]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/udf/inode.c
Merge tag 'for-4.19/post-20180822' of git://git.kernel.dk/linux-block
[mirror_ubuntu-eoan-kernel.git] / fs / udf / inode.c
1 /*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42
43 #include "udf_i.h"
44 #include "udf_sb.h"
45
46 #define EXTENT_MERGE_SIZE 5
47
48 static umode_t udf_convert_permissions(struct fileEntry *);
49 static int udf_update_inode(struct inode *, int);
50 static int udf_sync_inode(struct inode *inode);
51 static int udf_alloc_i_data(struct inode *inode, size_t size);
52 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
53 static int8_t udf_insert_aext(struct inode *, struct extent_position,
54 struct kernel_lb_addr, uint32_t);
55 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
56 struct kernel_long_ad *, int *);
57 static void udf_prealloc_extents(struct inode *, int, int,
58 struct kernel_long_ad *, int *);
59 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
60 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
61 int, struct extent_position *);
62 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
63
64 static void __udf_clear_extent_cache(struct inode *inode)
65 {
66 struct udf_inode_info *iinfo = UDF_I(inode);
67
68 if (iinfo->cached_extent.lstart != -1) {
69 brelse(iinfo->cached_extent.epos.bh);
70 iinfo->cached_extent.lstart = -1;
71 }
72 }
73
74 /* Invalidate extent cache */
75 static void udf_clear_extent_cache(struct inode *inode)
76 {
77 struct udf_inode_info *iinfo = UDF_I(inode);
78
79 spin_lock(&iinfo->i_extent_cache_lock);
80 __udf_clear_extent_cache(inode);
81 spin_unlock(&iinfo->i_extent_cache_lock);
82 }
83
84 /* Return contents of extent cache */
85 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
86 loff_t *lbcount, struct extent_position *pos)
87 {
88 struct udf_inode_info *iinfo = UDF_I(inode);
89 int ret = 0;
90
91 spin_lock(&iinfo->i_extent_cache_lock);
92 if ((iinfo->cached_extent.lstart <= bcount) &&
93 (iinfo->cached_extent.lstart != -1)) {
94 /* Cache hit */
95 *lbcount = iinfo->cached_extent.lstart;
96 memcpy(pos, &iinfo->cached_extent.epos,
97 sizeof(struct extent_position));
98 if (pos->bh)
99 get_bh(pos->bh);
100 ret = 1;
101 }
102 spin_unlock(&iinfo->i_extent_cache_lock);
103 return ret;
104 }
105
106 /* Add extent to extent cache */
107 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
108 struct extent_position *pos)
109 {
110 struct udf_inode_info *iinfo = UDF_I(inode);
111
112 spin_lock(&iinfo->i_extent_cache_lock);
113 /* Invalidate previously cached extent */
114 __udf_clear_extent_cache(inode);
115 if (pos->bh)
116 get_bh(pos->bh);
117 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
118 iinfo->cached_extent.lstart = estart;
119 switch (iinfo->i_alloc_type) {
120 case ICBTAG_FLAG_AD_SHORT:
121 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
122 break;
123 case ICBTAG_FLAG_AD_LONG:
124 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
125 break;
126 }
127 spin_unlock(&iinfo->i_extent_cache_lock);
128 }
129
130 void udf_evict_inode(struct inode *inode)
131 {
132 struct udf_inode_info *iinfo = UDF_I(inode);
133 int want_delete = 0;
134
135 if (!inode->i_nlink && !is_bad_inode(inode)) {
136 want_delete = 1;
137 udf_setsize(inode, 0);
138 udf_update_inode(inode, IS_SYNC(inode));
139 }
140 truncate_inode_pages_final(&inode->i_data);
141 invalidate_inode_buffers(inode);
142 clear_inode(inode);
143 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
144 inode->i_size != iinfo->i_lenExtents) {
145 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
146 inode->i_ino, inode->i_mode,
147 (unsigned long long)inode->i_size,
148 (unsigned long long)iinfo->i_lenExtents);
149 }
150 kfree(iinfo->i_ext.i_data);
151 iinfo->i_ext.i_data = NULL;
152 udf_clear_extent_cache(inode);
153 if (want_delete) {
154 udf_free_inode(inode);
155 }
156 }
157
158 static void udf_write_failed(struct address_space *mapping, loff_t to)
159 {
160 struct inode *inode = mapping->host;
161 struct udf_inode_info *iinfo = UDF_I(inode);
162 loff_t isize = inode->i_size;
163
164 if (to > isize) {
165 truncate_pagecache(inode, isize);
166 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
167 down_write(&iinfo->i_data_sem);
168 udf_clear_extent_cache(inode);
169 udf_truncate_extents(inode);
170 up_write(&iinfo->i_data_sem);
171 }
172 }
173 }
174
175 static int udf_writepage(struct page *page, struct writeback_control *wbc)
176 {
177 return block_write_full_page(page, udf_get_block, wbc);
178 }
179
180 static int udf_writepages(struct address_space *mapping,
181 struct writeback_control *wbc)
182 {
183 return mpage_writepages(mapping, wbc, udf_get_block);
184 }
185
186 static int udf_readpage(struct file *file, struct page *page)
187 {
188 return mpage_readpage(page, udf_get_block);
189 }
190
191 static int udf_readpages(struct file *file, struct address_space *mapping,
192 struct list_head *pages, unsigned nr_pages)
193 {
194 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
195 }
196
197 static int udf_write_begin(struct file *file, struct address_space *mapping,
198 loff_t pos, unsigned len, unsigned flags,
199 struct page **pagep, void **fsdata)
200 {
201 int ret;
202
203 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
204 if (unlikely(ret))
205 udf_write_failed(mapping, pos + len);
206 return ret;
207 }
208
209 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
210 {
211 struct file *file = iocb->ki_filp;
212 struct address_space *mapping = file->f_mapping;
213 struct inode *inode = mapping->host;
214 size_t count = iov_iter_count(iter);
215 ssize_t ret;
216
217 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
218 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
219 udf_write_failed(mapping, iocb->ki_pos + count);
220 return ret;
221 }
222
223 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
224 {
225 return generic_block_bmap(mapping, block, udf_get_block);
226 }
227
228 const struct address_space_operations udf_aops = {
229 .readpage = udf_readpage,
230 .readpages = udf_readpages,
231 .writepage = udf_writepage,
232 .writepages = udf_writepages,
233 .write_begin = udf_write_begin,
234 .write_end = generic_write_end,
235 .direct_IO = udf_direct_IO,
236 .bmap = udf_bmap,
237 };
238
239 /*
240 * Expand file stored in ICB to a normal one-block-file
241 *
242 * This function requires i_data_sem for writing and releases it.
243 * This function requires i_mutex held
244 */
245 int udf_expand_file_adinicb(struct inode *inode)
246 {
247 struct page *page;
248 char *kaddr;
249 struct udf_inode_info *iinfo = UDF_I(inode);
250 int err;
251 struct writeback_control udf_wbc = {
252 .sync_mode = WB_SYNC_NONE,
253 .nr_to_write = 1,
254 };
255
256 WARN_ON_ONCE(!inode_is_locked(inode));
257 if (!iinfo->i_lenAlloc) {
258 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
259 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
260 else
261 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
262 /* from now on we have normal address_space methods */
263 inode->i_data.a_ops = &udf_aops;
264 up_write(&iinfo->i_data_sem);
265 mark_inode_dirty(inode);
266 return 0;
267 }
268 /*
269 * Release i_data_sem so that we can lock a page - page lock ranks
270 * above i_data_sem. i_mutex still protects us against file changes.
271 */
272 up_write(&iinfo->i_data_sem);
273
274 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
275 if (!page)
276 return -ENOMEM;
277
278 if (!PageUptodate(page)) {
279 kaddr = kmap_atomic(page);
280 memset(kaddr + iinfo->i_lenAlloc, 0x00,
281 PAGE_SIZE - iinfo->i_lenAlloc);
282 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
283 iinfo->i_lenAlloc);
284 flush_dcache_page(page);
285 SetPageUptodate(page);
286 kunmap_atomic(kaddr);
287 }
288 down_write(&iinfo->i_data_sem);
289 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
290 iinfo->i_lenAlloc);
291 iinfo->i_lenAlloc = 0;
292 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
293 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
294 else
295 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
296 /* from now on we have normal address_space methods */
297 inode->i_data.a_ops = &udf_aops;
298 up_write(&iinfo->i_data_sem);
299 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
300 if (err) {
301 /* Restore everything back so that we don't lose data... */
302 lock_page(page);
303 down_write(&iinfo->i_data_sem);
304 kaddr = kmap_atomic(page);
305 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
306 inode->i_size);
307 kunmap_atomic(kaddr);
308 unlock_page(page);
309 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
310 inode->i_data.a_ops = &udf_adinicb_aops;
311 up_write(&iinfo->i_data_sem);
312 }
313 put_page(page);
314 mark_inode_dirty(inode);
315
316 return err;
317 }
318
319 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
320 udf_pblk_t *block, int *err)
321 {
322 udf_pblk_t newblock;
323 struct buffer_head *dbh = NULL;
324 struct kernel_lb_addr eloc;
325 uint8_t alloctype;
326 struct extent_position epos;
327
328 struct udf_fileident_bh sfibh, dfibh;
329 loff_t f_pos = udf_ext0_offset(inode);
330 int size = udf_ext0_offset(inode) + inode->i_size;
331 struct fileIdentDesc cfi, *sfi, *dfi;
332 struct udf_inode_info *iinfo = UDF_I(inode);
333
334 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
335 alloctype = ICBTAG_FLAG_AD_SHORT;
336 else
337 alloctype = ICBTAG_FLAG_AD_LONG;
338
339 if (!inode->i_size) {
340 iinfo->i_alloc_type = alloctype;
341 mark_inode_dirty(inode);
342 return NULL;
343 }
344
345 /* alloc block, and copy data to it */
346 *block = udf_new_block(inode->i_sb, inode,
347 iinfo->i_location.partitionReferenceNum,
348 iinfo->i_location.logicalBlockNum, err);
349 if (!(*block))
350 return NULL;
351 newblock = udf_get_pblock(inode->i_sb, *block,
352 iinfo->i_location.partitionReferenceNum,
353 0);
354 if (!newblock)
355 return NULL;
356 dbh = udf_tgetblk(inode->i_sb, newblock);
357 if (!dbh)
358 return NULL;
359 lock_buffer(dbh);
360 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
361 set_buffer_uptodate(dbh);
362 unlock_buffer(dbh);
363 mark_buffer_dirty_inode(dbh, inode);
364
365 sfibh.soffset = sfibh.eoffset =
366 f_pos & (inode->i_sb->s_blocksize - 1);
367 sfibh.sbh = sfibh.ebh = NULL;
368 dfibh.soffset = dfibh.eoffset = 0;
369 dfibh.sbh = dfibh.ebh = dbh;
370 while (f_pos < size) {
371 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
372 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
373 NULL, NULL, NULL);
374 if (!sfi) {
375 brelse(dbh);
376 return NULL;
377 }
378 iinfo->i_alloc_type = alloctype;
379 sfi->descTag.tagLocation = cpu_to_le32(*block);
380 dfibh.soffset = dfibh.eoffset;
381 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
382 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
383 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
384 sfi->fileIdent +
385 le16_to_cpu(sfi->lengthOfImpUse))) {
386 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
387 brelse(dbh);
388 return NULL;
389 }
390 }
391 mark_buffer_dirty_inode(dbh, inode);
392
393 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
394 iinfo->i_lenAlloc);
395 iinfo->i_lenAlloc = 0;
396 eloc.logicalBlockNum = *block;
397 eloc.partitionReferenceNum =
398 iinfo->i_location.partitionReferenceNum;
399 iinfo->i_lenExtents = inode->i_size;
400 epos.bh = NULL;
401 epos.block = iinfo->i_location;
402 epos.offset = udf_file_entry_alloc_offset(inode);
403 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
404 /* UniqueID stuff */
405
406 brelse(epos.bh);
407 mark_inode_dirty(inode);
408 return dbh;
409 }
410
411 static int udf_get_block(struct inode *inode, sector_t block,
412 struct buffer_head *bh_result, int create)
413 {
414 int err, new;
415 sector_t phys = 0;
416 struct udf_inode_info *iinfo;
417
418 if (!create) {
419 phys = udf_block_map(inode, block);
420 if (phys)
421 map_bh(bh_result, inode->i_sb, phys);
422 return 0;
423 }
424
425 err = -EIO;
426 new = 0;
427 iinfo = UDF_I(inode);
428
429 down_write(&iinfo->i_data_sem);
430 if (block == iinfo->i_next_alloc_block + 1) {
431 iinfo->i_next_alloc_block++;
432 iinfo->i_next_alloc_goal++;
433 }
434
435 udf_clear_extent_cache(inode);
436 phys = inode_getblk(inode, block, &err, &new);
437 if (!phys)
438 goto abort;
439
440 if (new)
441 set_buffer_new(bh_result);
442 map_bh(bh_result, inode->i_sb, phys);
443
444 abort:
445 up_write(&iinfo->i_data_sem);
446 return err;
447 }
448
449 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
450 int create, int *err)
451 {
452 struct buffer_head *bh;
453 struct buffer_head dummy;
454
455 dummy.b_state = 0;
456 dummy.b_blocknr = -1000;
457 *err = udf_get_block(inode, block, &dummy, create);
458 if (!*err && buffer_mapped(&dummy)) {
459 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
460 if (buffer_new(&dummy)) {
461 lock_buffer(bh);
462 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
463 set_buffer_uptodate(bh);
464 unlock_buffer(bh);
465 mark_buffer_dirty_inode(bh, inode);
466 }
467 return bh;
468 }
469
470 return NULL;
471 }
472
473 /* Extend the file by 'blocks' blocks, return the number of extents added */
474 static int udf_do_extend_file(struct inode *inode,
475 struct extent_position *last_pos,
476 struct kernel_long_ad *last_ext,
477 sector_t blocks)
478 {
479 sector_t add;
480 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
481 struct super_block *sb = inode->i_sb;
482 struct kernel_lb_addr prealloc_loc = {};
483 uint32_t prealloc_len = 0;
484 struct udf_inode_info *iinfo;
485 int err;
486
487 /* The previous extent is fake and we should not extend by anything
488 * - there's nothing to do... */
489 if (!blocks && fake)
490 return 0;
491
492 iinfo = UDF_I(inode);
493 /* Round the last extent up to a multiple of block size */
494 if (last_ext->extLength & (sb->s_blocksize - 1)) {
495 last_ext->extLength =
496 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
497 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
498 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
499 iinfo->i_lenExtents =
500 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
501 ~(sb->s_blocksize - 1);
502 }
503
504 /* Last extent are just preallocated blocks? */
505 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
506 EXT_NOT_RECORDED_ALLOCATED) {
507 /* Save the extent so that we can reattach it to the end */
508 prealloc_loc = last_ext->extLocation;
509 prealloc_len = last_ext->extLength;
510 /* Mark the extent as a hole */
511 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
512 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
513 last_ext->extLocation.logicalBlockNum = 0;
514 last_ext->extLocation.partitionReferenceNum = 0;
515 }
516
517 /* Can we merge with the previous extent? */
518 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
519 EXT_NOT_RECORDED_NOT_ALLOCATED) {
520 add = ((1 << 30) - sb->s_blocksize -
521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
522 sb->s_blocksize_bits;
523 if (add > blocks)
524 add = blocks;
525 blocks -= add;
526 last_ext->extLength += add << sb->s_blocksize_bits;
527 }
528
529 if (fake) {
530 udf_add_aext(inode, last_pos, &last_ext->extLocation,
531 last_ext->extLength, 1);
532 count++;
533 } else {
534 struct kernel_lb_addr tmploc;
535 uint32_t tmplen;
536
537 udf_write_aext(inode, last_pos, &last_ext->extLocation,
538 last_ext->extLength, 1);
539 /*
540 * We've rewritten the last extent but there may be empty
541 * indirect extent after it - enter it.
542 */
543 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
544 }
545
546 /* Managed to do everything necessary? */
547 if (!blocks)
548 goto out;
549
550 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
551 last_ext->extLocation.logicalBlockNum = 0;
552 last_ext->extLocation.partitionReferenceNum = 0;
553 add = (1 << (30-sb->s_blocksize_bits)) - 1;
554 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
555 (add << sb->s_blocksize_bits);
556
557 /* Create enough extents to cover the whole hole */
558 while (blocks > add) {
559 blocks -= add;
560 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
561 last_ext->extLength, 1);
562 if (err)
563 return err;
564 count++;
565 }
566 if (blocks) {
567 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
568 (blocks << sb->s_blocksize_bits);
569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570 last_ext->extLength, 1);
571 if (err)
572 return err;
573 count++;
574 }
575
576 out:
577 /* Do we have some preallocated blocks saved? */
578 if (prealloc_len) {
579 err = udf_add_aext(inode, last_pos, &prealloc_loc,
580 prealloc_len, 1);
581 if (err)
582 return err;
583 last_ext->extLocation = prealloc_loc;
584 last_ext->extLength = prealloc_len;
585 count++;
586 }
587
588 /* last_pos should point to the last written extent... */
589 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
590 last_pos->offset -= sizeof(struct short_ad);
591 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
592 last_pos->offset -= sizeof(struct long_ad);
593 else
594 return -EIO;
595
596 return count;
597 }
598
599 static int udf_extend_file(struct inode *inode, loff_t newsize)
600 {
601
602 struct extent_position epos;
603 struct kernel_lb_addr eloc;
604 uint32_t elen;
605 int8_t etype;
606 struct super_block *sb = inode->i_sb;
607 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
608 int adsize;
609 struct udf_inode_info *iinfo = UDF_I(inode);
610 struct kernel_long_ad extent;
611 int err;
612
613 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
614 adsize = sizeof(struct short_ad);
615 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
616 adsize = sizeof(struct long_ad);
617 else
618 BUG();
619
620 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
621
622 /* File has extent covering the new size (could happen when extending
623 * inside a block)? */
624 if (etype != -1)
625 return 0;
626 if (newsize & (sb->s_blocksize - 1))
627 offset++;
628 /* Extended file just to the boundary of the last file block? */
629 if (offset == 0)
630 return 0;
631
632 /* Truncate is extending the file by 'offset' blocks */
633 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
634 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
635 /* File has no extents at all or has empty last
636 * indirect extent! Create a fake extent... */
637 extent.extLocation.logicalBlockNum = 0;
638 extent.extLocation.partitionReferenceNum = 0;
639 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
640 } else {
641 epos.offset -= adsize;
642 etype = udf_next_aext(inode, &epos, &extent.extLocation,
643 &extent.extLength, 0);
644 extent.extLength |= etype << 30;
645 }
646 err = udf_do_extend_file(inode, &epos, &extent, offset);
647 if (err < 0)
648 goto out;
649 err = 0;
650 iinfo->i_lenExtents = newsize;
651 out:
652 brelse(epos.bh);
653 return err;
654 }
655
656 static sector_t inode_getblk(struct inode *inode, sector_t block,
657 int *err, int *new)
658 {
659 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
660 struct extent_position prev_epos, cur_epos, next_epos;
661 int count = 0, startnum = 0, endnum = 0;
662 uint32_t elen = 0, tmpelen;
663 struct kernel_lb_addr eloc, tmpeloc;
664 int c = 1;
665 loff_t lbcount = 0, b_off = 0;
666 udf_pblk_t newblocknum, newblock;
667 sector_t offset = 0;
668 int8_t etype;
669 struct udf_inode_info *iinfo = UDF_I(inode);
670 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
671 int lastblock = 0;
672 bool isBeyondEOF;
673
674 *err = 0;
675 *new = 0;
676 prev_epos.offset = udf_file_entry_alloc_offset(inode);
677 prev_epos.block = iinfo->i_location;
678 prev_epos.bh = NULL;
679 cur_epos = next_epos = prev_epos;
680 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
681
682 /* find the extent which contains the block we are looking for.
683 alternate between laarr[0] and laarr[1] for locations of the
684 current extent, and the previous extent */
685 do {
686 if (prev_epos.bh != cur_epos.bh) {
687 brelse(prev_epos.bh);
688 get_bh(cur_epos.bh);
689 prev_epos.bh = cur_epos.bh;
690 }
691 if (cur_epos.bh != next_epos.bh) {
692 brelse(cur_epos.bh);
693 get_bh(next_epos.bh);
694 cur_epos.bh = next_epos.bh;
695 }
696
697 lbcount += elen;
698
699 prev_epos.block = cur_epos.block;
700 cur_epos.block = next_epos.block;
701
702 prev_epos.offset = cur_epos.offset;
703 cur_epos.offset = next_epos.offset;
704
705 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
706 if (etype == -1)
707 break;
708
709 c = !c;
710
711 laarr[c].extLength = (etype << 30) | elen;
712 laarr[c].extLocation = eloc;
713
714 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
715 pgoal = eloc.logicalBlockNum +
716 ((elen + inode->i_sb->s_blocksize - 1) >>
717 inode->i_sb->s_blocksize_bits);
718
719 count++;
720 } while (lbcount + elen <= b_off);
721
722 b_off -= lbcount;
723 offset = b_off >> inode->i_sb->s_blocksize_bits;
724 /*
725 * Move prev_epos and cur_epos into indirect extent if we are at
726 * the pointer to it
727 */
728 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
729 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
730
731 /* if the extent is allocated and recorded, return the block
732 if the extent is not a multiple of the blocksize, round up */
733
734 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
735 if (elen & (inode->i_sb->s_blocksize - 1)) {
736 elen = EXT_RECORDED_ALLOCATED |
737 ((elen + inode->i_sb->s_blocksize - 1) &
738 ~(inode->i_sb->s_blocksize - 1));
739 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
740 }
741 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
742 goto out_free;
743 }
744
745 /* Are we beyond EOF? */
746 if (etype == -1) {
747 int ret;
748 isBeyondEOF = true;
749 if (count) {
750 if (c)
751 laarr[0] = laarr[1];
752 startnum = 1;
753 } else {
754 /* Create a fake extent when there's not one */
755 memset(&laarr[0].extLocation, 0x00,
756 sizeof(struct kernel_lb_addr));
757 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
758 /* Will udf_do_extend_file() create real extent from
759 a fake one? */
760 startnum = (offset > 0);
761 }
762 /* Create extents for the hole between EOF and offset */
763 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
764 if (ret < 0) {
765 *err = ret;
766 newblock = 0;
767 goto out_free;
768 }
769 c = 0;
770 offset = 0;
771 count += ret;
772 /* We are not covered by a preallocated extent? */
773 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
774 EXT_NOT_RECORDED_ALLOCATED) {
775 /* Is there any real extent? - otherwise we overwrite
776 * the fake one... */
777 if (count)
778 c = !c;
779 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
780 inode->i_sb->s_blocksize;
781 memset(&laarr[c].extLocation, 0x00,
782 sizeof(struct kernel_lb_addr));
783 count++;
784 }
785 endnum = c + 1;
786 lastblock = 1;
787 } else {
788 isBeyondEOF = false;
789 endnum = startnum = ((count > 2) ? 2 : count);
790
791 /* if the current extent is in position 0,
792 swap it with the previous */
793 if (!c && count != 1) {
794 laarr[2] = laarr[0];
795 laarr[0] = laarr[1];
796 laarr[1] = laarr[2];
797 c = 1;
798 }
799
800 /* if the current block is located in an extent,
801 read the next extent */
802 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
803 if (etype != -1) {
804 laarr[c + 1].extLength = (etype << 30) | elen;
805 laarr[c + 1].extLocation = eloc;
806 count++;
807 startnum++;
808 endnum++;
809 } else
810 lastblock = 1;
811 }
812
813 /* if the current extent is not recorded but allocated, get the
814 * block in the extent corresponding to the requested block */
815 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
816 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
817 else { /* otherwise, allocate a new block */
818 if (iinfo->i_next_alloc_block == block)
819 goal = iinfo->i_next_alloc_goal;
820
821 if (!goal) {
822 if (!(goal = pgoal)) /* XXX: what was intended here? */
823 goal = iinfo->i_location.logicalBlockNum + 1;
824 }
825
826 newblocknum = udf_new_block(inode->i_sb, inode,
827 iinfo->i_location.partitionReferenceNum,
828 goal, err);
829 if (!newblocknum) {
830 *err = -ENOSPC;
831 newblock = 0;
832 goto out_free;
833 }
834 if (isBeyondEOF)
835 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
836 }
837
838 /* if the extent the requsted block is located in contains multiple
839 * blocks, split the extent into at most three extents. blocks prior
840 * to requested block, requested block, and blocks after requested
841 * block */
842 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
843
844 /* We preallocate blocks only for regular files. It also makes sense
845 * for directories but there's a problem when to drop the
846 * preallocation. We might use some delayed work for that but I feel
847 * it's overengineering for a filesystem like UDF. */
848 if (S_ISREG(inode->i_mode))
849 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
850
851 /* merge any continuous blocks in laarr */
852 udf_merge_extents(inode, laarr, &endnum);
853
854 /* write back the new extents, inserting new extents if the new number
855 * of extents is greater than the old number, and deleting extents if
856 * the new number of extents is less than the old number */
857 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
858
859 newblock = udf_get_pblock(inode->i_sb, newblocknum,
860 iinfo->i_location.partitionReferenceNum, 0);
861 if (!newblock) {
862 *err = -EIO;
863 goto out_free;
864 }
865 *new = 1;
866 iinfo->i_next_alloc_block = block;
867 iinfo->i_next_alloc_goal = newblocknum;
868 inode->i_ctime = current_time(inode);
869
870 if (IS_SYNC(inode))
871 udf_sync_inode(inode);
872 else
873 mark_inode_dirty(inode);
874 out_free:
875 brelse(prev_epos.bh);
876 brelse(cur_epos.bh);
877 brelse(next_epos.bh);
878 return newblock;
879 }
880
881 static void udf_split_extents(struct inode *inode, int *c, int offset,
882 udf_pblk_t newblocknum,
883 struct kernel_long_ad *laarr, int *endnum)
884 {
885 unsigned long blocksize = inode->i_sb->s_blocksize;
886 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
887
888 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
889 (laarr[*c].extLength >> 30) ==
890 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
891 int curr = *c;
892 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
893 blocksize - 1) >> blocksize_bits;
894 int8_t etype = (laarr[curr].extLength >> 30);
895
896 if (blen == 1)
897 ;
898 else if (!offset || blen == offset + 1) {
899 laarr[curr + 2] = laarr[curr + 1];
900 laarr[curr + 1] = laarr[curr];
901 } else {
902 laarr[curr + 3] = laarr[curr + 1];
903 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
904 }
905
906 if (offset) {
907 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
908 udf_free_blocks(inode->i_sb, inode,
909 &laarr[curr].extLocation,
910 0, offset);
911 laarr[curr].extLength =
912 EXT_NOT_RECORDED_NOT_ALLOCATED |
913 (offset << blocksize_bits);
914 laarr[curr].extLocation.logicalBlockNum = 0;
915 laarr[curr].extLocation.
916 partitionReferenceNum = 0;
917 } else
918 laarr[curr].extLength = (etype << 30) |
919 (offset << blocksize_bits);
920 curr++;
921 (*c)++;
922 (*endnum)++;
923 }
924
925 laarr[curr].extLocation.logicalBlockNum = newblocknum;
926 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
927 laarr[curr].extLocation.partitionReferenceNum =
928 UDF_I(inode)->i_location.partitionReferenceNum;
929 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
930 blocksize;
931 curr++;
932
933 if (blen != offset + 1) {
934 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
935 laarr[curr].extLocation.logicalBlockNum +=
936 offset + 1;
937 laarr[curr].extLength = (etype << 30) |
938 ((blen - (offset + 1)) << blocksize_bits);
939 curr++;
940 (*endnum)++;
941 }
942 }
943 }
944
945 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
946 struct kernel_long_ad *laarr,
947 int *endnum)
948 {
949 int start, length = 0, currlength = 0, i;
950
951 if (*endnum >= (c + 1)) {
952 if (!lastblock)
953 return;
954 else
955 start = c;
956 } else {
957 if ((laarr[c + 1].extLength >> 30) ==
958 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
959 start = c + 1;
960 length = currlength =
961 (((laarr[c + 1].extLength &
962 UDF_EXTENT_LENGTH_MASK) +
963 inode->i_sb->s_blocksize - 1) >>
964 inode->i_sb->s_blocksize_bits);
965 } else
966 start = c;
967 }
968
969 for (i = start + 1; i <= *endnum; i++) {
970 if (i == *endnum) {
971 if (lastblock)
972 length += UDF_DEFAULT_PREALLOC_BLOCKS;
973 } else if ((laarr[i].extLength >> 30) ==
974 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
975 length += (((laarr[i].extLength &
976 UDF_EXTENT_LENGTH_MASK) +
977 inode->i_sb->s_blocksize - 1) >>
978 inode->i_sb->s_blocksize_bits);
979 } else
980 break;
981 }
982
983 if (length) {
984 int next = laarr[start].extLocation.logicalBlockNum +
985 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
986 inode->i_sb->s_blocksize - 1) >>
987 inode->i_sb->s_blocksize_bits);
988 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
989 laarr[start].extLocation.partitionReferenceNum,
990 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
991 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
992 currlength);
993 if (numalloc) {
994 if (start == (c + 1))
995 laarr[start].extLength +=
996 (numalloc <<
997 inode->i_sb->s_blocksize_bits);
998 else {
999 memmove(&laarr[c + 2], &laarr[c + 1],
1000 sizeof(struct long_ad) * (*endnum - (c + 1)));
1001 (*endnum)++;
1002 laarr[c + 1].extLocation.logicalBlockNum = next;
1003 laarr[c + 1].extLocation.partitionReferenceNum =
1004 laarr[c].extLocation.
1005 partitionReferenceNum;
1006 laarr[c + 1].extLength =
1007 EXT_NOT_RECORDED_ALLOCATED |
1008 (numalloc <<
1009 inode->i_sb->s_blocksize_bits);
1010 start = c + 1;
1011 }
1012
1013 for (i = start + 1; numalloc && i < *endnum; i++) {
1014 int elen = ((laarr[i].extLength &
1015 UDF_EXTENT_LENGTH_MASK) +
1016 inode->i_sb->s_blocksize - 1) >>
1017 inode->i_sb->s_blocksize_bits;
1018
1019 if (elen > numalloc) {
1020 laarr[i].extLength -=
1021 (numalloc <<
1022 inode->i_sb->s_blocksize_bits);
1023 numalloc = 0;
1024 } else {
1025 numalloc -= elen;
1026 if (*endnum > (i + 1))
1027 memmove(&laarr[i],
1028 &laarr[i + 1],
1029 sizeof(struct long_ad) *
1030 (*endnum - (i + 1)));
1031 i--;
1032 (*endnum)--;
1033 }
1034 }
1035 UDF_I(inode)->i_lenExtents +=
1036 numalloc << inode->i_sb->s_blocksize_bits;
1037 }
1038 }
1039 }
1040
1041 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1042 int *endnum)
1043 {
1044 int i;
1045 unsigned long blocksize = inode->i_sb->s_blocksize;
1046 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1047
1048 for (i = 0; i < (*endnum - 1); i++) {
1049 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1050 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1051
1052 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1053 (((li->extLength >> 30) ==
1054 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1055 ((lip1->extLocation.logicalBlockNum -
1056 li->extLocation.logicalBlockNum) ==
1057 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1058 blocksize - 1) >> blocksize_bits)))) {
1059
1060 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1061 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1062 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1063 lip1->extLength = (lip1->extLength -
1064 (li->extLength &
1065 UDF_EXTENT_LENGTH_MASK) +
1066 UDF_EXTENT_LENGTH_MASK) &
1067 ~(blocksize - 1);
1068 li->extLength = (li->extLength &
1069 UDF_EXTENT_FLAG_MASK) +
1070 (UDF_EXTENT_LENGTH_MASK + 1) -
1071 blocksize;
1072 lip1->extLocation.logicalBlockNum =
1073 li->extLocation.logicalBlockNum +
1074 ((li->extLength &
1075 UDF_EXTENT_LENGTH_MASK) >>
1076 blocksize_bits);
1077 } else {
1078 li->extLength = lip1->extLength +
1079 (((li->extLength &
1080 UDF_EXTENT_LENGTH_MASK) +
1081 blocksize - 1) & ~(blocksize - 1));
1082 if (*endnum > (i + 2))
1083 memmove(&laarr[i + 1], &laarr[i + 2],
1084 sizeof(struct long_ad) *
1085 (*endnum - (i + 2)));
1086 i--;
1087 (*endnum)--;
1088 }
1089 } else if (((li->extLength >> 30) ==
1090 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1091 ((lip1->extLength >> 30) ==
1092 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1093 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1094 ((li->extLength &
1095 UDF_EXTENT_LENGTH_MASK) +
1096 blocksize - 1) >> blocksize_bits);
1097 li->extLocation.logicalBlockNum = 0;
1098 li->extLocation.partitionReferenceNum = 0;
1099
1100 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1101 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1102 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1103 lip1->extLength = (lip1->extLength -
1104 (li->extLength &
1105 UDF_EXTENT_LENGTH_MASK) +
1106 UDF_EXTENT_LENGTH_MASK) &
1107 ~(blocksize - 1);
1108 li->extLength = (li->extLength &
1109 UDF_EXTENT_FLAG_MASK) +
1110 (UDF_EXTENT_LENGTH_MASK + 1) -
1111 blocksize;
1112 } else {
1113 li->extLength = lip1->extLength +
1114 (((li->extLength &
1115 UDF_EXTENT_LENGTH_MASK) +
1116 blocksize - 1) & ~(blocksize - 1));
1117 if (*endnum > (i + 2))
1118 memmove(&laarr[i + 1], &laarr[i + 2],
1119 sizeof(struct long_ad) *
1120 (*endnum - (i + 2)));
1121 i--;
1122 (*endnum)--;
1123 }
1124 } else if ((li->extLength >> 30) ==
1125 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1126 udf_free_blocks(inode->i_sb, inode,
1127 &li->extLocation, 0,
1128 ((li->extLength &
1129 UDF_EXTENT_LENGTH_MASK) +
1130 blocksize - 1) >> blocksize_bits);
1131 li->extLocation.logicalBlockNum = 0;
1132 li->extLocation.partitionReferenceNum = 0;
1133 li->extLength = (li->extLength &
1134 UDF_EXTENT_LENGTH_MASK) |
1135 EXT_NOT_RECORDED_NOT_ALLOCATED;
1136 }
1137 }
1138 }
1139
1140 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1141 int startnum, int endnum,
1142 struct extent_position *epos)
1143 {
1144 int start = 0, i;
1145 struct kernel_lb_addr tmploc;
1146 uint32_t tmplen;
1147
1148 if (startnum > endnum) {
1149 for (i = 0; i < (startnum - endnum); i++)
1150 udf_delete_aext(inode, *epos);
1151 } else if (startnum < endnum) {
1152 for (i = 0; i < (endnum - startnum); i++) {
1153 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1154 laarr[i].extLength);
1155 udf_next_aext(inode, epos, &laarr[i].extLocation,
1156 &laarr[i].extLength, 1);
1157 start++;
1158 }
1159 }
1160
1161 for (i = start; i < endnum; i++) {
1162 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1163 udf_write_aext(inode, epos, &laarr[i].extLocation,
1164 laarr[i].extLength, 1);
1165 }
1166 }
1167
1168 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1169 int create, int *err)
1170 {
1171 struct buffer_head *bh = NULL;
1172
1173 bh = udf_getblk(inode, block, create, err);
1174 if (!bh)
1175 return NULL;
1176
1177 if (buffer_uptodate(bh))
1178 return bh;
1179
1180 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1181
1182 wait_on_buffer(bh);
1183 if (buffer_uptodate(bh))
1184 return bh;
1185
1186 brelse(bh);
1187 *err = -EIO;
1188 return NULL;
1189 }
1190
1191 int udf_setsize(struct inode *inode, loff_t newsize)
1192 {
1193 int err;
1194 struct udf_inode_info *iinfo;
1195 unsigned int bsize = i_blocksize(inode);
1196
1197 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1198 S_ISLNK(inode->i_mode)))
1199 return -EINVAL;
1200 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1201 return -EPERM;
1202
1203 iinfo = UDF_I(inode);
1204 if (newsize > inode->i_size) {
1205 down_write(&iinfo->i_data_sem);
1206 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1207 if (bsize <
1208 (udf_file_entry_alloc_offset(inode) + newsize)) {
1209 err = udf_expand_file_adinicb(inode);
1210 if (err)
1211 return err;
1212 down_write(&iinfo->i_data_sem);
1213 } else {
1214 iinfo->i_lenAlloc = newsize;
1215 goto set_size;
1216 }
1217 }
1218 err = udf_extend_file(inode, newsize);
1219 if (err) {
1220 up_write(&iinfo->i_data_sem);
1221 return err;
1222 }
1223 set_size:
1224 up_write(&iinfo->i_data_sem);
1225 truncate_setsize(inode, newsize);
1226 } else {
1227 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1228 down_write(&iinfo->i_data_sem);
1229 udf_clear_extent_cache(inode);
1230 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1231 0x00, bsize - newsize -
1232 udf_file_entry_alloc_offset(inode));
1233 iinfo->i_lenAlloc = newsize;
1234 truncate_setsize(inode, newsize);
1235 up_write(&iinfo->i_data_sem);
1236 goto update_time;
1237 }
1238 err = block_truncate_page(inode->i_mapping, newsize,
1239 udf_get_block);
1240 if (err)
1241 return err;
1242 truncate_setsize(inode, newsize);
1243 down_write(&iinfo->i_data_sem);
1244 udf_clear_extent_cache(inode);
1245 udf_truncate_extents(inode);
1246 up_write(&iinfo->i_data_sem);
1247 }
1248 update_time:
1249 inode->i_mtime = inode->i_ctime = current_time(inode);
1250 if (IS_SYNC(inode))
1251 udf_sync_inode(inode);
1252 else
1253 mark_inode_dirty(inode);
1254 return 0;
1255 }
1256
1257 /*
1258 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1259 * arbitrary - just that we hopefully don't limit any real use of rewritten
1260 * inode on write-once media but avoid looping for too long on corrupted media.
1261 */
1262 #define UDF_MAX_ICB_NESTING 1024
1263
1264 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1265 {
1266 struct buffer_head *bh = NULL;
1267 struct fileEntry *fe;
1268 struct extendedFileEntry *efe;
1269 uint16_t ident;
1270 struct udf_inode_info *iinfo = UDF_I(inode);
1271 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1272 struct kernel_lb_addr *iloc = &iinfo->i_location;
1273 unsigned int link_count;
1274 unsigned int indirections = 0;
1275 int bs = inode->i_sb->s_blocksize;
1276 int ret = -EIO;
1277 uint32_t uid, gid;
1278
1279 reread:
1280 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1281 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1282 iloc->partitionReferenceNum, sbi->s_partitions);
1283 return -EIO;
1284 }
1285
1286 if (iloc->logicalBlockNum >=
1287 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1288 udf_debug("block=%u, partition=%u out of range\n",
1289 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1290 return -EIO;
1291 }
1292
1293 /*
1294 * Set defaults, but the inode is still incomplete!
1295 * Note: get_new_inode() sets the following on a new inode:
1296 * i_sb = sb
1297 * i_no = ino
1298 * i_flags = sb->s_flags
1299 * i_state = 0
1300 * clean_inode(): zero fills and sets
1301 * i_count = 1
1302 * i_nlink = 1
1303 * i_op = NULL;
1304 */
1305 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1306 if (!bh) {
1307 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1308 return -EIO;
1309 }
1310
1311 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1312 ident != TAG_IDENT_USE) {
1313 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1314 inode->i_ino, ident);
1315 goto out;
1316 }
1317
1318 fe = (struct fileEntry *)bh->b_data;
1319 efe = (struct extendedFileEntry *)bh->b_data;
1320
1321 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1322 struct buffer_head *ibh;
1323
1324 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1325 if (ident == TAG_IDENT_IE && ibh) {
1326 struct kernel_lb_addr loc;
1327 struct indirectEntry *ie;
1328
1329 ie = (struct indirectEntry *)ibh->b_data;
1330 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1331
1332 if (ie->indirectICB.extLength) {
1333 brelse(ibh);
1334 memcpy(&iinfo->i_location, &loc,
1335 sizeof(struct kernel_lb_addr));
1336 if (++indirections > UDF_MAX_ICB_NESTING) {
1337 udf_err(inode->i_sb,
1338 "too many ICBs in ICB hierarchy"
1339 " (max %d supported)\n",
1340 UDF_MAX_ICB_NESTING);
1341 goto out;
1342 }
1343 brelse(bh);
1344 goto reread;
1345 }
1346 }
1347 brelse(ibh);
1348 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1349 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1350 le16_to_cpu(fe->icbTag.strategyType));
1351 goto out;
1352 }
1353 if (fe->icbTag.strategyType == cpu_to_le16(4))
1354 iinfo->i_strat4096 = 0;
1355 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1356 iinfo->i_strat4096 = 1;
1357
1358 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1359 ICBTAG_FLAG_AD_MASK;
1360 iinfo->i_unique = 0;
1361 iinfo->i_lenEAttr = 0;
1362 iinfo->i_lenExtents = 0;
1363 iinfo->i_lenAlloc = 0;
1364 iinfo->i_next_alloc_block = 0;
1365 iinfo->i_next_alloc_goal = 0;
1366 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1367 iinfo->i_efe = 1;
1368 iinfo->i_use = 0;
1369 ret = udf_alloc_i_data(inode, bs -
1370 sizeof(struct extendedFileEntry));
1371 if (ret)
1372 goto out;
1373 memcpy(iinfo->i_ext.i_data,
1374 bh->b_data + sizeof(struct extendedFileEntry),
1375 bs - sizeof(struct extendedFileEntry));
1376 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1377 iinfo->i_efe = 0;
1378 iinfo->i_use = 0;
1379 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1380 if (ret)
1381 goto out;
1382 memcpy(iinfo->i_ext.i_data,
1383 bh->b_data + sizeof(struct fileEntry),
1384 bs - sizeof(struct fileEntry));
1385 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1386 iinfo->i_efe = 0;
1387 iinfo->i_use = 1;
1388 iinfo->i_lenAlloc = le32_to_cpu(
1389 ((struct unallocSpaceEntry *)bh->b_data)->
1390 lengthAllocDescs);
1391 ret = udf_alloc_i_data(inode, bs -
1392 sizeof(struct unallocSpaceEntry));
1393 if (ret)
1394 goto out;
1395 memcpy(iinfo->i_ext.i_data,
1396 bh->b_data + sizeof(struct unallocSpaceEntry),
1397 bs - sizeof(struct unallocSpaceEntry));
1398 return 0;
1399 }
1400
1401 ret = -EIO;
1402 read_lock(&sbi->s_cred_lock);
1403 uid = le32_to_cpu(fe->uid);
1404 if (uid == UDF_INVALID_ID ||
1405 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1406 inode->i_uid = sbi->s_uid;
1407 else
1408 i_uid_write(inode, uid);
1409
1410 gid = le32_to_cpu(fe->gid);
1411 if (gid == UDF_INVALID_ID ||
1412 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1413 inode->i_gid = sbi->s_gid;
1414 else
1415 i_gid_write(inode, gid);
1416
1417 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1418 sbi->s_fmode != UDF_INVALID_MODE)
1419 inode->i_mode = sbi->s_fmode;
1420 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1421 sbi->s_dmode != UDF_INVALID_MODE)
1422 inode->i_mode = sbi->s_dmode;
1423 else
1424 inode->i_mode = udf_convert_permissions(fe);
1425 inode->i_mode &= ~sbi->s_umask;
1426 read_unlock(&sbi->s_cred_lock);
1427
1428 link_count = le16_to_cpu(fe->fileLinkCount);
1429 if (!link_count) {
1430 if (!hidden_inode) {
1431 ret = -ESTALE;
1432 goto out;
1433 }
1434 link_count = 1;
1435 }
1436 set_nlink(inode, link_count);
1437
1438 inode->i_size = le64_to_cpu(fe->informationLength);
1439 iinfo->i_lenExtents = inode->i_size;
1440
1441 if (iinfo->i_efe == 0) {
1442 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1443 (inode->i_sb->s_blocksize_bits - 9);
1444
1445 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1446 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1447 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1448
1449 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1450 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1451 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1452 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1453 } else {
1454 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1455 (inode->i_sb->s_blocksize_bits - 9);
1456
1457 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1458 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1459 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1460 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1461
1462 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1463 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1464 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1465 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1466 }
1467 inode->i_generation = iinfo->i_unique;
1468
1469 /*
1470 * Sanity check length of allocation descriptors and extended attrs to
1471 * avoid integer overflows
1472 */
1473 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1474 goto out;
1475 /* Now do exact checks */
1476 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1477 goto out;
1478 /* Sanity checks for files in ICB so that we don't get confused later */
1479 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1480 /*
1481 * For file in ICB data is stored in allocation descriptor
1482 * so sizes should match
1483 */
1484 if (iinfo->i_lenAlloc != inode->i_size)
1485 goto out;
1486 /* File in ICB has to fit in there... */
1487 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1488 goto out;
1489 }
1490
1491 switch (fe->icbTag.fileType) {
1492 case ICBTAG_FILE_TYPE_DIRECTORY:
1493 inode->i_op = &udf_dir_inode_operations;
1494 inode->i_fop = &udf_dir_operations;
1495 inode->i_mode |= S_IFDIR;
1496 inc_nlink(inode);
1497 break;
1498 case ICBTAG_FILE_TYPE_REALTIME:
1499 case ICBTAG_FILE_TYPE_REGULAR:
1500 case ICBTAG_FILE_TYPE_UNDEF:
1501 case ICBTAG_FILE_TYPE_VAT20:
1502 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1503 inode->i_data.a_ops = &udf_adinicb_aops;
1504 else
1505 inode->i_data.a_ops = &udf_aops;
1506 inode->i_op = &udf_file_inode_operations;
1507 inode->i_fop = &udf_file_operations;
1508 inode->i_mode |= S_IFREG;
1509 break;
1510 case ICBTAG_FILE_TYPE_BLOCK:
1511 inode->i_mode |= S_IFBLK;
1512 break;
1513 case ICBTAG_FILE_TYPE_CHAR:
1514 inode->i_mode |= S_IFCHR;
1515 break;
1516 case ICBTAG_FILE_TYPE_FIFO:
1517 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1518 break;
1519 case ICBTAG_FILE_TYPE_SOCKET:
1520 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1521 break;
1522 case ICBTAG_FILE_TYPE_SYMLINK:
1523 inode->i_data.a_ops = &udf_symlink_aops;
1524 inode->i_op = &udf_symlink_inode_operations;
1525 inode_nohighmem(inode);
1526 inode->i_mode = S_IFLNK | 0777;
1527 break;
1528 case ICBTAG_FILE_TYPE_MAIN:
1529 udf_debug("METADATA FILE-----\n");
1530 break;
1531 case ICBTAG_FILE_TYPE_MIRROR:
1532 udf_debug("METADATA MIRROR FILE-----\n");
1533 break;
1534 case ICBTAG_FILE_TYPE_BITMAP:
1535 udf_debug("METADATA BITMAP FILE-----\n");
1536 break;
1537 default:
1538 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1539 inode->i_ino, fe->icbTag.fileType);
1540 goto out;
1541 }
1542 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1543 struct deviceSpec *dsea =
1544 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1545 if (dsea) {
1546 init_special_inode(inode, inode->i_mode,
1547 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1548 le32_to_cpu(dsea->minorDeviceIdent)));
1549 /* Developer ID ??? */
1550 } else
1551 goto out;
1552 }
1553 ret = 0;
1554 out:
1555 brelse(bh);
1556 return ret;
1557 }
1558
1559 static int udf_alloc_i_data(struct inode *inode, size_t size)
1560 {
1561 struct udf_inode_info *iinfo = UDF_I(inode);
1562 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1563 if (!iinfo->i_ext.i_data)
1564 return -ENOMEM;
1565 return 0;
1566 }
1567
1568 static umode_t udf_convert_permissions(struct fileEntry *fe)
1569 {
1570 umode_t mode;
1571 uint32_t permissions;
1572 uint32_t flags;
1573
1574 permissions = le32_to_cpu(fe->permissions);
1575 flags = le16_to_cpu(fe->icbTag.flags);
1576
1577 mode = ((permissions) & 0007) |
1578 ((permissions >> 2) & 0070) |
1579 ((permissions >> 4) & 0700) |
1580 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1581 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1582 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1583
1584 return mode;
1585 }
1586
1587 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1588 {
1589 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1590 }
1591
1592 static int udf_sync_inode(struct inode *inode)
1593 {
1594 return udf_update_inode(inode, 1);
1595 }
1596
1597 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1598 {
1599 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1600 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1601 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1602 iinfo->i_crtime = time;
1603 }
1604
1605 static int udf_update_inode(struct inode *inode, int do_sync)
1606 {
1607 struct buffer_head *bh = NULL;
1608 struct fileEntry *fe;
1609 struct extendedFileEntry *efe;
1610 uint64_t lb_recorded;
1611 uint32_t udfperms;
1612 uint16_t icbflags;
1613 uint16_t crclen;
1614 int err = 0;
1615 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1616 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1617 struct udf_inode_info *iinfo = UDF_I(inode);
1618
1619 bh = udf_tgetblk(inode->i_sb,
1620 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1621 if (!bh) {
1622 udf_debug("getblk failure\n");
1623 return -EIO;
1624 }
1625
1626 lock_buffer(bh);
1627 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1628 fe = (struct fileEntry *)bh->b_data;
1629 efe = (struct extendedFileEntry *)bh->b_data;
1630
1631 if (iinfo->i_use) {
1632 struct unallocSpaceEntry *use =
1633 (struct unallocSpaceEntry *)bh->b_data;
1634
1635 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1636 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1637 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1638 sizeof(struct unallocSpaceEntry));
1639 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1640 crclen = sizeof(struct unallocSpaceEntry);
1641
1642 goto finish;
1643 }
1644
1645 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1646 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1647 else
1648 fe->uid = cpu_to_le32(i_uid_read(inode));
1649
1650 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1651 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1652 else
1653 fe->gid = cpu_to_le32(i_gid_read(inode));
1654
1655 udfperms = ((inode->i_mode & 0007)) |
1656 ((inode->i_mode & 0070) << 2) |
1657 ((inode->i_mode & 0700) << 4);
1658
1659 udfperms |= (le32_to_cpu(fe->permissions) &
1660 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1661 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1662 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1663 fe->permissions = cpu_to_le32(udfperms);
1664
1665 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1666 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1667 else
1668 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1669
1670 fe->informationLength = cpu_to_le64(inode->i_size);
1671
1672 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1673 struct regid *eid;
1674 struct deviceSpec *dsea =
1675 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1676 if (!dsea) {
1677 dsea = (struct deviceSpec *)
1678 udf_add_extendedattr(inode,
1679 sizeof(struct deviceSpec) +
1680 sizeof(struct regid), 12, 0x3);
1681 dsea->attrType = cpu_to_le32(12);
1682 dsea->attrSubtype = 1;
1683 dsea->attrLength = cpu_to_le32(
1684 sizeof(struct deviceSpec) +
1685 sizeof(struct regid));
1686 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1687 }
1688 eid = (struct regid *)dsea->impUse;
1689 memset(eid, 0, sizeof(*eid));
1690 strcpy(eid->ident, UDF_ID_DEVELOPER);
1691 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1692 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1693 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1694 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1695 }
1696
1697 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1698 lb_recorded = 0; /* No extents => no blocks! */
1699 else
1700 lb_recorded =
1701 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1702 (blocksize_bits - 9);
1703
1704 if (iinfo->i_efe == 0) {
1705 memcpy(bh->b_data + sizeof(struct fileEntry),
1706 iinfo->i_ext.i_data,
1707 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1708 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1709
1710 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1711 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1712 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1713 memset(&(fe->impIdent), 0, sizeof(struct regid));
1714 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1715 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1716 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1717 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1718 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1719 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1720 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1721 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1722 crclen = sizeof(struct fileEntry);
1723 } else {
1724 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1725 iinfo->i_ext.i_data,
1726 inode->i_sb->s_blocksize -
1727 sizeof(struct extendedFileEntry));
1728 efe->objectSize = cpu_to_le64(inode->i_size);
1729 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1730
1731 udf_adjust_time(iinfo, inode->i_atime);
1732 udf_adjust_time(iinfo, inode->i_mtime);
1733 udf_adjust_time(iinfo, inode->i_ctime);
1734
1735 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1736 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1737 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1738 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1739
1740 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1741 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1742 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1743 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1744 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1745 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1746 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1747 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1748 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1749 crclen = sizeof(struct extendedFileEntry);
1750 }
1751
1752 finish:
1753 if (iinfo->i_strat4096) {
1754 fe->icbTag.strategyType = cpu_to_le16(4096);
1755 fe->icbTag.strategyParameter = cpu_to_le16(1);
1756 fe->icbTag.numEntries = cpu_to_le16(2);
1757 } else {
1758 fe->icbTag.strategyType = cpu_to_le16(4);
1759 fe->icbTag.numEntries = cpu_to_le16(1);
1760 }
1761
1762 if (iinfo->i_use)
1763 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1764 else if (S_ISDIR(inode->i_mode))
1765 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1766 else if (S_ISREG(inode->i_mode))
1767 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1768 else if (S_ISLNK(inode->i_mode))
1769 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1770 else if (S_ISBLK(inode->i_mode))
1771 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1772 else if (S_ISCHR(inode->i_mode))
1773 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1774 else if (S_ISFIFO(inode->i_mode))
1775 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1776 else if (S_ISSOCK(inode->i_mode))
1777 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1778
1779 icbflags = iinfo->i_alloc_type |
1780 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1781 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1782 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1783 (le16_to_cpu(fe->icbTag.flags) &
1784 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1785 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1786
1787 fe->icbTag.flags = cpu_to_le16(icbflags);
1788 if (sbi->s_udfrev >= 0x0200)
1789 fe->descTag.descVersion = cpu_to_le16(3);
1790 else
1791 fe->descTag.descVersion = cpu_to_le16(2);
1792 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1793 fe->descTag.tagLocation = cpu_to_le32(
1794 iinfo->i_location.logicalBlockNum);
1795 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1796 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1797 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1798 crclen));
1799 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1800
1801 set_buffer_uptodate(bh);
1802 unlock_buffer(bh);
1803
1804 /* write the data blocks */
1805 mark_buffer_dirty(bh);
1806 if (do_sync) {
1807 sync_dirty_buffer(bh);
1808 if (buffer_write_io_error(bh)) {
1809 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1810 inode->i_ino);
1811 err = -EIO;
1812 }
1813 }
1814 brelse(bh);
1815
1816 return err;
1817 }
1818
1819 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1820 bool hidden_inode)
1821 {
1822 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1823 struct inode *inode = iget_locked(sb, block);
1824 int err;
1825
1826 if (!inode)
1827 return ERR_PTR(-ENOMEM);
1828
1829 if (!(inode->i_state & I_NEW))
1830 return inode;
1831
1832 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1833 err = udf_read_inode(inode, hidden_inode);
1834 if (err < 0) {
1835 iget_failed(inode);
1836 return ERR_PTR(err);
1837 }
1838 unlock_new_inode(inode);
1839
1840 return inode;
1841 }
1842
1843 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1844 struct extent_position *epos)
1845 {
1846 struct super_block *sb = inode->i_sb;
1847 struct buffer_head *bh;
1848 struct allocExtDesc *aed;
1849 struct extent_position nepos;
1850 struct kernel_lb_addr neloc;
1851 int ver, adsize;
1852
1853 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1854 adsize = sizeof(struct short_ad);
1855 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1856 adsize = sizeof(struct long_ad);
1857 else
1858 return -EIO;
1859
1860 neloc.logicalBlockNum = block;
1861 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1862
1863 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1864 if (!bh)
1865 return -EIO;
1866 lock_buffer(bh);
1867 memset(bh->b_data, 0x00, sb->s_blocksize);
1868 set_buffer_uptodate(bh);
1869 unlock_buffer(bh);
1870 mark_buffer_dirty_inode(bh, inode);
1871
1872 aed = (struct allocExtDesc *)(bh->b_data);
1873 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1874 aed->previousAllocExtLocation =
1875 cpu_to_le32(epos->block.logicalBlockNum);
1876 }
1877 aed->lengthAllocDescs = cpu_to_le32(0);
1878 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1879 ver = 3;
1880 else
1881 ver = 2;
1882 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1883 sizeof(struct tag));
1884
1885 nepos.block = neloc;
1886 nepos.offset = sizeof(struct allocExtDesc);
1887 nepos.bh = bh;
1888
1889 /*
1890 * Do we have to copy current last extent to make space for indirect
1891 * one?
1892 */
1893 if (epos->offset + adsize > sb->s_blocksize) {
1894 struct kernel_lb_addr cp_loc;
1895 uint32_t cp_len;
1896 int cp_type;
1897
1898 epos->offset -= adsize;
1899 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1900 cp_len |= ((uint32_t)cp_type) << 30;
1901
1902 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1903 udf_write_aext(inode, epos, &nepos.block,
1904 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1905 } else {
1906 __udf_add_aext(inode, epos, &nepos.block,
1907 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1908 }
1909
1910 brelse(epos->bh);
1911 *epos = nepos;
1912
1913 return 0;
1914 }
1915
1916 /*
1917 * Append extent at the given position - should be the first free one in inode
1918 * / indirect extent. This function assumes there is enough space in the inode
1919 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1920 */
1921 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1922 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1923 {
1924 struct udf_inode_info *iinfo = UDF_I(inode);
1925 struct allocExtDesc *aed;
1926 int adsize;
1927
1928 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1929 adsize = sizeof(struct short_ad);
1930 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1931 adsize = sizeof(struct long_ad);
1932 else
1933 return -EIO;
1934
1935 if (!epos->bh) {
1936 WARN_ON(iinfo->i_lenAlloc !=
1937 epos->offset - udf_file_entry_alloc_offset(inode));
1938 } else {
1939 aed = (struct allocExtDesc *)epos->bh->b_data;
1940 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1941 epos->offset - sizeof(struct allocExtDesc));
1942 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
1943 }
1944
1945 udf_write_aext(inode, epos, eloc, elen, inc);
1946
1947 if (!epos->bh) {
1948 iinfo->i_lenAlloc += adsize;
1949 mark_inode_dirty(inode);
1950 } else {
1951 aed = (struct allocExtDesc *)epos->bh->b_data;
1952 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1953 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1954 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1955 udf_update_tag(epos->bh->b_data,
1956 epos->offset + (inc ? 0 : adsize));
1957 else
1958 udf_update_tag(epos->bh->b_data,
1959 sizeof(struct allocExtDesc));
1960 mark_buffer_dirty_inode(epos->bh, inode);
1961 }
1962
1963 return 0;
1964 }
1965
1966 /*
1967 * Append extent at given position - should be the first free one in inode
1968 * / indirect extent. Takes care of allocating and linking indirect blocks.
1969 */
1970 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1971 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1972 {
1973 int adsize;
1974 struct super_block *sb = inode->i_sb;
1975
1976 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1977 adsize = sizeof(struct short_ad);
1978 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1979 adsize = sizeof(struct long_ad);
1980 else
1981 return -EIO;
1982
1983 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
1984 int err;
1985 udf_pblk_t new_block;
1986
1987 new_block = udf_new_block(sb, NULL,
1988 epos->block.partitionReferenceNum,
1989 epos->block.logicalBlockNum, &err);
1990 if (!new_block)
1991 return -ENOSPC;
1992
1993 err = udf_setup_indirect_aext(inode, new_block, epos);
1994 if (err)
1995 return err;
1996 }
1997
1998 return __udf_add_aext(inode, epos, eloc, elen, inc);
1999 }
2000
2001 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2002 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2003 {
2004 int adsize;
2005 uint8_t *ptr;
2006 struct short_ad *sad;
2007 struct long_ad *lad;
2008 struct udf_inode_info *iinfo = UDF_I(inode);
2009
2010 if (!epos->bh)
2011 ptr = iinfo->i_ext.i_data + epos->offset -
2012 udf_file_entry_alloc_offset(inode) +
2013 iinfo->i_lenEAttr;
2014 else
2015 ptr = epos->bh->b_data + epos->offset;
2016
2017 switch (iinfo->i_alloc_type) {
2018 case ICBTAG_FLAG_AD_SHORT:
2019 sad = (struct short_ad *)ptr;
2020 sad->extLength = cpu_to_le32(elen);
2021 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2022 adsize = sizeof(struct short_ad);
2023 break;
2024 case ICBTAG_FLAG_AD_LONG:
2025 lad = (struct long_ad *)ptr;
2026 lad->extLength = cpu_to_le32(elen);
2027 lad->extLocation = cpu_to_lelb(*eloc);
2028 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2029 adsize = sizeof(struct long_ad);
2030 break;
2031 default:
2032 return;
2033 }
2034
2035 if (epos->bh) {
2036 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2037 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2038 struct allocExtDesc *aed =
2039 (struct allocExtDesc *)epos->bh->b_data;
2040 udf_update_tag(epos->bh->b_data,
2041 le32_to_cpu(aed->lengthAllocDescs) +
2042 sizeof(struct allocExtDesc));
2043 }
2044 mark_buffer_dirty_inode(epos->bh, inode);
2045 } else {
2046 mark_inode_dirty(inode);
2047 }
2048
2049 if (inc)
2050 epos->offset += adsize;
2051 }
2052
2053 /*
2054 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2055 * someone does some weird stuff.
2056 */
2057 #define UDF_MAX_INDIR_EXTS 16
2058
2059 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2060 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2061 {
2062 int8_t etype;
2063 unsigned int indirections = 0;
2064
2065 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2066 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2067 udf_pblk_t block;
2068
2069 if (++indirections > UDF_MAX_INDIR_EXTS) {
2070 udf_err(inode->i_sb,
2071 "too many indirect extents in inode %lu\n",
2072 inode->i_ino);
2073 return -1;
2074 }
2075
2076 epos->block = *eloc;
2077 epos->offset = sizeof(struct allocExtDesc);
2078 brelse(epos->bh);
2079 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2080 epos->bh = udf_tread(inode->i_sb, block);
2081 if (!epos->bh) {
2082 udf_debug("reading block %u failed!\n", block);
2083 return -1;
2084 }
2085 }
2086
2087 return etype;
2088 }
2089
2090 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2091 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2092 {
2093 int alen;
2094 int8_t etype;
2095 uint8_t *ptr;
2096 struct short_ad *sad;
2097 struct long_ad *lad;
2098 struct udf_inode_info *iinfo = UDF_I(inode);
2099
2100 if (!epos->bh) {
2101 if (!epos->offset)
2102 epos->offset = udf_file_entry_alloc_offset(inode);
2103 ptr = iinfo->i_ext.i_data + epos->offset -
2104 udf_file_entry_alloc_offset(inode) +
2105 iinfo->i_lenEAttr;
2106 alen = udf_file_entry_alloc_offset(inode) +
2107 iinfo->i_lenAlloc;
2108 } else {
2109 if (!epos->offset)
2110 epos->offset = sizeof(struct allocExtDesc);
2111 ptr = epos->bh->b_data + epos->offset;
2112 alen = sizeof(struct allocExtDesc) +
2113 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2114 lengthAllocDescs);
2115 }
2116
2117 switch (iinfo->i_alloc_type) {
2118 case ICBTAG_FLAG_AD_SHORT:
2119 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2120 if (!sad)
2121 return -1;
2122 etype = le32_to_cpu(sad->extLength) >> 30;
2123 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2124 eloc->partitionReferenceNum =
2125 iinfo->i_location.partitionReferenceNum;
2126 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2127 break;
2128 case ICBTAG_FLAG_AD_LONG:
2129 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2130 if (!lad)
2131 return -1;
2132 etype = le32_to_cpu(lad->extLength) >> 30;
2133 *eloc = lelb_to_cpu(lad->extLocation);
2134 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2135 break;
2136 default:
2137 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2138 return -1;
2139 }
2140
2141 return etype;
2142 }
2143
2144 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2145 struct kernel_lb_addr neloc, uint32_t nelen)
2146 {
2147 struct kernel_lb_addr oeloc;
2148 uint32_t oelen;
2149 int8_t etype;
2150
2151 if (epos.bh)
2152 get_bh(epos.bh);
2153
2154 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2155 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2156 neloc = oeloc;
2157 nelen = (etype << 30) | oelen;
2158 }
2159 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2160 brelse(epos.bh);
2161
2162 return (nelen >> 30);
2163 }
2164
2165 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2166 {
2167 struct extent_position oepos;
2168 int adsize;
2169 int8_t etype;
2170 struct allocExtDesc *aed;
2171 struct udf_inode_info *iinfo;
2172 struct kernel_lb_addr eloc;
2173 uint32_t elen;
2174
2175 if (epos.bh) {
2176 get_bh(epos.bh);
2177 get_bh(epos.bh);
2178 }
2179
2180 iinfo = UDF_I(inode);
2181 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2182 adsize = sizeof(struct short_ad);
2183 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2184 adsize = sizeof(struct long_ad);
2185 else
2186 adsize = 0;
2187
2188 oepos = epos;
2189 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2190 return -1;
2191
2192 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2193 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2194 if (oepos.bh != epos.bh) {
2195 oepos.block = epos.block;
2196 brelse(oepos.bh);
2197 get_bh(epos.bh);
2198 oepos.bh = epos.bh;
2199 oepos.offset = epos.offset - adsize;
2200 }
2201 }
2202 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2203 elen = 0;
2204
2205 if (epos.bh != oepos.bh) {
2206 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2207 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2208 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2209 if (!oepos.bh) {
2210 iinfo->i_lenAlloc -= (adsize * 2);
2211 mark_inode_dirty(inode);
2212 } else {
2213 aed = (struct allocExtDesc *)oepos.bh->b_data;
2214 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2215 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2216 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2217 udf_update_tag(oepos.bh->b_data,
2218 oepos.offset - (2 * adsize));
2219 else
2220 udf_update_tag(oepos.bh->b_data,
2221 sizeof(struct allocExtDesc));
2222 mark_buffer_dirty_inode(oepos.bh, inode);
2223 }
2224 } else {
2225 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2226 if (!oepos.bh) {
2227 iinfo->i_lenAlloc -= adsize;
2228 mark_inode_dirty(inode);
2229 } else {
2230 aed = (struct allocExtDesc *)oepos.bh->b_data;
2231 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2232 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2233 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2234 udf_update_tag(oepos.bh->b_data,
2235 epos.offset - adsize);
2236 else
2237 udf_update_tag(oepos.bh->b_data,
2238 sizeof(struct allocExtDesc));
2239 mark_buffer_dirty_inode(oepos.bh, inode);
2240 }
2241 }
2242
2243 brelse(epos.bh);
2244 brelse(oepos.bh);
2245
2246 return (elen >> 30);
2247 }
2248
2249 int8_t inode_bmap(struct inode *inode, sector_t block,
2250 struct extent_position *pos, struct kernel_lb_addr *eloc,
2251 uint32_t *elen, sector_t *offset)
2252 {
2253 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2254 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2255 int8_t etype;
2256 struct udf_inode_info *iinfo;
2257
2258 iinfo = UDF_I(inode);
2259 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2260 pos->offset = 0;
2261 pos->block = iinfo->i_location;
2262 pos->bh = NULL;
2263 }
2264 *elen = 0;
2265 do {
2266 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2267 if (etype == -1) {
2268 *offset = (bcount - lbcount) >> blocksize_bits;
2269 iinfo->i_lenExtents = lbcount;
2270 return -1;
2271 }
2272 lbcount += *elen;
2273 } while (lbcount <= bcount);
2274 /* update extent cache */
2275 udf_update_extent_cache(inode, lbcount - *elen, pos);
2276 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2277
2278 return etype;
2279 }
2280
2281 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2282 {
2283 struct kernel_lb_addr eloc;
2284 uint32_t elen;
2285 sector_t offset;
2286 struct extent_position epos = {};
2287 udf_pblk_t ret;
2288
2289 down_read(&UDF_I(inode)->i_data_sem);
2290
2291 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2292 (EXT_RECORDED_ALLOCATED >> 30))
2293 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2294 else
2295 ret = 0;
2296
2297 up_read(&UDF_I(inode)->i_data_sem);
2298 brelse(epos.bh);
2299
2300 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2301 return udf_fixed_to_variable(ret);
2302 else
2303 return ret;
2304 }