]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/udf/inode.c
Merge tag 'kgdb-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/danielt...
[mirror_ubuntu-jammy-kernel.git] / fs / udf / inode.c
1 /*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42
43 #include "udf_i.h"
44 #include "udf_sb.h"
45
46 #define EXTENT_MERGE_SIZE 5
47
48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 FE_PERM_O_DELETE)
54
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65 struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73 struct udf_inode_info *iinfo = UDF_I(inode);
74
75 if (iinfo->cached_extent.lstart != -1) {
76 brelse(iinfo->cached_extent.epos.bh);
77 iinfo->cached_extent.lstart = -1;
78 }
79 }
80
81 /* Invalidate extent cache */
82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84 struct udf_inode_info *iinfo = UDF_I(inode);
85
86 spin_lock(&iinfo->i_extent_cache_lock);
87 __udf_clear_extent_cache(inode);
88 spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90
91 /* Return contents of extent cache */
92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 loff_t *lbcount, struct extent_position *pos)
94 {
95 struct udf_inode_info *iinfo = UDF_I(inode);
96 int ret = 0;
97
98 spin_lock(&iinfo->i_extent_cache_lock);
99 if ((iinfo->cached_extent.lstart <= bcount) &&
100 (iinfo->cached_extent.lstart != -1)) {
101 /* Cache hit */
102 *lbcount = iinfo->cached_extent.lstart;
103 memcpy(pos, &iinfo->cached_extent.epos,
104 sizeof(struct extent_position));
105 if (pos->bh)
106 get_bh(pos->bh);
107 ret = 1;
108 }
109 spin_unlock(&iinfo->i_extent_cache_lock);
110 return ret;
111 }
112
113 /* Add extent to extent cache */
114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 struct extent_position *pos)
116 {
117 struct udf_inode_info *iinfo = UDF_I(inode);
118
119 spin_lock(&iinfo->i_extent_cache_lock);
120 /* Invalidate previously cached extent */
121 __udf_clear_extent_cache(inode);
122 if (pos->bh)
123 get_bh(pos->bh);
124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 iinfo->cached_extent.lstart = estart;
126 switch (iinfo->i_alloc_type) {
127 case ICBTAG_FLAG_AD_SHORT:
128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 break;
130 case ICBTAG_FLAG_AD_LONG:
131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 break;
133 }
134 spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136
137 void udf_evict_inode(struct inode *inode)
138 {
139 struct udf_inode_info *iinfo = UDF_I(inode);
140 int want_delete = 0;
141
142 if (!is_bad_inode(inode)) {
143 if (!inode->i_nlink) {
144 want_delete = 1;
145 udf_setsize(inode, 0);
146 udf_update_inode(inode, IS_SYNC(inode));
147 }
148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 inode->i_size != iinfo->i_lenExtents) {
150 udf_warn(inode->i_sb,
151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 inode->i_ino, inode->i_mode,
153 (unsigned long long)inode->i_size,
154 (unsigned long long)iinfo->i_lenExtents);
155 }
156 }
157 truncate_inode_pages_final(&inode->i_data);
158 invalidate_inode_buffers(inode);
159 clear_inode(inode);
160 kfree(iinfo->i_data);
161 iinfo->i_data = NULL;
162 udf_clear_extent_cache(inode);
163 if (want_delete) {
164 udf_free_inode(inode);
165 }
166 }
167
168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170 struct inode *inode = mapping->host;
171 struct udf_inode_info *iinfo = UDF_I(inode);
172 loff_t isize = inode->i_size;
173
174 if (to > isize) {
175 truncate_pagecache(inode, isize);
176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 down_write(&iinfo->i_data_sem);
178 udf_clear_extent_cache(inode);
179 udf_truncate_extents(inode);
180 up_write(&iinfo->i_data_sem);
181 }
182 }
183 }
184
185 static int udf_writepage(struct page *page, struct writeback_control *wbc)
186 {
187 return block_write_full_page(page, udf_get_block, wbc);
188 }
189
190 static int udf_writepages(struct address_space *mapping,
191 struct writeback_control *wbc)
192 {
193 return mpage_writepages(mapping, wbc, udf_get_block);
194 }
195
196 static int udf_readpage(struct file *file, struct page *page)
197 {
198 return mpage_readpage(page, udf_get_block);
199 }
200
201 static void udf_readahead(struct readahead_control *rac)
202 {
203 mpage_readahead(rac, udf_get_block);
204 }
205
206 static int udf_write_begin(struct file *file, struct address_space *mapping,
207 loff_t pos, unsigned len, unsigned flags,
208 struct page **pagep, void **fsdata)
209 {
210 int ret;
211
212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213 if (unlikely(ret))
214 udf_write_failed(mapping, pos + len);
215 return ret;
216 }
217
218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219 {
220 struct file *file = iocb->ki_filp;
221 struct address_space *mapping = file->f_mapping;
222 struct inode *inode = mapping->host;
223 size_t count = iov_iter_count(iter);
224 ssize_t ret;
225
226 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 udf_write_failed(mapping, iocb->ki_pos + count);
229 return ret;
230 }
231
232 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233 {
234 return generic_block_bmap(mapping, block, udf_get_block);
235 }
236
237 const struct address_space_operations udf_aops = {
238 .set_page_dirty = __set_page_dirty_buffers,
239 .readpage = udf_readpage,
240 .readahead = udf_readahead,
241 .writepage = udf_writepage,
242 .writepages = udf_writepages,
243 .write_begin = udf_write_begin,
244 .write_end = generic_write_end,
245 .direct_IO = udf_direct_IO,
246 .bmap = udf_bmap,
247 };
248
249 /*
250 * Expand file stored in ICB to a normal one-block-file
251 *
252 * This function requires i_data_sem for writing and releases it.
253 * This function requires i_mutex held
254 */
255 int udf_expand_file_adinicb(struct inode *inode)
256 {
257 struct page *page;
258 char *kaddr;
259 struct udf_inode_info *iinfo = UDF_I(inode);
260 int err;
261 struct writeback_control udf_wbc = {
262 .sync_mode = WB_SYNC_NONE,
263 .nr_to_write = 1,
264 };
265
266 WARN_ON_ONCE(!inode_is_locked(inode));
267 if (!iinfo->i_lenAlloc) {
268 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
269 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
270 else
271 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
272 /* from now on we have normal address_space methods */
273 inode->i_data.a_ops = &udf_aops;
274 up_write(&iinfo->i_data_sem);
275 mark_inode_dirty(inode);
276 return 0;
277 }
278 /*
279 * Release i_data_sem so that we can lock a page - page lock ranks
280 * above i_data_sem. i_mutex still protects us against file changes.
281 */
282 up_write(&iinfo->i_data_sem);
283
284 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
285 if (!page)
286 return -ENOMEM;
287
288 if (!PageUptodate(page)) {
289 kaddr = kmap_atomic(page);
290 memset(kaddr + iinfo->i_lenAlloc, 0x00,
291 PAGE_SIZE - iinfo->i_lenAlloc);
292 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
293 iinfo->i_lenAlloc);
294 flush_dcache_page(page);
295 SetPageUptodate(page);
296 kunmap_atomic(kaddr);
297 }
298 down_write(&iinfo->i_data_sem);
299 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
300 iinfo->i_lenAlloc);
301 iinfo->i_lenAlloc = 0;
302 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
303 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
304 else
305 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
306 /* from now on we have normal address_space methods */
307 inode->i_data.a_ops = &udf_aops;
308 up_write(&iinfo->i_data_sem);
309 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
310 if (err) {
311 /* Restore everything back so that we don't lose data... */
312 lock_page(page);
313 down_write(&iinfo->i_data_sem);
314 kaddr = kmap_atomic(page);
315 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
316 kunmap_atomic(kaddr);
317 unlock_page(page);
318 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
319 inode->i_data.a_ops = &udf_adinicb_aops;
320 up_write(&iinfo->i_data_sem);
321 }
322 put_page(page);
323 mark_inode_dirty(inode);
324
325 return err;
326 }
327
328 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
329 udf_pblk_t *block, int *err)
330 {
331 udf_pblk_t newblock;
332 struct buffer_head *dbh = NULL;
333 struct kernel_lb_addr eloc;
334 uint8_t alloctype;
335 struct extent_position epos;
336
337 struct udf_fileident_bh sfibh, dfibh;
338 loff_t f_pos = udf_ext0_offset(inode);
339 int size = udf_ext0_offset(inode) + inode->i_size;
340 struct fileIdentDesc cfi, *sfi, *dfi;
341 struct udf_inode_info *iinfo = UDF_I(inode);
342
343 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344 alloctype = ICBTAG_FLAG_AD_SHORT;
345 else
346 alloctype = ICBTAG_FLAG_AD_LONG;
347
348 if (!inode->i_size) {
349 iinfo->i_alloc_type = alloctype;
350 mark_inode_dirty(inode);
351 return NULL;
352 }
353
354 /* alloc block, and copy data to it */
355 *block = udf_new_block(inode->i_sb, inode,
356 iinfo->i_location.partitionReferenceNum,
357 iinfo->i_location.logicalBlockNum, err);
358 if (!(*block))
359 return NULL;
360 newblock = udf_get_pblock(inode->i_sb, *block,
361 iinfo->i_location.partitionReferenceNum,
362 0);
363 if (!newblock)
364 return NULL;
365 dbh = udf_tgetblk(inode->i_sb, newblock);
366 if (!dbh)
367 return NULL;
368 lock_buffer(dbh);
369 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370 set_buffer_uptodate(dbh);
371 unlock_buffer(dbh);
372 mark_buffer_dirty_inode(dbh, inode);
373
374 sfibh.soffset = sfibh.eoffset =
375 f_pos & (inode->i_sb->s_blocksize - 1);
376 sfibh.sbh = sfibh.ebh = NULL;
377 dfibh.soffset = dfibh.eoffset = 0;
378 dfibh.sbh = dfibh.ebh = dbh;
379 while (f_pos < size) {
380 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382 NULL, NULL, NULL);
383 if (!sfi) {
384 brelse(dbh);
385 return NULL;
386 }
387 iinfo->i_alloc_type = alloctype;
388 sfi->descTag.tagLocation = cpu_to_le32(*block);
389 dfibh.soffset = dfibh.eoffset;
390 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393 udf_get_fi_ident(sfi))) {
394 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
395 brelse(dbh);
396 return NULL;
397 }
398 }
399 mark_buffer_dirty_inode(dbh, inode);
400
401 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
402 iinfo->i_lenAlloc = 0;
403 eloc.logicalBlockNum = *block;
404 eloc.partitionReferenceNum =
405 iinfo->i_location.partitionReferenceNum;
406 iinfo->i_lenExtents = inode->i_size;
407 epos.bh = NULL;
408 epos.block = iinfo->i_location;
409 epos.offset = udf_file_entry_alloc_offset(inode);
410 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
411 /* UniqueID stuff */
412
413 brelse(epos.bh);
414 mark_inode_dirty(inode);
415 return dbh;
416 }
417
418 static int udf_get_block(struct inode *inode, sector_t block,
419 struct buffer_head *bh_result, int create)
420 {
421 int err, new;
422 sector_t phys = 0;
423 struct udf_inode_info *iinfo;
424
425 if (!create) {
426 phys = udf_block_map(inode, block);
427 if (phys)
428 map_bh(bh_result, inode->i_sb, phys);
429 return 0;
430 }
431
432 err = -EIO;
433 new = 0;
434 iinfo = UDF_I(inode);
435
436 down_write(&iinfo->i_data_sem);
437 if (block == iinfo->i_next_alloc_block + 1) {
438 iinfo->i_next_alloc_block++;
439 iinfo->i_next_alloc_goal++;
440 }
441
442 udf_clear_extent_cache(inode);
443 phys = inode_getblk(inode, block, &err, &new);
444 if (!phys)
445 goto abort;
446
447 if (new)
448 set_buffer_new(bh_result);
449 map_bh(bh_result, inode->i_sb, phys);
450
451 abort:
452 up_write(&iinfo->i_data_sem);
453 return err;
454 }
455
456 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
457 int create, int *err)
458 {
459 struct buffer_head *bh;
460 struct buffer_head dummy;
461
462 dummy.b_state = 0;
463 dummy.b_blocknr = -1000;
464 *err = udf_get_block(inode, block, &dummy, create);
465 if (!*err && buffer_mapped(&dummy)) {
466 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
467 if (buffer_new(&dummy)) {
468 lock_buffer(bh);
469 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
470 set_buffer_uptodate(bh);
471 unlock_buffer(bh);
472 mark_buffer_dirty_inode(bh, inode);
473 }
474 return bh;
475 }
476
477 return NULL;
478 }
479
480 /* Extend the file with new blocks totaling 'new_block_bytes',
481 * return the number of extents added
482 */
483 static int udf_do_extend_file(struct inode *inode,
484 struct extent_position *last_pos,
485 struct kernel_long_ad *last_ext,
486 loff_t new_block_bytes)
487 {
488 uint32_t add;
489 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
490 struct super_block *sb = inode->i_sb;
491 struct kernel_lb_addr prealloc_loc = {};
492 uint32_t prealloc_len = 0;
493 struct udf_inode_info *iinfo;
494 int err;
495
496 /* The previous extent is fake and we should not extend by anything
497 * - there's nothing to do... */
498 if (!new_block_bytes && fake)
499 return 0;
500
501 iinfo = UDF_I(inode);
502 /* Round the last extent up to a multiple of block size */
503 if (last_ext->extLength & (sb->s_blocksize - 1)) {
504 last_ext->extLength =
505 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
506 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
507 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
508 iinfo->i_lenExtents =
509 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
510 ~(sb->s_blocksize - 1);
511 }
512
513 /* Last extent are just preallocated blocks? */
514 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
515 EXT_NOT_RECORDED_ALLOCATED) {
516 /* Save the extent so that we can reattach it to the end */
517 prealloc_loc = last_ext->extLocation;
518 prealloc_len = last_ext->extLength;
519 /* Mark the extent as a hole */
520 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522 last_ext->extLocation.logicalBlockNum = 0;
523 last_ext->extLocation.partitionReferenceNum = 0;
524 }
525
526 /* Can we merge with the previous extent? */
527 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
528 EXT_NOT_RECORDED_NOT_ALLOCATED) {
529 add = (1 << 30) - sb->s_blocksize -
530 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
531 if (add > new_block_bytes)
532 add = new_block_bytes;
533 new_block_bytes -= add;
534 last_ext->extLength += add;
535 }
536
537 if (fake) {
538 udf_add_aext(inode, last_pos, &last_ext->extLocation,
539 last_ext->extLength, 1);
540 count++;
541 } else {
542 struct kernel_lb_addr tmploc;
543 uint32_t tmplen;
544
545 udf_write_aext(inode, last_pos, &last_ext->extLocation,
546 last_ext->extLength, 1);
547
548 /*
549 * We've rewritten the last extent. If we are going to add
550 * more extents, we may need to enter possible following
551 * empty indirect extent.
552 */
553 if (new_block_bytes || prealloc_len)
554 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
555 }
556
557 /* Managed to do everything necessary? */
558 if (!new_block_bytes)
559 goto out;
560
561 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
562 last_ext->extLocation.logicalBlockNum = 0;
563 last_ext->extLocation.partitionReferenceNum = 0;
564 add = (1 << 30) - sb->s_blocksize;
565 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
566
567 /* Create enough extents to cover the whole hole */
568 while (new_block_bytes > add) {
569 new_block_bytes -= add;
570 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
571 last_ext->extLength, 1);
572 if (err)
573 return err;
574 count++;
575 }
576 if (new_block_bytes) {
577 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
578 new_block_bytes;
579 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
580 last_ext->extLength, 1);
581 if (err)
582 return err;
583 count++;
584 }
585
586 out:
587 /* Do we have some preallocated blocks saved? */
588 if (prealloc_len) {
589 err = udf_add_aext(inode, last_pos, &prealloc_loc,
590 prealloc_len, 1);
591 if (err)
592 return err;
593 last_ext->extLocation = prealloc_loc;
594 last_ext->extLength = prealloc_len;
595 count++;
596 }
597
598 /* last_pos should point to the last written extent... */
599 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
600 last_pos->offset -= sizeof(struct short_ad);
601 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
602 last_pos->offset -= sizeof(struct long_ad);
603 else
604 return -EIO;
605
606 return count;
607 }
608
609 /* Extend the final block of the file to final_block_len bytes */
610 static void udf_do_extend_final_block(struct inode *inode,
611 struct extent_position *last_pos,
612 struct kernel_long_ad *last_ext,
613 uint32_t final_block_len)
614 {
615 struct super_block *sb = inode->i_sb;
616 uint32_t added_bytes;
617
618 added_bytes = final_block_len -
619 (last_ext->extLength & (sb->s_blocksize - 1));
620 last_ext->extLength += added_bytes;
621 UDF_I(inode)->i_lenExtents += added_bytes;
622
623 udf_write_aext(inode, last_pos, &last_ext->extLocation,
624 last_ext->extLength, 1);
625 }
626
627 static int udf_extend_file(struct inode *inode, loff_t newsize)
628 {
629
630 struct extent_position epos;
631 struct kernel_lb_addr eloc;
632 uint32_t elen;
633 int8_t etype;
634 struct super_block *sb = inode->i_sb;
635 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
636 unsigned long partial_final_block;
637 int adsize;
638 struct udf_inode_info *iinfo = UDF_I(inode);
639 struct kernel_long_ad extent;
640 int err = 0;
641 int within_final_block;
642
643 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
644 adsize = sizeof(struct short_ad);
645 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
646 adsize = sizeof(struct long_ad);
647 else
648 BUG();
649
650 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
651 within_final_block = (etype != -1);
652
653 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
654 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
655 /* File has no extents at all or has empty last
656 * indirect extent! Create a fake extent... */
657 extent.extLocation.logicalBlockNum = 0;
658 extent.extLocation.partitionReferenceNum = 0;
659 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
660 } else {
661 epos.offset -= adsize;
662 etype = udf_next_aext(inode, &epos, &extent.extLocation,
663 &extent.extLength, 0);
664 extent.extLength |= etype << 30;
665 }
666
667 partial_final_block = newsize & (sb->s_blocksize - 1);
668
669 /* File has extent covering the new size (could happen when extending
670 * inside a block)?
671 */
672 if (within_final_block) {
673 /* Extending file within the last file block */
674 udf_do_extend_final_block(inode, &epos, &extent,
675 partial_final_block);
676 } else {
677 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
678 partial_final_block;
679 err = udf_do_extend_file(inode, &epos, &extent, add);
680 }
681
682 if (err < 0)
683 goto out;
684 err = 0;
685 iinfo->i_lenExtents = newsize;
686 out:
687 brelse(epos.bh);
688 return err;
689 }
690
691 static sector_t inode_getblk(struct inode *inode, sector_t block,
692 int *err, int *new)
693 {
694 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
695 struct extent_position prev_epos, cur_epos, next_epos;
696 int count = 0, startnum = 0, endnum = 0;
697 uint32_t elen = 0, tmpelen;
698 struct kernel_lb_addr eloc, tmpeloc;
699 int c = 1;
700 loff_t lbcount = 0, b_off = 0;
701 udf_pblk_t newblocknum, newblock;
702 sector_t offset = 0;
703 int8_t etype;
704 struct udf_inode_info *iinfo = UDF_I(inode);
705 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
706 int lastblock = 0;
707 bool isBeyondEOF;
708
709 *err = 0;
710 *new = 0;
711 prev_epos.offset = udf_file_entry_alloc_offset(inode);
712 prev_epos.block = iinfo->i_location;
713 prev_epos.bh = NULL;
714 cur_epos = next_epos = prev_epos;
715 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
716
717 /* find the extent which contains the block we are looking for.
718 alternate between laarr[0] and laarr[1] for locations of the
719 current extent, and the previous extent */
720 do {
721 if (prev_epos.bh != cur_epos.bh) {
722 brelse(prev_epos.bh);
723 get_bh(cur_epos.bh);
724 prev_epos.bh = cur_epos.bh;
725 }
726 if (cur_epos.bh != next_epos.bh) {
727 brelse(cur_epos.bh);
728 get_bh(next_epos.bh);
729 cur_epos.bh = next_epos.bh;
730 }
731
732 lbcount += elen;
733
734 prev_epos.block = cur_epos.block;
735 cur_epos.block = next_epos.block;
736
737 prev_epos.offset = cur_epos.offset;
738 cur_epos.offset = next_epos.offset;
739
740 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
741 if (etype == -1)
742 break;
743
744 c = !c;
745
746 laarr[c].extLength = (etype << 30) | elen;
747 laarr[c].extLocation = eloc;
748
749 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
750 pgoal = eloc.logicalBlockNum +
751 ((elen + inode->i_sb->s_blocksize - 1) >>
752 inode->i_sb->s_blocksize_bits);
753
754 count++;
755 } while (lbcount + elen <= b_off);
756
757 b_off -= lbcount;
758 offset = b_off >> inode->i_sb->s_blocksize_bits;
759 /*
760 * Move prev_epos and cur_epos into indirect extent if we are at
761 * the pointer to it
762 */
763 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
764 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
765
766 /* if the extent is allocated and recorded, return the block
767 if the extent is not a multiple of the blocksize, round up */
768
769 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
770 if (elen & (inode->i_sb->s_blocksize - 1)) {
771 elen = EXT_RECORDED_ALLOCATED |
772 ((elen + inode->i_sb->s_blocksize - 1) &
773 ~(inode->i_sb->s_blocksize - 1));
774 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
775 }
776 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
777 goto out_free;
778 }
779
780 /* Are we beyond EOF? */
781 if (etype == -1) {
782 int ret;
783 loff_t hole_len;
784 isBeyondEOF = true;
785 if (count) {
786 if (c)
787 laarr[0] = laarr[1];
788 startnum = 1;
789 } else {
790 /* Create a fake extent when there's not one */
791 memset(&laarr[0].extLocation, 0x00,
792 sizeof(struct kernel_lb_addr));
793 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
794 /* Will udf_do_extend_file() create real extent from
795 a fake one? */
796 startnum = (offset > 0);
797 }
798 /* Create extents for the hole between EOF and offset */
799 hole_len = (loff_t)offset << inode->i_blkbits;
800 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
801 if (ret < 0) {
802 *err = ret;
803 newblock = 0;
804 goto out_free;
805 }
806 c = 0;
807 offset = 0;
808 count += ret;
809 /* We are not covered by a preallocated extent? */
810 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
811 EXT_NOT_RECORDED_ALLOCATED) {
812 /* Is there any real extent? - otherwise we overwrite
813 * the fake one... */
814 if (count)
815 c = !c;
816 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
817 inode->i_sb->s_blocksize;
818 memset(&laarr[c].extLocation, 0x00,
819 sizeof(struct kernel_lb_addr));
820 count++;
821 }
822 endnum = c + 1;
823 lastblock = 1;
824 } else {
825 isBeyondEOF = false;
826 endnum = startnum = ((count > 2) ? 2 : count);
827
828 /* if the current extent is in position 0,
829 swap it with the previous */
830 if (!c && count != 1) {
831 laarr[2] = laarr[0];
832 laarr[0] = laarr[1];
833 laarr[1] = laarr[2];
834 c = 1;
835 }
836
837 /* if the current block is located in an extent,
838 read the next extent */
839 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
840 if (etype != -1) {
841 laarr[c + 1].extLength = (etype << 30) | elen;
842 laarr[c + 1].extLocation = eloc;
843 count++;
844 startnum++;
845 endnum++;
846 } else
847 lastblock = 1;
848 }
849
850 /* if the current extent is not recorded but allocated, get the
851 * block in the extent corresponding to the requested block */
852 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
853 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
854 else { /* otherwise, allocate a new block */
855 if (iinfo->i_next_alloc_block == block)
856 goal = iinfo->i_next_alloc_goal;
857
858 if (!goal) {
859 if (!(goal = pgoal)) /* XXX: what was intended here? */
860 goal = iinfo->i_location.logicalBlockNum + 1;
861 }
862
863 newblocknum = udf_new_block(inode->i_sb, inode,
864 iinfo->i_location.partitionReferenceNum,
865 goal, err);
866 if (!newblocknum) {
867 *err = -ENOSPC;
868 newblock = 0;
869 goto out_free;
870 }
871 if (isBeyondEOF)
872 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
873 }
874
875 /* if the extent the requsted block is located in contains multiple
876 * blocks, split the extent into at most three extents. blocks prior
877 * to requested block, requested block, and blocks after requested
878 * block */
879 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
880
881 /* We preallocate blocks only for regular files. It also makes sense
882 * for directories but there's a problem when to drop the
883 * preallocation. We might use some delayed work for that but I feel
884 * it's overengineering for a filesystem like UDF. */
885 if (S_ISREG(inode->i_mode))
886 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
887
888 /* merge any continuous blocks in laarr */
889 udf_merge_extents(inode, laarr, &endnum);
890
891 /* write back the new extents, inserting new extents if the new number
892 * of extents is greater than the old number, and deleting extents if
893 * the new number of extents is less than the old number */
894 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
895
896 newblock = udf_get_pblock(inode->i_sb, newblocknum,
897 iinfo->i_location.partitionReferenceNum, 0);
898 if (!newblock) {
899 *err = -EIO;
900 goto out_free;
901 }
902 *new = 1;
903 iinfo->i_next_alloc_block = block;
904 iinfo->i_next_alloc_goal = newblocknum;
905 inode->i_ctime = current_time(inode);
906
907 if (IS_SYNC(inode))
908 udf_sync_inode(inode);
909 else
910 mark_inode_dirty(inode);
911 out_free:
912 brelse(prev_epos.bh);
913 brelse(cur_epos.bh);
914 brelse(next_epos.bh);
915 return newblock;
916 }
917
918 static void udf_split_extents(struct inode *inode, int *c, int offset,
919 udf_pblk_t newblocknum,
920 struct kernel_long_ad *laarr, int *endnum)
921 {
922 unsigned long blocksize = inode->i_sb->s_blocksize;
923 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
924
925 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
926 (laarr[*c].extLength >> 30) ==
927 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
928 int curr = *c;
929 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
930 blocksize - 1) >> blocksize_bits;
931 int8_t etype = (laarr[curr].extLength >> 30);
932
933 if (blen == 1)
934 ;
935 else if (!offset || blen == offset + 1) {
936 laarr[curr + 2] = laarr[curr + 1];
937 laarr[curr + 1] = laarr[curr];
938 } else {
939 laarr[curr + 3] = laarr[curr + 1];
940 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
941 }
942
943 if (offset) {
944 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
945 udf_free_blocks(inode->i_sb, inode,
946 &laarr[curr].extLocation,
947 0, offset);
948 laarr[curr].extLength =
949 EXT_NOT_RECORDED_NOT_ALLOCATED |
950 (offset << blocksize_bits);
951 laarr[curr].extLocation.logicalBlockNum = 0;
952 laarr[curr].extLocation.
953 partitionReferenceNum = 0;
954 } else
955 laarr[curr].extLength = (etype << 30) |
956 (offset << blocksize_bits);
957 curr++;
958 (*c)++;
959 (*endnum)++;
960 }
961
962 laarr[curr].extLocation.logicalBlockNum = newblocknum;
963 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
964 laarr[curr].extLocation.partitionReferenceNum =
965 UDF_I(inode)->i_location.partitionReferenceNum;
966 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
967 blocksize;
968 curr++;
969
970 if (blen != offset + 1) {
971 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
972 laarr[curr].extLocation.logicalBlockNum +=
973 offset + 1;
974 laarr[curr].extLength = (etype << 30) |
975 ((blen - (offset + 1)) << blocksize_bits);
976 curr++;
977 (*endnum)++;
978 }
979 }
980 }
981
982 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
983 struct kernel_long_ad *laarr,
984 int *endnum)
985 {
986 int start, length = 0, currlength = 0, i;
987
988 if (*endnum >= (c + 1)) {
989 if (!lastblock)
990 return;
991 else
992 start = c;
993 } else {
994 if ((laarr[c + 1].extLength >> 30) ==
995 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
996 start = c + 1;
997 length = currlength =
998 (((laarr[c + 1].extLength &
999 UDF_EXTENT_LENGTH_MASK) +
1000 inode->i_sb->s_blocksize - 1) >>
1001 inode->i_sb->s_blocksize_bits);
1002 } else
1003 start = c;
1004 }
1005
1006 for (i = start + 1; i <= *endnum; i++) {
1007 if (i == *endnum) {
1008 if (lastblock)
1009 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1010 } else if ((laarr[i].extLength >> 30) ==
1011 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1012 length += (((laarr[i].extLength &
1013 UDF_EXTENT_LENGTH_MASK) +
1014 inode->i_sb->s_blocksize - 1) >>
1015 inode->i_sb->s_blocksize_bits);
1016 } else
1017 break;
1018 }
1019
1020 if (length) {
1021 int next = laarr[start].extLocation.logicalBlockNum +
1022 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1023 inode->i_sb->s_blocksize - 1) >>
1024 inode->i_sb->s_blocksize_bits);
1025 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1026 laarr[start].extLocation.partitionReferenceNum,
1027 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1028 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1029 currlength);
1030 if (numalloc) {
1031 if (start == (c + 1))
1032 laarr[start].extLength +=
1033 (numalloc <<
1034 inode->i_sb->s_blocksize_bits);
1035 else {
1036 memmove(&laarr[c + 2], &laarr[c + 1],
1037 sizeof(struct long_ad) * (*endnum - (c + 1)));
1038 (*endnum)++;
1039 laarr[c + 1].extLocation.logicalBlockNum = next;
1040 laarr[c + 1].extLocation.partitionReferenceNum =
1041 laarr[c].extLocation.
1042 partitionReferenceNum;
1043 laarr[c + 1].extLength =
1044 EXT_NOT_RECORDED_ALLOCATED |
1045 (numalloc <<
1046 inode->i_sb->s_blocksize_bits);
1047 start = c + 1;
1048 }
1049
1050 for (i = start + 1; numalloc && i < *endnum; i++) {
1051 int elen = ((laarr[i].extLength &
1052 UDF_EXTENT_LENGTH_MASK) +
1053 inode->i_sb->s_blocksize - 1) >>
1054 inode->i_sb->s_blocksize_bits;
1055
1056 if (elen > numalloc) {
1057 laarr[i].extLength -=
1058 (numalloc <<
1059 inode->i_sb->s_blocksize_bits);
1060 numalloc = 0;
1061 } else {
1062 numalloc -= elen;
1063 if (*endnum > (i + 1))
1064 memmove(&laarr[i],
1065 &laarr[i + 1],
1066 sizeof(struct long_ad) *
1067 (*endnum - (i + 1)));
1068 i--;
1069 (*endnum)--;
1070 }
1071 }
1072 UDF_I(inode)->i_lenExtents +=
1073 numalloc << inode->i_sb->s_blocksize_bits;
1074 }
1075 }
1076 }
1077
1078 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1079 int *endnum)
1080 {
1081 int i;
1082 unsigned long blocksize = inode->i_sb->s_blocksize;
1083 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1084
1085 for (i = 0; i < (*endnum - 1); i++) {
1086 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1087 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1088
1089 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1090 (((li->extLength >> 30) ==
1091 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1092 ((lip1->extLocation.logicalBlockNum -
1093 li->extLocation.logicalBlockNum) ==
1094 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1095 blocksize - 1) >> blocksize_bits)))) {
1096
1097 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1098 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1099 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1100 lip1->extLength = (lip1->extLength -
1101 (li->extLength &
1102 UDF_EXTENT_LENGTH_MASK) +
1103 UDF_EXTENT_LENGTH_MASK) &
1104 ~(blocksize - 1);
1105 li->extLength = (li->extLength &
1106 UDF_EXTENT_FLAG_MASK) +
1107 (UDF_EXTENT_LENGTH_MASK + 1) -
1108 blocksize;
1109 lip1->extLocation.logicalBlockNum =
1110 li->extLocation.logicalBlockNum +
1111 ((li->extLength &
1112 UDF_EXTENT_LENGTH_MASK) >>
1113 blocksize_bits);
1114 } else {
1115 li->extLength = lip1->extLength +
1116 (((li->extLength &
1117 UDF_EXTENT_LENGTH_MASK) +
1118 blocksize - 1) & ~(blocksize - 1));
1119 if (*endnum > (i + 2))
1120 memmove(&laarr[i + 1], &laarr[i + 2],
1121 sizeof(struct long_ad) *
1122 (*endnum - (i + 2)));
1123 i--;
1124 (*endnum)--;
1125 }
1126 } else if (((li->extLength >> 30) ==
1127 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1128 ((lip1->extLength >> 30) ==
1129 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1130 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1131 ((li->extLength &
1132 UDF_EXTENT_LENGTH_MASK) +
1133 blocksize - 1) >> blocksize_bits);
1134 li->extLocation.logicalBlockNum = 0;
1135 li->extLocation.partitionReferenceNum = 0;
1136
1137 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1138 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1139 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1140 lip1->extLength = (lip1->extLength -
1141 (li->extLength &
1142 UDF_EXTENT_LENGTH_MASK) +
1143 UDF_EXTENT_LENGTH_MASK) &
1144 ~(blocksize - 1);
1145 li->extLength = (li->extLength &
1146 UDF_EXTENT_FLAG_MASK) +
1147 (UDF_EXTENT_LENGTH_MASK + 1) -
1148 blocksize;
1149 } else {
1150 li->extLength = lip1->extLength +
1151 (((li->extLength &
1152 UDF_EXTENT_LENGTH_MASK) +
1153 blocksize - 1) & ~(blocksize - 1));
1154 if (*endnum > (i + 2))
1155 memmove(&laarr[i + 1], &laarr[i + 2],
1156 sizeof(struct long_ad) *
1157 (*endnum - (i + 2)));
1158 i--;
1159 (*endnum)--;
1160 }
1161 } else if ((li->extLength >> 30) ==
1162 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1163 udf_free_blocks(inode->i_sb, inode,
1164 &li->extLocation, 0,
1165 ((li->extLength &
1166 UDF_EXTENT_LENGTH_MASK) +
1167 blocksize - 1) >> blocksize_bits);
1168 li->extLocation.logicalBlockNum = 0;
1169 li->extLocation.partitionReferenceNum = 0;
1170 li->extLength = (li->extLength &
1171 UDF_EXTENT_LENGTH_MASK) |
1172 EXT_NOT_RECORDED_NOT_ALLOCATED;
1173 }
1174 }
1175 }
1176
1177 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1178 int startnum, int endnum,
1179 struct extent_position *epos)
1180 {
1181 int start = 0, i;
1182 struct kernel_lb_addr tmploc;
1183 uint32_t tmplen;
1184
1185 if (startnum > endnum) {
1186 for (i = 0; i < (startnum - endnum); i++)
1187 udf_delete_aext(inode, *epos);
1188 } else if (startnum < endnum) {
1189 for (i = 0; i < (endnum - startnum); i++) {
1190 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1191 laarr[i].extLength);
1192 udf_next_aext(inode, epos, &laarr[i].extLocation,
1193 &laarr[i].extLength, 1);
1194 start++;
1195 }
1196 }
1197
1198 for (i = start; i < endnum; i++) {
1199 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1200 udf_write_aext(inode, epos, &laarr[i].extLocation,
1201 laarr[i].extLength, 1);
1202 }
1203 }
1204
1205 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1206 int create, int *err)
1207 {
1208 struct buffer_head *bh = NULL;
1209
1210 bh = udf_getblk(inode, block, create, err);
1211 if (!bh)
1212 return NULL;
1213
1214 if (buffer_uptodate(bh))
1215 return bh;
1216
1217 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1218
1219 wait_on_buffer(bh);
1220 if (buffer_uptodate(bh))
1221 return bh;
1222
1223 brelse(bh);
1224 *err = -EIO;
1225 return NULL;
1226 }
1227
1228 int udf_setsize(struct inode *inode, loff_t newsize)
1229 {
1230 int err;
1231 struct udf_inode_info *iinfo;
1232 unsigned int bsize = i_blocksize(inode);
1233
1234 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1235 S_ISLNK(inode->i_mode)))
1236 return -EINVAL;
1237 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1238 return -EPERM;
1239
1240 iinfo = UDF_I(inode);
1241 if (newsize > inode->i_size) {
1242 down_write(&iinfo->i_data_sem);
1243 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1244 if (bsize <
1245 (udf_file_entry_alloc_offset(inode) + newsize)) {
1246 err = udf_expand_file_adinicb(inode);
1247 if (err)
1248 return err;
1249 down_write(&iinfo->i_data_sem);
1250 } else {
1251 iinfo->i_lenAlloc = newsize;
1252 goto set_size;
1253 }
1254 }
1255 err = udf_extend_file(inode, newsize);
1256 if (err) {
1257 up_write(&iinfo->i_data_sem);
1258 return err;
1259 }
1260 set_size:
1261 up_write(&iinfo->i_data_sem);
1262 truncate_setsize(inode, newsize);
1263 } else {
1264 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1265 down_write(&iinfo->i_data_sem);
1266 udf_clear_extent_cache(inode);
1267 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1268 0x00, bsize - newsize -
1269 udf_file_entry_alloc_offset(inode));
1270 iinfo->i_lenAlloc = newsize;
1271 truncate_setsize(inode, newsize);
1272 up_write(&iinfo->i_data_sem);
1273 goto update_time;
1274 }
1275 err = block_truncate_page(inode->i_mapping, newsize,
1276 udf_get_block);
1277 if (err)
1278 return err;
1279 truncate_setsize(inode, newsize);
1280 down_write(&iinfo->i_data_sem);
1281 udf_clear_extent_cache(inode);
1282 err = udf_truncate_extents(inode);
1283 up_write(&iinfo->i_data_sem);
1284 if (err)
1285 return err;
1286 }
1287 update_time:
1288 inode->i_mtime = inode->i_ctime = current_time(inode);
1289 if (IS_SYNC(inode))
1290 udf_sync_inode(inode);
1291 else
1292 mark_inode_dirty(inode);
1293 return 0;
1294 }
1295
1296 /*
1297 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1298 * arbitrary - just that we hopefully don't limit any real use of rewritten
1299 * inode on write-once media but avoid looping for too long on corrupted media.
1300 */
1301 #define UDF_MAX_ICB_NESTING 1024
1302
1303 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1304 {
1305 struct buffer_head *bh = NULL;
1306 struct fileEntry *fe;
1307 struct extendedFileEntry *efe;
1308 uint16_t ident;
1309 struct udf_inode_info *iinfo = UDF_I(inode);
1310 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1311 struct kernel_lb_addr *iloc = &iinfo->i_location;
1312 unsigned int link_count;
1313 unsigned int indirections = 0;
1314 int bs = inode->i_sb->s_blocksize;
1315 int ret = -EIO;
1316 uint32_t uid, gid;
1317
1318 reread:
1319 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1320 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1321 iloc->partitionReferenceNum, sbi->s_partitions);
1322 return -EIO;
1323 }
1324
1325 if (iloc->logicalBlockNum >=
1326 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1327 udf_debug("block=%u, partition=%u out of range\n",
1328 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1329 return -EIO;
1330 }
1331
1332 /*
1333 * Set defaults, but the inode is still incomplete!
1334 * Note: get_new_inode() sets the following on a new inode:
1335 * i_sb = sb
1336 * i_no = ino
1337 * i_flags = sb->s_flags
1338 * i_state = 0
1339 * clean_inode(): zero fills and sets
1340 * i_count = 1
1341 * i_nlink = 1
1342 * i_op = NULL;
1343 */
1344 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1345 if (!bh) {
1346 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1347 return -EIO;
1348 }
1349
1350 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1351 ident != TAG_IDENT_USE) {
1352 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1353 inode->i_ino, ident);
1354 goto out;
1355 }
1356
1357 fe = (struct fileEntry *)bh->b_data;
1358 efe = (struct extendedFileEntry *)bh->b_data;
1359
1360 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1361 struct buffer_head *ibh;
1362
1363 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1364 if (ident == TAG_IDENT_IE && ibh) {
1365 struct kernel_lb_addr loc;
1366 struct indirectEntry *ie;
1367
1368 ie = (struct indirectEntry *)ibh->b_data;
1369 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1370
1371 if (ie->indirectICB.extLength) {
1372 brelse(ibh);
1373 memcpy(&iinfo->i_location, &loc,
1374 sizeof(struct kernel_lb_addr));
1375 if (++indirections > UDF_MAX_ICB_NESTING) {
1376 udf_err(inode->i_sb,
1377 "too many ICBs in ICB hierarchy"
1378 " (max %d supported)\n",
1379 UDF_MAX_ICB_NESTING);
1380 goto out;
1381 }
1382 brelse(bh);
1383 goto reread;
1384 }
1385 }
1386 brelse(ibh);
1387 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1388 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1389 le16_to_cpu(fe->icbTag.strategyType));
1390 goto out;
1391 }
1392 if (fe->icbTag.strategyType == cpu_to_le16(4))
1393 iinfo->i_strat4096 = 0;
1394 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1395 iinfo->i_strat4096 = 1;
1396
1397 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1398 ICBTAG_FLAG_AD_MASK;
1399 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1400 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1401 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1402 ret = -EIO;
1403 goto out;
1404 }
1405 iinfo->i_unique = 0;
1406 iinfo->i_lenEAttr = 0;
1407 iinfo->i_lenExtents = 0;
1408 iinfo->i_lenAlloc = 0;
1409 iinfo->i_next_alloc_block = 0;
1410 iinfo->i_next_alloc_goal = 0;
1411 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1412 iinfo->i_efe = 1;
1413 iinfo->i_use = 0;
1414 ret = udf_alloc_i_data(inode, bs -
1415 sizeof(struct extendedFileEntry));
1416 if (ret)
1417 goto out;
1418 memcpy(iinfo->i_data,
1419 bh->b_data + sizeof(struct extendedFileEntry),
1420 bs - sizeof(struct extendedFileEntry));
1421 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1422 iinfo->i_efe = 0;
1423 iinfo->i_use = 0;
1424 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1425 if (ret)
1426 goto out;
1427 memcpy(iinfo->i_data,
1428 bh->b_data + sizeof(struct fileEntry),
1429 bs - sizeof(struct fileEntry));
1430 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1431 iinfo->i_efe = 0;
1432 iinfo->i_use = 1;
1433 iinfo->i_lenAlloc = le32_to_cpu(
1434 ((struct unallocSpaceEntry *)bh->b_data)->
1435 lengthAllocDescs);
1436 ret = udf_alloc_i_data(inode, bs -
1437 sizeof(struct unallocSpaceEntry));
1438 if (ret)
1439 goto out;
1440 memcpy(iinfo->i_data,
1441 bh->b_data + sizeof(struct unallocSpaceEntry),
1442 bs - sizeof(struct unallocSpaceEntry));
1443 return 0;
1444 }
1445
1446 ret = -EIO;
1447 read_lock(&sbi->s_cred_lock);
1448 uid = le32_to_cpu(fe->uid);
1449 if (uid == UDF_INVALID_ID ||
1450 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1451 inode->i_uid = sbi->s_uid;
1452 else
1453 i_uid_write(inode, uid);
1454
1455 gid = le32_to_cpu(fe->gid);
1456 if (gid == UDF_INVALID_ID ||
1457 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1458 inode->i_gid = sbi->s_gid;
1459 else
1460 i_gid_write(inode, gid);
1461
1462 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1463 sbi->s_fmode != UDF_INVALID_MODE)
1464 inode->i_mode = sbi->s_fmode;
1465 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1466 sbi->s_dmode != UDF_INVALID_MODE)
1467 inode->i_mode = sbi->s_dmode;
1468 else
1469 inode->i_mode = udf_convert_permissions(fe);
1470 inode->i_mode &= ~sbi->s_umask;
1471 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1472
1473 read_unlock(&sbi->s_cred_lock);
1474
1475 link_count = le16_to_cpu(fe->fileLinkCount);
1476 if (!link_count) {
1477 if (!hidden_inode) {
1478 ret = -ESTALE;
1479 goto out;
1480 }
1481 link_count = 1;
1482 }
1483 set_nlink(inode, link_count);
1484
1485 inode->i_size = le64_to_cpu(fe->informationLength);
1486 iinfo->i_lenExtents = inode->i_size;
1487
1488 if (iinfo->i_efe == 0) {
1489 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1490 (inode->i_sb->s_blocksize_bits - 9);
1491
1492 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1493 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1494 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1495
1496 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1497 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1498 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1499 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1500 iinfo->i_streamdir = 0;
1501 iinfo->i_lenStreams = 0;
1502 } else {
1503 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1504 (inode->i_sb->s_blocksize_bits - 9);
1505
1506 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1507 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1508 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1509 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1510
1511 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1512 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1513 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1514 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1515
1516 /* Named streams */
1517 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1518 iinfo->i_locStreamdir =
1519 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1520 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1521 if (iinfo->i_lenStreams >= inode->i_size)
1522 iinfo->i_lenStreams -= inode->i_size;
1523 else
1524 iinfo->i_lenStreams = 0;
1525 }
1526 inode->i_generation = iinfo->i_unique;
1527
1528 /*
1529 * Sanity check length of allocation descriptors and extended attrs to
1530 * avoid integer overflows
1531 */
1532 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1533 goto out;
1534 /* Now do exact checks */
1535 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1536 goto out;
1537 /* Sanity checks for files in ICB so that we don't get confused later */
1538 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1539 /*
1540 * For file in ICB data is stored in allocation descriptor
1541 * so sizes should match
1542 */
1543 if (iinfo->i_lenAlloc != inode->i_size)
1544 goto out;
1545 /* File in ICB has to fit in there... */
1546 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1547 goto out;
1548 }
1549
1550 switch (fe->icbTag.fileType) {
1551 case ICBTAG_FILE_TYPE_DIRECTORY:
1552 inode->i_op = &udf_dir_inode_operations;
1553 inode->i_fop = &udf_dir_operations;
1554 inode->i_mode |= S_IFDIR;
1555 inc_nlink(inode);
1556 break;
1557 case ICBTAG_FILE_TYPE_REALTIME:
1558 case ICBTAG_FILE_TYPE_REGULAR:
1559 case ICBTAG_FILE_TYPE_UNDEF:
1560 case ICBTAG_FILE_TYPE_VAT20:
1561 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1562 inode->i_data.a_ops = &udf_adinicb_aops;
1563 else
1564 inode->i_data.a_ops = &udf_aops;
1565 inode->i_op = &udf_file_inode_operations;
1566 inode->i_fop = &udf_file_operations;
1567 inode->i_mode |= S_IFREG;
1568 break;
1569 case ICBTAG_FILE_TYPE_BLOCK:
1570 inode->i_mode |= S_IFBLK;
1571 break;
1572 case ICBTAG_FILE_TYPE_CHAR:
1573 inode->i_mode |= S_IFCHR;
1574 break;
1575 case ICBTAG_FILE_TYPE_FIFO:
1576 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1577 break;
1578 case ICBTAG_FILE_TYPE_SOCKET:
1579 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1580 break;
1581 case ICBTAG_FILE_TYPE_SYMLINK:
1582 inode->i_data.a_ops = &udf_symlink_aops;
1583 inode->i_op = &udf_symlink_inode_operations;
1584 inode_nohighmem(inode);
1585 inode->i_mode = S_IFLNK | 0777;
1586 break;
1587 case ICBTAG_FILE_TYPE_MAIN:
1588 udf_debug("METADATA FILE-----\n");
1589 break;
1590 case ICBTAG_FILE_TYPE_MIRROR:
1591 udf_debug("METADATA MIRROR FILE-----\n");
1592 break;
1593 case ICBTAG_FILE_TYPE_BITMAP:
1594 udf_debug("METADATA BITMAP FILE-----\n");
1595 break;
1596 default:
1597 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1598 inode->i_ino, fe->icbTag.fileType);
1599 goto out;
1600 }
1601 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1602 struct deviceSpec *dsea =
1603 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1604 if (dsea) {
1605 init_special_inode(inode, inode->i_mode,
1606 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1607 le32_to_cpu(dsea->minorDeviceIdent)));
1608 /* Developer ID ??? */
1609 } else
1610 goto out;
1611 }
1612 ret = 0;
1613 out:
1614 brelse(bh);
1615 return ret;
1616 }
1617
1618 static int udf_alloc_i_data(struct inode *inode, size_t size)
1619 {
1620 struct udf_inode_info *iinfo = UDF_I(inode);
1621 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1622 if (!iinfo->i_data)
1623 return -ENOMEM;
1624 return 0;
1625 }
1626
1627 static umode_t udf_convert_permissions(struct fileEntry *fe)
1628 {
1629 umode_t mode;
1630 uint32_t permissions;
1631 uint32_t flags;
1632
1633 permissions = le32_to_cpu(fe->permissions);
1634 flags = le16_to_cpu(fe->icbTag.flags);
1635
1636 mode = ((permissions) & 0007) |
1637 ((permissions >> 2) & 0070) |
1638 ((permissions >> 4) & 0700) |
1639 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1640 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1641 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1642
1643 return mode;
1644 }
1645
1646 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1647 {
1648 struct udf_inode_info *iinfo = UDF_I(inode);
1649
1650 /*
1651 * UDF 2.01 sec. 3.3.3.3 Note 2:
1652 * In Unix, delete permission tracks write
1653 */
1654 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1655 if (mode & 0200)
1656 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1657 if (mode & 0020)
1658 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1659 if (mode & 0002)
1660 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1661 }
1662
1663 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1664 {
1665 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1666 }
1667
1668 static int udf_sync_inode(struct inode *inode)
1669 {
1670 return udf_update_inode(inode, 1);
1671 }
1672
1673 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1674 {
1675 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1676 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1677 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1678 iinfo->i_crtime = time;
1679 }
1680
1681 static int udf_update_inode(struct inode *inode, int do_sync)
1682 {
1683 struct buffer_head *bh = NULL;
1684 struct fileEntry *fe;
1685 struct extendedFileEntry *efe;
1686 uint64_t lb_recorded;
1687 uint32_t udfperms;
1688 uint16_t icbflags;
1689 uint16_t crclen;
1690 int err = 0;
1691 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1692 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1693 struct udf_inode_info *iinfo = UDF_I(inode);
1694
1695 bh = udf_tgetblk(inode->i_sb,
1696 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1697 if (!bh) {
1698 udf_debug("getblk failure\n");
1699 return -EIO;
1700 }
1701
1702 lock_buffer(bh);
1703 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1704 fe = (struct fileEntry *)bh->b_data;
1705 efe = (struct extendedFileEntry *)bh->b_data;
1706
1707 if (iinfo->i_use) {
1708 struct unallocSpaceEntry *use =
1709 (struct unallocSpaceEntry *)bh->b_data;
1710
1711 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1712 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1713 iinfo->i_data, inode->i_sb->s_blocksize -
1714 sizeof(struct unallocSpaceEntry));
1715 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1716 crclen = sizeof(struct unallocSpaceEntry);
1717
1718 goto finish;
1719 }
1720
1721 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1722 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1723 else
1724 fe->uid = cpu_to_le32(i_uid_read(inode));
1725
1726 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1727 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1728 else
1729 fe->gid = cpu_to_le32(i_gid_read(inode));
1730
1731 udfperms = ((inode->i_mode & 0007)) |
1732 ((inode->i_mode & 0070) << 2) |
1733 ((inode->i_mode & 0700) << 4);
1734
1735 udfperms |= iinfo->i_extraPerms;
1736 fe->permissions = cpu_to_le32(udfperms);
1737
1738 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1739 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1740 else
1741 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1742
1743 fe->informationLength = cpu_to_le64(inode->i_size);
1744
1745 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1746 struct regid *eid;
1747 struct deviceSpec *dsea =
1748 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1749 if (!dsea) {
1750 dsea = (struct deviceSpec *)
1751 udf_add_extendedattr(inode,
1752 sizeof(struct deviceSpec) +
1753 sizeof(struct regid), 12, 0x3);
1754 dsea->attrType = cpu_to_le32(12);
1755 dsea->attrSubtype = 1;
1756 dsea->attrLength = cpu_to_le32(
1757 sizeof(struct deviceSpec) +
1758 sizeof(struct regid));
1759 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1760 }
1761 eid = (struct regid *)dsea->impUse;
1762 memset(eid, 0, sizeof(*eid));
1763 strcpy(eid->ident, UDF_ID_DEVELOPER);
1764 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1765 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1766 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1767 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1768 }
1769
1770 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1771 lb_recorded = 0; /* No extents => no blocks! */
1772 else
1773 lb_recorded =
1774 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1775 (blocksize_bits - 9);
1776
1777 if (iinfo->i_efe == 0) {
1778 memcpy(bh->b_data + sizeof(struct fileEntry),
1779 iinfo->i_data,
1780 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1781 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1782
1783 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1784 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1785 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1786 memset(&(fe->impIdent), 0, sizeof(struct regid));
1787 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1788 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1789 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1790 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1791 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1792 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1793 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1794 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1795 crclen = sizeof(struct fileEntry);
1796 } else {
1797 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1798 iinfo->i_data,
1799 inode->i_sb->s_blocksize -
1800 sizeof(struct extendedFileEntry));
1801 efe->objectSize =
1802 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1803 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1804
1805 if (iinfo->i_streamdir) {
1806 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1807
1808 icb_lad->extLocation =
1809 cpu_to_lelb(iinfo->i_locStreamdir);
1810 icb_lad->extLength =
1811 cpu_to_le32(inode->i_sb->s_blocksize);
1812 }
1813
1814 udf_adjust_time(iinfo, inode->i_atime);
1815 udf_adjust_time(iinfo, inode->i_mtime);
1816 udf_adjust_time(iinfo, inode->i_ctime);
1817
1818 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1819 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1820 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1821 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1822
1823 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1824 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1825 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1826 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1827 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1828 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1829 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1830 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1831 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1832 crclen = sizeof(struct extendedFileEntry);
1833 }
1834
1835 finish:
1836 if (iinfo->i_strat4096) {
1837 fe->icbTag.strategyType = cpu_to_le16(4096);
1838 fe->icbTag.strategyParameter = cpu_to_le16(1);
1839 fe->icbTag.numEntries = cpu_to_le16(2);
1840 } else {
1841 fe->icbTag.strategyType = cpu_to_le16(4);
1842 fe->icbTag.numEntries = cpu_to_le16(1);
1843 }
1844
1845 if (iinfo->i_use)
1846 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1847 else if (S_ISDIR(inode->i_mode))
1848 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1849 else if (S_ISREG(inode->i_mode))
1850 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1851 else if (S_ISLNK(inode->i_mode))
1852 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1853 else if (S_ISBLK(inode->i_mode))
1854 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1855 else if (S_ISCHR(inode->i_mode))
1856 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1857 else if (S_ISFIFO(inode->i_mode))
1858 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1859 else if (S_ISSOCK(inode->i_mode))
1860 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1861
1862 icbflags = iinfo->i_alloc_type |
1863 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1864 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1865 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1866 (le16_to_cpu(fe->icbTag.flags) &
1867 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1868 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1869
1870 fe->icbTag.flags = cpu_to_le16(icbflags);
1871 if (sbi->s_udfrev >= 0x0200)
1872 fe->descTag.descVersion = cpu_to_le16(3);
1873 else
1874 fe->descTag.descVersion = cpu_to_le16(2);
1875 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1876 fe->descTag.tagLocation = cpu_to_le32(
1877 iinfo->i_location.logicalBlockNum);
1878 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1879 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1880 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1881 crclen));
1882 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1883
1884 set_buffer_uptodate(bh);
1885 unlock_buffer(bh);
1886
1887 /* write the data blocks */
1888 mark_buffer_dirty(bh);
1889 if (do_sync) {
1890 sync_dirty_buffer(bh);
1891 if (buffer_write_io_error(bh)) {
1892 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1893 inode->i_ino);
1894 err = -EIO;
1895 }
1896 }
1897 brelse(bh);
1898
1899 return err;
1900 }
1901
1902 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1903 bool hidden_inode)
1904 {
1905 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1906 struct inode *inode = iget_locked(sb, block);
1907 int err;
1908
1909 if (!inode)
1910 return ERR_PTR(-ENOMEM);
1911
1912 if (!(inode->i_state & I_NEW))
1913 return inode;
1914
1915 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1916 err = udf_read_inode(inode, hidden_inode);
1917 if (err < 0) {
1918 iget_failed(inode);
1919 return ERR_PTR(err);
1920 }
1921 unlock_new_inode(inode);
1922
1923 return inode;
1924 }
1925
1926 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1927 struct extent_position *epos)
1928 {
1929 struct super_block *sb = inode->i_sb;
1930 struct buffer_head *bh;
1931 struct allocExtDesc *aed;
1932 struct extent_position nepos;
1933 struct kernel_lb_addr neloc;
1934 int ver, adsize;
1935
1936 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1937 adsize = sizeof(struct short_ad);
1938 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1939 adsize = sizeof(struct long_ad);
1940 else
1941 return -EIO;
1942
1943 neloc.logicalBlockNum = block;
1944 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1945
1946 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1947 if (!bh)
1948 return -EIO;
1949 lock_buffer(bh);
1950 memset(bh->b_data, 0x00, sb->s_blocksize);
1951 set_buffer_uptodate(bh);
1952 unlock_buffer(bh);
1953 mark_buffer_dirty_inode(bh, inode);
1954
1955 aed = (struct allocExtDesc *)(bh->b_data);
1956 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1957 aed->previousAllocExtLocation =
1958 cpu_to_le32(epos->block.logicalBlockNum);
1959 }
1960 aed->lengthAllocDescs = cpu_to_le32(0);
1961 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1962 ver = 3;
1963 else
1964 ver = 2;
1965 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1966 sizeof(struct tag));
1967
1968 nepos.block = neloc;
1969 nepos.offset = sizeof(struct allocExtDesc);
1970 nepos.bh = bh;
1971
1972 /*
1973 * Do we have to copy current last extent to make space for indirect
1974 * one?
1975 */
1976 if (epos->offset + adsize > sb->s_blocksize) {
1977 struct kernel_lb_addr cp_loc;
1978 uint32_t cp_len;
1979 int cp_type;
1980
1981 epos->offset -= adsize;
1982 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1983 cp_len |= ((uint32_t)cp_type) << 30;
1984
1985 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1986 udf_write_aext(inode, epos, &nepos.block,
1987 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1988 } else {
1989 __udf_add_aext(inode, epos, &nepos.block,
1990 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1991 }
1992
1993 brelse(epos->bh);
1994 *epos = nepos;
1995
1996 return 0;
1997 }
1998
1999 /*
2000 * Append extent at the given position - should be the first free one in inode
2001 * / indirect extent. This function assumes there is enough space in the inode
2002 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2003 */
2004 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2005 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2006 {
2007 struct udf_inode_info *iinfo = UDF_I(inode);
2008 struct allocExtDesc *aed;
2009 int adsize;
2010
2011 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2012 adsize = sizeof(struct short_ad);
2013 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2014 adsize = sizeof(struct long_ad);
2015 else
2016 return -EIO;
2017
2018 if (!epos->bh) {
2019 WARN_ON(iinfo->i_lenAlloc !=
2020 epos->offset - udf_file_entry_alloc_offset(inode));
2021 } else {
2022 aed = (struct allocExtDesc *)epos->bh->b_data;
2023 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2024 epos->offset - sizeof(struct allocExtDesc));
2025 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2026 }
2027
2028 udf_write_aext(inode, epos, eloc, elen, inc);
2029
2030 if (!epos->bh) {
2031 iinfo->i_lenAlloc += adsize;
2032 mark_inode_dirty(inode);
2033 } else {
2034 aed = (struct allocExtDesc *)epos->bh->b_data;
2035 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2036 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2037 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2038 udf_update_tag(epos->bh->b_data,
2039 epos->offset + (inc ? 0 : adsize));
2040 else
2041 udf_update_tag(epos->bh->b_data,
2042 sizeof(struct allocExtDesc));
2043 mark_buffer_dirty_inode(epos->bh, inode);
2044 }
2045
2046 return 0;
2047 }
2048
2049 /*
2050 * Append extent at given position - should be the first free one in inode
2051 * / indirect extent. Takes care of allocating and linking indirect blocks.
2052 */
2053 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2054 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2055 {
2056 int adsize;
2057 struct super_block *sb = inode->i_sb;
2058
2059 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2060 adsize = sizeof(struct short_ad);
2061 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2062 adsize = sizeof(struct long_ad);
2063 else
2064 return -EIO;
2065
2066 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2067 int err;
2068 udf_pblk_t new_block;
2069
2070 new_block = udf_new_block(sb, NULL,
2071 epos->block.partitionReferenceNum,
2072 epos->block.logicalBlockNum, &err);
2073 if (!new_block)
2074 return -ENOSPC;
2075
2076 err = udf_setup_indirect_aext(inode, new_block, epos);
2077 if (err)
2078 return err;
2079 }
2080
2081 return __udf_add_aext(inode, epos, eloc, elen, inc);
2082 }
2083
2084 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2085 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2086 {
2087 int adsize;
2088 uint8_t *ptr;
2089 struct short_ad *sad;
2090 struct long_ad *lad;
2091 struct udf_inode_info *iinfo = UDF_I(inode);
2092
2093 if (!epos->bh)
2094 ptr = iinfo->i_data + epos->offset -
2095 udf_file_entry_alloc_offset(inode) +
2096 iinfo->i_lenEAttr;
2097 else
2098 ptr = epos->bh->b_data + epos->offset;
2099
2100 switch (iinfo->i_alloc_type) {
2101 case ICBTAG_FLAG_AD_SHORT:
2102 sad = (struct short_ad *)ptr;
2103 sad->extLength = cpu_to_le32(elen);
2104 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2105 adsize = sizeof(struct short_ad);
2106 break;
2107 case ICBTAG_FLAG_AD_LONG:
2108 lad = (struct long_ad *)ptr;
2109 lad->extLength = cpu_to_le32(elen);
2110 lad->extLocation = cpu_to_lelb(*eloc);
2111 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2112 adsize = sizeof(struct long_ad);
2113 break;
2114 default:
2115 return;
2116 }
2117
2118 if (epos->bh) {
2119 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2120 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2121 struct allocExtDesc *aed =
2122 (struct allocExtDesc *)epos->bh->b_data;
2123 udf_update_tag(epos->bh->b_data,
2124 le32_to_cpu(aed->lengthAllocDescs) +
2125 sizeof(struct allocExtDesc));
2126 }
2127 mark_buffer_dirty_inode(epos->bh, inode);
2128 } else {
2129 mark_inode_dirty(inode);
2130 }
2131
2132 if (inc)
2133 epos->offset += adsize;
2134 }
2135
2136 /*
2137 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2138 * someone does some weird stuff.
2139 */
2140 #define UDF_MAX_INDIR_EXTS 16
2141
2142 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2143 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2144 {
2145 int8_t etype;
2146 unsigned int indirections = 0;
2147
2148 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2149 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2150 udf_pblk_t block;
2151
2152 if (++indirections > UDF_MAX_INDIR_EXTS) {
2153 udf_err(inode->i_sb,
2154 "too many indirect extents in inode %lu\n",
2155 inode->i_ino);
2156 return -1;
2157 }
2158
2159 epos->block = *eloc;
2160 epos->offset = sizeof(struct allocExtDesc);
2161 brelse(epos->bh);
2162 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2163 epos->bh = udf_tread(inode->i_sb, block);
2164 if (!epos->bh) {
2165 udf_debug("reading block %u failed!\n", block);
2166 return -1;
2167 }
2168 }
2169
2170 return etype;
2171 }
2172
2173 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2174 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2175 {
2176 int alen;
2177 int8_t etype;
2178 uint8_t *ptr;
2179 struct short_ad *sad;
2180 struct long_ad *lad;
2181 struct udf_inode_info *iinfo = UDF_I(inode);
2182
2183 if (!epos->bh) {
2184 if (!epos->offset)
2185 epos->offset = udf_file_entry_alloc_offset(inode);
2186 ptr = iinfo->i_data + epos->offset -
2187 udf_file_entry_alloc_offset(inode) +
2188 iinfo->i_lenEAttr;
2189 alen = udf_file_entry_alloc_offset(inode) +
2190 iinfo->i_lenAlloc;
2191 } else {
2192 if (!epos->offset)
2193 epos->offset = sizeof(struct allocExtDesc);
2194 ptr = epos->bh->b_data + epos->offset;
2195 alen = sizeof(struct allocExtDesc) +
2196 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2197 lengthAllocDescs);
2198 }
2199
2200 switch (iinfo->i_alloc_type) {
2201 case ICBTAG_FLAG_AD_SHORT:
2202 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2203 if (!sad)
2204 return -1;
2205 etype = le32_to_cpu(sad->extLength) >> 30;
2206 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2207 eloc->partitionReferenceNum =
2208 iinfo->i_location.partitionReferenceNum;
2209 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2210 break;
2211 case ICBTAG_FLAG_AD_LONG:
2212 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2213 if (!lad)
2214 return -1;
2215 etype = le32_to_cpu(lad->extLength) >> 30;
2216 *eloc = lelb_to_cpu(lad->extLocation);
2217 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2218 break;
2219 default:
2220 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2221 return -1;
2222 }
2223
2224 return etype;
2225 }
2226
2227 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2228 struct kernel_lb_addr neloc, uint32_t nelen)
2229 {
2230 struct kernel_lb_addr oeloc;
2231 uint32_t oelen;
2232 int8_t etype;
2233
2234 if (epos.bh)
2235 get_bh(epos.bh);
2236
2237 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2238 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2239 neloc = oeloc;
2240 nelen = (etype << 30) | oelen;
2241 }
2242 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2243 brelse(epos.bh);
2244
2245 return (nelen >> 30);
2246 }
2247
2248 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2249 {
2250 struct extent_position oepos;
2251 int adsize;
2252 int8_t etype;
2253 struct allocExtDesc *aed;
2254 struct udf_inode_info *iinfo;
2255 struct kernel_lb_addr eloc;
2256 uint32_t elen;
2257
2258 if (epos.bh) {
2259 get_bh(epos.bh);
2260 get_bh(epos.bh);
2261 }
2262
2263 iinfo = UDF_I(inode);
2264 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2265 adsize = sizeof(struct short_ad);
2266 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2267 adsize = sizeof(struct long_ad);
2268 else
2269 adsize = 0;
2270
2271 oepos = epos;
2272 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2273 return -1;
2274
2275 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2276 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2277 if (oepos.bh != epos.bh) {
2278 oepos.block = epos.block;
2279 brelse(oepos.bh);
2280 get_bh(epos.bh);
2281 oepos.bh = epos.bh;
2282 oepos.offset = epos.offset - adsize;
2283 }
2284 }
2285 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2286 elen = 0;
2287
2288 if (epos.bh != oepos.bh) {
2289 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2290 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2291 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2292 if (!oepos.bh) {
2293 iinfo->i_lenAlloc -= (adsize * 2);
2294 mark_inode_dirty(inode);
2295 } else {
2296 aed = (struct allocExtDesc *)oepos.bh->b_data;
2297 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2298 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2299 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2300 udf_update_tag(oepos.bh->b_data,
2301 oepos.offset - (2 * adsize));
2302 else
2303 udf_update_tag(oepos.bh->b_data,
2304 sizeof(struct allocExtDesc));
2305 mark_buffer_dirty_inode(oepos.bh, inode);
2306 }
2307 } else {
2308 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2309 if (!oepos.bh) {
2310 iinfo->i_lenAlloc -= adsize;
2311 mark_inode_dirty(inode);
2312 } else {
2313 aed = (struct allocExtDesc *)oepos.bh->b_data;
2314 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2315 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2316 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2317 udf_update_tag(oepos.bh->b_data,
2318 epos.offset - adsize);
2319 else
2320 udf_update_tag(oepos.bh->b_data,
2321 sizeof(struct allocExtDesc));
2322 mark_buffer_dirty_inode(oepos.bh, inode);
2323 }
2324 }
2325
2326 brelse(epos.bh);
2327 brelse(oepos.bh);
2328
2329 return (elen >> 30);
2330 }
2331
2332 int8_t inode_bmap(struct inode *inode, sector_t block,
2333 struct extent_position *pos, struct kernel_lb_addr *eloc,
2334 uint32_t *elen, sector_t *offset)
2335 {
2336 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2337 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2338 int8_t etype;
2339 struct udf_inode_info *iinfo;
2340
2341 iinfo = UDF_I(inode);
2342 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2343 pos->offset = 0;
2344 pos->block = iinfo->i_location;
2345 pos->bh = NULL;
2346 }
2347 *elen = 0;
2348 do {
2349 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2350 if (etype == -1) {
2351 *offset = (bcount - lbcount) >> blocksize_bits;
2352 iinfo->i_lenExtents = lbcount;
2353 return -1;
2354 }
2355 lbcount += *elen;
2356 } while (lbcount <= bcount);
2357 /* update extent cache */
2358 udf_update_extent_cache(inode, lbcount - *elen, pos);
2359 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2360
2361 return etype;
2362 }
2363
2364 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2365 {
2366 struct kernel_lb_addr eloc;
2367 uint32_t elen;
2368 sector_t offset;
2369 struct extent_position epos = {};
2370 udf_pblk_t ret;
2371
2372 down_read(&UDF_I(inode)->i_data_sem);
2373
2374 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2375 (EXT_RECORDED_ALLOCATED >> 30))
2376 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2377 else
2378 ret = 0;
2379
2380 up_read(&UDF_I(inode)->i_data_sem);
2381 brelse(epos.bh);
2382
2383 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2384 return udf_fixed_to_variable(ret);
2385 else
2386 return ret;
2387 }