]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/udf/inode.c
locks: fix possible infinite loop in posix deadlock detection
[mirror_ubuntu-zesty-kernel.git] / fs / udf / inode.c
1 /*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map and udf_read_inode
23 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
24 * block boundaries (which is not actually allowed)
25 * 12/20/98 added support for strategy 4096
26 * 03/07/99 rewrote udf_block_map (again)
27 * New funcs, inode_bmap, udf_next_aext
28 * 04/19/99 Support for writing device EA's for major/minor #
29 */
30
31 #include "udfdecl.h"
32 #include <linux/mm.h>
33 #include <linux/smp_lock.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39
40 #include "udf_i.h"
41 #include "udf_sb.h"
42
43 MODULE_AUTHOR("Ben Fennema");
44 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
45 MODULE_LICENSE("GPL");
46
47 #define EXTENT_MERGE_SIZE 5
48
49 static mode_t udf_convert_permissions(struct fileEntry *);
50 static int udf_update_inode(struct inode *, int);
51 static void udf_fill_inode(struct inode *, struct buffer_head *);
52 static int udf_alloc_i_data(struct inode *inode, size_t size);
53 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
54 long *, int *);
55 static int8_t udf_insert_aext(struct inode *, struct extent_position,
56 kernel_lb_addr, uint32_t);
57 static void udf_split_extents(struct inode *, int *, int, int,
58 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
59 static void udf_prealloc_extents(struct inode *, int, int,
60 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_merge_extents(struct inode *,
62 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_update_extents(struct inode *,
64 kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
65 struct extent_position *);
66 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
67
68 /*
69 * udf_delete_inode
70 *
71 * PURPOSE
72 * Clean-up before the specified inode is destroyed.
73 *
74 * DESCRIPTION
75 * This routine is called when the kernel destroys an inode structure
76 * ie. when iput() finds i_count == 0.
77 *
78 * HISTORY
79 * July 1, 1997 - Andrew E. Mileski
80 * Written, tested, and released.
81 *
82 * Called at the last iput() if i_nlink is zero.
83 */
84 void udf_delete_inode(struct inode *inode)
85 {
86 truncate_inode_pages(&inode->i_data, 0);
87
88 if (is_bad_inode(inode))
89 goto no_delete;
90
91 inode->i_size = 0;
92 udf_truncate(inode);
93 lock_kernel();
94
95 udf_update_inode(inode, IS_SYNC(inode));
96 udf_free_inode(inode);
97
98 unlock_kernel();
99 return;
100
101 no_delete:
102 clear_inode(inode);
103 }
104
105 /*
106 * If we are going to release inode from memory, we discard preallocation and
107 * truncate last inode extent to proper length. We could use drop_inode() but
108 * it's called under inode_lock and thus we cannot mark inode dirty there. We
109 * use clear_inode() but we have to make sure to write inode as it's not written
110 * automatically.
111 */
112 void udf_clear_inode(struct inode *inode)
113 {
114 if (!(inode->i_sb->s_flags & MS_RDONLY)) {
115 lock_kernel();
116 /* Discard preallocation for directories, symlinks, etc. */
117 udf_discard_prealloc(inode);
118 udf_truncate_tail_extent(inode);
119 unlock_kernel();
120 write_inode_now(inode, 1);
121 }
122 kfree(UDF_I_DATA(inode));
123 UDF_I_DATA(inode) = NULL;
124 }
125
126 static int udf_writepage(struct page *page, struct writeback_control *wbc)
127 {
128 return block_write_full_page(page, udf_get_block, wbc);
129 }
130
131 static int udf_readpage(struct file *file, struct page *page)
132 {
133 return block_read_full_page(page, udf_get_block);
134 }
135
136 static int udf_write_begin(struct file *file, struct address_space *mapping,
137 loff_t pos, unsigned len, unsigned flags,
138 struct page **pagep, void **fsdata)
139 {
140 *pagep = NULL;
141 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
142 udf_get_block);
143 }
144
145 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
146 {
147 return generic_block_bmap(mapping, block, udf_get_block);
148 }
149
150 const struct address_space_operations udf_aops = {
151 .readpage = udf_readpage,
152 .writepage = udf_writepage,
153 .sync_page = block_sync_page,
154 .write_begin = udf_write_begin,
155 .write_end = generic_write_end,
156 .bmap = udf_bmap,
157 };
158
159 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
160 {
161 struct page *page;
162 char *kaddr;
163 struct writeback_control udf_wbc = {
164 .sync_mode = WB_SYNC_NONE,
165 .nr_to_write = 1,
166 };
167
168 /* from now on we have normal address_space methods */
169 inode->i_data.a_ops = &udf_aops;
170
171 if (!UDF_I_LENALLOC(inode)) {
172 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
173 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
174 else
175 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
176 mark_inode_dirty(inode);
177 return;
178 }
179
180 page = grab_cache_page(inode->i_mapping, 0);
181 BUG_ON(!PageLocked(page));
182
183 if (!PageUptodate(page)) {
184 kaddr = kmap(page);
185 memset(kaddr + UDF_I_LENALLOC(inode), 0x00,
186 PAGE_CACHE_SIZE - UDF_I_LENALLOC(inode));
187 memcpy(kaddr, UDF_I_DATA(inode) + UDF_I_LENEATTR(inode),
188 UDF_I_LENALLOC(inode));
189 flush_dcache_page(page);
190 SetPageUptodate(page);
191 kunmap(page);
192 }
193 memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0x00,
194 UDF_I_LENALLOC(inode));
195 UDF_I_LENALLOC(inode) = 0;
196 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
197 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
198 else
199 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
200
201 inode->i_data.a_ops->writepage(page, &udf_wbc);
202 page_cache_release(page);
203
204 mark_inode_dirty(inode);
205 }
206
207 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
208 int *err)
209 {
210 int newblock;
211 struct buffer_head *dbh = NULL;
212 kernel_lb_addr eloc;
213 uint32_t elen;
214 uint8_t alloctype;
215 struct extent_position epos;
216
217 struct udf_fileident_bh sfibh, dfibh;
218 loff_t f_pos = udf_ext0_offset(inode) >> 2;
219 int size = (udf_ext0_offset(inode) + inode->i_size) >> 2;
220 struct fileIdentDesc cfi, *sfi, *dfi;
221
222 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
223 alloctype = ICBTAG_FLAG_AD_SHORT;
224 else
225 alloctype = ICBTAG_FLAG_AD_LONG;
226
227 if (!inode->i_size) {
228 UDF_I_ALLOCTYPE(inode) = alloctype;
229 mark_inode_dirty(inode);
230 return NULL;
231 }
232
233 /* alloc block, and copy data to it */
234 *block = udf_new_block(inode->i_sb, inode,
235 UDF_I_LOCATION(inode).partitionReferenceNum,
236 UDF_I_LOCATION(inode).logicalBlockNum, err);
237 if (!(*block))
238 return NULL;
239 newblock = udf_get_pblock(inode->i_sb, *block,
240 UDF_I_LOCATION(inode).partitionReferenceNum, 0);
241 if (!newblock)
242 return NULL;
243 dbh = udf_tgetblk(inode->i_sb, newblock);
244 if (!dbh)
245 return NULL;
246 lock_buffer(dbh);
247 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
248 set_buffer_uptodate(dbh);
249 unlock_buffer(dbh);
250 mark_buffer_dirty_inode(dbh, inode);
251
252 sfibh.soffset = sfibh.eoffset = (f_pos & ((inode->i_sb->s_blocksize - 1) >> 2)) << 2;
253 sfibh.sbh = sfibh.ebh = NULL;
254 dfibh.soffset = dfibh.eoffset = 0;
255 dfibh.sbh = dfibh.ebh = dbh;
256 while ((f_pos < size)) {
257 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
258 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, NULL, NULL, NULL);
259 if (!sfi) {
260 brelse(dbh);
261 return NULL;
262 }
263 UDF_I_ALLOCTYPE(inode) = alloctype;
264 sfi->descTag.tagLocation = cpu_to_le32(*block);
265 dfibh.soffset = dfibh.eoffset;
266 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
267 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
268 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
269 sfi->fileIdent + le16_to_cpu(sfi->lengthOfImpUse))) {
270 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
271 brelse(dbh);
272 return NULL;
273 }
274 }
275 mark_buffer_dirty_inode(dbh, inode);
276
277 memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0, UDF_I_LENALLOC(inode));
278 UDF_I_LENALLOC(inode) = 0;
279 eloc.logicalBlockNum = *block;
280 eloc.partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
281 elen = inode->i_size;
282 UDF_I_LENEXTENTS(inode) = elen;
283 epos.bh = NULL;
284 epos.block = UDF_I_LOCATION(inode);
285 epos.offset = udf_file_entry_alloc_offset(inode);
286 udf_add_aext(inode, &epos, eloc, elen, 0);
287 /* UniqueID stuff */
288
289 brelse(epos.bh);
290 mark_inode_dirty(inode);
291 return dbh;
292 }
293
294 static int udf_get_block(struct inode *inode, sector_t block,
295 struct buffer_head *bh_result, int create)
296 {
297 int err, new;
298 struct buffer_head *bh;
299 unsigned long phys;
300
301 if (!create) {
302 phys = udf_block_map(inode, block);
303 if (phys)
304 map_bh(bh_result, inode->i_sb, phys);
305 return 0;
306 }
307
308 err = -EIO;
309 new = 0;
310 bh = NULL;
311
312 lock_kernel();
313
314 if (block < 0)
315 goto abort_negative;
316
317 if (block == UDF_I_NEXT_ALLOC_BLOCK(inode) + 1) {
318 UDF_I_NEXT_ALLOC_BLOCK(inode)++;
319 UDF_I_NEXT_ALLOC_GOAL(inode)++;
320 }
321
322 err = 0;
323
324 bh = inode_getblk(inode, block, &err, &phys, &new);
325 BUG_ON(bh);
326 if (err)
327 goto abort;
328 BUG_ON(!phys);
329
330 if (new)
331 set_buffer_new(bh_result);
332 map_bh(bh_result, inode->i_sb, phys);
333
334 abort:
335 unlock_kernel();
336 return err;
337
338 abort_negative:
339 udf_warning(inode->i_sb, "udf_get_block", "block < 0");
340 goto abort;
341 }
342
343 static struct buffer_head *udf_getblk(struct inode *inode, long block,
344 int create, int *err)
345 {
346 struct buffer_head *bh;
347 struct buffer_head dummy;
348
349 dummy.b_state = 0;
350 dummy.b_blocknr = -1000;
351 *err = udf_get_block(inode, block, &dummy, create);
352 if (!*err && buffer_mapped(&dummy)) {
353 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
354 if (buffer_new(&dummy)) {
355 lock_buffer(bh);
356 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
357 set_buffer_uptodate(bh);
358 unlock_buffer(bh);
359 mark_buffer_dirty_inode(bh, inode);
360 }
361 return bh;
362 }
363
364 return NULL;
365 }
366
367 /* Extend the file by 'blocks' blocks, return the number of extents added */
368 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
369 kernel_long_ad * last_ext, sector_t blocks)
370 {
371 sector_t add;
372 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
373 struct super_block *sb = inode->i_sb;
374 kernel_lb_addr prealloc_loc = {};
375 int prealloc_len = 0;
376
377 /* The previous extent is fake and we should not extend by anything
378 * - there's nothing to do... */
379 if (!blocks && fake)
380 return 0;
381
382 /* Round the last extent up to a multiple of block size */
383 if (last_ext->extLength & (sb->s_blocksize - 1)) {
384 last_ext->extLength =
385 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
386 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
387 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
388 UDF_I_LENEXTENTS(inode) =
389 (UDF_I_LENEXTENTS(inode) + sb->s_blocksize - 1) &
390 ~(sb->s_blocksize - 1);
391 }
392
393 /* Last extent are just preallocated blocks? */
394 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_ALLOCATED) {
395 /* Save the extent so that we can reattach it to the end */
396 prealloc_loc = last_ext->extLocation;
397 prealloc_len = last_ext->extLength;
398 /* Mark the extent as a hole */
399 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
400 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
401 last_ext->extLocation.logicalBlockNum = 0;
402 last_ext->extLocation.partitionReferenceNum = 0;
403 }
404
405 /* Can we merge with the previous extent? */
406 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_NOT_ALLOCATED) {
407 add = ((1 << 30) - sb->s_blocksize - (last_ext->extLength &
408 UDF_EXTENT_LENGTH_MASK)) >> sb->s_blocksize_bits;
409 if (add > blocks)
410 add = blocks;
411 blocks -= add;
412 last_ext->extLength += add << sb->s_blocksize_bits;
413 }
414
415 if (fake) {
416 udf_add_aext(inode, last_pos, last_ext->extLocation,
417 last_ext->extLength, 1);
418 count++;
419 } else {
420 udf_write_aext(inode, last_pos, last_ext->extLocation, last_ext->extLength, 1);
421 }
422
423 /* Managed to do everything necessary? */
424 if (!blocks)
425 goto out;
426
427 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
428 last_ext->extLocation.logicalBlockNum = 0;
429 last_ext->extLocation.partitionReferenceNum = 0;
430 add = (1 << (30-sb->s_blocksize_bits)) - 1;
431 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | (add << sb->s_blocksize_bits);
432
433 /* Create enough extents to cover the whole hole */
434 while (blocks > add) {
435 blocks -= add;
436 if (udf_add_aext(inode, last_pos, last_ext->extLocation,
437 last_ext->extLength, 1) == -1)
438 return -1;
439 count++;
440 }
441 if (blocks) {
442 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
443 (blocks << sb->s_blocksize_bits);
444 if (udf_add_aext(inode, last_pos, last_ext->extLocation,
445 last_ext->extLength, 1) == -1)
446 return -1;
447 count++;
448 }
449
450 out:
451 /* Do we have some preallocated blocks saved? */
452 if (prealloc_len) {
453 if (udf_add_aext(inode, last_pos, prealloc_loc, prealloc_len, 1) == -1)
454 return -1;
455 last_ext->extLocation = prealloc_loc;
456 last_ext->extLength = prealloc_len;
457 count++;
458 }
459
460 /* last_pos should point to the last written extent... */
461 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
462 last_pos->offset -= sizeof(short_ad);
463 else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
464 last_pos->offset -= sizeof(long_ad);
465 else
466 return -1;
467
468 return count;
469 }
470
471 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
472 int *err, long *phys, int *new)
473 {
474 static sector_t last_block;
475 struct buffer_head *result = NULL;
476 kernel_long_ad laarr[EXTENT_MERGE_SIZE];
477 struct extent_position prev_epos, cur_epos, next_epos;
478 int count = 0, startnum = 0, endnum = 0;
479 uint32_t elen = 0, tmpelen;
480 kernel_lb_addr eloc, tmpeloc;
481 int c = 1;
482 loff_t lbcount = 0, b_off = 0;
483 uint32_t newblocknum, newblock;
484 sector_t offset = 0;
485 int8_t etype;
486 int goal = 0, pgoal = UDF_I_LOCATION(inode).logicalBlockNum;
487 int lastblock = 0;
488
489 prev_epos.offset = udf_file_entry_alloc_offset(inode);
490 prev_epos.block = UDF_I_LOCATION(inode);
491 prev_epos.bh = NULL;
492 cur_epos = next_epos = prev_epos;
493 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
494
495 /* find the extent which contains the block we are looking for.
496 alternate between laarr[0] and laarr[1] for locations of the
497 current extent, and the previous extent */
498 do {
499 if (prev_epos.bh != cur_epos.bh) {
500 brelse(prev_epos.bh);
501 get_bh(cur_epos.bh);
502 prev_epos.bh = cur_epos.bh;
503 }
504 if (cur_epos.bh != next_epos.bh) {
505 brelse(cur_epos.bh);
506 get_bh(next_epos.bh);
507 cur_epos.bh = next_epos.bh;
508 }
509
510 lbcount += elen;
511
512 prev_epos.block = cur_epos.block;
513 cur_epos.block = next_epos.block;
514
515 prev_epos.offset = cur_epos.offset;
516 cur_epos.offset = next_epos.offset;
517
518 if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1)) == -1)
519 break;
520
521 c = !c;
522
523 laarr[c].extLength = (etype << 30) | elen;
524 laarr[c].extLocation = eloc;
525
526 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
527 pgoal = eloc.logicalBlockNum +
528 ((elen + inode->i_sb->s_blocksize - 1) >>
529 inode->i_sb->s_blocksize_bits);
530
531 count++;
532 } while (lbcount + elen <= b_off);
533
534 b_off -= lbcount;
535 offset = b_off >> inode->i_sb->s_blocksize_bits;
536 /*
537 * Move prev_epos and cur_epos into indirect extent if we are at
538 * the pointer to it
539 */
540 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
541 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
542
543 /* if the extent is allocated and recorded, return the block
544 if the extent is not a multiple of the blocksize, round up */
545
546 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
547 if (elen & (inode->i_sb->s_blocksize - 1)) {
548 elen = EXT_RECORDED_ALLOCATED |
549 ((elen + inode->i_sb->s_blocksize - 1) &
550 ~(inode->i_sb->s_blocksize - 1));
551 etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1);
552 }
553 brelse(prev_epos.bh);
554 brelse(cur_epos.bh);
555 brelse(next_epos.bh);
556 newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset);
557 *phys = newblock;
558 return NULL;
559 }
560
561 last_block = block;
562 /* Are we beyond EOF? */
563 if (etype == -1) {
564 int ret;
565
566 if (count) {
567 if (c)
568 laarr[0] = laarr[1];
569 startnum = 1;
570 } else {
571 /* Create a fake extent when there's not one */
572 memset(&laarr[0].extLocation, 0x00, sizeof(kernel_lb_addr));
573 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
574 /* Will udf_extend_file() create real extent from a fake one? */
575 startnum = (offset > 0);
576 }
577 /* Create extents for the hole between EOF and offset */
578 ret = udf_extend_file(inode, &prev_epos, laarr, offset);
579 if (ret == -1) {
580 brelse(prev_epos.bh);
581 brelse(cur_epos.bh);
582 brelse(next_epos.bh);
583 /* We don't really know the error here so we just make
584 * something up */
585 *err = -ENOSPC;
586 return NULL;
587 }
588 c = 0;
589 offset = 0;
590 count += ret;
591 /* We are not covered by a preallocated extent? */
592 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != EXT_NOT_RECORDED_ALLOCATED) {
593 /* Is there any real extent? - otherwise we overwrite
594 * the fake one... */
595 if (count)
596 c = !c;
597 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
598 inode->i_sb->s_blocksize;
599 memset(&laarr[c].extLocation, 0x00, sizeof(kernel_lb_addr));
600 count++;
601 endnum++;
602 }
603 endnum = c + 1;
604 lastblock = 1;
605 } else {
606 endnum = startnum = ((count > 2) ? 2 : count);
607
608 /* if the current extent is in position 0, swap it with the previous */
609 if (!c && count != 1) {
610 laarr[2] = laarr[0];
611 laarr[0] = laarr[1];
612 laarr[1] = laarr[2];
613 c = 1;
614 }
615
616 /* if the current block is located in an extent, read the next extent */
617 if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0)) != -1) {
618 laarr[c + 1].extLength = (etype << 30) | elen;
619 laarr[c + 1].extLocation = eloc;
620 count++;
621 startnum++;
622 endnum++;
623 } else {
624 lastblock = 1;
625 }
626 }
627
628 /* if the current extent is not recorded but allocated, get the
629 * block in the extent corresponding to the requested block */
630 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
631 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
632 } else { /* otherwise, allocate a new block */
633 if (UDF_I_NEXT_ALLOC_BLOCK(inode) == block)
634 goal = UDF_I_NEXT_ALLOC_GOAL(inode);
635
636 if (!goal) {
637 if (!(goal = pgoal))
638 goal = UDF_I_LOCATION(inode).logicalBlockNum + 1;
639 }
640
641 if (!(newblocknum = udf_new_block(inode->i_sb, inode,
642 UDF_I_LOCATION(inode).partitionReferenceNum,
643 goal, err))) {
644 brelse(prev_epos.bh);
645 *err = -ENOSPC;
646 return NULL;
647 }
648 UDF_I_LENEXTENTS(inode) += inode->i_sb->s_blocksize;
649 }
650
651 /* if the extent the requsted block is located in contains multiple blocks,
652 * split the extent into at most three extents. blocks prior to requested
653 * block, requested block, and blocks after requested block */
654 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
655
656 #ifdef UDF_PREALLOCATE
657 /* preallocate blocks */
658 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
659 #endif
660
661 /* merge any continuous blocks in laarr */
662 udf_merge_extents(inode, laarr, &endnum);
663
664 /* write back the new extents, inserting new extents if the new number
665 * of extents is greater than the old number, and deleting extents if
666 * the new number of extents is less than the old number */
667 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
668
669 brelse(prev_epos.bh);
670
671 if (!(newblock = udf_get_pblock(inode->i_sb, newblocknum,
672 UDF_I_LOCATION(inode).partitionReferenceNum, 0))) {
673 return NULL;
674 }
675 *phys = newblock;
676 *err = 0;
677 *new = 1;
678 UDF_I_NEXT_ALLOC_BLOCK(inode) = block;
679 UDF_I_NEXT_ALLOC_GOAL(inode) = newblocknum;
680 inode->i_ctime = current_fs_time(inode->i_sb);
681
682 if (IS_SYNC(inode))
683 udf_sync_inode(inode);
684 else
685 mark_inode_dirty(inode);
686
687 return result;
688 }
689
690 static void udf_split_extents(struct inode *inode, int *c, int offset,
691 int newblocknum,
692 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
693 int *endnum)
694 {
695 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
696 (laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
697 int curr = *c;
698 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
699 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;
700 int8_t etype = (laarr[curr].extLength >> 30);
701
702 if (blen == 1) {
703 ;
704 } else if (!offset || blen == offset + 1) {
705 laarr[curr + 2] = laarr[curr + 1];
706 laarr[curr + 1] = laarr[curr];
707 } else {
708 laarr[curr + 3] = laarr[curr + 1];
709 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
710 }
711
712 if (offset) {
713 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
714 udf_free_blocks(inode->i_sb, inode, laarr[curr].extLocation, 0, offset);
715 laarr[curr].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
716 (offset << inode->i_sb->s_blocksize_bits);
717 laarr[curr].extLocation.logicalBlockNum = 0;
718 laarr[curr].extLocation.partitionReferenceNum = 0;
719 } else {
720 laarr[curr].extLength = (etype << 30) |
721 (offset << inode->i_sb->s_blocksize_bits);
722 }
723 curr++;
724 (*c)++;
725 (*endnum)++;
726 }
727
728 laarr[curr].extLocation.logicalBlockNum = newblocknum;
729 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
730 laarr[curr].extLocation.partitionReferenceNum =
731 UDF_I_LOCATION(inode).partitionReferenceNum;
732 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
733 inode->i_sb->s_blocksize;
734 curr++;
735
736 if (blen != offset + 1) {
737 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
738 laarr[curr].extLocation.logicalBlockNum += (offset + 1);
739 laarr[curr].extLength = (etype << 30) |
740 ((blen - (offset + 1)) << inode->i_sb->s_blocksize_bits);
741 curr++;
742 (*endnum)++;
743 }
744 }
745 }
746
747 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
748 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
749 int *endnum)
750 {
751 int start, length = 0, currlength = 0, i;
752
753 if (*endnum >= (c + 1)) {
754 if (!lastblock)
755 return;
756 else
757 start = c;
758 } else {
759 if ((laarr[c + 1].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
760 start = c + 1;
761 length = currlength = (((laarr[c + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
762 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
763 } else {
764 start = c;
765 }
766 }
767
768 for (i = start + 1; i <= *endnum; i++) {
769 if (i == *endnum) {
770 if (lastblock)
771 length += UDF_DEFAULT_PREALLOC_BLOCKS;
772 } else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
773 length += (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
774 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
775 } else {
776 break;
777 }
778 }
779
780 if (length) {
781 int next = laarr[start].extLocation.logicalBlockNum +
782 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
783 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
784 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
785 laarr[start].extLocation.partitionReferenceNum,
786 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? length :
787 UDF_DEFAULT_PREALLOC_BLOCKS) - currlength);
788 if (numalloc) {
789 if (start == (c + 1)) {
790 laarr[start].extLength +=
791 (numalloc << inode->i_sb->s_blocksize_bits);
792 } else {
793 memmove(&laarr[c + 2], &laarr[c + 1],
794 sizeof(long_ad) * (*endnum - (c + 1)));
795 (*endnum)++;
796 laarr[c + 1].extLocation.logicalBlockNum = next;
797 laarr[c + 1].extLocation.partitionReferenceNum =
798 laarr[c].extLocation.partitionReferenceNum;
799 laarr[c + 1].extLength = EXT_NOT_RECORDED_ALLOCATED |
800 (numalloc << inode->i_sb->s_blocksize_bits);
801 start = c + 1;
802 }
803
804 for (i = start + 1; numalloc && i < *endnum; i++) {
805 int elen = ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
806 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;
807
808 if (elen > numalloc) {
809 laarr[i].extLength -=
810 (numalloc << inode->i_sb->s_blocksize_bits);
811 numalloc = 0;
812 } else {
813 numalloc -= elen;
814 if (*endnum > (i + 1))
815 memmove(&laarr[i], &laarr[i + 1],
816 sizeof(long_ad) * (*endnum - (i + 1)));
817 i--;
818 (*endnum)--;
819 }
820 }
821 UDF_I_LENEXTENTS(inode) += numalloc << inode->i_sb->s_blocksize_bits;
822 }
823 }
824 }
825
826 static void udf_merge_extents(struct inode *inode,
827 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
828 int *endnum)
829 {
830 int i;
831
832 for (i = 0; i < (*endnum - 1); i++) {
833 if ((laarr[i].extLength >> 30) == (laarr[i + 1].extLength >> 30)) {
834 if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
835 ((laarr[i + 1].extLocation.logicalBlockNum - laarr[i].extLocation.logicalBlockNum) ==
836 (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
837 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits))) {
838 if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
839 (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
840 inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
841 laarr[i + 1].extLength = (laarr[i + 1].extLength -
842 (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
843 UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
844 laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
845 (UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
846 laarr[i + 1].extLocation.logicalBlockNum =
847 laarr[i].extLocation.logicalBlockNum +
848 ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) >>
849 inode->i_sb->s_blocksize_bits);
850 } else {
851 laarr[i].extLength = laarr[i + 1].extLength +
852 (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
853 inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
854 if (*endnum > (i + 2))
855 memmove(&laarr[i + 1], &laarr[i + 2],
856 sizeof(long_ad) * (*endnum - (i + 2)));
857 i--;
858 (*endnum)--;
859 }
860 }
861 } else if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
862 ((laarr[i + 1].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
863 udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
864 ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
865 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
866 laarr[i].extLocation.logicalBlockNum = 0;
867 laarr[i].extLocation.partitionReferenceNum = 0;
868
869 if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
870 (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
871 inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
872 laarr[i + 1].extLength = (laarr[i + 1].extLength -
873 (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
874 UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
875 laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
876 (UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
877 } else {
878 laarr[i].extLength = laarr[i + 1].extLength +
879 (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
880 inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
881 if (*endnum > (i + 2))
882 memmove(&laarr[i + 1], &laarr[i + 2],
883 sizeof(long_ad) * (*endnum - (i + 2)));
884 i--;
885 (*endnum)--;
886 }
887 } else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
888 udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
889 ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
890 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
891 laarr[i].extLocation.logicalBlockNum = 0;
892 laarr[i].extLocation.partitionReferenceNum = 0;
893 laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) |
894 EXT_NOT_RECORDED_NOT_ALLOCATED;
895 }
896 }
897 }
898
899 static void udf_update_extents(struct inode *inode,
900 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
901 int startnum, int endnum,
902 struct extent_position *epos)
903 {
904 int start = 0, i;
905 kernel_lb_addr tmploc;
906 uint32_t tmplen;
907
908 if (startnum > endnum) {
909 for (i = 0; i < (startnum - endnum); i++)
910 udf_delete_aext(inode, *epos, laarr[i].extLocation,
911 laarr[i].extLength);
912 } else if (startnum < endnum) {
913 for (i = 0; i < (endnum - startnum); i++) {
914 udf_insert_aext(inode, *epos, laarr[i].extLocation,
915 laarr[i].extLength);
916 udf_next_aext(inode, epos, &laarr[i].extLocation,
917 &laarr[i].extLength, 1);
918 start++;
919 }
920 }
921
922 for (i = start; i < endnum; i++) {
923 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
924 udf_write_aext(inode, epos, laarr[i].extLocation,
925 laarr[i].extLength, 1);
926 }
927 }
928
929 struct buffer_head *udf_bread(struct inode *inode, int block,
930 int create, int *err)
931 {
932 struct buffer_head *bh = NULL;
933
934 bh = udf_getblk(inode, block, create, err);
935 if (!bh)
936 return NULL;
937
938 if (buffer_uptodate(bh))
939 return bh;
940
941 ll_rw_block(READ, 1, &bh);
942
943 wait_on_buffer(bh);
944 if (buffer_uptodate(bh))
945 return bh;
946
947 brelse(bh);
948 *err = -EIO;
949 return NULL;
950 }
951
952 void udf_truncate(struct inode *inode)
953 {
954 int offset;
955 int err;
956
957 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
958 S_ISLNK(inode->i_mode)))
959 return;
960 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
961 return;
962
963 lock_kernel();
964 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
965 if (inode->i_sb->s_blocksize < (udf_file_entry_alloc_offset(inode) +
966 inode->i_size)) {
967 udf_expand_file_adinicb(inode, inode->i_size, &err);
968 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
969 inode->i_size = UDF_I_LENALLOC(inode);
970 unlock_kernel();
971 return;
972 } else {
973 udf_truncate_extents(inode);
974 }
975 } else {
976 offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
977 memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode) + offset, 0x00,
978 inode->i_sb->s_blocksize - offset - udf_file_entry_alloc_offset(inode));
979 UDF_I_LENALLOC(inode) = inode->i_size;
980 }
981 } else {
982 block_truncate_page(inode->i_mapping, inode->i_size, udf_get_block);
983 udf_truncate_extents(inode);
984 }
985
986 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
987 if (IS_SYNC(inode))
988 udf_sync_inode(inode);
989 else
990 mark_inode_dirty(inode);
991 unlock_kernel();
992 }
993
994 static void __udf_read_inode(struct inode *inode)
995 {
996 struct buffer_head *bh = NULL;
997 struct fileEntry *fe;
998 uint16_t ident;
999
1000 /*
1001 * Set defaults, but the inode is still incomplete!
1002 * Note: get_new_inode() sets the following on a new inode:
1003 * i_sb = sb
1004 * i_no = ino
1005 * i_flags = sb->s_flags
1006 * i_state = 0
1007 * clean_inode(): zero fills and sets
1008 * i_count = 1
1009 * i_nlink = 1
1010 * i_op = NULL;
1011 */
1012 bh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 0, &ident);
1013 if (!bh) {
1014 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1015 inode->i_ino);
1016 make_bad_inode(inode);
1017 return;
1018 }
1019
1020 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1021 ident != TAG_IDENT_USE) {
1022 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed ident=%d\n",
1023 inode->i_ino, ident);
1024 brelse(bh);
1025 make_bad_inode(inode);
1026 return;
1027 }
1028
1029 fe = (struct fileEntry *)bh->b_data;
1030
1031 if (le16_to_cpu(fe->icbTag.strategyType) == 4096) {
1032 struct buffer_head *ibh = NULL, *nbh = NULL;
1033 struct indirectEntry *ie;
1034
1035 ibh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 1, &ident);
1036 if (ident == TAG_IDENT_IE) {
1037 if (ibh) {
1038 kernel_lb_addr loc;
1039 ie = (struct indirectEntry *)ibh->b_data;
1040
1041 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1042
1043 if (ie->indirectICB.extLength &&
1044 (nbh = udf_read_ptagged(inode->i_sb, loc, 0, &ident))) {
1045 if (ident == TAG_IDENT_FE ||
1046 ident == TAG_IDENT_EFE) {
1047 memcpy(&UDF_I_LOCATION(inode), &loc,
1048 sizeof(kernel_lb_addr));
1049 brelse(bh);
1050 brelse(ibh);
1051 brelse(nbh);
1052 __udf_read_inode(inode);
1053 return;
1054 } else {
1055 brelse(nbh);
1056 brelse(ibh);
1057 }
1058 } else {
1059 brelse(ibh);
1060 }
1061 }
1062 } else {
1063 brelse(ibh);
1064 }
1065 } else if (le16_to_cpu(fe->icbTag.strategyType) != 4) {
1066 printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1067 le16_to_cpu(fe->icbTag.strategyType));
1068 brelse(bh);
1069 make_bad_inode(inode);
1070 return;
1071 }
1072 udf_fill_inode(inode, bh);
1073
1074 brelse(bh);
1075 }
1076
1077 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1078 {
1079 struct fileEntry *fe;
1080 struct extendedFileEntry *efe;
1081 time_t convtime;
1082 long convtime_usec;
1083 int offset;
1084
1085 fe = (struct fileEntry *)bh->b_data;
1086 efe = (struct extendedFileEntry *)bh->b_data;
1087
1088 if (le16_to_cpu(fe->icbTag.strategyType) == 4)
1089 UDF_I_STRAT4096(inode) = 0;
1090 else /* if (le16_to_cpu(fe->icbTag.strategyType) == 4096) */
1091 UDF_I_STRAT4096(inode) = 1;
1092
1093 UDF_I_ALLOCTYPE(inode) = le16_to_cpu(fe->icbTag.flags) & ICBTAG_FLAG_AD_MASK;
1094 UDF_I_UNIQUE(inode) = 0;
1095 UDF_I_LENEATTR(inode) = 0;
1096 UDF_I_LENEXTENTS(inode) = 0;
1097 UDF_I_LENALLOC(inode) = 0;
1098 UDF_I_NEXT_ALLOC_BLOCK(inode) = 0;
1099 UDF_I_NEXT_ALLOC_GOAL(inode) = 0;
1100 if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_EFE) {
1101 UDF_I_EFE(inode) = 1;
1102 UDF_I_USE(inode) = 0;
1103 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry))) {
1104 make_bad_inode(inode);
1105 return;
1106 }
1107 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct extendedFileEntry),
1108 inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
1109 } else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_FE) {
1110 UDF_I_EFE(inode) = 0;
1111 UDF_I_USE(inode) = 0;
1112 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct fileEntry))) {
1113 make_bad_inode(inode);
1114 return;
1115 }
1116 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct fileEntry),
1117 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1118 } else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
1119 UDF_I_EFE(inode) = 0;
1120 UDF_I_USE(inode) = 1;
1121 UDF_I_LENALLOC(inode) =
1122 le32_to_cpu(((struct unallocSpaceEntry *)bh->b_data)->lengthAllocDescs);
1123 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry))) {
1124 make_bad_inode(inode);
1125 return;
1126 }
1127 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct unallocSpaceEntry),
1128 inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
1129 return;
1130 }
1131
1132 inode->i_uid = le32_to_cpu(fe->uid);
1133 if (inode->i_uid == -1 ||
1134 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1135 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1136 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1137
1138 inode->i_gid = le32_to_cpu(fe->gid);
1139 if (inode->i_gid == -1 ||
1140 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1141 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1142 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1143
1144 inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1145 if (!inode->i_nlink)
1146 inode->i_nlink = 1;
1147
1148 inode->i_size = le64_to_cpu(fe->informationLength);
1149 UDF_I_LENEXTENTS(inode) = inode->i_size;
1150
1151 inode->i_mode = udf_convert_permissions(fe);
1152 inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask;
1153
1154 if (UDF_I_EFE(inode) == 0) {
1155 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1156 (inode->i_sb->s_blocksize_bits - 9);
1157
1158 if (udf_stamp_to_time(&convtime, &convtime_usec,
1159 lets_to_cpu(fe->accessTime))) {
1160 inode->i_atime.tv_sec = convtime;
1161 inode->i_atime.tv_nsec = convtime_usec * 1000;
1162 } else {
1163 inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb);
1164 }
1165
1166 if (udf_stamp_to_time(&convtime, &convtime_usec,
1167 lets_to_cpu(fe->modificationTime))) {
1168 inode->i_mtime.tv_sec = convtime;
1169 inode->i_mtime.tv_nsec = convtime_usec * 1000;
1170 } else {
1171 inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb);
1172 }
1173
1174 if (udf_stamp_to_time(&convtime, &convtime_usec,
1175 lets_to_cpu(fe->attrTime))) {
1176 inode->i_ctime.tv_sec = convtime;
1177 inode->i_ctime.tv_nsec = convtime_usec * 1000;
1178 } else {
1179 inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb);
1180 }
1181
1182 UDF_I_UNIQUE(inode) = le64_to_cpu(fe->uniqueID);
1183 UDF_I_LENEATTR(inode) = le32_to_cpu(fe->lengthExtendedAttr);
1184 UDF_I_LENALLOC(inode) = le32_to_cpu(fe->lengthAllocDescs);
1185 offset = sizeof(struct fileEntry) + UDF_I_LENEATTR(inode);
1186 } else {
1187 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1188 (inode->i_sb->s_blocksize_bits - 9);
1189
1190 if (udf_stamp_to_time(&convtime, &convtime_usec,
1191 lets_to_cpu(efe->accessTime))) {
1192 inode->i_atime.tv_sec = convtime;
1193 inode->i_atime.tv_nsec = convtime_usec * 1000;
1194 } else {
1195 inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb);
1196 }
1197
1198 if (udf_stamp_to_time(&convtime, &convtime_usec,
1199 lets_to_cpu(efe->modificationTime))) {
1200 inode->i_mtime.tv_sec = convtime;
1201 inode->i_mtime.tv_nsec = convtime_usec * 1000;
1202 } else {
1203 inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb);
1204 }
1205
1206 if (udf_stamp_to_time(&convtime, &convtime_usec,
1207 lets_to_cpu(efe->createTime))) {
1208 UDF_I_CRTIME(inode).tv_sec = convtime;
1209 UDF_I_CRTIME(inode).tv_nsec = convtime_usec * 1000;
1210 } else {
1211 UDF_I_CRTIME(inode) = UDF_SB_RECORDTIME(inode->i_sb);
1212 }
1213
1214 if (udf_stamp_to_time(&convtime, &convtime_usec,
1215 lets_to_cpu(efe->attrTime))) {
1216 inode->i_ctime.tv_sec = convtime;
1217 inode->i_ctime.tv_nsec = convtime_usec * 1000;
1218 } else {
1219 inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb);
1220 }
1221
1222 UDF_I_UNIQUE(inode) = le64_to_cpu(efe->uniqueID);
1223 UDF_I_LENEATTR(inode) = le32_to_cpu(efe->lengthExtendedAttr);
1224 UDF_I_LENALLOC(inode) = le32_to_cpu(efe->lengthAllocDescs);
1225 offset = sizeof(struct extendedFileEntry) + UDF_I_LENEATTR(inode);
1226 }
1227
1228 switch (fe->icbTag.fileType) {
1229 case ICBTAG_FILE_TYPE_DIRECTORY:
1230 inode->i_op = &udf_dir_inode_operations;
1231 inode->i_fop = &udf_dir_operations;
1232 inode->i_mode |= S_IFDIR;
1233 inc_nlink(inode);
1234 break;
1235 case ICBTAG_FILE_TYPE_REALTIME:
1236 case ICBTAG_FILE_TYPE_REGULAR:
1237 case ICBTAG_FILE_TYPE_UNDEF:
1238 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB)
1239 inode->i_data.a_ops = &udf_adinicb_aops;
1240 else
1241 inode->i_data.a_ops = &udf_aops;
1242 inode->i_op = &udf_file_inode_operations;
1243 inode->i_fop = &udf_file_operations;
1244 inode->i_mode |= S_IFREG;
1245 break;
1246 case ICBTAG_FILE_TYPE_BLOCK:
1247 inode->i_mode |= S_IFBLK;
1248 break;
1249 case ICBTAG_FILE_TYPE_CHAR:
1250 inode->i_mode |= S_IFCHR;
1251 break;
1252 case ICBTAG_FILE_TYPE_FIFO:
1253 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1254 break;
1255 case ICBTAG_FILE_TYPE_SOCKET:
1256 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1257 break;
1258 case ICBTAG_FILE_TYPE_SYMLINK:
1259 inode->i_data.a_ops = &udf_symlink_aops;
1260 inode->i_op = &page_symlink_inode_operations;
1261 inode->i_mode = S_IFLNK | S_IRWXUGO;
1262 break;
1263 default:
1264 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown file type=%d\n",
1265 inode->i_ino, fe->icbTag.fileType);
1266 make_bad_inode(inode);
1267 return;
1268 }
1269 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1270 struct deviceSpec *dsea = (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1271 if (dsea) {
1272 init_special_inode(inode, inode->i_mode,
1273 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1274 le32_to_cpu(dsea->minorDeviceIdent)));
1275 /* Developer ID ??? */
1276 } else {
1277 make_bad_inode(inode);
1278 }
1279 }
1280 }
1281
1282 static int udf_alloc_i_data(struct inode *inode, size_t size)
1283 {
1284 UDF_I_DATA(inode) = kmalloc(size, GFP_KERNEL);
1285
1286 if (!UDF_I_DATA(inode)) {
1287 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) no free memory\n",
1288 inode->i_ino);
1289 return -ENOMEM;
1290 }
1291
1292 return 0;
1293 }
1294
1295 static mode_t udf_convert_permissions(struct fileEntry *fe)
1296 {
1297 mode_t mode;
1298 uint32_t permissions;
1299 uint32_t flags;
1300
1301 permissions = le32_to_cpu(fe->permissions);
1302 flags = le16_to_cpu(fe->icbTag.flags);
1303
1304 mode = (( permissions ) & S_IRWXO) |
1305 (( permissions >> 2 ) & S_IRWXG) |
1306 (( permissions >> 4 ) & S_IRWXU) |
1307 (( flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1308 (( flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1309 (( flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1310
1311 return mode;
1312 }
1313
1314 /*
1315 * udf_write_inode
1316 *
1317 * PURPOSE
1318 * Write out the specified inode.
1319 *
1320 * DESCRIPTION
1321 * This routine is called whenever an inode is synced.
1322 * Currently this routine is just a placeholder.
1323 *
1324 * HISTORY
1325 * July 1, 1997 - Andrew E. Mileski
1326 * Written, tested, and released.
1327 */
1328
1329 int udf_write_inode(struct inode *inode, int sync)
1330 {
1331 int ret;
1332
1333 lock_kernel();
1334 ret = udf_update_inode(inode, sync);
1335 unlock_kernel();
1336
1337 return ret;
1338 }
1339
1340 int udf_sync_inode(struct inode *inode)
1341 {
1342 return udf_update_inode(inode, 1);
1343 }
1344
1345 static int udf_update_inode(struct inode *inode, int do_sync)
1346 {
1347 struct buffer_head *bh = NULL;
1348 struct fileEntry *fe;
1349 struct extendedFileEntry *efe;
1350 uint32_t udfperms;
1351 uint16_t icbflags;
1352 uint16_t crclen;
1353 int i;
1354 kernel_timestamp cpu_time;
1355 int err = 0;
1356
1357 bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, UDF_I_LOCATION(inode), 0));
1358 if (!bh) {
1359 udf_debug("bread failure\n");
1360 return -EIO;
1361 }
1362
1363 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1364
1365 fe = (struct fileEntry *)bh->b_data;
1366 efe = (struct extendedFileEntry *)bh->b_data;
1367
1368 if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
1369 struct unallocSpaceEntry *use =
1370 (struct unallocSpaceEntry *)bh->b_data;
1371
1372 use->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1373 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), UDF_I_DATA(inode),
1374 inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
1375 crclen = sizeof(struct unallocSpaceEntry) + UDF_I_LENALLOC(inode) - sizeof(tag);
1376 use->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
1377 use->descTag.descCRCLength = cpu_to_le16(crclen);
1378 use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use + sizeof(tag), crclen, 0));
1379
1380 use->descTag.tagChecksum = 0;
1381 for (i = 0; i < 16; i++) {
1382 if (i != 4)
1383 use->descTag.tagChecksum += ((uint8_t *)&(use->descTag))[i];
1384 }
1385
1386 mark_buffer_dirty(bh);
1387 brelse(bh);
1388 return err;
1389 }
1390
1391 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1392 fe->uid = cpu_to_le32(-1);
1393 else
1394 fe->uid = cpu_to_le32(inode->i_uid);
1395
1396 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1397 fe->gid = cpu_to_le32(-1);
1398 else
1399 fe->gid = cpu_to_le32(inode->i_gid);
1400
1401 udfperms = ((inode->i_mode & S_IRWXO) ) |
1402 ((inode->i_mode & S_IRWXG) << 2) |
1403 ((inode->i_mode & S_IRWXU) << 4);
1404
1405 udfperms |= (le32_to_cpu(fe->permissions) &
1406 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1407 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1408 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1409 fe->permissions = cpu_to_le32(udfperms);
1410
1411 if (S_ISDIR(inode->i_mode))
1412 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1413 else
1414 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1415
1416 fe->informationLength = cpu_to_le64(inode->i_size);
1417
1418 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1419 regid *eid;
1420 struct deviceSpec *dsea =
1421 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1422 if (!dsea) {
1423 dsea = (struct deviceSpec *)
1424 udf_add_extendedattr(inode,
1425 sizeof(struct deviceSpec) +
1426 sizeof(regid), 12, 0x3);
1427 dsea->attrType = cpu_to_le32(12);
1428 dsea->attrSubtype = 1;
1429 dsea->attrLength = cpu_to_le32(sizeof(struct deviceSpec) +
1430 sizeof(regid));
1431 dsea->impUseLength = cpu_to_le32(sizeof(regid));
1432 }
1433 eid = (regid *)dsea->impUse;
1434 memset(eid, 0, sizeof(regid));
1435 strcpy(eid->ident, UDF_ID_DEVELOPER);
1436 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1437 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1438 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1439 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1440 }
1441
1442 if (UDF_I_EFE(inode) == 0) {
1443 memcpy(bh->b_data + sizeof(struct fileEntry), UDF_I_DATA(inode),
1444 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1445 fe->logicalBlocksRecorded = cpu_to_le64(
1446 (inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
1447 (inode->i_sb->s_blocksize_bits - 9));
1448
1449 if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1450 fe->accessTime = cpu_to_lets(cpu_time);
1451 if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1452 fe->modificationTime = cpu_to_lets(cpu_time);
1453 if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1454 fe->attrTime = cpu_to_lets(cpu_time);
1455 memset(&(fe->impIdent), 0, sizeof(regid));
1456 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1457 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1458 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1459 fe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
1460 fe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
1461 fe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1462 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1463 crclen = sizeof(struct fileEntry);
1464 } else {
1465 memcpy(bh->b_data + sizeof(struct extendedFileEntry), UDF_I_DATA(inode),
1466 inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
1467 efe->objectSize = cpu_to_le64(inode->i_size);
1468 efe->logicalBlocksRecorded = cpu_to_le64(
1469 (inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
1470 (inode->i_sb->s_blocksize_bits - 9));
1471
1472 if (UDF_I_CRTIME(inode).tv_sec > inode->i_atime.tv_sec ||
1473 (UDF_I_CRTIME(inode).tv_sec == inode->i_atime.tv_sec &&
1474 UDF_I_CRTIME(inode).tv_nsec > inode->i_atime.tv_nsec)) {
1475 UDF_I_CRTIME(inode) = inode->i_atime;
1476 }
1477 if (UDF_I_CRTIME(inode).tv_sec > inode->i_mtime.tv_sec ||
1478 (UDF_I_CRTIME(inode).tv_sec == inode->i_mtime.tv_sec &&
1479 UDF_I_CRTIME(inode).tv_nsec > inode->i_mtime.tv_nsec)) {
1480 UDF_I_CRTIME(inode) = inode->i_mtime;
1481 }
1482 if (UDF_I_CRTIME(inode).tv_sec > inode->i_ctime.tv_sec ||
1483 (UDF_I_CRTIME(inode).tv_sec == inode->i_ctime.tv_sec &&
1484 UDF_I_CRTIME(inode).tv_nsec > inode->i_ctime.tv_nsec)) {
1485 UDF_I_CRTIME(inode) = inode->i_ctime;
1486 }
1487
1488 if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1489 efe->accessTime = cpu_to_lets(cpu_time);
1490 if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1491 efe->modificationTime = cpu_to_lets(cpu_time);
1492 if (udf_time_to_stamp(&cpu_time, UDF_I_CRTIME(inode)))
1493 efe->createTime = cpu_to_lets(cpu_time);
1494 if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1495 efe->attrTime = cpu_to_lets(cpu_time);
1496
1497 memset(&(efe->impIdent), 0, sizeof(regid));
1498 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1499 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1500 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1501 efe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
1502 efe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
1503 efe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1504 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1505 crclen = sizeof(struct extendedFileEntry);
1506 }
1507 if (UDF_I_STRAT4096(inode)) {
1508 fe->icbTag.strategyType = cpu_to_le16(4096);
1509 fe->icbTag.strategyParameter = cpu_to_le16(1);
1510 fe->icbTag.numEntries = cpu_to_le16(2);
1511 } else {
1512 fe->icbTag.strategyType = cpu_to_le16(4);
1513 fe->icbTag.numEntries = cpu_to_le16(1);
1514 }
1515
1516 if (S_ISDIR(inode->i_mode))
1517 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1518 else if (S_ISREG(inode->i_mode))
1519 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1520 else if (S_ISLNK(inode->i_mode))
1521 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1522 else if (S_ISBLK(inode->i_mode))
1523 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1524 else if (S_ISCHR(inode->i_mode))
1525 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1526 else if (S_ISFIFO(inode->i_mode))
1527 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1528 else if (S_ISSOCK(inode->i_mode))
1529 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1530
1531 icbflags = UDF_I_ALLOCTYPE(inode) |
1532 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1533 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1534 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1535 (le16_to_cpu(fe->icbTag.flags) &
1536 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1537 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1538
1539 fe->icbTag.flags = cpu_to_le16(icbflags);
1540 if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200)
1541 fe->descTag.descVersion = cpu_to_le16(3);
1542 else
1543 fe->descTag.descVersion = cpu_to_le16(2);
1544 fe->descTag.tagSerialNum = cpu_to_le16(UDF_SB_SERIALNUM(inode->i_sb));
1545 fe->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
1546 crclen += UDF_I_LENEATTR(inode) + UDF_I_LENALLOC(inode) - sizeof(tag);
1547 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1548 fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag), crclen, 0));
1549
1550 fe->descTag.tagChecksum = 0;
1551 for (i = 0; i < 16; i++) {
1552 if (i != 4)
1553 fe->descTag.tagChecksum += ((uint8_t *)&(fe->descTag))[i];
1554 }
1555
1556 /* write the data blocks */
1557 mark_buffer_dirty(bh);
1558 if (do_sync) {
1559 sync_dirty_buffer(bh);
1560 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1561 printk("IO error syncing udf inode [%s:%08lx]\n",
1562 inode->i_sb->s_id, inode->i_ino);
1563 err = -EIO;
1564 }
1565 }
1566 brelse(bh);
1567
1568 return err;
1569 }
1570
1571 struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino)
1572 {
1573 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1574 struct inode *inode = iget_locked(sb, block);
1575
1576 if (!inode)
1577 return NULL;
1578
1579 if (inode->i_state & I_NEW) {
1580 memcpy(&UDF_I_LOCATION(inode), &ino, sizeof(kernel_lb_addr));
1581 __udf_read_inode(inode);
1582 unlock_new_inode(inode);
1583 }
1584
1585 if (is_bad_inode(inode))
1586 goto out_iput;
1587
1588 if (ino.logicalBlockNum >= UDF_SB_PARTLEN(sb, ino.partitionReferenceNum)) {
1589 udf_debug("block=%d, partition=%d out of range\n",
1590 ino.logicalBlockNum, ino.partitionReferenceNum);
1591 make_bad_inode(inode);
1592 goto out_iput;
1593 }
1594
1595 return inode;
1596
1597 out_iput:
1598 iput(inode);
1599 return NULL;
1600 }
1601
1602 int8_t udf_add_aext(struct inode * inode, struct extent_position * epos,
1603 kernel_lb_addr eloc, uint32_t elen, int inc)
1604 {
1605 int adsize;
1606 short_ad *sad = NULL;
1607 long_ad *lad = NULL;
1608 struct allocExtDesc *aed;
1609 int8_t etype;
1610 uint8_t *ptr;
1611
1612 if (!epos->bh)
1613 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1614 else
1615 ptr = epos->bh->b_data + epos->offset;
1616
1617 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
1618 adsize = sizeof(short_ad);
1619 else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
1620 adsize = sizeof(long_ad);
1621 else
1622 return -1;
1623
1624 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1625 char *sptr, *dptr;
1626 struct buffer_head *nbh;
1627 int err, loffset;
1628 kernel_lb_addr obloc = epos->block;
1629
1630 if (!(epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1631 obloc.partitionReferenceNum,
1632 obloc.logicalBlockNum, &err))) {
1633 return -1;
1634 }
1635 if (!(nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1636 epos->block, 0)))) {
1637 return -1;
1638 }
1639 lock_buffer(nbh);
1640 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1641 set_buffer_uptodate(nbh);
1642 unlock_buffer(nbh);
1643 mark_buffer_dirty_inode(nbh, inode);
1644
1645 aed = (struct allocExtDesc *)(nbh->b_data);
1646 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1647 aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum);
1648 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1649 loffset = epos->offset;
1650 aed->lengthAllocDescs = cpu_to_le32(adsize);
1651 sptr = ptr - adsize;
1652 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1653 memcpy(dptr, sptr, adsize);
1654 epos->offset = sizeof(struct allocExtDesc) + adsize;
1655 } else {
1656 loffset = epos->offset + adsize;
1657 aed->lengthAllocDescs = cpu_to_le32(0);
1658 sptr = ptr;
1659 epos->offset = sizeof(struct allocExtDesc);
1660
1661 if (epos->bh) {
1662 aed = (struct allocExtDesc *)epos->bh->b_data;
1663 aed->lengthAllocDescs =
1664 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
1665 } else {
1666 UDF_I_LENALLOC(inode) += adsize;
1667 mark_inode_dirty(inode);
1668 }
1669 }
1670 if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200)
1671 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1672 epos->block.logicalBlockNum, sizeof(tag));
1673 else
1674 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1675 epos->block.logicalBlockNum, sizeof(tag));
1676 switch (UDF_I_ALLOCTYPE(inode)) {
1677 case ICBTAG_FLAG_AD_SHORT:
1678 sad = (short_ad *)sptr;
1679 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1680 inode->i_sb->s_blocksize);
1681 sad->extPosition = cpu_to_le32(epos->block.logicalBlockNum);
1682 break;
1683 case ICBTAG_FLAG_AD_LONG:
1684 lad = (long_ad *)sptr;
1685 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1686 inode->i_sb->s_blocksize);
1687 lad->extLocation = cpu_to_lelb(epos->block);
1688 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1689 break;
1690 }
1691 if (epos->bh) {
1692 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1693 UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1694 udf_update_tag(epos->bh->b_data, loffset);
1695 else
1696 udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
1697 mark_buffer_dirty_inode(epos->bh, inode);
1698 brelse(epos->bh);
1699 } else {
1700 mark_inode_dirty(inode);
1701 }
1702 epos->bh = nbh;
1703 }
1704
1705 etype = udf_write_aext(inode, epos, eloc, elen, inc);
1706
1707 if (!epos->bh) {
1708 UDF_I_LENALLOC(inode) += adsize;
1709 mark_inode_dirty(inode);
1710 } else {
1711 aed = (struct allocExtDesc *)epos->bh->b_data;
1712 aed->lengthAllocDescs =
1713 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
1714 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1715 udf_update_tag(epos->bh->b_data, epos->offset + (inc ? 0 : adsize));
1716 else
1717 udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
1718 mark_buffer_dirty_inode(epos->bh, inode);
1719 }
1720
1721 return etype;
1722 }
1723
1724 int8_t udf_write_aext(struct inode * inode, struct extent_position * epos,
1725 kernel_lb_addr eloc, uint32_t elen, int inc)
1726 {
1727 int adsize;
1728 uint8_t *ptr;
1729 short_ad *sad;
1730 long_ad *lad;
1731
1732 if (!epos->bh)
1733 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1734 else
1735 ptr = epos->bh->b_data + epos->offset;
1736
1737 switch (UDF_I_ALLOCTYPE(inode)) {
1738 case ICBTAG_FLAG_AD_SHORT:
1739 sad = (short_ad *)ptr;
1740 sad->extLength = cpu_to_le32(elen);
1741 sad->extPosition = cpu_to_le32(eloc.logicalBlockNum);
1742 adsize = sizeof(short_ad);
1743 break;
1744 case ICBTAG_FLAG_AD_LONG:
1745 lad = (long_ad *)ptr;
1746 lad->extLength = cpu_to_le32(elen);
1747 lad->extLocation = cpu_to_lelb(eloc);
1748 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1749 adsize = sizeof(long_ad);
1750 break;
1751 default:
1752 return -1;
1753 }
1754
1755 if (epos->bh) {
1756 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1757 UDF_SB_UDFREV(inode->i_sb) >= 0x0201) {
1758 struct allocExtDesc *aed = (struct allocExtDesc *)epos->bh->b_data;
1759 udf_update_tag(epos->bh->b_data,
1760 le32_to_cpu(aed->lengthAllocDescs) + sizeof(struct allocExtDesc));
1761 }
1762 mark_buffer_dirty_inode(epos->bh, inode);
1763 } else {
1764 mark_inode_dirty(inode);
1765 }
1766
1767 if (inc)
1768 epos->offset += adsize;
1769
1770 return (elen >> 30);
1771 }
1772
1773 int8_t udf_next_aext(struct inode * inode, struct extent_position * epos,
1774 kernel_lb_addr * eloc, uint32_t * elen, int inc)
1775 {
1776 int8_t etype;
1777
1778 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1779 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1780 epos->block = *eloc;
1781 epos->offset = sizeof(struct allocExtDesc);
1782 brelse(epos->bh);
1783 if (!(epos->bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, epos->block, 0)))) {
1784 udf_debug("reading block %d failed!\n",
1785 udf_get_lb_pblock(inode->i_sb, epos->block, 0));
1786 return -1;
1787 }
1788 }
1789
1790 return etype;
1791 }
1792
1793 int8_t udf_current_aext(struct inode * inode, struct extent_position * epos,
1794 kernel_lb_addr * eloc, uint32_t * elen, int inc)
1795 {
1796 int alen;
1797 int8_t etype;
1798 uint8_t *ptr;
1799 short_ad *sad;
1800 long_ad *lad;
1801
1802
1803 if (!epos->bh) {
1804 if (!epos->offset)
1805 epos->offset = udf_file_entry_alloc_offset(inode);
1806 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1807 alen = udf_file_entry_alloc_offset(inode) + UDF_I_LENALLOC(inode);
1808 } else {
1809 if (!epos->offset)
1810 epos->offset = sizeof(struct allocExtDesc);
1811 ptr = epos->bh->b_data + epos->offset;
1812 alen = sizeof(struct allocExtDesc) +
1813 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->lengthAllocDescs);
1814 }
1815
1816 switch (UDF_I_ALLOCTYPE(inode)) {
1817 case ICBTAG_FLAG_AD_SHORT:
1818 if (!(sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc)))
1819 return -1;
1820 etype = le32_to_cpu(sad->extLength) >> 30;
1821 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1822 eloc->partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
1823 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1824 break;
1825 case ICBTAG_FLAG_AD_LONG:
1826 if (!(lad = udf_get_filelongad(ptr, alen, &epos->offset, inc)))
1827 return -1;
1828 etype = le32_to_cpu(lad->extLength) >> 30;
1829 *eloc = lelb_to_cpu(lad->extLocation);
1830 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1831 break;
1832 default:
1833 udf_debug("alloc_type = %d unsupported\n", UDF_I_ALLOCTYPE(inode));
1834 return -1;
1835 }
1836
1837 return etype;
1838 }
1839
1840 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1841 kernel_lb_addr neloc, uint32_t nelen)
1842 {
1843 kernel_lb_addr oeloc;
1844 uint32_t oelen;
1845 int8_t etype;
1846
1847 if (epos.bh)
1848 get_bh(epos.bh);
1849
1850 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1851 udf_write_aext(inode, &epos, neloc, nelen, 1);
1852 neloc = oeloc;
1853 nelen = (etype << 30) | oelen;
1854 }
1855 udf_add_aext(inode, &epos, neloc, nelen, 1);
1856 brelse(epos.bh);
1857
1858 return (nelen >> 30);
1859 }
1860
1861 int8_t udf_delete_aext(struct inode * inode, struct extent_position epos,
1862 kernel_lb_addr eloc, uint32_t elen)
1863 {
1864 struct extent_position oepos;
1865 int adsize;
1866 int8_t etype;
1867 struct allocExtDesc *aed;
1868
1869 if (epos.bh) {
1870 get_bh(epos.bh);
1871 get_bh(epos.bh);
1872 }
1873
1874 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
1875 adsize = sizeof(short_ad);
1876 else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
1877 adsize = sizeof(long_ad);
1878 else
1879 adsize = 0;
1880
1881 oepos = epos;
1882 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1883 return -1;
1884
1885 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1886 udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1);
1887 if (oepos.bh != epos.bh) {
1888 oepos.block = epos.block;
1889 brelse(oepos.bh);
1890 get_bh(epos.bh);
1891 oepos.bh = epos.bh;
1892 oepos.offset = epos.offset - adsize;
1893 }
1894 }
1895 memset(&eloc, 0x00, sizeof(kernel_lb_addr));
1896 elen = 0;
1897
1898 if (epos.bh != oepos.bh) {
1899 udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1);
1900 udf_write_aext(inode, &oepos, eloc, elen, 1);
1901 udf_write_aext(inode, &oepos, eloc, elen, 1);
1902 if (!oepos.bh) {
1903 UDF_I_LENALLOC(inode) -= (adsize * 2);
1904 mark_inode_dirty(inode);
1905 } else {
1906 aed = (struct allocExtDesc *)oepos.bh->b_data;
1907 aed->lengthAllocDescs =
1908 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - (2 * adsize));
1909 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1910 UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1911 udf_update_tag(oepos.bh->b_data, oepos.offset - (2 * adsize));
1912 else
1913 udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
1914 mark_buffer_dirty_inode(oepos.bh, inode);
1915 }
1916 } else {
1917 udf_write_aext(inode, &oepos, eloc, elen, 1);
1918 if (!oepos.bh) {
1919 UDF_I_LENALLOC(inode) -= adsize;
1920 mark_inode_dirty(inode);
1921 } else {
1922 aed = (struct allocExtDesc *)oepos.bh->b_data;
1923 aed->lengthAllocDescs =
1924 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - adsize);
1925 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1926 UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1927 udf_update_tag(oepos.bh->b_data, epos.offset - adsize);
1928 else
1929 udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
1930 mark_buffer_dirty_inode(oepos.bh, inode);
1931 }
1932 }
1933
1934 brelse(epos.bh);
1935 brelse(oepos.bh);
1936
1937 return (elen >> 30);
1938 }
1939
1940 int8_t inode_bmap(struct inode * inode, sector_t block,
1941 struct extent_position * pos, kernel_lb_addr * eloc,
1942 uint32_t * elen, sector_t * offset)
1943 {
1944 loff_t lbcount = 0, bcount =
1945 (loff_t) block << inode->i_sb->s_blocksize_bits;
1946 int8_t etype;
1947
1948 if (block < 0) {
1949 printk(KERN_ERR "udf: inode_bmap: block < 0\n");
1950 return -1;
1951 }
1952
1953 pos->offset = 0;
1954 pos->block = UDF_I_LOCATION(inode);
1955 pos->bh = NULL;
1956 *elen = 0;
1957
1958 do {
1959 if ((etype = udf_next_aext(inode, pos, eloc, elen, 1)) == -1) {
1960 *offset = (bcount - lbcount) >> inode->i_sb->s_blocksize_bits;
1961 UDF_I_LENEXTENTS(inode) = lbcount;
1962 return -1;
1963 }
1964 lbcount += *elen;
1965 } while (lbcount <= bcount);
1966
1967 *offset = (bcount + *elen - lbcount) >> inode->i_sb->s_blocksize_bits;
1968
1969 return etype;
1970 }
1971
1972 long udf_block_map(struct inode *inode, sector_t block)
1973 {
1974 kernel_lb_addr eloc;
1975 uint32_t elen;
1976 sector_t offset;
1977 struct extent_position epos = {};
1978 int ret;
1979
1980 lock_kernel();
1981
1982 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == (EXT_RECORDED_ALLOCATED >> 30))
1983 ret = udf_get_lb_pblock(inode->i_sb, eloc, offset);
1984 else
1985 ret = 0;
1986
1987 unlock_kernel();
1988 brelse(epos.bh);
1989
1990 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
1991 return udf_fixed_to_variable(ret);
1992 else
1993 return ret;
1994 }