]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/udf/inode.c
udf: Add read-only support for 2.50 UDF media
[mirror_ubuntu-hirsute-kernel.git] / fs / udf / inode.c
1 /*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/module.h>
36 #include <linux/pagemap.h>
37 #include <linux/buffer_head.h>
38 #include <linux/writeback.h>
39 #include <linux/slab.h>
40
41 #include "udf_i.h"
42 #include "udf_sb.h"
43
44 MODULE_AUTHOR("Ben Fennema");
45 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
46 MODULE_LICENSE("GPL");
47
48 #define EXTENT_MERGE_SIZE 5
49
50 static mode_t udf_convert_permissions(struct fileEntry *);
51 static int udf_update_inode(struct inode *, int);
52 static void udf_fill_inode(struct inode *, struct buffer_head *);
53 static int udf_alloc_i_data(struct inode *inode, size_t size);
54 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
55 sector_t *, int *);
56 static int8_t udf_insert_aext(struct inode *, struct extent_position,
57 kernel_lb_addr, uint32_t);
58 static void udf_split_extents(struct inode *, int *, int, int,
59 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
60 static void udf_prealloc_extents(struct inode *, int, int,
61 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
62 static void udf_merge_extents(struct inode *,
63 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
64 static void udf_update_extents(struct inode *,
65 kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
66 struct extent_position *);
67 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
68
69
70 void udf_delete_inode(struct inode *inode)
71 {
72 truncate_inode_pages(&inode->i_data, 0);
73
74 if (is_bad_inode(inode))
75 goto no_delete;
76
77 inode->i_size = 0;
78 udf_truncate(inode);
79 lock_kernel();
80
81 udf_update_inode(inode, IS_SYNC(inode));
82 udf_free_inode(inode);
83
84 unlock_kernel();
85 return;
86
87 no_delete:
88 clear_inode(inode);
89 }
90
91 /*
92 * If we are going to release inode from memory, we discard preallocation and
93 * truncate last inode extent to proper length. We could use drop_inode() but
94 * it's called under inode_lock and thus we cannot mark inode dirty there. We
95 * use clear_inode() but we have to make sure to write inode as it's not written
96 * automatically.
97 */
98 void udf_clear_inode(struct inode *inode)
99 {
100 struct udf_inode_info *iinfo;
101 if (!(inode->i_sb->s_flags & MS_RDONLY)) {
102 lock_kernel();
103 /* Discard preallocation for directories, symlinks, etc. */
104 udf_discard_prealloc(inode);
105 udf_truncate_tail_extent(inode);
106 unlock_kernel();
107 write_inode_now(inode, 0);
108 }
109 iinfo = UDF_I(inode);
110 kfree(iinfo->i_ext.i_data);
111 iinfo->i_ext.i_data = NULL;
112 }
113
114 static int udf_writepage(struct page *page, struct writeback_control *wbc)
115 {
116 return block_write_full_page(page, udf_get_block, wbc);
117 }
118
119 static int udf_readpage(struct file *file, struct page *page)
120 {
121 return block_read_full_page(page, udf_get_block);
122 }
123
124 static int udf_write_begin(struct file *file, struct address_space *mapping,
125 loff_t pos, unsigned len, unsigned flags,
126 struct page **pagep, void **fsdata)
127 {
128 *pagep = NULL;
129 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
130 udf_get_block);
131 }
132
133 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
134 {
135 return generic_block_bmap(mapping, block, udf_get_block);
136 }
137
138 const struct address_space_operations udf_aops = {
139 .readpage = udf_readpage,
140 .writepage = udf_writepage,
141 .sync_page = block_sync_page,
142 .write_begin = udf_write_begin,
143 .write_end = generic_write_end,
144 .bmap = udf_bmap,
145 };
146
147 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
148 {
149 struct page *page;
150 char *kaddr;
151 struct udf_inode_info *iinfo = UDF_I(inode);
152 struct writeback_control udf_wbc = {
153 .sync_mode = WB_SYNC_NONE,
154 .nr_to_write = 1,
155 };
156
157 /* from now on we have normal address_space methods */
158 inode->i_data.a_ops = &udf_aops;
159
160 if (!iinfo->i_lenAlloc) {
161 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
162 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
163 else
164 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
165 mark_inode_dirty(inode);
166 return;
167 }
168
169 page = grab_cache_page(inode->i_mapping, 0);
170 BUG_ON(!PageLocked(page));
171
172 if (!PageUptodate(page)) {
173 kaddr = kmap(page);
174 memset(kaddr + iinfo->i_lenAlloc, 0x00,
175 PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
176 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
177 iinfo->i_lenAlloc);
178 flush_dcache_page(page);
179 SetPageUptodate(page);
180 kunmap(page);
181 }
182 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
183 iinfo->i_lenAlloc);
184 iinfo->i_lenAlloc = 0;
185 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
186 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
187 else
188 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
189
190 inode->i_data.a_ops->writepage(page, &udf_wbc);
191 page_cache_release(page);
192
193 mark_inode_dirty(inode);
194 }
195
196 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
197 int *err)
198 {
199 int newblock;
200 struct buffer_head *dbh = NULL;
201 kernel_lb_addr eloc;
202 uint32_t elen;
203 uint8_t alloctype;
204 struct extent_position epos;
205
206 struct udf_fileident_bh sfibh, dfibh;
207 loff_t f_pos = udf_ext0_offset(inode);
208 int size = udf_ext0_offset(inode) + inode->i_size;
209 struct fileIdentDesc cfi, *sfi, *dfi;
210 struct udf_inode_info *iinfo = UDF_I(inode);
211
212 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
213 alloctype = ICBTAG_FLAG_AD_SHORT;
214 else
215 alloctype = ICBTAG_FLAG_AD_LONG;
216
217 if (!inode->i_size) {
218 iinfo->i_alloc_type = alloctype;
219 mark_inode_dirty(inode);
220 return NULL;
221 }
222
223 /* alloc block, and copy data to it */
224 *block = udf_new_block(inode->i_sb, inode,
225 iinfo->i_location.partitionReferenceNum,
226 iinfo->i_location.logicalBlockNum, err);
227 if (!(*block))
228 return NULL;
229 newblock = udf_get_pblock(inode->i_sb, *block,
230 iinfo->i_location.partitionReferenceNum,
231 0);
232 if (!newblock)
233 return NULL;
234 dbh = udf_tgetblk(inode->i_sb, newblock);
235 if (!dbh)
236 return NULL;
237 lock_buffer(dbh);
238 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
239 set_buffer_uptodate(dbh);
240 unlock_buffer(dbh);
241 mark_buffer_dirty_inode(dbh, inode);
242
243 sfibh.soffset = sfibh.eoffset =
244 f_pos & (inode->i_sb->s_blocksize - 1);
245 sfibh.sbh = sfibh.ebh = NULL;
246 dfibh.soffset = dfibh.eoffset = 0;
247 dfibh.sbh = dfibh.ebh = dbh;
248 while (f_pos < size) {
249 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
250 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
251 NULL, NULL, NULL);
252 if (!sfi) {
253 brelse(dbh);
254 return NULL;
255 }
256 iinfo->i_alloc_type = alloctype;
257 sfi->descTag.tagLocation = cpu_to_le32(*block);
258 dfibh.soffset = dfibh.eoffset;
259 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
260 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
261 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
262 sfi->fileIdent +
263 le16_to_cpu(sfi->lengthOfImpUse))) {
264 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
265 brelse(dbh);
266 return NULL;
267 }
268 }
269 mark_buffer_dirty_inode(dbh, inode);
270
271 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
272 iinfo->i_lenAlloc);
273 iinfo->i_lenAlloc = 0;
274 eloc.logicalBlockNum = *block;
275 eloc.partitionReferenceNum =
276 iinfo->i_location.partitionReferenceNum;
277 elen = inode->i_sb->s_blocksize;
278 iinfo->i_lenExtents = elen;
279 epos.bh = NULL;
280 epos.block = iinfo->i_location;
281 epos.offset = udf_file_entry_alloc_offset(inode);
282 udf_add_aext(inode, &epos, eloc, elen, 0);
283 /* UniqueID stuff */
284
285 brelse(epos.bh);
286 mark_inode_dirty(inode);
287 return dbh;
288 }
289
290 static int udf_get_block(struct inode *inode, sector_t block,
291 struct buffer_head *bh_result, int create)
292 {
293 int err, new;
294 struct buffer_head *bh;
295 sector_t phys = 0;
296 struct udf_inode_info *iinfo;
297
298 if (!create) {
299 phys = udf_block_map(inode, block);
300 if (phys)
301 map_bh(bh_result, inode->i_sb, phys);
302 return 0;
303 }
304
305 err = -EIO;
306 new = 0;
307 bh = NULL;
308
309 lock_kernel();
310
311 iinfo = UDF_I(inode);
312 if (block == iinfo->i_next_alloc_block + 1) {
313 iinfo->i_next_alloc_block++;
314 iinfo->i_next_alloc_goal++;
315 }
316
317 err = 0;
318
319 bh = inode_getblk(inode, block, &err, &phys, &new);
320 BUG_ON(bh);
321 if (err)
322 goto abort;
323 BUG_ON(!phys);
324
325 if (new)
326 set_buffer_new(bh_result);
327 map_bh(bh_result, inode->i_sb, phys);
328
329 abort:
330 unlock_kernel();
331 return err;
332 }
333
334 static struct buffer_head *udf_getblk(struct inode *inode, long block,
335 int create, int *err)
336 {
337 struct buffer_head *bh;
338 struct buffer_head dummy;
339
340 dummy.b_state = 0;
341 dummy.b_blocknr = -1000;
342 *err = udf_get_block(inode, block, &dummy, create);
343 if (!*err && buffer_mapped(&dummy)) {
344 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
345 if (buffer_new(&dummy)) {
346 lock_buffer(bh);
347 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
348 set_buffer_uptodate(bh);
349 unlock_buffer(bh);
350 mark_buffer_dirty_inode(bh, inode);
351 }
352 return bh;
353 }
354
355 return NULL;
356 }
357
358 /* Extend the file by 'blocks' blocks, return the number of extents added */
359 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
360 kernel_long_ad *last_ext, sector_t blocks)
361 {
362 sector_t add;
363 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
364 struct super_block *sb = inode->i_sb;
365 kernel_lb_addr prealloc_loc = {};
366 int prealloc_len = 0;
367 struct udf_inode_info *iinfo;
368
369 /* The previous extent is fake and we should not extend by anything
370 * - there's nothing to do... */
371 if (!blocks && fake)
372 return 0;
373
374 iinfo = UDF_I(inode);
375 /* Round the last extent up to a multiple of block size */
376 if (last_ext->extLength & (sb->s_blocksize - 1)) {
377 last_ext->extLength =
378 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
379 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
380 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
381 iinfo->i_lenExtents =
382 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
383 ~(sb->s_blocksize - 1);
384 }
385
386 /* Last extent are just preallocated blocks? */
387 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
388 EXT_NOT_RECORDED_ALLOCATED) {
389 /* Save the extent so that we can reattach it to the end */
390 prealloc_loc = last_ext->extLocation;
391 prealloc_len = last_ext->extLength;
392 /* Mark the extent as a hole */
393 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
394 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
395 last_ext->extLocation.logicalBlockNum = 0;
396 last_ext->extLocation.partitionReferenceNum = 0;
397 }
398
399 /* Can we merge with the previous extent? */
400 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
401 EXT_NOT_RECORDED_NOT_ALLOCATED) {
402 add = ((1 << 30) - sb->s_blocksize -
403 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
404 sb->s_blocksize_bits;
405 if (add > blocks)
406 add = blocks;
407 blocks -= add;
408 last_ext->extLength += add << sb->s_blocksize_bits;
409 }
410
411 if (fake) {
412 udf_add_aext(inode, last_pos, last_ext->extLocation,
413 last_ext->extLength, 1);
414 count++;
415 } else
416 udf_write_aext(inode, last_pos, last_ext->extLocation,
417 last_ext->extLength, 1);
418
419 /* Managed to do everything necessary? */
420 if (!blocks)
421 goto out;
422
423 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
424 last_ext->extLocation.logicalBlockNum = 0;
425 last_ext->extLocation.partitionReferenceNum = 0;
426 add = (1 << (30-sb->s_blocksize_bits)) - 1;
427 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
428 (add << sb->s_blocksize_bits);
429
430 /* Create enough extents to cover the whole hole */
431 while (blocks > add) {
432 blocks -= add;
433 if (udf_add_aext(inode, last_pos, last_ext->extLocation,
434 last_ext->extLength, 1) == -1)
435 return -1;
436 count++;
437 }
438 if (blocks) {
439 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
440 (blocks << sb->s_blocksize_bits);
441 if (udf_add_aext(inode, last_pos, last_ext->extLocation,
442 last_ext->extLength, 1) == -1)
443 return -1;
444 count++;
445 }
446
447 out:
448 /* Do we have some preallocated blocks saved? */
449 if (prealloc_len) {
450 if (udf_add_aext(inode, last_pos, prealloc_loc,
451 prealloc_len, 1) == -1)
452 return -1;
453 last_ext->extLocation = prealloc_loc;
454 last_ext->extLength = prealloc_len;
455 count++;
456 }
457
458 /* last_pos should point to the last written extent... */
459 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
460 last_pos->offset -= sizeof(short_ad);
461 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
462 last_pos->offset -= sizeof(long_ad);
463 else
464 return -1;
465
466 return count;
467 }
468
469 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
470 int *err, sector_t *phys, int *new)
471 {
472 static sector_t last_block;
473 struct buffer_head *result = NULL;
474 kernel_long_ad laarr[EXTENT_MERGE_SIZE];
475 struct extent_position prev_epos, cur_epos, next_epos;
476 int count = 0, startnum = 0, endnum = 0;
477 uint32_t elen = 0, tmpelen;
478 kernel_lb_addr eloc, tmpeloc;
479 int c = 1;
480 loff_t lbcount = 0, b_off = 0;
481 uint32_t newblocknum, newblock;
482 sector_t offset = 0;
483 int8_t etype;
484 struct udf_inode_info *iinfo = UDF_I(inode);
485 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
486 int lastblock = 0;
487
488 prev_epos.offset = udf_file_entry_alloc_offset(inode);
489 prev_epos.block = iinfo->i_location;
490 prev_epos.bh = NULL;
491 cur_epos = next_epos = prev_epos;
492 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
493
494 /* find the extent which contains the block we are looking for.
495 alternate between laarr[0] and laarr[1] for locations of the
496 current extent, and the previous extent */
497 do {
498 if (prev_epos.bh != cur_epos.bh) {
499 brelse(prev_epos.bh);
500 get_bh(cur_epos.bh);
501 prev_epos.bh = cur_epos.bh;
502 }
503 if (cur_epos.bh != next_epos.bh) {
504 brelse(cur_epos.bh);
505 get_bh(next_epos.bh);
506 cur_epos.bh = next_epos.bh;
507 }
508
509 lbcount += elen;
510
511 prev_epos.block = cur_epos.block;
512 cur_epos.block = next_epos.block;
513
514 prev_epos.offset = cur_epos.offset;
515 cur_epos.offset = next_epos.offset;
516
517 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
518 if (etype == -1)
519 break;
520
521 c = !c;
522
523 laarr[c].extLength = (etype << 30) | elen;
524 laarr[c].extLocation = eloc;
525
526 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
527 pgoal = eloc.logicalBlockNum +
528 ((elen + inode->i_sb->s_blocksize - 1) >>
529 inode->i_sb->s_blocksize_bits);
530
531 count++;
532 } while (lbcount + elen <= b_off);
533
534 b_off -= lbcount;
535 offset = b_off >> inode->i_sb->s_blocksize_bits;
536 /*
537 * Move prev_epos and cur_epos into indirect extent if we are at
538 * the pointer to it
539 */
540 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
541 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
542
543 /* if the extent is allocated and recorded, return the block
544 if the extent is not a multiple of the blocksize, round up */
545
546 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
547 if (elen & (inode->i_sb->s_blocksize - 1)) {
548 elen = EXT_RECORDED_ALLOCATED |
549 ((elen + inode->i_sb->s_blocksize - 1) &
550 ~(inode->i_sb->s_blocksize - 1));
551 etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1);
552 }
553 brelse(prev_epos.bh);
554 brelse(cur_epos.bh);
555 brelse(next_epos.bh);
556 newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset);
557 *phys = newblock;
558 return NULL;
559 }
560
561 last_block = block;
562 /* Are we beyond EOF? */
563 if (etype == -1) {
564 int ret;
565
566 if (count) {
567 if (c)
568 laarr[0] = laarr[1];
569 startnum = 1;
570 } else {
571 /* Create a fake extent when there's not one */
572 memset(&laarr[0].extLocation, 0x00,
573 sizeof(kernel_lb_addr));
574 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
575 /* Will udf_extend_file() create real extent from
576 a fake one? */
577 startnum = (offset > 0);
578 }
579 /* Create extents for the hole between EOF and offset */
580 ret = udf_extend_file(inode, &prev_epos, laarr, offset);
581 if (ret == -1) {
582 brelse(prev_epos.bh);
583 brelse(cur_epos.bh);
584 brelse(next_epos.bh);
585 /* We don't really know the error here so we just make
586 * something up */
587 *err = -ENOSPC;
588 return NULL;
589 }
590 c = 0;
591 offset = 0;
592 count += ret;
593 /* We are not covered by a preallocated extent? */
594 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
595 EXT_NOT_RECORDED_ALLOCATED) {
596 /* Is there any real extent? - otherwise we overwrite
597 * the fake one... */
598 if (count)
599 c = !c;
600 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
601 inode->i_sb->s_blocksize;
602 memset(&laarr[c].extLocation, 0x00,
603 sizeof(kernel_lb_addr));
604 count++;
605 endnum++;
606 }
607 endnum = c + 1;
608 lastblock = 1;
609 } else {
610 endnum = startnum = ((count > 2) ? 2 : count);
611
612 /* if the current extent is in position 0,
613 swap it with the previous */
614 if (!c && count != 1) {
615 laarr[2] = laarr[0];
616 laarr[0] = laarr[1];
617 laarr[1] = laarr[2];
618 c = 1;
619 }
620
621 /* if the current block is located in an extent,
622 read the next extent */
623 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
624 if (etype != -1) {
625 laarr[c + 1].extLength = (etype << 30) | elen;
626 laarr[c + 1].extLocation = eloc;
627 count++;
628 startnum++;
629 endnum++;
630 } else
631 lastblock = 1;
632 }
633
634 /* if the current extent is not recorded but allocated, get the
635 * block in the extent corresponding to the requested block */
636 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
637 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
638 else { /* otherwise, allocate a new block */
639 if (iinfo->i_next_alloc_block == block)
640 goal = iinfo->i_next_alloc_goal;
641
642 if (!goal) {
643 if (!(goal = pgoal)) /* XXX: what was intended here? */
644 goal = iinfo->i_location.logicalBlockNum + 1;
645 }
646
647 newblocknum = udf_new_block(inode->i_sb, inode,
648 iinfo->i_location.partitionReferenceNum,
649 goal, err);
650 if (!newblocknum) {
651 brelse(prev_epos.bh);
652 *err = -ENOSPC;
653 return NULL;
654 }
655 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
656 }
657
658 /* if the extent the requsted block is located in contains multiple
659 * blocks, split the extent into at most three extents. blocks prior
660 * to requested block, requested block, and blocks after requested
661 * block */
662 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
663
664 #ifdef UDF_PREALLOCATE
665 /* preallocate blocks */
666 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
667 #endif
668
669 /* merge any continuous blocks in laarr */
670 udf_merge_extents(inode, laarr, &endnum);
671
672 /* write back the new extents, inserting new extents if the new number
673 * of extents is greater than the old number, and deleting extents if
674 * the new number of extents is less than the old number */
675 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
676
677 brelse(prev_epos.bh);
678
679 newblock = udf_get_pblock(inode->i_sb, newblocknum,
680 iinfo->i_location.partitionReferenceNum, 0);
681 if (!newblock)
682 return NULL;
683 *phys = newblock;
684 *err = 0;
685 *new = 1;
686 iinfo->i_next_alloc_block = block;
687 iinfo->i_next_alloc_goal = newblocknum;
688 inode->i_ctime = current_fs_time(inode->i_sb);
689
690 if (IS_SYNC(inode))
691 udf_sync_inode(inode);
692 else
693 mark_inode_dirty(inode);
694
695 return result;
696 }
697
698 static void udf_split_extents(struct inode *inode, int *c, int offset,
699 int newblocknum,
700 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
701 int *endnum)
702 {
703 unsigned long blocksize = inode->i_sb->s_blocksize;
704 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
705
706 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
707 (laarr[*c].extLength >> 30) ==
708 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
709 int curr = *c;
710 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
711 blocksize - 1) >> blocksize_bits;
712 int8_t etype = (laarr[curr].extLength >> 30);
713
714 if (blen == 1)
715 ;
716 else if (!offset || blen == offset + 1) {
717 laarr[curr + 2] = laarr[curr + 1];
718 laarr[curr + 1] = laarr[curr];
719 } else {
720 laarr[curr + 3] = laarr[curr + 1];
721 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
722 }
723
724 if (offset) {
725 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
726 udf_free_blocks(inode->i_sb, inode,
727 laarr[curr].extLocation,
728 0, offset);
729 laarr[curr].extLength =
730 EXT_NOT_RECORDED_NOT_ALLOCATED |
731 (offset << blocksize_bits);
732 laarr[curr].extLocation.logicalBlockNum = 0;
733 laarr[curr].extLocation.
734 partitionReferenceNum = 0;
735 } else
736 laarr[curr].extLength = (etype << 30) |
737 (offset << blocksize_bits);
738 curr++;
739 (*c)++;
740 (*endnum)++;
741 }
742
743 laarr[curr].extLocation.logicalBlockNum = newblocknum;
744 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
745 laarr[curr].extLocation.partitionReferenceNum =
746 UDF_I(inode)->i_location.partitionReferenceNum;
747 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
748 blocksize;
749 curr++;
750
751 if (blen != offset + 1) {
752 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
753 laarr[curr].extLocation.logicalBlockNum +=
754 offset + 1;
755 laarr[curr].extLength = (etype << 30) |
756 ((blen - (offset + 1)) << blocksize_bits);
757 curr++;
758 (*endnum)++;
759 }
760 }
761 }
762
763 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
764 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
765 int *endnum)
766 {
767 int start, length = 0, currlength = 0, i;
768
769 if (*endnum >= (c + 1)) {
770 if (!lastblock)
771 return;
772 else
773 start = c;
774 } else {
775 if ((laarr[c + 1].extLength >> 30) ==
776 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
777 start = c + 1;
778 length = currlength =
779 (((laarr[c + 1].extLength &
780 UDF_EXTENT_LENGTH_MASK) +
781 inode->i_sb->s_blocksize - 1) >>
782 inode->i_sb->s_blocksize_bits);
783 } else
784 start = c;
785 }
786
787 for (i = start + 1; i <= *endnum; i++) {
788 if (i == *endnum) {
789 if (lastblock)
790 length += UDF_DEFAULT_PREALLOC_BLOCKS;
791 } else if ((laarr[i].extLength >> 30) ==
792 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
793 length += (((laarr[i].extLength &
794 UDF_EXTENT_LENGTH_MASK) +
795 inode->i_sb->s_blocksize - 1) >>
796 inode->i_sb->s_blocksize_bits);
797 } else
798 break;
799 }
800
801 if (length) {
802 int next = laarr[start].extLocation.logicalBlockNum +
803 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
804 inode->i_sb->s_blocksize - 1) >>
805 inode->i_sb->s_blocksize_bits);
806 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
807 laarr[start].extLocation.partitionReferenceNum,
808 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
809 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
810 currlength);
811 if (numalloc) {
812 if (start == (c + 1))
813 laarr[start].extLength +=
814 (numalloc <<
815 inode->i_sb->s_blocksize_bits);
816 else {
817 memmove(&laarr[c + 2], &laarr[c + 1],
818 sizeof(long_ad) * (*endnum - (c + 1)));
819 (*endnum)++;
820 laarr[c + 1].extLocation.logicalBlockNum = next;
821 laarr[c + 1].extLocation.partitionReferenceNum =
822 laarr[c].extLocation.
823 partitionReferenceNum;
824 laarr[c + 1].extLength =
825 EXT_NOT_RECORDED_ALLOCATED |
826 (numalloc <<
827 inode->i_sb->s_blocksize_bits);
828 start = c + 1;
829 }
830
831 for (i = start + 1; numalloc && i < *endnum; i++) {
832 int elen = ((laarr[i].extLength &
833 UDF_EXTENT_LENGTH_MASK) +
834 inode->i_sb->s_blocksize - 1) >>
835 inode->i_sb->s_blocksize_bits;
836
837 if (elen > numalloc) {
838 laarr[i].extLength -=
839 (numalloc <<
840 inode->i_sb->s_blocksize_bits);
841 numalloc = 0;
842 } else {
843 numalloc -= elen;
844 if (*endnum > (i + 1))
845 memmove(&laarr[i],
846 &laarr[i + 1],
847 sizeof(long_ad) *
848 (*endnum - (i + 1)));
849 i--;
850 (*endnum)--;
851 }
852 }
853 UDF_I(inode)->i_lenExtents +=
854 numalloc << inode->i_sb->s_blocksize_bits;
855 }
856 }
857 }
858
859 static void udf_merge_extents(struct inode *inode,
860 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
861 int *endnum)
862 {
863 int i;
864 unsigned long blocksize = inode->i_sb->s_blocksize;
865 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
866
867 for (i = 0; i < (*endnum - 1); i++) {
868 kernel_long_ad *li /*l[i]*/ = &laarr[i];
869 kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
870
871 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
872 (((li->extLength >> 30) ==
873 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
874 ((lip1->extLocation.logicalBlockNum -
875 li->extLocation.logicalBlockNum) ==
876 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
877 blocksize - 1) >> blocksize_bits)))) {
878
879 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
880 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
881 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
882 lip1->extLength = (lip1->extLength -
883 (li->extLength &
884 UDF_EXTENT_LENGTH_MASK) +
885 UDF_EXTENT_LENGTH_MASK) &
886 ~(blocksize - 1);
887 li->extLength = (li->extLength &
888 UDF_EXTENT_FLAG_MASK) +
889 (UDF_EXTENT_LENGTH_MASK + 1) -
890 blocksize;
891 lip1->extLocation.logicalBlockNum =
892 li->extLocation.logicalBlockNum +
893 ((li->extLength &
894 UDF_EXTENT_LENGTH_MASK) >>
895 blocksize_bits);
896 } else {
897 li->extLength = lip1->extLength +
898 (((li->extLength &
899 UDF_EXTENT_LENGTH_MASK) +
900 blocksize - 1) & ~(blocksize - 1));
901 if (*endnum > (i + 2))
902 memmove(&laarr[i + 1], &laarr[i + 2],
903 sizeof(long_ad) *
904 (*endnum - (i + 2)));
905 i--;
906 (*endnum)--;
907 }
908 } else if (((li->extLength >> 30) ==
909 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
910 ((lip1->extLength >> 30) ==
911 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
912 udf_free_blocks(inode->i_sb, inode, li->extLocation, 0,
913 ((li->extLength &
914 UDF_EXTENT_LENGTH_MASK) +
915 blocksize - 1) >> blocksize_bits);
916 li->extLocation.logicalBlockNum = 0;
917 li->extLocation.partitionReferenceNum = 0;
918
919 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
920 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
921 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
922 lip1->extLength = (lip1->extLength -
923 (li->extLength &
924 UDF_EXTENT_LENGTH_MASK) +
925 UDF_EXTENT_LENGTH_MASK) &
926 ~(blocksize - 1);
927 li->extLength = (li->extLength &
928 UDF_EXTENT_FLAG_MASK) +
929 (UDF_EXTENT_LENGTH_MASK + 1) -
930 blocksize;
931 } else {
932 li->extLength = lip1->extLength +
933 (((li->extLength &
934 UDF_EXTENT_LENGTH_MASK) +
935 blocksize - 1) & ~(blocksize - 1));
936 if (*endnum > (i + 2))
937 memmove(&laarr[i + 1], &laarr[i + 2],
938 sizeof(long_ad) *
939 (*endnum - (i + 2)));
940 i--;
941 (*endnum)--;
942 }
943 } else if ((li->extLength >> 30) ==
944 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
945 udf_free_blocks(inode->i_sb, inode,
946 li->extLocation, 0,
947 ((li->extLength &
948 UDF_EXTENT_LENGTH_MASK) +
949 blocksize - 1) >> blocksize_bits);
950 li->extLocation.logicalBlockNum = 0;
951 li->extLocation.partitionReferenceNum = 0;
952 li->extLength = (li->extLength &
953 UDF_EXTENT_LENGTH_MASK) |
954 EXT_NOT_RECORDED_NOT_ALLOCATED;
955 }
956 }
957 }
958
959 static void udf_update_extents(struct inode *inode,
960 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
961 int startnum, int endnum,
962 struct extent_position *epos)
963 {
964 int start = 0, i;
965 kernel_lb_addr tmploc;
966 uint32_t tmplen;
967
968 if (startnum > endnum) {
969 for (i = 0; i < (startnum - endnum); i++)
970 udf_delete_aext(inode, *epos, laarr[i].extLocation,
971 laarr[i].extLength);
972 } else if (startnum < endnum) {
973 for (i = 0; i < (endnum - startnum); i++) {
974 udf_insert_aext(inode, *epos, laarr[i].extLocation,
975 laarr[i].extLength);
976 udf_next_aext(inode, epos, &laarr[i].extLocation,
977 &laarr[i].extLength, 1);
978 start++;
979 }
980 }
981
982 for (i = start; i < endnum; i++) {
983 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
984 udf_write_aext(inode, epos, laarr[i].extLocation,
985 laarr[i].extLength, 1);
986 }
987 }
988
989 struct buffer_head *udf_bread(struct inode *inode, int block,
990 int create, int *err)
991 {
992 struct buffer_head *bh = NULL;
993
994 bh = udf_getblk(inode, block, create, err);
995 if (!bh)
996 return NULL;
997
998 if (buffer_uptodate(bh))
999 return bh;
1000
1001 ll_rw_block(READ, 1, &bh);
1002
1003 wait_on_buffer(bh);
1004 if (buffer_uptodate(bh))
1005 return bh;
1006
1007 brelse(bh);
1008 *err = -EIO;
1009 return NULL;
1010 }
1011
1012 void udf_truncate(struct inode *inode)
1013 {
1014 int offset;
1015 int err;
1016 struct udf_inode_info *iinfo;
1017
1018 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1019 S_ISLNK(inode->i_mode)))
1020 return;
1021 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1022 return;
1023
1024 lock_kernel();
1025 iinfo = UDF_I(inode);
1026 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1027 if (inode->i_sb->s_blocksize <
1028 (udf_file_entry_alloc_offset(inode) +
1029 inode->i_size)) {
1030 udf_expand_file_adinicb(inode, inode->i_size, &err);
1031 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1032 inode->i_size = iinfo->i_lenAlloc;
1033 unlock_kernel();
1034 return;
1035 } else
1036 udf_truncate_extents(inode);
1037 } else {
1038 offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
1039 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset,
1040 0x00, inode->i_sb->s_blocksize -
1041 offset - udf_file_entry_alloc_offset(inode));
1042 iinfo->i_lenAlloc = inode->i_size;
1043 }
1044 } else {
1045 block_truncate_page(inode->i_mapping, inode->i_size,
1046 udf_get_block);
1047 udf_truncate_extents(inode);
1048 }
1049
1050 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1051 if (IS_SYNC(inode))
1052 udf_sync_inode(inode);
1053 else
1054 mark_inode_dirty(inode);
1055 unlock_kernel();
1056 }
1057
1058 static void __udf_read_inode(struct inode *inode)
1059 {
1060 struct buffer_head *bh = NULL;
1061 struct fileEntry *fe;
1062 uint16_t ident;
1063 struct udf_inode_info *iinfo = UDF_I(inode);
1064
1065 /*
1066 * Set defaults, but the inode is still incomplete!
1067 * Note: get_new_inode() sets the following on a new inode:
1068 * i_sb = sb
1069 * i_no = ino
1070 * i_flags = sb->s_flags
1071 * i_state = 0
1072 * clean_inode(): zero fills and sets
1073 * i_count = 1
1074 * i_nlink = 1
1075 * i_op = NULL;
1076 */
1077 bh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 0, &ident);
1078 if (!bh) {
1079 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1080 inode->i_ino);
1081 make_bad_inode(inode);
1082 return;
1083 }
1084
1085 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1086 ident != TAG_IDENT_USE) {
1087 printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1088 "failed ident=%d\n", inode->i_ino, ident);
1089 brelse(bh);
1090 make_bad_inode(inode);
1091 return;
1092 }
1093
1094 fe = (struct fileEntry *)bh->b_data;
1095
1096 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1097 struct buffer_head *ibh;
1098
1099 ibh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 1,
1100 &ident);
1101 if (ident == TAG_IDENT_IE && ibh) {
1102 struct buffer_head *nbh = NULL;
1103 kernel_lb_addr loc;
1104 struct indirectEntry *ie;
1105
1106 ie = (struct indirectEntry *)ibh->b_data;
1107 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1108
1109 if (ie->indirectICB.extLength &&
1110 (nbh = udf_read_ptagged(inode->i_sb, loc, 0,
1111 &ident))) {
1112 if (ident == TAG_IDENT_FE ||
1113 ident == TAG_IDENT_EFE) {
1114 memcpy(&iinfo->i_location,
1115 &loc,
1116 sizeof(kernel_lb_addr));
1117 brelse(bh);
1118 brelse(ibh);
1119 brelse(nbh);
1120 __udf_read_inode(inode);
1121 return;
1122 }
1123 brelse(nbh);
1124 }
1125 }
1126 brelse(ibh);
1127 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1128 printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1129 le16_to_cpu(fe->icbTag.strategyType));
1130 brelse(bh);
1131 make_bad_inode(inode);
1132 return;
1133 }
1134 udf_fill_inode(inode, bh);
1135
1136 brelse(bh);
1137 }
1138
1139 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1140 {
1141 struct fileEntry *fe;
1142 struct extendedFileEntry *efe;
1143 int offset;
1144 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1145 struct udf_inode_info *iinfo = UDF_I(inode);
1146
1147 fe = (struct fileEntry *)bh->b_data;
1148 efe = (struct extendedFileEntry *)bh->b_data;
1149
1150 if (fe->icbTag.strategyType == cpu_to_le16(4))
1151 iinfo->i_strat4096 = 0;
1152 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1153 iinfo->i_strat4096 = 1;
1154
1155 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1156 ICBTAG_FLAG_AD_MASK;
1157 iinfo->i_unique = 0;
1158 iinfo->i_lenEAttr = 0;
1159 iinfo->i_lenExtents = 0;
1160 iinfo->i_lenAlloc = 0;
1161 iinfo->i_next_alloc_block = 0;
1162 iinfo->i_next_alloc_goal = 0;
1163 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1164 iinfo->i_efe = 1;
1165 iinfo->i_use = 0;
1166 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1167 sizeof(struct extendedFileEntry))) {
1168 make_bad_inode(inode);
1169 return;
1170 }
1171 memcpy(iinfo->i_ext.i_data,
1172 bh->b_data + sizeof(struct extendedFileEntry),
1173 inode->i_sb->s_blocksize -
1174 sizeof(struct extendedFileEntry));
1175 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1176 iinfo->i_efe = 0;
1177 iinfo->i_use = 0;
1178 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1179 sizeof(struct fileEntry))) {
1180 make_bad_inode(inode);
1181 return;
1182 }
1183 memcpy(iinfo->i_ext.i_data,
1184 bh->b_data + sizeof(struct fileEntry),
1185 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1186 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1187 iinfo->i_efe = 0;
1188 iinfo->i_use = 1;
1189 iinfo->i_lenAlloc = le32_to_cpu(
1190 ((struct unallocSpaceEntry *)bh->b_data)->
1191 lengthAllocDescs);
1192 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1193 sizeof(struct unallocSpaceEntry))) {
1194 make_bad_inode(inode);
1195 return;
1196 }
1197 memcpy(iinfo->i_ext.i_data,
1198 bh->b_data + sizeof(struct unallocSpaceEntry),
1199 inode->i_sb->s_blocksize -
1200 sizeof(struct unallocSpaceEntry));
1201 return;
1202 }
1203
1204 inode->i_uid = le32_to_cpu(fe->uid);
1205 if (inode->i_uid == -1 ||
1206 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1207 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1208 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1209
1210 inode->i_gid = le32_to_cpu(fe->gid);
1211 if (inode->i_gid == -1 ||
1212 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1213 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1214 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1215
1216 inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1217 if (!inode->i_nlink)
1218 inode->i_nlink = 1;
1219
1220 inode->i_size = le64_to_cpu(fe->informationLength);
1221 iinfo->i_lenExtents = inode->i_size;
1222
1223 inode->i_mode = udf_convert_permissions(fe);
1224 inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask;
1225
1226 if (iinfo->i_efe == 0) {
1227 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1228 (inode->i_sb->s_blocksize_bits - 9);
1229
1230 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1231 inode->i_atime = sbi->s_record_time;
1232
1233 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1234 fe->modificationTime))
1235 inode->i_mtime = sbi->s_record_time;
1236
1237 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1238 inode->i_ctime = sbi->s_record_time;
1239
1240 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1241 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1242 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1243 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1244 } else {
1245 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1246 (inode->i_sb->s_blocksize_bits - 9);
1247
1248 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1249 inode->i_atime = sbi->s_record_time;
1250
1251 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1252 efe->modificationTime))
1253 inode->i_mtime = sbi->s_record_time;
1254
1255 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1256 iinfo->i_crtime = sbi->s_record_time;
1257
1258 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1259 inode->i_ctime = sbi->s_record_time;
1260
1261 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1262 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1263 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1264 offset = sizeof(struct extendedFileEntry) +
1265 iinfo->i_lenEAttr;
1266 }
1267
1268 switch (fe->icbTag.fileType) {
1269 case ICBTAG_FILE_TYPE_DIRECTORY:
1270 inode->i_op = &udf_dir_inode_operations;
1271 inode->i_fop = &udf_dir_operations;
1272 inode->i_mode |= S_IFDIR;
1273 inc_nlink(inode);
1274 break;
1275 case ICBTAG_FILE_TYPE_REALTIME:
1276 case ICBTAG_FILE_TYPE_REGULAR:
1277 case ICBTAG_FILE_TYPE_UNDEF:
1278 case ICBTAG_FILE_TYPE_VAT20:
1279 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1280 inode->i_data.a_ops = &udf_adinicb_aops;
1281 else
1282 inode->i_data.a_ops = &udf_aops;
1283 inode->i_op = &udf_file_inode_operations;
1284 inode->i_fop = &udf_file_operations;
1285 inode->i_mode |= S_IFREG;
1286 break;
1287 case ICBTAG_FILE_TYPE_BLOCK:
1288 inode->i_mode |= S_IFBLK;
1289 break;
1290 case ICBTAG_FILE_TYPE_CHAR:
1291 inode->i_mode |= S_IFCHR;
1292 break;
1293 case ICBTAG_FILE_TYPE_FIFO:
1294 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1295 break;
1296 case ICBTAG_FILE_TYPE_SOCKET:
1297 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1298 break;
1299 case ICBTAG_FILE_TYPE_SYMLINK:
1300 inode->i_data.a_ops = &udf_symlink_aops;
1301 inode->i_op = &page_symlink_inode_operations;
1302 inode->i_mode = S_IFLNK | S_IRWXUGO;
1303 break;
1304 case ICBTAG_FILE_TYPE_MAIN:
1305 udf_debug("METADATA FILE-----\n");
1306 break;
1307 case ICBTAG_FILE_TYPE_MIRROR:
1308 udf_debug("METADATA MIRROR FILE-----\n");
1309 break;
1310 case ICBTAG_FILE_TYPE_BITMAP:
1311 udf_debug("METADATA BITMAP FILE-----\n");
1312 break;
1313 default:
1314 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1315 "file type=%d\n", inode->i_ino,
1316 fe->icbTag.fileType);
1317 make_bad_inode(inode);
1318 return;
1319 }
1320 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1321 struct deviceSpec *dsea =
1322 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1323 if (dsea) {
1324 init_special_inode(inode, inode->i_mode,
1325 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1326 le32_to_cpu(dsea->minorDeviceIdent)));
1327 /* Developer ID ??? */
1328 } else
1329 make_bad_inode(inode);
1330 }
1331 }
1332
1333 static int udf_alloc_i_data(struct inode *inode, size_t size)
1334 {
1335 struct udf_inode_info *iinfo = UDF_I(inode);
1336 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1337
1338 if (!iinfo->i_ext.i_data) {
1339 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1340 "no free memory\n", inode->i_ino);
1341 return -ENOMEM;
1342 }
1343
1344 return 0;
1345 }
1346
1347 static mode_t udf_convert_permissions(struct fileEntry *fe)
1348 {
1349 mode_t mode;
1350 uint32_t permissions;
1351 uint32_t flags;
1352
1353 permissions = le32_to_cpu(fe->permissions);
1354 flags = le16_to_cpu(fe->icbTag.flags);
1355
1356 mode = ((permissions) & S_IRWXO) |
1357 ((permissions >> 2) & S_IRWXG) |
1358 ((permissions >> 4) & S_IRWXU) |
1359 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1360 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1361 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1362
1363 return mode;
1364 }
1365
1366 int udf_write_inode(struct inode *inode, int sync)
1367 {
1368 int ret;
1369
1370 lock_kernel();
1371 ret = udf_update_inode(inode, sync);
1372 unlock_kernel();
1373
1374 return ret;
1375 }
1376
1377 int udf_sync_inode(struct inode *inode)
1378 {
1379 return udf_update_inode(inode, 1);
1380 }
1381
1382 static int udf_update_inode(struct inode *inode, int do_sync)
1383 {
1384 struct buffer_head *bh = NULL;
1385 struct fileEntry *fe;
1386 struct extendedFileEntry *efe;
1387 uint32_t udfperms;
1388 uint16_t icbflags;
1389 uint16_t crclen;
1390 int err = 0;
1391 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1392 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1393 struct udf_inode_info *iinfo = UDF_I(inode);
1394
1395 bh = udf_tread(inode->i_sb,
1396 udf_get_lb_pblock(inode->i_sb,
1397 iinfo->i_location, 0));
1398 if (!bh) {
1399 udf_debug("bread failure\n");
1400 return -EIO;
1401 }
1402
1403 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1404
1405 fe = (struct fileEntry *)bh->b_data;
1406 efe = (struct extendedFileEntry *)bh->b_data;
1407
1408 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1409 struct unallocSpaceEntry *use =
1410 (struct unallocSpaceEntry *)bh->b_data;
1411
1412 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1413 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1414 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1415 sizeof(struct unallocSpaceEntry));
1416 crclen = sizeof(struct unallocSpaceEntry) +
1417 iinfo->i_lenAlloc - sizeof(tag);
1418 use->descTag.tagLocation = cpu_to_le32(
1419 iinfo->i_location.
1420 logicalBlockNum);
1421 use->descTag.descCRCLength = cpu_to_le16(crclen);
1422 use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use +
1423 sizeof(tag), crclen,
1424 0));
1425 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1426
1427 mark_buffer_dirty(bh);
1428 brelse(bh);
1429 return err;
1430 }
1431
1432 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1433 fe->uid = cpu_to_le32(-1);
1434 else
1435 fe->uid = cpu_to_le32(inode->i_uid);
1436
1437 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1438 fe->gid = cpu_to_le32(-1);
1439 else
1440 fe->gid = cpu_to_le32(inode->i_gid);
1441
1442 udfperms = ((inode->i_mode & S_IRWXO)) |
1443 ((inode->i_mode & S_IRWXG) << 2) |
1444 ((inode->i_mode & S_IRWXU) << 4);
1445
1446 udfperms |= (le32_to_cpu(fe->permissions) &
1447 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1448 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1449 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1450 fe->permissions = cpu_to_le32(udfperms);
1451
1452 if (S_ISDIR(inode->i_mode))
1453 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1454 else
1455 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1456
1457 fe->informationLength = cpu_to_le64(inode->i_size);
1458
1459 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1460 regid *eid;
1461 struct deviceSpec *dsea =
1462 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1463 if (!dsea) {
1464 dsea = (struct deviceSpec *)
1465 udf_add_extendedattr(inode,
1466 sizeof(struct deviceSpec) +
1467 sizeof(regid), 12, 0x3);
1468 dsea->attrType = cpu_to_le32(12);
1469 dsea->attrSubtype = 1;
1470 dsea->attrLength = cpu_to_le32(
1471 sizeof(struct deviceSpec) +
1472 sizeof(regid));
1473 dsea->impUseLength = cpu_to_le32(sizeof(regid));
1474 }
1475 eid = (regid *)dsea->impUse;
1476 memset(eid, 0, sizeof(regid));
1477 strcpy(eid->ident, UDF_ID_DEVELOPER);
1478 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1479 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1480 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1481 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1482 }
1483
1484 if (iinfo->i_efe == 0) {
1485 memcpy(bh->b_data + sizeof(struct fileEntry),
1486 iinfo->i_ext.i_data,
1487 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1488 fe->logicalBlocksRecorded = cpu_to_le64(
1489 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1490 (blocksize_bits - 9));
1491
1492 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1493 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1494 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1495 memset(&(fe->impIdent), 0, sizeof(regid));
1496 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1497 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1498 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1499 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1500 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1501 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1502 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1503 crclen = sizeof(struct fileEntry);
1504 } else {
1505 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1506 iinfo->i_ext.i_data,
1507 inode->i_sb->s_blocksize -
1508 sizeof(struct extendedFileEntry));
1509 efe->objectSize = cpu_to_le64(inode->i_size);
1510 efe->logicalBlocksRecorded = cpu_to_le64(
1511 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1512 (blocksize_bits - 9));
1513
1514 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1515 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1516 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1517 iinfo->i_crtime = inode->i_atime;
1518
1519 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1520 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1521 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1522 iinfo->i_crtime = inode->i_mtime;
1523
1524 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1525 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1526 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1527 iinfo->i_crtime = inode->i_ctime;
1528
1529 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1530 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1531 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1532 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1533
1534 memset(&(efe->impIdent), 0, sizeof(regid));
1535 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1536 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1537 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1538 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1539 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1540 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1541 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1542 crclen = sizeof(struct extendedFileEntry);
1543 }
1544 if (iinfo->i_strat4096) {
1545 fe->icbTag.strategyType = cpu_to_le16(4096);
1546 fe->icbTag.strategyParameter = cpu_to_le16(1);
1547 fe->icbTag.numEntries = cpu_to_le16(2);
1548 } else {
1549 fe->icbTag.strategyType = cpu_to_le16(4);
1550 fe->icbTag.numEntries = cpu_to_le16(1);
1551 }
1552
1553 if (S_ISDIR(inode->i_mode))
1554 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1555 else if (S_ISREG(inode->i_mode))
1556 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1557 else if (S_ISLNK(inode->i_mode))
1558 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1559 else if (S_ISBLK(inode->i_mode))
1560 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1561 else if (S_ISCHR(inode->i_mode))
1562 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1563 else if (S_ISFIFO(inode->i_mode))
1564 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1565 else if (S_ISSOCK(inode->i_mode))
1566 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1567
1568 icbflags = iinfo->i_alloc_type |
1569 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1570 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1571 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1572 (le16_to_cpu(fe->icbTag.flags) &
1573 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1574 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1575
1576 fe->icbTag.flags = cpu_to_le16(icbflags);
1577 if (sbi->s_udfrev >= 0x0200)
1578 fe->descTag.descVersion = cpu_to_le16(3);
1579 else
1580 fe->descTag.descVersion = cpu_to_le16(2);
1581 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1582 fe->descTag.tagLocation = cpu_to_le32(
1583 iinfo->i_location.logicalBlockNum);
1584 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc -
1585 sizeof(tag);
1586 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1587 fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag),
1588 crclen, 0));
1589 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1590
1591 /* write the data blocks */
1592 mark_buffer_dirty(bh);
1593 if (do_sync) {
1594 sync_dirty_buffer(bh);
1595 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1596 printk(KERN_WARNING "IO error syncing udf inode "
1597 "[%s:%08lx]\n", inode->i_sb->s_id,
1598 inode->i_ino);
1599 err = -EIO;
1600 }
1601 }
1602 brelse(bh);
1603
1604 return err;
1605 }
1606
1607 struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino)
1608 {
1609 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1610 struct inode *inode = iget_locked(sb, block);
1611
1612 if (!inode)
1613 return NULL;
1614
1615 if (inode->i_state & I_NEW) {
1616 memcpy(&UDF_I(inode)->i_location, &ino, sizeof(kernel_lb_addr));
1617 __udf_read_inode(inode);
1618 unlock_new_inode(inode);
1619 }
1620
1621 if (is_bad_inode(inode))
1622 goto out_iput;
1623
1624 if (ino.logicalBlockNum >= UDF_SB(sb)->
1625 s_partmaps[ino.partitionReferenceNum].s_partition_len) {
1626 udf_debug("block=%d, partition=%d out of range\n",
1627 ino.logicalBlockNum, ino.partitionReferenceNum);
1628 make_bad_inode(inode);
1629 goto out_iput;
1630 }
1631
1632 return inode;
1633
1634 out_iput:
1635 iput(inode);
1636 return NULL;
1637 }
1638
1639 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos,
1640 kernel_lb_addr eloc, uint32_t elen, int inc)
1641 {
1642 int adsize;
1643 short_ad *sad = NULL;
1644 long_ad *lad = NULL;
1645 struct allocExtDesc *aed;
1646 int8_t etype;
1647 uint8_t *ptr;
1648 struct udf_inode_info *iinfo = UDF_I(inode);
1649
1650 if (!epos->bh)
1651 ptr = iinfo->i_ext.i_data + epos->offset -
1652 udf_file_entry_alloc_offset(inode) +
1653 iinfo->i_lenEAttr;
1654 else
1655 ptr = epos->bh->b_data + epos->offset;
1656
1657 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1658 adsize = sizeof(short_ad);
1659 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1660 adsize = sizeof(long_ad);
1661 else
1662 return -1;
1663
1664 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1665 char *sptr, *dptr;
1666 struct buffer_head *nbh;
1667 int err, loffset;
1668 kernel_lb_addr obloc = epos->block;
1669
1670 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1671 obloc.partitionReferenceNum,
1672 obloc.logicalBlockNum, &err);
1673 if (!epos->block.logicalBlockNum)
1674 return -1;
1675 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1676 epos->block,
1677 0));
1678 if (!nbh)
1679 return -1;
1680 lock_buffer(nbh);
1681 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1682 set_buffer_uptodate(nbh);
1683 unlock_buffer(nbh);
1684 mark_buffer_dirty_inode(nbh, inode);
1685
1686 aed = (struct allocExtDesc *)(nbh->b_data);
1687 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1688 aed->previousAllocExtLocation =
1689 cpu_to_le32(obloc.logicalBlockNum);
1690 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1691 loffset = epos->offset;
1692 aed->lengthAllocDescs = cpu_to_le32(adsize);
1693 sptr = ptr - adsize;
1694 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1695 memcpy(dptr, sptr, adsize);
1696 epos->offset = sizeof(struct allocExtDesc) + adsize;
1697 } else {
1698 loffset = epos->offset + adsize;
1699 aed->lengthAllocDescs = cpu_to_le32(0);
1700 sptr = ptr;
1701 epos->offset = sizeof(struct allocExtDesc);
1702
1703 if (epos->bh) {
1704 aed = (struct allocExtDesc *)epos->bh->b_data;
1705 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1706 } else {
1707 iinfo->i_lenAlloc += adsize;
1708 mark_inode_dirty(inode);
1709 }
1710 }
1711 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1712 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1713 epos->block.logicalBlockNum, sizeof(tag));
1714 else
1715 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1716 epos->block.logicalBlockNum, sizeof(tag));
1717 switch (iinfo->i_alloc_type) {
1718 case ICBTAG_FLAG_AD_SHORT:
1719 sad = (short_ad *)sptr;
1720 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1721 inode->i_sb->s_blocksize);
1722 sad->extPosition =
1723 cpu_to_le32(epos->block.logicalBlockNum);
1724 break;
1725 case ICBTAG_FLAG_AD_LONG:
1726 lad = (long_ad *)sptr;
1727 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1728 inode->i_sb->s_blocksize);
1729 lad->extLocation = cpu_to_lelb(epos->block);
1730 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1731 break;
1732 }
1733 if (epos->bh) {
1734 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1735 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1736 udf_update_tag(epos->bh->b_data, loffset);
1737 else
1738 udf_update_tag(epos->bh->b_data,
1739 sizeof(struct allocExtDesc));
1740 mark_buffer_dirty_inode(epos->bh, inode);
1741 brelse(epos->bh);
1742 } else {
1743 mark_inode_dirty(inode);
1744 }
1745 epos->bh = nbh;
1746 }
1747
1748 etype = udf_write_aext(inode, epos, eloc, elen, inc);
1749
1750 if (!epos->bh) {
1751 iinfo->i_lenAlloc += adsize;
1752 mark_inode_dirty(inode);
1753 } else {
1754 aed = (struct allocExtDesc *)epos->bh->b_data;
1755 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1756 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1757 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1758 udf_update_tag(epos->bh->b_data,
1759 epos->offset + (inc ? 0 : adsize));
1760 else
1761 udf_update_tag(epos->bh->b_data,
1762 sizeof(struct allocExtDesc));
1763 mark_buffer_dirty_inode(epos->bh, inode);
1764 }
1765
1766 return etype;
1767 }
1768
1769 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos,
1770 kernel_lb_addr eloc, uint32_t elen, int inc)
1771 {
1772 int adsize;
1773 uint8_t *ptr;
1774 short_ad *sad;
1775 long_ad *lad;
1776 struct udf_inode_info *iinfo = UDF_I(inode);
1777
1778 if (!epos->bh)
1779 ptr = iinfo->i_ext.i_data + epos->offset -
1780 udf_file_entry_alloc_offset(inode) +
1781 iinfo->i_lenEAttr;
1782 else
1783 ptr = epos->bh->b_data + epos->offset;
1784
1785 switch (iinfo->i_alloc_type) {
1786 case ICBTAG_FLAG_AD_SHORT:
1787 sad = (short_ad *)ptr;
1788 sad->extLength = cpu_to_le32(elen);
1789 sad->extPosition = cpu_to_le32(eloc.logicalBlockNum);
1790 adsize = sizeof(short_ad);
1791 break;
1792 case ICBTAG_FLAG_AD_LONG:
1793 lad = (long_ad *)ptr;
1794 lad->extLength = cpu_to_le32(elen);
1795 lad->extLocation = cpu_to_lelb(eloc);
1796 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1797 adsize = sizeof(long_ad);
1798 break;
1799 default:
1800 return -1;
1801 }
1802
1803 if (epos->bh) {
1804 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1805 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1806 struct allocExtDesc *aed =
1807 (struct allocExtDesc *)epos->bh->b_data;
1808 udf_update_tag(epos->bh->b_data,
1809 le32_to_cpu(aed->lengthAllocDescs) +
1810 sizeof(struct allocExtDesc));
1811 }
1812 mark_buffer_dirty_inode(epos->bh, inode);
1813 } else {
1814 mark_inode_dirty(inode);
1815 }
1816
1817 if (inc)
1818 epos->offset += adsize;
1819
1820 return (elen >> 30);
1821 }
1822
1823 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1824 kernel_lb_addr *eloc, uint32_t *elen, int inc)
1825 {
1826 int8_t etype;
1827
1828 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1829 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1830 int block;
1831 epos->block = *eloc;
1832 epos->offset = sizeof(struct allocExtDesc);
1833 brelse(epos->bh);
1834 block = udf_get_lb_pblock(inode->i_sb, epos->block, 0);
1835 epos->bh = udf_tread(inode->i_sb, block);
1836 if (!epos->bh) {
1837 udf_debug("reading block %d failed!\n", block);
1838 return -1;
1839 }
1840 }
1841
1842 return etype;
1843 }
1844
1845 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1846 kernel_lb_addr *eloc, uint32_t *elen, int inc)
1847 {
1848 int alen;
1849 int8_t etype;
1850 uint8_t *ptr;
1851 short_ad *sad;
1852 long_ad *lad;
1853 struct udf_inode_info *iinfo = UDF_I(inode);
1854
1855 if (!epos->bh) {
1856 if (!epos->offset)
1857 epos->offset = udf_file_entry_alloc_offset(inode);
1858 ptr = iinfo->i_ext.i_data + epos->offset -
1859 udf_file_entry_alloc_offset(inode) +
1860 iinfo->i_lenEAttr;
1861 alen = udf_file_entry_alloc_offset(inode) +
1862 iinfo->i_lenAlloc;
1863 } else {
1864 if (!epos->offset)
1865 epos->offset = sizeof(struct allocExtDesc);
1866 ptr = epos->bh->b_data + epos->offset;
1867 alen = sizeof(struct allocExtDesc) +
1868 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1869 lengthAllocDescs);
1870 }
1871
1872 switch (iinfo->i_alloc_type) {
1873 case ICBTAG_FLAG_AD_SHORT:
1874 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1875 if (!sad)
1876 return -1;
1877 etype = le32_to_cpu(sad->extLength) >> 30;
1878 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1879 eloc->partitionReferenceNum =
1880 iinfo->i_location.partitionReferenceNum;
1881 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1882 break;
1883 case ICBTAG_FLAG_AD_LONG:
1884 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1885 if (!lad)
1886 return -1;
1887 etype = le32_to_cpu(lad->extLength) >> 30;
1888 *eloc = lelb_to_cpu(lad->extLocation);
1889 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1890 break;
1891 default:
1892 udf_debug("alloc_type = %d unsupported\n",
1893 iinfo->i_alloc_type);
1894 return -1;
1895 }
1896
1897 return etype;
1898 }
1899
1900 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1901 kernel_lb_addr neloc, uint32_t nelen)
1902 {
1903 kernel_lb_addr oeloc;
1904 uint32_t oelen;
1905 int8_t etype;
1906
1907 if (epos.bh)
1908 get_bh(epos.bh);
1909
1910 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1911 udf_write_aext(inode, &epos, neloc, nelen, 1);
1912 neloc = oeloc;
1913 nelen = (etype << 30) | oelen;
1914 }
1915 udf_add_aext(inode, &epos, neloc, nelen, 1);
1916 brelse(epos.bh);
1917
1918 return (nelen >> 30);
1919 }
1920
1921 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
1922 kernel_lb_addr eloc, uint32_t elen)
1923 {
1924 struct extent_position oepos;
1925 int adsize;
1926 int8_t etype;
1927 struct allocExtDesc *aed;
1928 struct udf_inode_info *iinfo;
1929
1930 if (epos.bh) {
1931 get_bh(epos.bh);
1932 get_bh(epos.bh);
1933 }
1934
1935 iinfo = UDF_I(inode);
1936 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1937 adsize = sizeof(short_ad);
1938 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1939 adsize = sizeof(long_ad);
1940 else
1941 adsize = 0;
1942
1943 oepos = epos;
1944 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1945 return -1;
1946
1947 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1948 udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1);
1949 if (oepos.bh != epos.bh) {
1950 oepos.block = epos.block;
1951 brelse(oepos.bh);
1952 get_bh(epos.bh);
1953 oepos.bh = epos.bh;
1954 oepos.offset = epos.offset - adsize;
1955 }
1956 }
1957 memset(&eloc, 0x00, sizeof(kernel_lb_addr));
1958 elen = 0;
1959
1960 if (epos.bh != oepos.bh) {
1961 udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1);
1962 udf_write_aext(inode, &oepos, eloc, elen, 1);
1963 udf_write_aext(inode, &oepos, eloc, elen, 1);
1964 if (!oepos.bh) {
1965 iinfo->i_lenAlloc -= (adsize * 2);
1966 mark_inode_dirty(inode);
1967 } else {
1968 aed = (struct allocExtDesc *)oepos.bh->b_data;
1969 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
1970 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1971 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1972 udf_update_tag(oepos.bh->b_data,
1973 oepos.offset - (2 * adsize));
1974 else
1975 udf_update_tag(oepos.bh->b_data,
1976 sizeof(struct allocExtDesc));
1977 mark_buffer_dirty_inode(oepos.bh, inode);
1978 }
1979 } else {
1980 udf_write_aext(inode, &oepos, eloc, elen, 1);
1981 if (!oepos.bh) {
1982 iinfo->i_lenAlloc -= adsize;
1983 mark_inode_dirty(inode);
1984 } else {
1985 aed = (struct allocExtDesc *)oepos.bh->b_data;
1986 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
1987 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1988 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1989 udf_update_tag(oepos.bh->b_data,
1990 epos.offset - adsize);
1991 else
1992 udf_update_tag(oepos.bh->b_data,
1993 sizeof(struct allocExtDesc));
1994 mark_buffer_dirty_inode(oepos.bh, inode);
1995 }
1996 }
1997
1998 brelse(epos.bh);
1999 brelse(oepos.bh);
2000
2001 return (elen >> 30);
2002 }
2003
2004 int8_t inode_bmap(struct inode *inode, sector_t block,
2005 struct extent_position *pos, kernel_lb_addr *eloc,
2006 uint32_t *elen, sector_t *offset)
2007 {
2008 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2009 loff_t lbcount = 0, bcount =
2010 (loff_t) block << blocksize_bits;
2011 int8_t etype;
2012 struct udf_inode_info *iinfo;
2013
2014 iinfo = UDF_I(inode);
2015 pos->offset = 0;
2016 pos->block = iinfo->i_location;
2017 pos->bh = NULL;
2018 *elen = 0;
2019
2020 do {
2021 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2022 if (etype == -1) {
2023 *offset = (bcount - lbcount) >> blocksize_bits;
2024 iinfo->i_lenExtents = lbcount;
2025 return -1;
2026 }
2027 lbcount += *elen;
2028 } while (lbcount <= bcount);
2029
2030 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2031
2032 return etype;
2033 }
2034
2035 long udf_block_map(struct inode *inode, sector_t block)
2036 {
2037 kernel_lb_addr eloc;
2038 uint32_t elen;
2039 sector_t offset;
2040 struct extent_position epos = {};
2041 int ret;
2042
2043 lock_kernel();
2044
2045 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2046 (EXT_RECORDED_ALLOCATED >> 30))
2047 ret = udf_get_lb_pblock(inode->i_sb, eloc, offset);
2048 else
2049 ret = 0;
2050
2051 unlock_kernel();
2052 brelse(epos.bh);
2053
2054 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2055 return udf_fixed_to_variable(ret);
2056 else
2057 return ret;
2058 }