, keeping %d", move, keep);
2174
2175 /* Move zbranch */
2176 for (i = 0; i < move; i++) {
2177 zn->zbranch[i] = znode->zbranch[keep + i];
2178 /* Re-parent */
2179 if (zn->level != 0)
2180 if (zn->zbranch[i].znode) {
2181 zn->zbranch[i].znode->parent = zn;
2182 zn->zbranch[i].znode->iip = i;
2183 }
2184 }
2185
2186 /* Insert new key and branch */
2187 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2188
2189 insert_zbranch(zi, zbr, n);
2190
2191 /* Insert new znode (produced by spitting) into the parent */
2192 if (zp) {
2193 if (n == 0 && zi == znode && znode->iip == 0)
2194 correct_parent_keys(c, znode);
2195
2196 /* Locate insertion point */
2197 n = znode->iip + 1;
2198
2199 /* Tail recursion */
2200 zbr->key = zn->zbranch[0].key;
2201 zbr->znode = zn;
2202 zbr->lnum = 0;
2203 zbr->offs = 0;
2204 zbr->len = 0;
2205 znode = zp;
2206
2207 goto again;
2208 }
2209
2210 /* We have to split root znode */
2211 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2212
2213 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2214 if (!zi)
2215 return -ENOMEM;
2216
2217 zi->child_cnt = 2;
2218 zi->level = znode->level + 1;
2219
2220 __set_bit(DIRTY_ZNODE, &zi->flags);
2221 atomic_long_inc(&c->dirty_zn_cnt);
2222
2223 zi->zbranch[0].key = znode->zbranch[0].key;
2224 zi->zbranch[0].znode = znode;
2225 zi->zbranch[0].lnum = c->zroot.lnum;
2226 zi->zbranch[0].offs = c->zroot.offs;
2227 zi->zbranch[0].len = c->zroot.len;
2228 zi->zbranch[1].key = zn->zbranch[0].key;
2229 zi->zbranch[1].znode = zn;
2230
2231 c->zroot.lnum = 0;
2232 c->zroot.offs = 0;
2233 c->zroot.len = 0;
2234 c->zroot.znode = zi;
2235
2236 zn->parent = zi;
2237 zn->iip = 1;
2238 znode->parent = zi;
2239 znode->iip = 0;
2240
2241 return 0;
2242 }
2243
2244 /**
2245 * ubifs_tnc_add - add a node to TNC.
2246 * @c: UBIFS file-system description object
2247 * @key: key to add
2248 * @lnum: LEB number of node
2249 * @offs: node offset
2250 * @len: node length
2251 *
2252 * This function adds a node with key @key to TNC. The node may be new or it may
2253 * obsolete some existing one. Returns %0 on success or negative error code on
2254 * failure.
2255 */
2256 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2257 int offs, int len)
2258 {
2259 int found, n, err = 0;
2260 struct ubifs_znode *znode;
2261
2262 mutex_lock(&c->tnc_mutex);
2263 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2264 found = lookup_level0_dirty(c, key, &znode, &n);
2265 if (!found) {
2266 struct ubifs_zbranch zbr;
2267
2268 zbr.znode = NULL;
2269 zbr.lnum = lnum;
2270 zbr.offs = offs;
2271 zbr.len = len;
2272 key_copy(c, key, &zbr.key);
2273 err = tnc_insert(c, znode, &zbr, n + 1);
2274 } else if (found == 1) {
2275 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2276
2277 lnc_free(zbr);
2278 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2279 zbr->lnum = lnum;
2280 zbr->offs = offs;
2281 zbr->len = len;
2282 } else
2283 err = found;
2284 if (!err)
2285 err = dbg_check_tnc(c, 0);
2286 mutex_unlock(&c->tnc_mutex);
2287
2288 return err;
2289 }
2290
2291 /**
2292 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2293 * @c: UBIFS file-system description object
2294 * @key: key to add
2295 * @old_lnum: LEB number of old node
2296 * @old_offs: old node offset
2297 * @lnum: LEB number of node
2298 * @offs: node offset
2299 * @len: node length
2300 *
2301 * This function replaces a node with key @key in the TNC only if the old node
2302 * is found. This function is called by garbage collection when node are moved.
2303 * Returns %0 on success or negative error code on failure.
2304 */
2305 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2306 int old_lnum, int old_offs, int lnum, int offs, int len)
2307 {
2308 int found, n, err = 0;
2309 struct ubifs_znode *znode;
2310
2311 mutex_lock(&c->tnc_mutex);
2312 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2313 old_offs, lnum, offs, len);
2314 found = lookup_level0_dirty(c, key, &znode, &n);
2315 if (found < 0) {
2316 err = found;
2317 goto out_unlock;
2318 }
2319
2320 if (found == 1) {
2321 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2322
2323 found = 0;
2324 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2325 lnc_free(zbr);
2326 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2327 if (err)
2328 goto out_unlock;
2329 zbr->lnum = lnum;
2330 zbr->offs = offs;
2331 zbr->len = len;
2332 found = 1;
2333 } else if (is_hash_key(c, key)) {
2334 found = resolve_collision_directly(c, key, &znode, &n,
2335 old_lnum, old_offs);
2336 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2337 found, znode, n, old_lnum, old_offs);
2338 if (found < 0) {
2339 err = found;
2340 goto out_unlock;
2341 }
2342
2343 if (found) {
2344 /* Ensure the znode is dirtied */
2345 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2346 znode = dirty_cow_bottom_up(c, znode);
2347 if (IS_ERR(znode)) {
2348 err = PTR_ERR(znode);
2349 goto out_unlock;
2350 }
2351 }
2352 zbr = &znode->zbranch[n];
2353 lnc_free(zbr);
2354 err = ubifs_add_dirt(c, zbr->lnum,
2355 zbr->len);
2356 if (err)
2357 goto out_unlock;
2358 zbr->lnum = lnum;
2359 zbr->offs = offs;
2360 zbr->len = len;
2361 }
2362 }
2363 }
2364
2365 if (!found)
2366 err = ubifs_add_dirt(c, lnum, len);
2367
2368 if (!err)
2369 err = dbg_check_tnc(c, 0);
2370
2371 out_unlock:
2372 mutex_unlock(&c->tnc_mutex);
2373 return err;
2374 }
2375
2376 /**
2377 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2378 * @c: UBIFS file-system description object
2379 * @key: key to add
2380 * @lnum: LEB number of node
2381 * @offs: node offset
2382 * @len: node length
2383 * @nm: node name
2384 *
2385 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2386 * may have collisions, like directory entry keys.
2387 */
2388 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2389 int lnum, int offs, int len,
2390 const struct fscrypt_name *nm)
2391 {
2392 int found, n, err = 0;
2393 struct ubifs_znode *znode;
2394
2395 mutex_lock(&c->tnc_mutex);
2396 //dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2397 // lnum, offs, nm->len, nm->name);
2398 found = lookup_level0_dirty(c, key, &znode, &n);
2399 if (found < 0) {
2400 err = found;
2401 goto out_unlock;
2402 }
2403
2404 if (found == 1) {
2405 if (c->replaying)
2406 found = fallible_resolve_collision(c, key, &znode, &n,
2407 nm, 1);
2408 else
2409 found = resolve_collision(c, key, &znode, &n, nm);
2410 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2411 if (found < 0) {
2412 err = found;
2413 goto out_unlock;
2414 }
2415
2416 /* Ensure the znode is dirtied */
2417 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2418 znode = dirty_cow_bottom_up(c, znode);
2419 if (IS_ERR(znode)) {
2420 err = PTR_ERR(znode);
2421 goto out_unlock;
2422 }
2423 }
2424
2425 if (found == 1) {
2426 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2427
2428 lnc_free(zbr);
2429 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2430 zbr->lnum = lnum;
2431 zbr->offs = offs;
2432 zbr->len = len;
2433 goto out_unlock;
2434 }
2435 }
2436
2437 if (!found) {
2438 struct ubifs_zbranch zbr;
2439
2440 zbr.znode = NULL;
2441 zbr.lnum = lnum;
2442 zbr.offs = offs;
2443 zbr.len = len;
2444 key_copy(c, key, &zbr.key);
2445 err = tnc_insert(c, znode, &zbr, n + 1);
2446 if (err)
2447 goto out_unlock;
2448 if (c->replaying) {
2449 /*
2450 * We did not find it in the index so there may be a
2451 * dangling branch still in the index. So we remove it
2452 * by passing 'ubifs_tnc_remove_nm()' the same key but
2453 * an unmatchable name.
2454 */
2455 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2456
2457 err = dbg_check_tnc(c, 0);
2458 mutex_unlock(&c->tnc_mutex);
2459 if (err)
2460 return err;
2461 return ubifs_tnc_remove_nm(c, key, &noname);
2462 }
2463 }
2464
2465 out_unlock:
2466 if (!err)
2467 err = dbg_check_tnc(c, 0);
2468 mutex_unlock(&c->tnc_mutex);
2469 return err;
2470 }
2471
2472 /**
2473 * tnc_delete - delete a znode form TNC.
2474 * @c: UBIFS file-system description object
2475 * @znode: znode to delete from
2476 * @n: zbranch slot number to delete
2477 *
2478 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2479 * case of success and a negative error code in case of failure.
2480 */
2481 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2482 {
2483 struct ubifs_zbranch *zbr;
2484 struct ubifs_znode *zp;
2485 int i, err;
2486
2487 /* Delete without merge for now */
2488 ubifs_assert(znode->level == 0);
2489 ubifs_assert(n >= 0 && n < c->fanout);
2490 dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2491
2492 zbr = &znode->zbranch[n];
2493 lnc_free(zbr);
2494
2495 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2496 if (err) {
2497 ubifs_dump_znode(c, znode);
2498 return err;
2499 }
2500
2501 /* We do not "gap" zbranch slots */
2502 for (i = n; i < znode->child_cnt - 1; i++)
2503 znode->zbranch[i] = znode->zbranch[i + 1];
2504 znode->child_cnt -= 1;
2505
2506 if (znode->child_cnt > 0)
2507 return 0;
2508
2509 /*
2510 * This was the last zbranch, we have to delete this znode from the
2511 * parent.
2512 */
2513
2514 do {
2515 ubifs_assert(!ubifs_zn_obsolete(znode));
2516 ubifs_assert(ubifs_zn_dirty(znode));
2517
2518 zp = znode->parent;
2519 n = znode->iip;
2520
2521 atomic_long_dec(&c->dirty_zn_cnt);
2522
2523 err = insert_old_idx_znode(c, znode);
2524 if (err)
2525 return err;
2526
2527 if (znode->cnext) {
2528 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2529 atomic_long_inc(&c->clean_zn_cnt);
2530 atomic_long_inc(&ubifs_clean_zn_cnt);
2531 } else
2532 kfree(znode);
2533 znode = zp;
2534 } while (znode->child_cnt == 1); /* while removing last child */
2535
2536 /* Remove from znode, entry n - 1 */
2537 znode->child_cnt -= 1;
2538 ubifs_assert(znode->level != 0);
2539 for (i = n; i < znode->child_cnt; i++) {
2540 znode->zbranch[i] = znode->zbranch[i + 1];
2541 if (znode->zbranch[i].znode)
2542 znode->zbranch[i].znode->iip = i;
2543 }
2544
2545 /*
2546 * If this is the root and it has only 1 child then
2547 * collapse the tree.
2548 */
2549 if (!znode->parent) {
2550 while (znode->child_cnt == 1 && znode->level != 0) {
2551 zp = znode;
2552 zbr = &znode->zbranch[0];
2553 znode = get_znode(c, znode, 0);
2554 if (IS_ERR(znode))
2555 return PTR_ERR(znode);
2556 znode = dirty_cow_znode(c, zbr);
2557 if (IS_ERR(znode))
2558 return PTR_ERR(znode);
2559 znode->parent = NULL;
2560 znode->iip = 0;
2561 if (c->zroot.len) {
2562 err = insert_old_idx(c, c->zroot.lnum,
2563 c->zroot.offs);
2564 if (err)
2565 return err;
2566 }
2567 c->zroot.lnum = zbr->lnum;
2568 c->zroot.offs = zbr->offs;
2569 c->zroot.len = zbr->len;
2570 c->zroot.znode = znode;
2571 ubifs_assert(!ubifs_zn_obsolete(zp));
2572 ubifs_assert(ubifs_zn_dirty(zp));
2573 atomic_long_dec(&c->dirty_zn_cnt);
2574
2575 if (zp->cnext) {
2576 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2577 atomic_long_inc(&c->clean_zn_cnt);
2578 atomic_long_inc(&ubifs_clean_zn_cnt);
2579 } else
2580 kfree(zp);
2581 }
2582 }
2583
2584 return 0;
2585 }
2586
2587 /**
2588 * ubifs_tnc_remove - remove an index entry of a node.
2589 * @c: UBIFS file-system description object
2590 * @key: key of node
2591 *
2592 * Returns %0 on success or negative error code on failure.
2593 */
2594 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2595 {
2596 int found, n, err = 0;
2597 struct ubifs_znode *znode;
2598
2599 mutex_lock(&c->tnc_mutex);
2600 dbg_tnck(key, "key ");
2601 found = lookup_level0_dirty(c, key, &znode, &n);
2602 if (found < 0) {
2603 err = found;
2604 goto out_unlock;
2605 }
2606 if (found == 1)
2607 err = tnc_delete(c, znode, n);
2608 if (!err)
2609 err = dbg_check_tnc(c, 0);
2610
2611 out_unlock:
2612 mutex_unlock(&c->tnc_mutex);
2613 return err;
2614 }
2615
2616 /**
2617 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2618 * @c: UBIFS file-system description object
2619 * @key: key of node
2620 * @nm: directory entry name
2621 *
2622 * Returns %0 on success or negative error code on failure.
2623 */
2624 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2625 const struct fscrypt_name *nm)
2626 {
2627 int n, err;
2628 struct ubifs_znode *znode;
2629
2630 mutex_lock(&c->tnc_mutex);
2631 //dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
2632 err = lookup_level0_dirty(c, key, &znode, &n);
2633 if (err < 0)
2634 goto out_unlock;
2635
2636 if (err) {
2637 if (c->replaying)
2638 err = fallible_resolve_collision(c, key, &znode, &n,
2639 nm, 0);
2640 else
2641 err = resolve_collision(c, key, &znode, &n, nm);
2642 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2643 if (err < 0)
2644 goto out_unlock;
2645 if (err) {
2646 /* Ensure the znode is dirtied */
2647 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2648 znode = dirty_cow_bottom_up(c, znode);
2649 if (IS_ERR(znode)) {
2650 err = PTR_ERR(znode);
2651 goto out_unlock;
2652 }
2653 }
2654 err = tnc_delete(c, znode, n);
2655 }
2656 }
2657
2658 out_unlock:
2659 if (!err)
2660 err = dbg_check_tnc(c, 0);
2661 mutex_unlock(&c->tnc_mutex);
2662 return err;
2663 }
2664
2665 /**
2666 * key_in_range - determine if a key falls within a range of keys.
2667 * @c: UBIFS file-system description object
2668 * @key: key to check
2669 * @from_key: lowest key in range
2670 * @to_key: highest key in range
2671 *
2672 * This function returns %1 if the key is in range and %0 otherwise.
2673 */
2674 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2675 union ubifs_key *from_key, union ubifs_key *to_key)
2676 {
2677 if (keys_cmp(c, key, from_key) < 0)
2678 return 0;
2679 if (keys_cmp(c, key, to_key) > 0)
2680 return 0;
2681 return 1;
2682 }
2683
2684 /**
2685 * ubifs_tnc_remove_range - remove index entries in range.
2686 * @c: UBIFS file-system description object
2687 * @from_key: lowest key to remove
2688 * @to_key: highest key to remove
2689 *
2690 * This function removes index entries starting at @from_key and ending at
2691 * @to_key. This function returns zero in case of success and a negative error
2692 * code in case of failure.
2693 */
2694 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2695 union ubifs_key *to_key)
2696 {
2697 int i, n, k, err = 0;
2698 struct ubifs_znode *znode;
2699 union ubifs_key *key;
2700
2701 mutex_lock(&c->tnc_mutex);
2702 while (1) {
2703 /* Find first level 0 znode that contains keys to remove */
2704 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2705 if (err < 0)
2706 goto out_unlock;
2707
2708 if (err)
2709 key = from_key;
2710 else {
2711 err = tnc_next(c, &znode, &n);
2712 if (err == -ENOENT) {
2713 err = 0;
2714 goto out_unlock;
2715 }
2716 if (err < 0)
2717 goto out_unlock;
2718 key = &znode->zbranch[n].key;
2719 if (!key_in_range(c, key, from_key, to_key)) {
2720 err = 0;
2721 goto out_unlock;
2722 }
2723 }
2724
2725 /* Ensure the znode is dirtied */
2726 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2727 znode = dirty_cow_bottom_up(c, znode);
2728 if (IS_ERR(znode)) {
2729 err = PTR_ERR(znode);
2730 goto out_unlock;
2731 }
2732 }
2733
2734 /* Remove all keys in range except the first */
2735 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2736 key = &znode->zbranch[i].key;
2737 if (!key_in_range(c, key, from_key, to_key))
2738 break;
2739 lnc_free(&znode->zbranch[i]);
2740 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2741 znode->zbranch[i].len);
2742 if (err) {
2743 ubifs_dump_znode(c, znode);
2744 goto out_unlock;
2745 }
2746 dbg_tnck(key, "removing key ");
2747 }
2748 if (k) {
2749 for (i = n + 1 + k; i < znode->child_cnt; i++)
2750 znode->zbranch[i - k] = znode->zbranch[i];
2751 znode->child_cnt -= k;
2752 }
2753
2754 /* Now delete the first */
2755 err = tnc_delete(c, znode, n);
2756 if (err)
2757 goto out_unlock;
2758 }
2759
2760 out_unlock:
2761 if (!err)
2762 err = dbg_check_tnc(c, 0);
2763 mutex_unlock(&c->tnc_mutex);
2764 return err;
2765 }
2766
2767 /**
2768 * ubifs_tnc_remove_ino - remove an inode from TNC.
2769 * @c: UBIFS file-system description object
2770 * @inum: inode number to remove
2771 *
2772 * This function remove inode @inum and all the extended attributes associated
2773 * with the anode from TNC and returns zero in case of success or a negative
2774 * error code in case of failure.
2775 */
2776 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2777 {
2778 union ubifs_key key1, key2;
2779 struct ubifs_dent_node *xent, *pxent = NULL;
2780 struct fscrypt_name nm = {0};
2781
2782 dbg_tnc("ino %lu", (unsigned long)inum);
2783
2784 /*
2785 * Walk all extended attribute entries and remove them together with
2786 * corresponding extended attribute inodes.
2787 */
2788 lowest_xent_key(c, &key1, inum);
2789 while (1) {
2790 ino_t xattr_inum;
2791 int err;
2792
2793 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2794 if (IS_ERR(xent)) {
2795 err = PTR_ERR(xent);
2796 if (err == -ENOENT)
2797 break;
2798 return err;
2799 }
2800
2801 xattr_inum = le64_to_cpu(xent->inum);
2802 dbg_tnc("xent '%s', ino %lu", xent->name,
2803 (unsigned long)xattr_inum);
2804
2805 fname_name(&nm) = xent->name;
2806 fname_len(&nm) = le16_to_cpu(xent->nlen);
2807 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2808 if (err) {
2809 kfree(xent);
2810 return err;
2811 }
2812
2813 lowest_ino_key(c, &key1, xattr_inum);
2814 highest_ino_key(c, &key2, xattr_inum);
2815 err = ubifs_tnc_remove_range(c, &key1, &key2);
2816 if (err) {
2817 kfree(xent);
2818 return err;
2819 }
2820
2821 kfree(pxent);
2822 pxent = xent;
2823 key_read(c, &xent->key, &key1);
2824 }
2825
2826 kfree(pxent);
2827 lowest_ino_key(c, &key1, inum);
2828 highest_ino_key(c, &key2, inum);
2829
2830 return ubifs_tnc_remove_range(c, &key1, &key2);
2831 }
2832
2833 /**
2834 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2835 * @c: UBIFS file-system description object
2836 * @key: key of last entry
2837 * @nm: name of last entry found or %NULL
2838 *
2839 * This function finds and reads the next directory or extended attribute entry
2840 * after the given key (@key) if there is one. @nm is used to resolve
2841 * collisions.
2842 *
2843 * If the name of the current entry is not known and only the key is known,
2844 * @nm->name has to be %NULL. In this case the semantics of this function is a
2845 * little bit different and it returns the entry corresponding to this key, not
2846 * the next one. If the key was not found, the closest "right" entry is
2847 * returned.
2848 *
2849 * If the fist entry has to be found, @key has to contain the lowest possible
2850 * key value for this inode and @name has to be %NULL.
2851 *
2852 * This function returns the found directory or extended attribute entry node
2853 * in case of success, %-ENOENT is returned if no entry was found, and a
2854 * negative error code is returned in case of failure.
2855 */
2856 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2857 union ubifs_key *key,
2858 const struct fscrypt_name *nm)
2859 {
2860 int n, err, type = key_type(c, key);
2861 struct ubifs_znode *znode;
2862 struct ubifs_dent_node *dent;
2863 struct ubifs_zbranch *zbr;
2864 union ubifs_key *dkey;
2865
2866 //dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
2867 ubifs_assert(is_hash_key(c, key));
2868
2869 mutex_lock(&c->tnc_mutex);
2870 err = ubifs_lookup_level0(c, key, &znode, &n);
2871 if (unlikely(err < 0))
2872 goto out_unlock;
2873
2874 if (fname_len(nm) > 0) {
2875 if (err) {
2876 /* Handle collisions */
2877 if (c->replaying)
2878 err = fallible_resolve_collision(c, key, &znode, &n,
2879 nm, 0);
2880 else
2881 err = resolve_collision(c, key, &znode, &n, nm);
2882 dbg_tnc("rc returned %d, znode %p, n %d",
2883 err, znode, n);
2884 if (unlikely(err < 0))
2885 goto out_unlock;
2886 }
2887
2888 /* Now find next entry */
2889 err = tnc_next(c, &znode, &n);
2890 if (unlikely(err))
2891 goto out_unlock;
2892 } else {
2893 /*
2894 * The full name of the entry was not given, in which case the
2895 * behavior of this function is a little different and it
2896 * returns current entry, not the next one.
2897 */
2898 if (!err) {
2899 /*
2900 * However, the given key does not exist in the TNC
2901 * tree and @znode/@n variables contain the closest
2902 * "preceding" element. Switch to the next one.
2903 */
2904 err = tnc_next(c, &znode, &n);
2905 if (err)
2906 goto out_unlock;
2907 }
2908 }
2909
2910 zbr = &znode->zbranch[n];
2911 dent = kmalloc(zbr->len, GFP_NOFS);
2912 if (unlikely(!dent)) {
2913 err = -ENOMEM;
2914 goto out_unlock;
2915 }
2916
2917 /*
2918 * The above 'tnc_next()' call could lead us to the next inode, check
2919 * this.
2920 */
2921 dkey = &zbr->key;
2922 if (key_inum(c, dkey) != key_inum(c, key) ||
2923 key_type(c, dkey) != type) {
2924 err = -ENOENT;
2925 goto out_free;
2926 }
2927
2928 err = tnc_read_hashed_node(c, zbr, dent);
2929 if (unlikely(err))
2930 goto out_free;
2931
2932 mutex_unlock(&c->tnc_mutex);
2933 return dent;
2934
2935 out_free:
2936 kfree(dent);
2937 out_unlock:
2938 mutex_unlock(&c->tnc_mutex);
2939 return ERR_PTR(err);
2940 }
2941
2942 /**
2943 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2944 * @c: UBIFS file-system description object
2945 *
2946 * Destroy left-over obsolete znodes from a failed commit.
2947 */
2948 static void tnc_destroy_cnext(struct ubifs_info *c)
2949 {
2950 struct ubifs_znode *cnext;
2951
2952 if (!c->cnext)
2953 return;
2954 ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2955 cnext = c->cnext;
2956 do {
2957 struct ubifs_znode *znode = cnext;
2958
2959 cnext = cnext->cnext;
2960 if (ubifs_zn_obsolete(znode))
2961 kfree(znode);
2962 } while (cnext && cnext != c->cnext);
2963 }
2964
2965 /**
2966 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2967 * @c: UBIFS file-system description object
2968 */
2969 void ubifs_tnc_close(struct ubifs_info *c)
2970 {
2971 tnc_destroy_cnext(c);
2972 if (c->zroot.znode) {
2973 long n, freed;
2974
2975 n = atomic_long_read(&c->clean_zn_cnt);
2976 freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2977 ubifs_assert(freed == n);
2978 atomic_long_sub(n, &ubifs_clean_zn_cnt);
2979 }
2980 kfree(c->gap_lebs);
2981 kfree(c->ilebs);
2982 destroy_old_idx(c);
2983 }
2984
2985 /**
2986 * left_znode - get the znode to the left.
2987 * @c: UBIFS file-system description object
2988 * @znode: znode
2989 *
2990 * This function returns a pointer to the znode to the left of @znode or NULL if
2991 * there is not one. A negative error code is returned on failure.
2992 */
2993 static struct ubifs_znode *left_znode(struct ubifs_info *c,
2994 struct ubifs_znode *znode)
2995 {
2996 int level = znode->level;
2997
2998 while (1) {
2999 int n = znode->iip - 1;
3000
3001 /* Go up until we can go left */
3002 znode = znode->parent;
3003 if (!znode)
3004 return NULL;
3005 if (n >= 0) {
3006 /* Now go down the rightmost branch to 'level' */
3007 znode = get_znode(c, znode, n);
3008 if (IS_ERR(znode))
3009 return znode;
3010 while (znode->level != level) {
3011 n = znode->child_cnt - 1;
3012 znode = get_znode(c, znode, n);
3013 if (IS_ERR(znode))
3014 return znode;
3015 }
3016 break;
3017 }
3018 }
3019 return znode;
3020 }
3021
3022 /**
3023 * right_znode - get the znode to the right.
3024 * @c: UBIFS file-system description object
3025 * @znode: znode
3026 *
3027 * This function returns a pointer to the znode to the right of @znode or NULL
3028 * if there is not one. A negative error code is returned on failure.
3029 */
3030 static struct ubifs_znode *right_znode(struct ubifs_info *c,
3031 struct ubifs_znode *znode)
3032 {
3033 int level = znode->level;
3034
3035 while (1) {
3036 int n = znode->iip + 1;
3037
3038 /* Go up until we can go right */
3039 znode = znode->parent;
3040 if (!znode)
3041 return NULL;
3042 if (n < znode->child_cnt) {
3043 /* Now go down the leftmost branch to 'level' */
3044 znode = get_znode(c, znode, n);
3045 if (IS_ERR(znode))
3046 return znode;
3047 while (znode->level != level) {
3048 znode = get_znode(c, znode, 0);
3049 if (IS_ERR(znode))
3050 return znode;
3051 }
3052 break;
3053 }
3054 }
3055 return znode;
3056 }
3057
3058 /**
3059 * lookup_znode - find a particular indexing node from TNC.
3060 * @c: UBIFS file-system description object
3061 * @key: index node key to lookup
3062 * @level: index node level
3063 * @lnum: index node LEB number
3064 * @offs: index node offset
3065 *
3066 * This function searches an indexing node by its first key @key and its
3067 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3068 * nodes it traverses to TNC. This function is called for indexing nodes which
3069 * were found on the media by scanning, for example when garbage-collecting or
3070 * when doing in-the-gaps commit. This means that the indexing node which is
3071 * looked for does not have to have exactly the same leftmost key @key, because
3072 * the leftmost key may have been changed, in which case TNC will contain a
3073 * dirty znode which still refers the same @lnum:@offs. This function is clever
3074 * enough to recognize such indexing nodes.
3075 *
3076 * Note, if a znode was deleted or changed too much, then this function will
3077 * not find it. For situations like this UBIFS has the old index RB-tree
3078 * (indexed by @lnum:@offs).
3079 *
3080 * This function returns a pointer to the znode found or %NULL if it is not
3081 * found. A negative error code is returned on failure.
3082 */
3083 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3084 union ubifs_key *key, int level,
3085 int lnum, int offs)
3086 {
3087 struct ubifs_znode *znode, *zn;
3088 int n, nn;
3089
3090 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
3091
3092 /*
3093 * The arguments have probably been read off flash, so don't assume
3094 * they are valid.
3095 */
3096 if (level < 0)
3097 return ERR_PTR(-EINVAL);
3098
3099 /* Get the root znode */
3100 znode = c->zroot.znode;
3101 if (!znode) {
3102 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3103 if (IS_ERR(znode))
3104 return znode;
3105 }
3106 /* Check if it is the one we are looking for */
3107 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3108 return znode;
3109 /* Descend to the parent level i.e. (level + 1) */
3110 if (level >= znode->level)
3111 return NULL;
3112 while (1) {
3113 ubifs_search_zbranch(c, znode, key, &n);
3114 if (n < 0) {
3115 /*
3116 * We reached a znode where the leftmost key is greater
3117 * than the key we are searching for. This is the same
3118 * situation as the one described in a huge comment at
3119 * the end of the 'ubifs_lookup_level0()' function. And
3120 * for exactly the same reasons we have to try to look
3121 * left before giving up.
3122 */
3123 znode = left_znode(c, znode);
3124 if (!znode)
3125 return NULL;
3126 if (IS_ERR(znode))
3127 return znode;
3128 ubifs_search_zbranch(c, znode, key, &n);
3129 ubifs_assert(n >= 0);
3130 }
3131 if (znode->level == level + 1)
3132 break;
3133 znode = get_znode(c, znode, n);
3134 if (IS_ERR(znode))
3135 return znode;
3136 }
3137 /* Check if the child is the one we are looking for */
3138 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3139 return get_znode(c, znode, n);
3140 /* If the key is unique, there is nowhere else to look */
3141 if (!is_hash_key(c, key))
3142 return NULL;
3143 /*
3144 * The key is not unique and so may be also in the znodes to either
3145 * side.
3146 */
3147 zn = znode;
3148 nn = n;
3149 /* Look left */
3150 while (1) {
3151 /* Move one branch to the left */
3152 if (n)
3153 n -= 1;
3154 else {
3155 znode = left_znode(c, znode);
3156 if (!znode)
3157 break;
3158 if (IS_ERR(znode))
3159 return znode;
3160 n = znode->child_cnt - 1;
3161 }
3162 /* Check it */
3163 if (znode->zbranch[n].lnum == lnum &&
3164 znode->zbranch[n].offs == offs)
3165 return get_znode(c, znode, n);
3166 /* Stop if the key is less than the one we are looking for */
3167 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3168 break;
3169 }
3170 /* Back to the middle */
3171 znode = zn;
3172 n = nn;
3173 /* Look right */
3174 while (1) {
3175 /* Move one branch to the right */
3176 if (++n >= znode->child_cnt) {
3177 znode = right_znode(c, znode);
3178 if (!znode)
3179 break;
3180 if (IS_ERR(znode))
3181 return znode;
3182 n = 0;
3183 }
3184 /* Check it */
3185 if (znode->zbranch[n].lnum == lnum &&
3186 znode->zbranch[n].offs == offs)
3187 return get_znode(c, znode, n);
3188 /* Stop if the key is greater than the one we are looking for */
3189 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3190 break;
3191 }
3192 return NULL;
3193 }
3194
3195 /**
3196 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3197 * @c: UBIFS file-system description object
3198 * @key: key of index node
3199 * @level: index node level
3200 * @lnum: LEB number of index node
3201 * @offs: offset of index node
3202 *
3203 * This function returns %0 if the index node is not referred to in the TNC, %1
3204 * if the index node is referred to in the TNC and the corresponding znode is
3205 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3206 * znode is clean, and a negative error code in case of failure.
3207 *
3208 * Note, the @key argument has to be the key of the first child. Also note,
3209 * this function relies on the fact that 0:0 is never a valid LEB number and
3210 * offset for a main-area node.
3211 */
3212 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3213 int lnum, int offs)
3214 {
3215 struct ubifs_znode *znode;
3216
3217 znode = lookup_znode(c, key, level, lnum, offs);
3218 if (!znode)
3219 return 0;
3220 if (IS_ERR(znode))
3221 return PTR_ERR(znode);
3222
3223 return ubifs_zn_dirty(znode) ? 1 : 2;
3224 }
3225
3226 /**
3227 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3228 * @c: UBIFS file-system description object
3229 * @key: node key
3230 * @lnum: node LEB number
3231 * @offs: node offset
3232 *
3233 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3234 * not, and a negative error code in case of failure.
3235 *
3236 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3237 * and offset for a main-area node.
3238 */
3239 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3240 int lnum, int offs)
3241 {
3242 struct ubifs_zbranch *zbr;
3243 struct ubifs_znode *znode, *zn;
3244 int n, found, err, nn;
3245 const int unique = !is_hash_key(c, key);
3246
3247 found = ubifs_lookup_level0(c, key, &znode, &n);
3248 if (found < 0)
3249 return found; /* Error code */
3250 if (!found)
3251 return 0;
3252 zbr = &znode->zbranch[n];
3253 if (lnum == zbr->lnum && offs == zbr->offs)
3254 return 1; /* Found it */
3255 if (unique)
3256 return 0;
3257 /*
3258 * Because the key is not unique, we have to look left
3259 * and right as well
3260 */
3261 zn = znode;
3262 nn = n;
3263 /* Look left */
3264 while (1) {
3265 err = tnc_prev(c, &znode, &n);
3266 if (err == -ENOENT)
3267 break;
3268 if (err)
3269 return err;
3270 if (keys_cmp(c, key, &znode->zbranch[n].key))
3271 break;
3272 zbr = &znode->zbranch[n];
3273 if (lnum == zbr->lnum && offs == zbr->offs)
3274 return 1; /* Found it */
3275 }
3276 /* Look right */
3277 znode = zn;
3278 n = nn;
3279 while (1) {
3280 err = tnc_next(c, &znode, &n);
3281 if (err) {
3282 if (err == -ENOENT)
3283 return 0;
3284 return err;
3285 }
3286 if (keys_cmp(c, key, &znode->zbranch[n].key))
3287 break;
3288 zbr = &znode->zbranch[n];
3289 if (lnum == zbr->lnum && offs == zbr->offs)
3290 return 1; /* Found it */
3291 }
3292 return 0;
3293 }
3294
3295 /**
3296 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3297 * @c: UBIFS file-system description object
3298 * @key: node key
3299 * @level: index node level (if it is an index node)
3300 * @lnum: node LEB number
3301 * @offs: node offset
3302 * @is_idx: non-zero if the node is an index node
3303 *
3304 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3305 * negative error code in case of failure. For index nodes, @key has to be the
3306 * key of the first child. An index node is considered to be in the TNC only if
3307 * the corresponding znode is clean or has not been loaded.
3308 */
3309 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3310 int lnum, int offs, int is_idx)
3311 {
3312 int err;
3313
3314 mutex_lock(&c->tnc_mutex);
3315 if (is_idx) {
3316 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3317 if (err < 0)
3318 goto out_unlock;
3319 if (err == 1)
3320 /* The index node was found but it was dirty */
3321 err = 0;
3322 else if (err == 2)
3323 /* The index node was found and it was clean */
3324 err = 1;
3325 else
3326 BUG_ON(err != 0);
3327 } else
3328 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3329
3330 out_unlock:
3331 mutex_unlock(&c->tnc_mutex);
3332 return err;
3333 }
3334
3335 /**
3336 * ubifs_dirty_idx_node - dirty an index node.
3337 * @c: UBIFS file-system description object
3338 * @key: index node key
3339 * @level: index node level
3340 * @lnum: index node LEB number
3341 * @offs: index node offset
3342 *
3343 * This function loads and dirties an index node so that it can be garbage
3344 * collected. The @key argument has to be the key of the first child. This
3345 * function relies on the fact that 0:0 is never a valid LEB number and offset
3346 * for a main-area node. Returns %0 on success and a negative error code on
3347 * failure.
3348 */
3349 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3350 int lnum, int offs)
3351 {
3352 struct ubifs_znode *znode;
3353 int err = 0;
3354
3355 mutex_lock(&c->tnc_mutex);
3356 znode = lookup_znode(c, key, level, lnum, offs);
3357 if (!znode)
3358 goto out_unlock;
3359 if (IS_ERR(znode)) {
3360 err = PTR_ERR(znode);
3361 goto out_unlock;
3362 }
3363 znode = dirty_cow_bottom_up(c, znode);
3364 if (IS_ERR(znode)) {
3365 err = PTR_ERR(znode);
3366 goto out_unlock;
3367 }
3368
3369 out_unlock:
3370 mutex_unlock(&c->tnc_mutex);
3371 return err;
3372 }
3373
3374 /**
3375 * dbg_check_inode_size - check if inode size is correct.
3376 * @c: UBIFS file-system description object
3377 * @inum: inode number
3378 * @size: inode size
3379 *
3380 * This function makes sure that the inode size (@size) is correct and it does
3381 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3382 * if it has a data page beyond @size, and other negative error code in case of
3383 * other errors.
3384 */
3385 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3386 loff_t size)
3387 {
3388 int err, n;
3389 union ubifs_key from_key, to_key, *key;
3390 struct ubifs_znode *znode;
3391 unsigned int block;
3392
3393 if (!S_ISREG(inode->i_mode))
3394 return 0;
3395 if (!dbg_is_chk_gen(c))
3396 return 0;
3397
3398 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3399 data_key_init(c, &from_key, inode->i_ino, block);
3400 highest_data_key(c, &to_key, inode->i_ino);
3401
3402 mutex_lock(&c->tnc_mutex);
3403 err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3404 if (err < 0)
3405 goto out_unlock;
3406
3407 if (err) {
3408 key = &from_key;
3409 goto out_dump;
3410 }
3411
3412 err = tnc_next(c, &znode, &n);
3413 if (err == -ENOENT) {
3414 err = 0;
3415 goto out_unlock;
3416 }
3417 if (err < 0)
3418 goto out_unlock;
3419
3420 ubifs_assert(err == 0);
3421 key = &znode->zbranch[n].key;
3422 if (!key_in_range(c, key, &from_key, &to_key))
3423 goto out_unlock;
3424
3425 out_dump:
3426 block = key_block(c, key);
3427 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3428 (unsigned long)inode->i_ino, size,
3429 ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3430 mutex_unlock(&c->tnc_mutex);
3431 ubifs_dump_inode(c, inode);
3432 dump_stack();
3433 return -EINVAL;
3434
3435 out_unlock:
3436 mutex_unlock(&c->tnc_mutex);
3437 return err;
3438 }