]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/udf/balloc.c
remove pointers to the defunct UDF mailing list
[mirror_ubuntu-bionic-kernel.git] / fs / udf / balloc.c
1 /*
2 * balloc.c
3 *
4 * PURPOSE
5 * Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1999-2001 Ben Fennema
14 * (C) 1999 Stelias Computing Inc
15 *
16 * HISTORY
17 *
18 * 02/24/99 blf Created.
19 *
20 */
21
22 #include "udfdecl.h"
23
24 #include <linux/quotaops.h>
25 #include <linux/buffer_head.h>
26 #include <linux/bitops.h>
27
28 #include "udf_i.h"
29 #include "udf_sb.h"
30
31 #define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr)
32 #define udf_set_bit(nr,addr) ext2_set_bit(nr,addr)
33 #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
34 #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
35 #define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset)
36
37 #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
38 #define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y)
39 #define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y))
40 #define uintBPL_t uint(BITS_PER_LONG)
41 #define uint(x) xuint(x)
42 #define xuint(x) __le ## x
43
44 extern inline int find_next_one_bit (void * addr, int size, int offset)
45 {
46 uintBPL_t * p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG);
47 int result = offset & ~(BITS_PER_LONG-1);
48 unsigned long tmp;
49
50 if (offset >= size)
51 return size;
52 size -= result;
53 offset &= (BITS_PER_LONG-1);
54 if (offset)
55 {
56 tmp = leBPL_to_cpup(p++);
57 tmp &= ~0UL << offset;
58 if (size < BITS_PER_LONG)
59 goto found_first;
60 if (tmp)
61 goto found_middle;
62 size -= BITS_PER_LONG;
63 result += BITS_PER_LONG;
64 }
65 while (size & ~(BITS_PER_LONG-1))
66 {
67 if ((tmp = leBPL_to_cpup(p++)))
68 goto found_middle;
69 result += BITS_PER_LONG;
70 size -= BITS_PER_LONG;
71 }
72 if (!size)
73 return result;
74 tmp = leBPL_to_cpup(p);
75 found_first:
76 tmp &= ~0UL >> (BITS_PER_LONG-size);
77 found_middle:
78 return result + ffz(~tmp);
79 }
80
81 #define find_first_one_bit(addr, size)\
82 find_next_one_bit((addr), (size), 0)
83
84 static int read_block_bitmap(struct super_block * sb,
85 struct udf_bitmap *bitmap, unsigned int block, unsigned long bitmap_nr)
86 {
87 struct buffer_head *bh = NULL;
88 int retval = 0;
89 kernel_lb_addr loc;
90
91 loc.logicalBlockNum = bitmap->s_extPosition;
92 loc.partitionReferenceNum = UDF_SB_PARTITION(sb);
93
94 bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block));
95 if (!bh)
96 {
97 retval = -EIO;
98 }
99 bitmap->s_block_bitmap[bitmap_nr] = bh;
100 return retval;
101 }
102
103 static int __load_block_bitmap(struct super_block * sb,
104 struct udf_bitmap *bitmap, unsigned int block_group)
105 {
106 int retval = 0;
107 int nr_groups = bitmap->s_nr_groups;
108
109 if (block_group >= nr_groups)
110 {
111 udf_debug("block_group (%d) > nr_groups (%d)\n", block_group, nr_groups);
112 }
113
114 if (bitmap->s_block_bitmap[block_group])
115 return block_group;
116 else
117 {
118 retval = read_block_bitmap(sb, bitmap, block_group, block_group);
119 if (retval < 0)
120 return retval;
121 return block_group;
122 }
123 }
124
125 static inline int load_block_bitmap(struct super_block * sb,
126 struct udf_bitmap *bitmap, unsigned int block_group)
127 {
128 int slot;
129
130 slot = __load_block_bitmap(sb, bitmap, block_group);
131
132 if (slot < 0)
133 return slot;
134
135 if (!bitmap->s_block_bitmap[slot])
136 return -EIO;
137
138 return slot;
139 }
140
141 static void udf_bitmap_free_blocks(struct super_block * sb,
142 struct inode * inode,
143 struct udf_bitmap *bitmap,
144 kernel_lb_addr bloc, uint32_t offset, uint32_t count)
145 {
146 struct udf_sb_info *sbi = UDF_SB(sb);
147 struct buffer_head * bh = NULL;
148 unsigned long block;
149 unsigned long block_group;
150 unsigned long bit;
151 unsigned long i;
152 int bitmap_nr;
153 unsigned long overflow;
154
155 down(&sbi->s_alloc_sem);
156 if (bloc.logicalBlockNum < 0 ||
157 (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
158 {
159 udf_debug("%d < %d || %d + %d > %d\n",
160 bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
161 UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
162 goto error_return;
163 }
164
165 block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3);
166
167 do_more:
168 overflow = 0;
169 block_group = block >> (sb->s_blocksize_bits + 3);
170 bit = block % (sb->s_blocksize << 3);
171
172 /*
173 * Check to see if we are freeing blocks across a group boundary.
174 */
175 if (bit + count > (sb->s_blocksize << 3))
176 {
177 overflow = bit + count - (sb->s_blocksize << 3);
178 count -= overflow;
179 }
180 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
181 if (bitmap_nr < 0)
182 goto error_return;
183
184 bh = bitmap->s_block_bitmap[bitmap_nr];
185 for (i=0; i < count; i++)
186 {
187 if (udf_set_bit(bit + i, bh->b_data))
188 {
189 udf_debug("bit %ld already set\n", bit + i);
190 udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]);
191 }
192 else
193 {
194 if (inode)
195 DQUOT_FREE_BLOCK(inode, 1);
196 if (UDF_SB_LVIDBH(sb))
197 {
198 UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
199 cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+1);
200 }
201 }
202 }
203 mark_buffer_dirty(bh);
204 if (overflow)
205 {
206 block += count;
207 count = overflow;
208 goto do_more;
209 }
210 error_return:
211 sb->s_dirt = 1;
212 if (UDF_SB_LVIDBH(sb))
213 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
214 up(&sbi->s_alloc_sem);
215 return;
216 }
217
218 static int udf_bitmap_prealloc_blocks(struct super_block * sb,
219 struct inode * inode,
220 struct udf_bitmap *bitmap, uint16_t partition, uint32_t first_block,
221 uint32_t block_count)
222 {
223 struct udf_sb_info *sbi = UDF_SB(sb);
224 int alloc_count = 0;
225 int bit, block, block_group, group_start;
226 int nr_groups, bitmap_nr;
227 struct buffer_head *bh;
228
229 down(&sbi->s_alloc_sem);
230 if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
231 goto out;
232
233 if (first_block + block_count > UDF_SB_PARTLEN(sb, partition))
234 block_count = UDF_SB_PARTLEN(sb, partition) - first_block;
235
236 repeat:
237 nr_groups = (UDF_SB_PARTLEN(sb, partition) +
238 (sizeof(struct spaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8);
239 block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
240 block_group = block >> (sb->s_blocksize_bits + 3);
241 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
242
243 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
244 if (bitmap_nr < 0)
245 goto out;
246 bh = bitmap->s_block_bitmap[bitmap_nr];
247
248 bit = block % (sb->s_blocksize << 3);
249
250 while (bit < (sb->s_blocksize << 3) && block_count > 0)
251 {
252 if (!udf_test_bit(bit, bh->b_data))
253 goto out;
254 else if (DQUOT_PREALLOC_BLOCK(inode, 1))
255 goto out;
256 else if (!udf_clear_bit(bit, bh->b_data))
257 {
258 udf_debug("bit already cleared for block %d\n", bit);
259 DQUOT_FREE_BLOCK(inode, 1);
260 goto out;
261 }
262 block_count --;
263 alloc_count ++;
264 bit ++;
265 block ++;
266 }
267 mark_buffer_dirty(bh);
268 if (block_count > 0)
269 goto repeat;
270 out:
271 if (UDF_SB_LVIDBH(sb))
272 {
273 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
274 cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
275 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
276 }
277 sb->s_dirt = 1;
278 up(&sbi->s_alloc_sem);
279 return alloc_count;
280 }
281
282 static int udf_bitmap_new_block(struct super_block * sb,
283 struct inode * inode,
284 struct udf_bitmap *bitmap, uint16_t partition, uint32_t goal, int *err)
285 {
286 struct udf_sb_info *sbi = UDF_SB(sb);
287 int newbit, bit=0, block, block_group, group_start;
288 int end_goal, nr_groups, bitmap_nr, i;
289 struct buffer_head *bh = NULL;
290 char *ptr;
291 int newblock = 0;
292
293 *err = -ENOSPC;
294 down(&sbi->s_alloc_sem);
295
296 repeat:
297 if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
298 goal = 0;
299
300 nr_groups = bitmap->s_nr_groups;
301 block = goal + (sizeof(struct spaceBitmapDesc) << 3);
302 block_group = block >> (sb->s_blocksize_bits + 3);
303 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
304
305 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
306 if (bitmap_nr < 0)
307 goto error_return;
308 bh = bitmap->s_block_bitmap[bitmap_nr];
309 ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
310
311 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
312 {
313 bit = block % (sb->s_blocksize << 3);
314
315 if (udf_test_bit(bit, bh->b_data))
316 {
317 goto got_block;
318 }
319 end_goal = (bit + 63) & ~63;
320 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
321 if (bit < end_goal)
322 goto got_block;
323 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3));
324 newbit = (ptr - ((char *)bh->b_data)) << 3;
325 if (newbit < sb->s_blocksize << 3)
326 {
327 bit = newbit;
328 goto search_back;
329 }
330 newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit);
331 if (newbit < sb->s_blocksize << 3)
332 {
333 bit = newbit;
334 goto got_block;
335 }
336 }
337
338 for (i=0; i<(nr_groups*2); i++)
339 {
340 block_group ++;
341 if (block_group >= nr_groups)
342 block_group = 0;
343 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
344
345 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
346 if (bitmap_nr < 0)
347 goto error_return;
348 bh = bitmap->s_block_bitmap[bitmap_nr];
349 if (i < nr_groups)
350 {
351 ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
352 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
353 {
354 bit = (ptr - ((char *)bh->b_data)) << 3;
355 break;
356 }
357 }
358 else
359 {
360 bit = udf_find_next_one_bit((char *)bh->b_data, sb->s_blocksize << 3, group_start << 3);
361 if (bit < sb->s_blocksize << 3)
362 break;
363 }
364 }
365 if (i >= (nr_groups*2))
366 {
367 up(&sbi->s_alloc_sem);
368 return newblock;
369 }
370 if (bit < sb->s_blocksize << 3)
371 goto search_back;
372 else
373 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3);
374 if (bit >= sb->s_blocksize << 3)
375 {
376 up(&sbi->s_alloc_sem);
377 return 0;
378 }
379
380 search_back:
381 for (i=0; i<7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--);
382
383 got_block:
384
385 /*
386 * Check quota for allocation of this block.
387 */
388 if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
389 {
390 up(&sbi->s_alloc_sem);
391 *err = -EDQUOT;
392 return 0;
393 }
394
395 newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
396 (sizeof(struct spaceBitmapDesc) << 3);
397
398 if (!udf_clear_bit(bit, bh->b_data))
399 {
400 udf_debug("bit already cleared for block %d\n", bit);
401 goto repeat;
402 }
403
404 mark_buffer_dirty(bh);
405
406 if (UDF_SB_LVIDBH(sb))
407 {
408 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
409 cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
410 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
411 }
412 sb->s_dirt = 1;
413 up(&sbi->s_alloc_sem);
414 *err = 0;
415 return newblock;
416
417 error_return:
418 *err = -EIO;
419 up(&sbi->s_alloc_sem);
420 return 0;
421 }
422
423 static void udf_table_free_blocks(struct super_block * sb,
424 struct inode * inode,
425 struct inode * table,
426 kernel_lb_addr bloc, uint32_t offset, uint32_t count)
427 {
428 struct udf_sb_info *sbi = UDF_SB(sb);
429 uint32_t start, end;
430 uint32_t nextoffset, oextoffset, elen;
431 kernel_lb_addr nbloc, obloc, eloc;
432 struct buffer_head *obh, *nbh;
433 int8_t etype;
434 int i;
435
436 down(&sbi->s_alloc_sem);
437 if (bloc.logicalBlockNum < 0 ||
438 (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
439 {
440 udf_debug("%d < %d || %d + %d > %d\n",
441 bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
442 UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
443 goto error_return;
444 }
445
446 /* We do this up front - There are some error conditions that could occure,
447 but.. oh well */
448 if (inode)
449 DQUOT_FREE_BLOCK(inode, count);
450 if (UDF_SB_LVIDBH(sb))
451 {
452 UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
453 cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+count);
454 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
455 }
456
457 start = bloc.logicalBlockNum + offset;
458 end = bloc.logicalBlockNum + offset + count - 1;
459
460 oextoffset = nextoffset = sizeof(struct unallocSpaceEntry);
461 elen = 0;
462 obloc = nbloc = UDF_I_LOCATION(table);
463
464 obh = nbh = NULL;
465
466 while (count && (etype =
467 udf_next_aext(table, &nbloc, &nextoffset, &eloc, &elen, &nbh, 1)) != -1)
468 {
469 if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) ==
470 start))
471 {
472 if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
473 {
474 count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
475 start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
476 elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
477 }
478 else
479 {
480 elen = (etype << 30) |
481 (elen + (count << sb->s_blocksize_bits));
482 start += count;
483 count = 0;
484 }
485 udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1);
486 }
487 else if (eloc.logicalBlockNum == (end + 1))
488 {
489 if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
490 {
491 count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
492 end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
493 eloc.logicalBlockNum -=
494 ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
495 elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
496 }
497 else
498 {
499 eloc.logicalBlockNum = start;
500 elen = (etype << 30) |
501 (elen + (count << sb->s_blocksize_bits));
502 end -= count;
503 count = 0;
504 }
505 udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1);
506 }
507
508 if (nbh != obh)
509 {
510 i = -1;
511 obloc = nbloc;
512 udf_release_data(obh);
513 atomic_inc(&nbh->b_count);
514 obh = nbh;
515 oextoffset = 0;
516 }
517 else
518 oextoffset = nextoffset;
519 }
520
521 if (count)
522 {
523 /* NOTE: we CANNOT use udf_add_aext here, as it can try to allocate
524 a new block, and since we hold the super block lock already
525 very bad things would happen :)
526
527 We copy the behavior of udf_add_aext, but instead of
528 trying to allocate a new block close to the existing one,
529 we just steal a block from the extent we are trying to add.
530
531 It would be nice if the blocks were close together, but it
532 isn't required.
533 */
534
535 int adsize;
536 short_ad *sad = NULL;
537 long_ad *lad = NULL;
538 struct allocExtDesc *aed;
539
540 eloc.logicalBlockNum = start;
541 elen = EXT_RECORDED_ALLOCATED |
542 (count << sb->s_blocksize_bits);
543
544 if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
545 adsize = sizeof(short_ad);
546 else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
547 adsize = sizeof(long_ad);
548 else
549 {
550 udf_release_data(obh);
551 udf_release_data(nbh);
552 goto error_return;
553 }
554
555 if (nextoffset + (2 * adsize) > sb->s_blocksize)
556 {
557 char *sptr, *dptr;
558 int loffset;
559
560 udf_release_data(obh);
561 obh = nbh;
562 obloc = nbloc;
563 oextoffset = nextoffset;
564
565 /* Steal a block from the extent being free'd */
566 nbloc.logicalBlockNum = eloc.logicalBlockNum;
567 eloc.logicalBlockNum ++;
568 elen -= sb->s_blocksize;
569
570 if (!(nbh = udf_tread(sb,
571 udf_get_lb_pblock(sb, nbloc, 0))))
572 {
573 udf_release_data(obh);
574 goto error_return;
575 }
576 aed = (struct allocExtDesc *)(nbh->b_data);
577 aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum);
578 if (nextoffset + adsize > sb->s_blocksize)
579 {
580 loffset = nextoffset;
581 aed->lengthAllocDescs = cpu_to_le32(adsize);
582 if (obh)
583 sptr = UDF_I_DATA(inode) + nextoffset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode) - adsize;
584 else
585 sptr = obh->b_data + nextoffset - adsize;
586 dptr = nbh->b_data + sizeof(struct allocExtDesc);
587 memcpy(dptr, sptr, adsize);
588 nextoffset = sizeof(struct allocExtDesc) + adsize;
589 }
590 else
591 {
592 loffset = nextoffset + adsize;
593 aed->lengthAllocDescs = cpu_to_le32(0);
594 sptr = (obh)->b_data + nextoffset;
595 nextoffset = sizeof(struct allocExtDesc);
596
597 if (obh)
598 {
599 aed = (struct allocExtDesc *)(obh)->b_data;
600 aed->lengthAllocDescs =
601 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
602 }
603 else
604 {
605 UDF_I_LENALLOC(table) += adsize;
606 mark_inode_dirty(table);
607 }
608 }
609 if (UDF_SB_UDFREV(sb) >= 0x0200)
610 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
611 nbloc.logicalBlockNum, sizeof(tag));
612 else
613 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
614 nbloc.logicalBlockNum, sizeof(tag));
615 switch (UDF_I_ALLOCTYPE(table))
616 {
617 case ICBTAG_FLAG_AD_SHORT:
618 {
619 sad = (short_ad *)sptr;
620 sad->extLength = cpu_to_le32(
621 EXT_NEXT_EXTENT_ALLOCDECS |
622 sb->s_blocksize);
623 sad->extPosition = cpu_to_le32(nbloc.logicalBlockNum);
624 break;
625 }
626 case ICBTAG_FLAG_AD_LONG:
627 {
628 lad = (long_ad *)sptr;
629 lad->extLength = cpu_to_le32(
630 EXT_NEXT_EXTENT_ALLOCDECS |
631 sb->s_blocksize);
632 lad->extLocation = cpu_to_lelb(nbloc);
633 break;
634 }
635 }
636 if (obh)
637 {
638 udf_update_tag(obh->b_data, loffset);
639 mark_buffer_dirty(obh);
640 }
641 else
642 mark_inode_dirty(table);
643 }
644
645 if (elen) /* It's possible that stealing the block emptied the extent */
646 {
647 udf_write_aext(table, nbloc, &nextoffset, eloc, elen, nbh, 1);
648
649 if (!nbh)
650 {
651 UDF_I_LENALLOC(table) += adsize;
652 mark_inode_dirty(table);
653 }
654 else
655 {
656 aed = (struct allocExtDesc *)nbh->b_data;
657 aed->lengthAllocDescs =
658 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
659 udf_update_tag(nbh->b_data, nextoffset);
660 mark_buffer_dirty(nbh);
661 }
662 }
663 }
664
665 udf_release_data(nbh);
666 udf_release_data(obh);
667
668 error_return:
669 sb->s_dirt = 1;
670 up(&sbi->s_alloc_sem);
671 return;
672 }
673
674 static int udf_table_prealloc_blocks(struct super_block * sb,
675 struct inode * inode,
676 struct inode *table, uint16_t partition, uint32_t first_block,
677 uint32_t block_count)
678 {
679 struct udf_sb_info *sbi = UDF_SB(sb);
680 int alloc_count = 0;
681 uint32_t extoffset, elen, adsize;
682 kernel_lb_addr bloc, eloc;
683 struct buffer_head *bh;
684 int8_t etype = -1;
685
686 if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
687 return 0;
688
689 if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
690 adsize = sizeof(short_ad);
691 else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
692 adsize = sizeof(long_ad);
693 else
694 return 0;
695
696 down(&sbi->s_alloc_sem);
697 extoffset = sizeof(struct unallocSpaceEntry);
698 bloc = UDF_I_LOCATION(table);
699
700 bh = NULL;
701 eloc.logicalBlockNum = 0xFFFFFFFF;
702
703 while (first_block != eloc.logicalBlockNum && (etype =
704 udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1)
705 {
706 udf_debug("eloc=%d, elen=%d, first_block=%d\n",
707 eloc.logicalBlockNum, elen, first_block);
708 ; /* empty loop body */
709 }
710
711 if (first_block == eloc.logicalBlockNum)
712 {
713 extoffset -= adsize;
714
715 alloc_count = (elen >> sb->s_blocksize_bits);
716 if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count))
717 alloc_count = 0;
718 else if (alloc_count > block_count)
719 {
720 alloc_count = block_count;
721 eloc.logicalBlockNum += alloc_count;
722 elen -= (alloc_count << sb->s_blocksize_bits);
723 udf_write_aext(table, bloc, &extoffset, eloc, (etype << 30) | elen, bh, 1);
724 }
725 else
726 udf_delete_aext(table, bloc, extoffset, eloc, (etype << 30) | elen, bh);
727 }
728 else
729 alloc_count = 0;
730
731 udf_release_data(bh);
732
733 if (alloc_count && UDF_SB_LVIDBH(sb))
734 {
735 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
736 cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
737 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
738 sb->s_dirt = 1;
739 }
740 up(&sbi->s_alloc_sem);
741 return alloc_count;
742 }
743
744 static int udf_table_new_block(struct super_block * sb,
745 struct inode * inode,
746 struct inode *table, uint16_t partition, uint32_t goal, int *err)
747 {
748 struct udf_sb_info *sbi = UDF_SB(sb);
749 uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
750 uint32_t newblock = 0, adsize;
751 uint32_t extoffset, goal_extoffset, elen, goal_elen = 0;
752 kernel_lb_addr bloc, goal_bloc, eloc, goal_eloc;
753 struct buffer_head *bh, *goal_bh;
754 int8_t etype;
755
756 *err = -ENOSPC;
757
758 if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
759 adsize = sizeof(short_ad);
760 else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
761 adsize = sizeof(long_ad);
762 else
763 return newblock;
764
765 down(&sbi->s_alloc_sem);
766 if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
767 goal = 0;
768
769 /* We search for the closest matching block to goal. If we find a exact hit,
770 we stop. Otherwise we keep going till we run out of extents.
771 We store the buffer_head, bloc, and extoffset of the current closest
772 match and use that when we are done.
773 */
774
775 extoffset = sizeof(struct unallocSpaceEntry);
776 bloc = UDF_I_LOCATION(table);
777
778 goal_bh = bh = NULL;
779
780 while (spread && (etype =
781 udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1)
782 {
783 if (goal >= eloc.logicalBlockNum)
784 {
785 if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits))
786 nspread = 0;
787 else
788 nspread = goal - eloc.logicalBlockNum -
789 (elen >> sb->s_blocksize_bits);
790 }
791 else
792 nspread = eloc.logicalBlockNum - goal;
793
794 if (nspread < spread)
795 {
796 spread = nspread;
797 if (goal_bh != bh)
798 {
799 udf_release_data(goal_bh);
800 goal_bh = bh;
801 atomic_inc(&goal_bh->b_count);
802 }
803 goal_bloc = bloc;
804 goal_extoffset = extoffset - adsize;
805 goal_eloc = eloc;
806 goal_elen = (etype << 30) | elen;
807 }
808 }
809
810 udf_release_data(bh);
811
812 if (spread == 0xFFFFFFFF)
813 {
814 udf_release_data(goal_bh);
815 up(&sbi->s_alloc_sem);
816 return 0;
817 }
818
819 /* Only allocate blocks from the beginning of the extent.
820 That way, we only delete (empty) extents, never have to insert an
821 extent because of splitting */
822 /* This works, but very poorly.... */
823
824 newblock = goal_eloc.logicalBlockNum;
825 goal_eloc.logicalBlockNum ++;
826 goal_elen -= sb->s_blocksize;
827
828 if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
829 {
830 udf_release_data(goal_bh);
831 up(&sbi->s_alloc_sem);
832 *err = -EDQUOT;
833 return 0;
834 }
835
836 if (goal_elen)
837 udf_write_aext(table, goal_bloc, &goal_extoffset, goal_eloc, goal_elen, goal_bh, 1);
838 else
839 udf_delete_aext(table, goal_bloc, goal_extoffset, goal_eloc, goal_elen, goal_bh);
840 udf_release_data(goal_bh);
841
842 if (UDF_SB_LVIDBH(sb))
843 {
844 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
845 cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
846 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
847 }
848
849 sb->s_dirt = 1;
850 up(&sbi->s_alloc_sem);
851 *err = 0;
852 return newblock;
853 }
854
855 inline void udf_free_blocks(struct super_block * sb,
856 struct inode * inode,
857 kernel_lb_addr bloc, uint32_t offset, uint32_t count)
858 {
859 uint16_t partition = bloc.partitionReferenceNum;
860
861 if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
862 {
863 return udf_bitmap_free_blocks(sb, inode,
864 UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
865 bloc, offset, count);
866 }
867 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
868 {
869 return udf_table_free_blocks(sb, inode,
870 UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
871 bloc, offset, count);
872 }
873 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
874 {
875 return udf_bitmap_free_blocks(sb, inode,
876 UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
877 bloc, offset, count);
878 }
879 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
880 {
881 return udf_table_free_blocks(sb, inode,
882 UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
883 bloc, offset, count);
884 }
885 else
886 return;
887 }
888
889 inline int udf_prealloc_blocks(struct super_block * sb,
890 struct inode * inode,
891 uint16_t partition, uint32_t first_block, uint32_t block_count)
892 {
893 if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
894 {
895 return udf_bitmap_prealloc_blocks(sb, inode,
896 UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
897 partition, first_block, block_count);
898 }
899 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
900 {
901 return udf_table_prealloc_blocks(sb, inode,
902 UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
903 partition, first_block, block_count);
904 }
905 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
906 {
907 return udf_bitmap_prealloc_blocks(sb, inode,
908 UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
909 partition, first_block, block_count);
910 }
911 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
912 {
913 return udf_table_prealloc_blocks(sb, inode,
914 UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
915 partition, first_block, block_count);
916 }
917 else
918 return 0;
919 }
920
921 inline int udf_new_block(struct super_block * sb,
922 struct inode * inode,
923 uint16_t partition, uint32_t goal, int *err)
924 {
925 if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
926 {
927 return udf_bitmap_new_block(sb, inode,
928 UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
929 partition, goal, err);
930 }
931 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
932 {
933 return udf_table_new_block(sb, inode,
934 UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
935 partition, goal, err);
936 }
937 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
938 {
939 return udf_bitmap_new_block(sb, inode,
940 UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
941 partition, goal, err);
942 }
943 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
944 {
945 return udf_table_new_block(sb, inode,
946 UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
947 partition, goal, err);
948 }
949 else
950 {
951 *err = -EIO;
952 return 0;
953 }
954 }