]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/udf/inode.c
vfs: Rename end_writeback() to clear_inode()
[mirror_ubuntu-zesty-kernel.git] / fs / udf / inode.c
1 /*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39 #include <linux/crc-itu-t.h>
40 #include <linux/mpage.h>
41
42 #include "udf_i.h"
43 #include "udf_sb.h"
44
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
48
49 #define EXTENT_MERGE_SIZE 5
50
51 static umode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static void udf_fill_inode(struct inode *, struct buffer_head *);
54 static int udf_sync_inode(struct inode *inode);
55 static int udf_alloc_i_data(struct inode *inode, size_t size);
56 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 struct kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69
70
71 void udf_evict_inode(struct inode *inode)
72 {
73 struct udf_inode_info *iinfo = UDF_I(inode);
74 int want_delete = 0;
75
76 if (!inode->i_nlink && !is_bad_inode(inode)) {
77 want_delete = 1;
78 udf_setsize(inode, 0);
79 udf_update_inode(inode, IS_SYNC(inode));
80 } else
81 truncate_inode_pages(&inode->i_data, 0);
82 invalidate_inode_buffers(inode);
83 clear_inode(inode);
84 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
85 inode->i_size != iinfo->i_lenExtents) {
86 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
87 inode->i_ino, inode->i_mode,
88 (unsigned long long)inode->i_size,
89 (unsigned long long)iinfo->i_lenExtents);
90 }
91 kfree(iinfo->i_ext.i_data);
92 iinfo->i_ext.i_data = NULL;
93 if (want_delete) {
94 udf_free_inode(inode);
95 }
96 }
97
98 static int udf_writepage(struct page *page, struct writeback_control *wbc)
99 {
100 return block_write_full_page(page, udf_get_block, wbc);
101 }
102
103 static int udf_readpage(struct file *file, struct page *page)
104 {
105 return mpage_readpage(page, udf_get_block);
106 }
107
108 static int udf_readpages(struct file *file, struct address_space *mapping,
109 struct list_head *pages, unsigned nr_pages)
110 {
111 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
112 }
113
114 static int udf_write_begin(struct file *file, struct address_space *mapping,
115 loff_t pos, unsigned len, unsigned flags,
116 struct page **pagep, void **fsdata)
117 {
118 int ret;
119
120 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
121 if (unlikely(ret)) {
122 struct inode *inode = mapping->host;
123 struct udf_inode_info *iinfo = UDF_I(inode);
124 loff_t isize = inode->i_size;
125
126 if (pos + len > isize) {
127 truncate_pagecache(inode, pos + len, isize);
128 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
129 down_write(&iinfo->i_data_sem);
130 udf_truncate_extents(inode);
131 up_write(&iinfo->i_data_sem);
132 }
133 }
134 }
135
136 return ret;
137 }
138
139 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
140 {
141 return generic_block_bmap(mapping, block, udf_get_block);
142 }
143
144 const struct address_space_operations udf_aops = {
145 .readpage = udf_readpage,
146 .readpages = udf_readpages,
147 .writepage = udf_writepage,
148 .write_begin = udf_write_begin,
149 .write_end = generic_write_end,
150 .bmap = udf_bmap,
151 };
152
153 /*
154 * Expand file stored in ICB to a normal one-block-file
155 *
156 * This function requires i_data_sem for writing and releases it.
157 * This function requires i_mutex held
158 */
159 int udf_expand_file_adinicb(struct inode *inode)
160 {
161 struct page *page;
162 char *kaddr;
163 struct udf_inode_info *iinfo = UDF_I(inode);
164 int err;
165 struct writeback_control udf_wbc = {
166 .sync_mode = WB_SYNC_NONE,
167 .nr_to_write = 1,
168 };
169
170 if (!iinfo->i_lenAlloc) {
171 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
172 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
173 else
174 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
175 /* from now on we have normal address_space methods */
176 inode->i_data.a_ops = &udf_aops;
177 up_write(&iinfo->i_data_sem);
178 mark_inode_dirty(inode);
179 return 0;
180 }
181 /*
182 * Release i_data_sem so that we can lock a page - page lock ranks
183 * above i_data_sem. i_mutex still protects us against file changes.
184 */
185 up_write(&iinfo->i_data_sem);
186
187 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
188 if (!page)
189 return -ENOMEM;
190
191 if (!PageUptodate(page)) {
192 kaddr = kmap(page);
193 memset(kaddr + iinfo->i_lenAlloc, 0x00,
194 PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
195 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
196 iinfo->i_lenAlloc);
197 flush_dcache_page(page);
198 SetPageUptodate(page);
199 kunmap(page);
200 }
201 down_write(&iinfo->i_data_sem);
202 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
203 iinfo->i_lenAlloc);
204 iinfo->i_lenAlloc = 0;
205 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
206 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
207 else
208 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
209 /* from now on we have normal address_space methods */
210 inode->i_data.a_ops = &udf_aops;
211 up_write(&iinfo->i_data_sem);
212 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
213 if (err) {
214 /* Restore everything back so that we don't lose data... */
215 lock_page(page);
216 kaddr = kmap(page);
217 down_write(&iinfo->i_data_sem);
218 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
219 inode->i_size);
220 kunmap(page);
221 unlock_page(page);
222 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
223 inode->i_data.a_ops = &udf_adinicb_aops;
224 up_write(&iinfo->i_data_sem);
225 }
226 page_cache_release(page);
227 mark_inode_dirty(inode);
228
229 return err;
230 }
231
232 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
233 int *err)
234 {
235 int newblock;
236 struct buffer_head *dbh = NULL;
237 struct kernel_lb_addr eloc;
238 uint8_t alloctype;
239 struct extent_position epos;
240
241 struct udf_fileident_bh sfibh, dfibh;
242 loff_t f_pos = udf_ext0_offset(inode);
243 int size = udf_ext0_offset(inode) + inode->i_size;
244 struct fileIdentDesc cfi, *sfi, *dfi;
245 struct udf_inode_info *iinfo = UDF_I(inode);
246
247 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
248 alloctype = ICBTAG_FLAG_AD_SHORT;
249 else
250 alloctype = ICBTAG_FLAG_AD_LONG;
251
252 if (!inode->i_size) {
253 iinfo->i_alloc_type = alloctype;
254 mark_inode_dirty(inode);
255 return NULL;
256 }
257
258 /* alloc block, and copy data to it */
259 *block = udf_new_block(inode->i_sb, inode,
260 iinfo->i_location.partitionReferenceNum,
261 iinfo->i_location.logicalBlockNum, err);
262 if (!(*block))
263 return NULL;
264 newblock = udf_get_pblock(inode->i_sb, *block,
265 iinfo->i_location.partitionReferenceNum,
266 0);
267 if (!newblock)
268 return NULL;
269 dbh = udf_tgetblk(inode->i_sb, newblock);
270 if (!dbh)
271 return NULL;
272 lock_buffer(dbh);
273 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
274 set_buffer_uptodate(dbh);
275 unlock_buffer(dbh);
276 mark_buffer_dirty_inode(dbh, inode);
277
278 sfibh.soffset = sfibh.eoffset =
279 f_pos & (inode->i_sb->s_blocksize - 1);
280 sfibh.sbh = sfibh.ebh = NULL;
281 dfibh.soffset = dfibh.eoffset = 0;
282 dfibh.sbh = dfibh.ebh = dbh;
283 while (f_pos < size) {
284 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
285 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
286 NULL, NULL, NULL);
287 if (!sfi) {
288 brelse(dbh);
289 return NULL;
290 }
291 iinfo->i_alloc_type = alloctype;
292 sfi->descTag.tagLocation = cpu_to_le32(*block);
293 dfibh.soffset = dfibh.eoffset;
294 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
295 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
296 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
297 sfi->fileIdent +
298 le16_to_cpu(sfi->lengthOfImpUse))) {
299 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
300 brelse(dbh);
301 return NULL;
302 }
303 }
304 mark_buffer_dirty_inode(dbh, inode);
305
306 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
307 iinfo->i_lenAlloc);
308 iinfo->i_lenAlloc = 0;
309 eloc.logicalBlockNum = *block;
310 eloc.partitionReferenceNum =
311 iinfo->i_location.partitionReferenceNum;
312 iinfo->i_lenExtents = inode->i_size;
313 epos.bh = NULL;
314 epos.block = iinfo->i_location;
315 epos.offset = udf_file_entry_alloc_offset(inode);
316 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
317 /* UniqueID stuff */
318
319 brelse(epos.bh);
320 mark_inode_dirty(inode);
321 return dbh;
322 }
323
324 static int udf_get_block(struct inode *inode, sector_t block,
325 struct buffer_head *bh_result, int create)
326 {
327 int err, new;
328 sector_t phys = 0;
329 struct udf_inode_info *iinfo;
330
331 if (!create) {
332 phys = udf_block_map(inode, block);
333 if (phys)
334 map_bh(bh_result, inode->i_sb, phys);
335 return 0;
336 }
337
338 err = -EIO;
339 new = 0;
340 iinfo = UDF_I(inode);
341
342 down_write(&iinfo->i_data_sem);
343 if (block == iinfo->i_next_alloc_block + 1) {
344 iinfo->i_next_alloc_block++;
345 iinfo->i_next_alloc_goal++;
346 }
347
348
349 phys = inode_getblk(inode, block, &err, &new);
350 if (!phys)
351 goto abort;
352
353 if (new)
354 set_buffer_new(bh_result);
355 map_bh(bh_result, inode->i_sb, phys);
356
357 abort:
358 up_write(&iinfo->i_data_sem);
359 return err;
360 }
361
362 static struct buffer_head *udf_getblk(struct inode *inode, long block,
363 int create, int *err)
364 {
365 struct buffer_head *bh;
366 struct buffer_head dummy;
367
368 dummy.b_state = 0;
369 dummy.b_blocknr = -1000;
370 *err = udf_get_block(inode, block, &dummy, create);
371 if (!*err && buffer_mapped(&dummy)) {
372 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
373 if (buffer_new(&dummy)) {
374 lock_buffer(bh);
375 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
376 set_buffer_uptodate(bh);
377 unlock_buffer(bh);
378 mark_buffer_dirty_inode(bh, inode);
379 }
380 return bh;
381 }
382
383 return NULL;
384 }
385
386 /* Extend the file by 'blocks' blocks, return the number of extents added */
387 static int udf_do_extend_file(struct inode *inode,
388 struct extent_position *last_pos,
389 struct kernel_long_ad *last_ext,
390 sector_t blocks)
391 {
392 sector_t add;
393 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
394 struct super_block *sb = inode->i_sb;
395 struct kernel_lb_addr prealloc_loc = {};
396 int prealloc_len = 0;
397 struct udf_inode_info *iinfo;
398 int err;
399
400 /* The previous extent is fake and we should not extend by anything
401 * - there's nothing to do... */
402 if (!blocks && fake)
403 return 0;
404
405 iinfo = UDF_I(inode);
406 /* Round the last extent up to a multiple of block size */
407 if (last_ext->extLength & (sb->s_blocksize - 1)) {
408 last_ext->extLength =
409 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
410 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
411 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
412 iinfo->i_lenExtents =
413 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
414 ~(sb->s_blocksize - 1);
415 }
416
417 /* Last extent are just preallocated blocks? */
418 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
419 EXT_NOT_RECORDED_ALLOCATED) {
420 /* Save the extent so that we can reattach it to the end */
421 prealloc_loc = last_ext->extLocation;
422 prealloc_len = last_ext->extLength;
423 /* Mark the extent as a hole */
424 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
425 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
426 last_ext->extLocation.logicalBlockNum = 0;
427 last_ext->extLocation.partitionReferenceNum = 0;
428 }
429
430 /* Can we merge with the previous extent? */
431 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
432 EXT_NOT_RECORDED_NOT_ALLOCATED) {
433 add = ((1 << 30) - sb->s_blocksize -
434 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
435 sb->s_blocksize_bits;
436 if (add > blocks)
437 add = blocks;
438 blocks -= add;
439 last_ext->extLength += add << sb->s_blocksize_bits;
440 }
441
442 if (fake) {
443 udf_add_aext(inode, last_pos, &last_ext->extLocation,
444 last_ext->extLength, 1);
445 count++;
446 } else
447 udf_write_aext(inode, last_pos, &last_ext->extLocation,
448 last_ext->extLength, 1);
449
450 /* Managed to do everything necessary? */
451 if (!blocks)
452 goto out;
453
454 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
455 last_ext->extLocation.logicalBlockNum = 0;
456 last_ext->extLocation.partitionReferenceNum = 0;
457 add = (1 << (30-sb->s_blocksize_bits)) - 1;
458 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
459 (add << sb->s_blocksize_bits);
460
461 /* Create enough extents to cover the whole hole */
462 while (blocks > add) {
463 blocks -= add;
464 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
465 last_ext->extLength, 1);
466 if (err)
467 return err;
468 count++;
469 }
470 if (blocks) {
471 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
472 (blocks << sb->s_blocksize_bits);
473 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
474 last_ext->extLength, 1);
475 if (err)
476 return err;
477 count++;
478 }
479
480 out:
481 /* Do we have some preallocated blocks saved? */
482 if (prealloc_len) {
483 err = udf_add_aext(inode, last_pos, &prealloc_loc,
484 prealloc_len, 1);
485 if (err)
486 return err;
487 last_ext->extLocation = prealloc_loc;
488 last_ext->extLength = prealloc_len;
489 count++;
490 }
491
492 /* last_pos should point to the last written extent... */
493 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
494 last_pos->offset -= sizeof(struct short_ad);
495 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
496 last_pos->offset -= sizeof(struct long_ad);
497 else
498 return -EIO;
499
500 return count;
501 }
502
503 static int udf_extend_file(struct inode *inode, loff_t newsize)
504 {
505
506 struct extent_position epos;
507 struct kernel_lb_addr eloc;
508 uint32_t elen;
509 int8_t etype;
510 struct super_block *sb = inode->i_sb;
511 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
512 int adsize;
513 struct udf_inode_info *iinfo = UDF_I(inode);
514 struct kernel_long_ad extent;
515 int err;
516
517 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
518 adsize = sizeof(struct short_ad);
519 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
520 adsize = sizeof(struct long_ad);
521 else
522 BUG();
523
524 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
525
526 /* File has extent covering the new size (could happen when extending
527 * inside a block)? */
528 if (etype != -1)
529 return 0;
530 if (newsize & (sb->s_blocksize - 1))
531 offset++;
532 /* Extended file just to the boundary of the last file block? */
533 if (offset == 0)
534 return 0;
535
536 /* Truncate is extending the file by 'offset' blocks */
537 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
538 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
539 /* File has no extents at all or has empty last
540 * indirect extent! Create a fake extent... */
541 extent.extLocation.logicalBlockNum = 0;
542 extent.extLocation.partitionReferenceNum = 0;
543 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
544 } else {
545 epos.offset -= adsize;
546 etype = udf_next_aext(inode, &epos, &extent.extLocation,
547 &extent.extLength, 0);
548 extent.extLength |= etype << 30;
549 }
550 err = udf_do_extend_file(inode, &epos, &extent, offset);
551 if (err < 0)
552 goto out;
553 err = 0;
554 iinfo->i_lenExtents = newsize;
555 out:
556 brelse(epos.bh);
557 return err;
558 }
559
560 static sector_t inode_getblk(struct inode *inode, sector_t block,
561 int *err, int *new)
562 {
563 static sector_t last_block;
564 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
565 struct extent_position prev_epos, cur_epos, next_epos;
566 int count = 0, startnum = 0, endnum = 0;
567 uint32_t elen = 0, tmpelen;
568 struct kernel_lb_addr eloc, tmpeloc;
569 int c = 1;
570 loff_t lbcount = 0, b_off = 0;
571 uint32_t newblocknum, newblock;
572 sector_t offset = 0;
573 int8_t etype;
574 struct udf_inode_info *iinfo = UDF_I(inode);
575 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
576 int lastblock = 0;
577
578 *err = 0;
579 *new = 0;
580 prev_epos.offset = udf_file_entry_alloc_offset(inode);
581 prev_epos.block = iinfo->i_location;
582 prev_epos.bh = NULL;
583 cur_epos = next_epos = prev_epos;
584 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
585
586 /* find the extent which contains the block we are looking for.
587 alternate between laarr[0] and laarr[1] for locations of the
588 current extent, and the previous extent */
589 do {
590 if (prev_epos.bh != cur_epos.bh) {
591 brelse(prev_epos.bh);
592 get_bh(cur_epos.bh);
593 prev_epos.bh = cur_epos.bh;
594 }
595 if (cur_epos.bh != next_epos.bh) {
596 brelse(cur_epos.bh);
597 get_bh(next_epos.bh);
598 cur_epos.bh = next_epos.bh;
599 }
600
601 lbcount += elen;
602
603 prev_epos.block = cur_epos.block;
604 cur_epos.block = next_epos.block;
605
606 prev_epos.offset = cur_epos.offset;
607 cur_epos.offset = next_epos.offset;
608
609 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
610 if (etype == -1)
611 break;
612
613 c = !c;
614
615 laarr[c].extLength = (etype << 30) | elen;
616 laarr[c].extLocation = eloc;
617
618 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
619 pgoal = eloc.logicalBlockNum +
620 ((elen + inode->i_sb->s_blocksize - 1) >>
621 inode->i_sb->s_blocksize_bits);
622
623 count++;
624 } while (lbcount + elen <= b_off);
625
626 b_off -= lbcount;
627 offset = b_off >> inode->i_sb->s_blocksize_bits;
628 /*
629 * Move prev_epos and cur_epos into indirect extent if we are at
630 * the pointer to it
631 */
632 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
633 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
634
635 /* if the extent is allocated and recorded, return the block
636 if the extent is not a multiple of the blocksize, round up */
637
638 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
639 if (elen & (inode->i_sb->s_blocksize - 1)) {
640 elen = EXT_RECORDED_ALLOCATED |
641 ((elen + inode->i_sb->s_blocksize - 1) &
642 ~(inode->i_sb->s_blocksize - 1));
643 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
644 }
645 brelse(prev_epos.bh);
646 brelse(cur_epos.bh);
647 brelse(next_epos.bh);
648 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
649 return newblock;
650 }
651
652 last_block = block;
653 /* Are we beyond EOF? */
654 if (etype == -1) {
655 int ret;
656
657 if (count) {
658 if (c)
659 laarr[0] = laarr[1];
660 startnum = 1;
661 } else {
662 /* Create a fake extent when there's not one */
663 memset(&laarr[0].extLocation, 0x00,
664 sizeof(struct kernel_lb_addr));
665 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
666 /* Will udf_do_extend_file() create real extent from
667 a fake one? */
668 startnum = (offset > 0);
669 }
670 /* Create extents for the hole between EOF and offset */
671 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
672 if (ret < 0) {
673 brelse(prev_epos.bh);
674 brelse(cur_epos.bh);
675 brelse(next_epos.bh);
676 *err = ret;
677 return 0;
678 }
679 c = 0;
680 offset = 0;
681 count += ret;
682 /* We are not covered by a preallocated extent? */
683 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
684 EXT_NOT_RECORDED_ALLOCATED) {
685 /* Is there any real extent? - otherwise we overwrite
686 * the fake one... */
687 if (count)
688 c = !c;
689 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
690 inode->i_sb->s_blocksize;
691 memset(&laarr[c].extLocation, 0x00,
692 sizeof(struct kernel_lb_addr));
693 count++;
694 endnum++;
695 }
696 endnum = c + 1;
697 lastblock = 1;
698 } else {
699 endnum = startnum = ((count > 2) ? 2 : count);
700
701 /* if the current extent is in position 0,
702 swap it with the previous */
703 if (!c && count != 1) {
704 laarr[2] = laarr[0];
705 laarr[0] = laarr[1];
706 laarr[1] = laarr[2];
707 c = 1;
708 }
709
710 /* if the current block is located in an extent,
711 read the next extent */
712 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
713 if (etype != -1) {
714 laarr[c + 1].extLength = (etype << 30) | elen;
715 laarr[c + 1].extLocation = eloc;
716 count++;
717 startnum++;
718 endnum++;
719 } else
720 lastblock = 1;
721 }
722
723 /* if the current extent is not recorded but allocated, get the
724 * block in the extent corresponding to the requested block */
725 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
726 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
727 else { /* otherwise, allocate a new block */
728 if (iinfo->i_next_alloc_block == block)
729 goal = iinfo->i_next_alloc_goal;
730
731 if (!goal) {
732 if (!(goal = pgoal)) /* XXX: what was intended here? */
733 goal = iinfo->i_location.logicalBlockNum + 1;
734 }
735
736 newblocknum = udf_new_block(inode->i_sb, inode,
737 iinfo->i_location.partitionReferenceNum,
738 goal, err);
739 if (!newblocknum) {
740 brelse(prev_epos.bh);
741 *err = -ENOSPC;
742 return 0;
743 }
744 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
745 }
746
747 /* if the extent the requsted block is located in contains multiple
748 * blocks, split the extent into at most three extents. blocks prior
749 * to requested block, requested block, and blocks after requested
750 * block */
751 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
752
753 #ifdef UDF_PREALLOCATE
754 /* We preallocate blocks only for regular files. It also makes sense
755 * for directories but there's a problem when to drop the
756 * preallocation. We might use some delayed work for that but I feel
757 * it's overengineering for a filesystem like UDF. */
758 if (S_ISREG(inode->i_mode))
759 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
760 #endif
761
762 /* merge any continuous blocks in laarr */
763 udf_merge_extents(inode, laarr, &endnum);
764
765 /* write back the new extents, inserting new extents if the new number
766 * of extents is greater than the old number, and deleting extents if
767 * the new number of extents is less than the old number */
768 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
769
770 brelse(prev_epos.bh);
771
772 newblock = udf_get_pblock(inode->i_sb, newblocknum,
773 iinfo->i_location.partitionReferenceNum, 0);
774 if (!newblock) {
775 *err = -EIO;
776 return 0;
777 }
778 *new = 1;
779 iinfo->i_next_alloc_block = block;
780 iinfo->i_next_alloc_goal = newblocknum;
781 inode->i_ctime = current_fs_time(inode->i_sb);
782
783 if (IS_SYNC(inode))
784 udf_sync_inode(inode);
785 else
786 mark_inode_dirty(inode);
787
788 return newblock;
789 }
790
791 static void udf_split_extents(struct inode *inode, int *c, int offset,
792 int newblocknum,
793 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
794 int *endnum)
795 {
796 unsigned long blocksize = inode->i_sb->s_blocksize;
797 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
798
799 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
800 (laarr[*c].extLength >> 30) ==
801 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
802 int curr = *c;
803 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
804 blocksize - 1) >> blocksize_bits;
805 int8_t etype = (laarr[curr].extLength >> 30);
806
807 if (blen == 1)
808 ;
809 else if (!offset || blen == offset + 1) {
810 laarr[curr + 2] = laarr[curr + 1];
811 laarr[curr + 1] = laarr[curr];
812 } else {
813 laarr[curr + 3] = laarr[curr + 1];
814 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
815 }
816
817 if (offset) {
818 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
819 udf_free_blocks(inode->i_sb, inode,
820 &laarr[curr].extLocation,
821 0, offset);
822 laarr[curr].extLength =
823 EXT_NOT_RECORDED_NOT_ALLOCATED |
824 (offset << blocksize_bits);
825 laarr[curr].extLocation.logicalBlockNum = 0;
826 laarr[curr].extLocation.
827 partitionReferenceNum = 0;
828 } else
829 laarr[curr].extLength = (etype << 30) |
830 (offset << blocksize_bits);
831 curr++;
832 (*c)++;
833 (*endnum)++;
834 }
835
836 laarr[curr].extLocation.logicalBlockNum = newblocknum;
837 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
838 laarr[curr].extLocation.partitionReferenceNum =
839 UDF_I(inode)->i_location.partitionReferenceNum;
840 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
841 blocksize;
842 curr++;
843
844 if (blen != offset + 1) {
845 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
846 laarr[curr].extLocation.logicalBlockNum +=
847 offset + 1;
848 laarr[curr].extLength = (etype << 30) |
849 ((blen - (offset + 1)) << blocksize_bits);
850 curr++;
851 (*endnum)++;
852 }
853 }
854 }
855
856 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
857 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
858 int *endnum)
859 {
860 int start, length = 0, currlength = 0, i;
861
862 if (*endnum >= (c + 1)) {
863 if (!lastblock)
864 return;
865 else
866 start = c;
867 } else {
868 if ((laarr[c + 1].extLength >> 30) ==
869 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
870 start = c + 1;
871 length = currlength =
872 (((laarr[c + 1].extLength &
873 UDF_EXTENT_LENGTH_MASK) +
874 inode->i_sb->s_blocksize - 1) >>
875 inode->i_sb->s_blocksize_bits);
876 } else
877 start = c;
878 }
879
880 for (i = start + 1; i <= *endnum; i++) {
881 if (i == *endnum) {
882 if (lastblock)
883 length += UDF_DEFAULT_PREALLOC_BLOCKS;
884 } else if ((laarr[i].extLength >> 30) ==
885 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
886 length += (((laarr[i].extLength &
887 UDF_EXTENT_LENGTH_MASK) +
888 inode->i_sb->s_blocksize - 1) >>
889 inode->i_sb->s_blocksize_bits);
890 } else
891 break;
892 }
893
894 if (length) {
895 int next = laarr[start].extLocation.logicalBlockNum +
896 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
897 inode->i_sb->s_blocksize - 1) >>
898 inode->i_sb->s_blocksize_bits);
899 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
900 laarr[start].extLocation.partitionReferenceNum,
901 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
902 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
903 currlength);
904 if (numalloc) {
905 if (start == (c + 1))
906 laarr[start].extLength +=
907 (numalloc <<
908 inode->i_sb->s_blocksize_bits);
909 else {
910 memmove(&laarr[c + 2], &laarr[c + 1],
911 sizeof(struct long_ad) * (*endnum - (c + 1)));
912 (*endnum)++;
913 laarr[c + 1].extLocation.logicalBlockNum = next;
914 laarr[c + 1].extLocation.partitionReferenceNum =
915 laarr[c].extLocation.
916 partitionReferenceNum;
917 laarr[c + 1].extLength =
918 EXT_NOT_RECORDED_ALLOCATED |
919 (numalloc <<
920 inode->i_sb->s_blocksize_bits);
921 start = c + 1;
922 }
923
924 for (i = start + 1; numalloc && i < *endnum; i++) {
925 int elen = ((laarr[i].extLength &
926 UDF_EXTENT_LENGTH_MASK) +
927 inode->i_sb->s_blocksize - 1) >>
928 inode->i_sb->s_blocksize_bits;
929
930 if (elen > numalloc) {
931 laarr[i].extLength -=
932 (numalloc <<
933 inode->i_sb->s_blocksize_bits);
934 numalloc = 0;
935 } else {
936 numalloc -= elen;
937 if (*endnum > (i + 1))
938 memmove(&laarr[i],
939 &laarr[i + 1],
940 sizeof(struct long_ad) *
941 (*endnum - (i + 1)));
942 i--;
943 (*endnum)--;
944 }
945 }
946 UDF_I(inode)->i_lenExtents +=
947 numalloc << inode->i_sb->s_blocksize_bits;
948 }
949 }
950 }
951
952 static void udf_merge_extents(struct inode *inode,
953 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
954 int *endnum)
955 {
956 int i;
957 unsigned long blocksize = inode->i_sb->s_blocksize;
958 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
959
960 for (i = 0; i < (*endnum - 1); i++) {
961 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
962 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
963
964 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
965 (((li->extLength >> 30) ==
966 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
967 ((lip1->extLocation.logicalBlockNum -
968 li->extLocation.logicalBlockNum) ==
969 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
970 blocksize - 1) >> blocksize_bits)))) {
971
972 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
973 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
974 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
975 lip1->extLength = (lip1->extLength -
976 (li->extLength &
977 UDF_EXTENT_LENGTH_MASK) +
978 UDF_EXTENT_LENGTH_MASK) &
979 ~(blocksize - 1);
980 li->extLength = (li->extLength &
981 UDF_EXTENT_FLAG_MASK) +
982 (UDF_EXTENT_LENGTH_MASK + 1) -
983 blocksize;
984 lip1->extLocation.logicalBlockNum =
985 li->extLocation.logicalBlockNum +
986 ((li->extLength &
987 UDF_EXTENT_LENGTH_MASK) >>
988 blocksize_bits);
989 } else {
990 li->extLength = lip1->extLength +
991 (((li->extLength &
992 UDF_EXTENT_LENGTH_MASK) +
993 blocksize - 1) & ~(blocksize - 1));
994 if (*endnum > (i + 2))
995 memmove(&laarr[i + 1], &laarr[i + 2],
996 sizeof(struct long_ad) *
997 (*endnum - (i + 2)));
998 i--;
999 (*endnum)--;
1000 }
1001 } else if (((li->extLength >> 30) ==
1002 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1003 ((lip1->extLength >> 30) ==
1004 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1005 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1006 ((li->extLength &
1007 UDF_EXTENT_LENGTH_MASK) +
1008 blocksize - 1) >> blocksize_bits);
1009 li->extLocation.logicalBlockNum = 0;
1010 li->extLocation.partitionReferenceNum = 0;
1011
1012 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1013 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1014 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1015 lip1->extLength = (lip1->extLength -
1016 (li->extLength &
1017 UDF_EXTENT_LENGTH_MASK) +
1018 UDF_EXTENT_LENGTH_MASK) &
1019 ~(blocksize - 1);
1020 li->extLength = (li->extLength &
1021 UDF_EXTENT_FLAG_MASK) +
1022 (UDF_EXTENT_LENGTH_MASK + 1) -
1023 blocksize;
1024 } else {
1025 li->extLength = lip1->extLength +
1026 (((li->extLength &
1027 UDF_EXTENT_LENGTH_MASK) +
1028 blocksize - 1) & ~(blocksize - 1));
1029 if (*endnum > (i + 2))
1030 memmove(&laarr[i + 1], &laarr[i + 2],
1031 sizeof(struct long_ad) *
1032 (*endnum - (i + 2)));
1033 i--;
1034 (*endnum)--;
1035 }
1036 } else if ((li->extLength >> 30) ==
1037 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1038 udf_free_blocks(inode->i_sb, inode,
1039 &li->extLocation, 0,
1040 ((li->extLength &
1041 UDF_EXTENT_LENGTH_MASK) +
1042 blocksize - 1) >> blocksize_bits);
1043 li->extLocation.logicalBlockNum = 0;
1044 li->extLocation.partitionReferenceNum = 0;
1045 li->extLength = (li->extLength &
1046 UDF_EXTENT_LENGTH_MASK) |
1047 EXT_NOT_RECORDED_NOT_ALLOCATED;
1048 }
1049 }
1050 }
1051
1052 static void udf_update_extents(struct inode *inode,
1053 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1054 int startnum, int endnum,
1055 struct extent_position *epos)
1056 {
1057 int start = 0, i;
1058 struct kernel_lb_addr tmploc;
1059 uint32_t tmplen;
1060
1061 if (startnum > endnum) {
1062 for (i = 0; i < (startnum - endnum); i++)
1063 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1064 laarr[i].extLength);
1065 } else if (startnum < endnum) {
1066 for (i = 0; i < (endnum - startnum); i++) {
1067 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1068 laarr[i].extLength);
1069 udf_next_aext(inode, epos, &laarr[i].extLocation,
1070 &laarr[i].extLength, 1);
1071 start++;
1072 }
1073 }
1074
1075 for (i = start; i < endnum; i++) {
1076 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1077 udf_write_aext(inode, epos, &laarr[i].extLocation,
1078 laarr[i].extLength, 1);
1079 }
1080 }
1081
1082 struct buffer_head *udf_bread(struct inode *inode, int block,
1083 int create, int *err)
1084 {
1085 struct buffer_head *bh = NULL;
1086
1087 bh = udf_getblk(inode, block, create, err);
1088 if (!bh)
1089 return NULL;
1090
1091 if (buffer_uptodate(bh))
1092 return bh;
1093
1094 ll_rw_block(READ, 1, &bh);
1095
1096 wait_on_buffer(bh);
1097 if (buffer_uptodate(bh))
1098 return bh;
1099
1100 brelse(bh);
1101 *err = -EIO;
1102 return NULL;
1103 }
1104
1105 int udf_setsize(struct inode *inode, loff_t newsize)
1106 {
1107 int err;
1108 struct udf_inode_info *iinfo;
1109 int bsize = 1 << inode->i_blkbits;
1110
1111 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1112 S_ISLNK(inode->i_mode)))
1113 return -EINVAL;
1114 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1115 return -EPERM;
1116
1117 iinfo = UDF_I(inode);
1118 if (newsize > inode->i_size) {
1119 down_write(&iinfo->i_data_sem);
1120 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1121 if (bsize <
1122 (udf_file_entry_alloc_offset(inode) + newsize)) {
1123 err = udf_expand_file_adinicb(inode);
1124 if (err)
1125 return err;
1126 down_write(&iinfo->i_data_sem);
1127 } else
1128 iinfo->i_lenAlloc = newsize;
1129 }
1130 err = udf_extend_file(inode, newsize);
1131 if (err) {
1132 up_write(&iinfo->i_data_sem);
1133 return err;
1134 }
1135 truncate_setsize(inode, newsize);
1136 up_write(&iinfo->i_data_sem);
1137 } else {
1138 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1139 down_write(&iinfo->i_data_sem);
1140 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1141 0x00, bsize - newsize -
1142 udf_file_entry_alloc_offset(inode));
1143 iinfo->i_lenAlloc = newsize;
1144 truncate_setsize(inode, newsize);
1145 up_write(&iinfo->i_data_sem);
1146 goto update_time;
1147 }
1148 err = block_truncate_page(inode->i_mapping, newsize,
1149 udf_get_block);
1150 if (err)
1151 return err;
1152 down_write(&iinfo->i_data_sem);
1153 truncate_setsize(inode, newsize);
1154 udf_truncate_extents(inode);
1155 up_write(&iinfo->i_data_sem);
1156 }
1157 update_time:
1158 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1159 if (IS_SYNC(inode))
1160 udf_sync_inode(inode);
1161 else
1162 mark_inode_dirty(inode);
1163 return 0;
1164 }
1165
1166 static void __udf_read_inode(struct inode *inode)
1167 {
1168 struct buffer_head *bh = NULL;
1169 struct fileEntry *fe;
1170 uint16_t ident;
1171 struct udf_inode_info *iinfo = UDF_I(inode);
1172
1173 /*
1174 * Set defaults, but the inode is still incomplete!
1175 * Note: get_new_inode() sets the following on a new inode:
1176 * i_sb = sb
1177 * i_no = ino
1178 * i_flags = sb->s_flags
1179 * i_state = 0
1180 * clean_inode(): zero fills and sets
1181 * i_count = 1
1182 * i_nlink = 1
1183 * i_op = NULL;
1184 */
1185 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1186 if (!bh) {
1187 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1188 make_bad_inode(inode);
1189 return;
1190 }
1191
1192 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1193 ident != TAG_IDENT_USE) {
1194 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1195 inode->i_ino, ident);
1196 brelse(bh);
1197 make_bad_inode(inode);
1198 return;
1199 }
1200
1201 fe = (struct fileEntry *)bh->b_data;
1202
1203 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1204 struct buffer_head *ibh;
1205
1206 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1207 &ident);
1208 if (ident == TAG_IDENT_IE && ibh) {
1209 struct buffer_head *nbh = NULL;
1210 struct kernel_lb_addr loc;
1211 struct indirectEntry *ie;
1212
1213 ie = (struct indirectEntry *)ibh->b_data;
1214 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1215
1216 if (ie->indirectICB.extLength &&
1217 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1218 &ident))) {
1219 if (ident == TAG_IDENT_FE ||
1220 ident == TAG_IDENT_EFE) {
1221 memcpy(&iinfo->i_location,
1222 &loc,
1223 sizeof(struct kernel_lb_addr));
1224 brelse(bh);
1225 brelse(ibh);
1226 brelse(nbh);
1227 __udf_read_inode(inode);
1228 return;
1229 }
1230 brelse(nbh);
1231 }
1232 }
1233 brelse(ibh);
1234 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1235 udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1236 le16_to_cpu(fe->icbTag.strategyType));
1237 brelse(bh);
1238 make_bad_inode(inode);
1239 return;
1240 }
1241 udf_fill_inode(inode, bh);
1242
1243 brelse(bh);
1244 }
1245
1246 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1247 {
1248 struct fileEntry *fe;
1249 struct extendedFileEntry *efe;
1250 int offset;
1251 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1252 struct udf_inode_info *iinfo = UDF_I(inode);
1253 unsigned int link_count;
1254
1255 fe = (struct fileEntry *)bh->b_data;
1256 efe = (struct extendedFileEntry *)bh->b_data;
1257
1258 if (fe->icbTag.strategyType == cpu_to_le16(4))
1259 iinfo->i_strat4096 = 0;
1260 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1261 iinfo->i_strat4096 = 1;
1262
1263 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1264 ICBTAG_FLAG_AD_MASK;
1265 iinfo->i_unique = 0;
1266 iinfo->i_lenEAttr = 0;
1267 iinfo->i_lenExtents = 0;
1268 iinfo->i_lenAlloc = 0;
1269 iinfo->i_next_alloc_block = 0;
1270 iinfo->i_next_alloc_goal = 0;
1271 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1272 iinfo->i_efe = 1;
1273 iinfo->i_use = 0;
1274 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1275 sizeof(struct extendedFileEntry))) {
1276 make_bad_inode(inode);
1277 return;
1278 }
1279 memcpy(iinfo->i_ext.i_data,
1280 bh->b_data + sizeof(struct extendedFileEntry),
1281 inode->i_sb->s_blocksize -
1282 sizeof(struct extendedFileEntry));
1283 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1284 iinfo->i_efe = 0;
1285 iinfo->i_use = 0;
1286 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1287 sizeof(struct fileEntry))) {
1288 make_bad_inode(inode);
1289 return;
1290 }
1291 memcpy(iinfo->i_ext.i_data,
1292 bh->b_data + sizeof(struct fileEntry),
1293 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1294 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1295 iinfo->i_efe = 0;
1296 iinfo->i_use = 1;
1297 iinfo->i_lenAlloc = le32_to_cpu(
1298 ((struct unallocSpaceEntry *)bh->b_data)->
1299 lengthAllocDescs);
1300 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1301 sizeof(struct unallocSpaceEntry))) {
1302 make_bad_inode(inode);
1303 return;
1304 }
1305 memcpy(iinfo->i_ext.i_data,
1306 bh->b_data + sizeof(struct unallocSpaceEntry),
1307 inode->i_sb->s_blocksize -
1308 sizeof(struct unallocSpaceEntry));
1309 return;
1310 }
1311
1312 read_lock(&sbi->s_cred_lock);
1313 inode->i_uid = le32_to_cpu(fe->uid);
1314 if (inode->i_uid == -1 ||
1315 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1316 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1317 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1318
1319 inode->i_gid = le32_to_cpu(fe->gid);
1320 if (inode->i_gid == -1 ||
1321 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1322 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1323 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1324
1325 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1326 sbi->s_fmode != UDF_INVALID_MODE)
1327 inode->i_mode = sbi->s_fmode;
1328 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1329 sbi->s_dmode != UDF_INVALID_MODE)
1330 inode->i_mode = sbi->s_dmode;
1331 else
1332 inode->i_mode = udf_convert_permissions(fe);
1333 inode->i_mode &= ~sbi->s_umask;
1334 read_unlock(&sbi->s_cred_lock);
1335
1336 link_count = le16_to_cpu(fe->fileLinkCount);
1337 if (!link_count)
1338 link_count = 1;
1339 set_nlink(inode, link_count);
1340
1341 inode->i_size = le64_to_cpu(fe->informationLength);
1342 iinfo->i_lenExtents = inode->i_size;
1343
1344 if (iinfo->i_efe == 0) {
1345 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1346 (inode->i_sb->s_blocksize_bits - 9);
1347
1348 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1349 inode->i_atime = sbi->s_record_time;
1350
1351 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1352 fe->modificationTime))
1353 inode->i_mtime = sbi->s_record_time;
1354
1355 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1356 inode->i_ctime = sbi->s_record_time;
1357
1358 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1359 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1360 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1361 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1362 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1363 } else {
1364 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1365 (inode->i_sb->s_blocksize_bits - 9);
1366
1367 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1368 inode->i_atime = sbi->s_record_time;
1369
1370 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1371 efe->modificationTime))
1372 inode->i_mtime = sbi->s_record_time;
1373
1374 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1375 iinfo->i_crtime = sbi->s_record_time;
1376
1377 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1378 inode->i_ctime = sbi->s_record_time;
1379
1380 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1381 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1382 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1383 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1384 offset = sizeof(struct extendedFileEntry) +
1385 iinfo->i_lenEAttr;
1386 }
1387
1388 switch (fe->icbTag.fileType) {
1389 case ICBTAG_FILE_TYPE_DIRECTORY:
1390 inode->i_op = &udf_dir_inode_operations;
1391 inode->i_fop = &udf_dir_operations;
1392 inode->i_mode |= S_IFDIR;
1393 inc_nlink(inode);
1394 break;
1395 case ICBTAG_FILE_TYPE_REALTIME:
1396 case ICBTAG_FILE_TYPE_REGULAR:
1397 case ICBTAG_FILE_TYPE_UNDEF:
1398 case ICBTAG_FILE_TYPE_VAT20:
1399 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1400 inode->i_data.a_ops = &udf_adinicb_aops;
1401 else
1402 inode->i_data.a_ops = &udf_aops;
1403 inode->i_op = &udf_file_inode_operations;
1404 inode->i_fop = &udf_file_operations;
1405 inode->i_mode |= S_IFREG;
1406 break;
1407 case ICBTAG_FILE_TYPE_BLOCK:
1408 inode->i_mode |= S_IFBLK;
1409 break;
1410 case ICBTAG_FILE_TYPE_CHAR:
1411 inode->i_mode |= S_IFCHR;
1412 break;
1413 case ICBTAG_FILE_TYPE_FIFO:
1414 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1415 break;
1416 case ICBTAG_FILE_TYPE_SOCKET:
1417 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1418 break;
1419 case ICBTAG_FILE_TYPE_SYMLINK:
1420 inode->i_data.a_ops = &udf_symlink_aops;
1421 inode->i_op = &udf_symlink_inode_operations;
1422 inode->i_mode = S_IFLNK | S_IRWXUGO;
1423 break;
1424 case ICBTAG_FILE_TYPE_MAIN:
1425 udf_debug("METADATA FILE-----\n");
1426 break;
1427 case ICBTAG_FILE_TYPE_MIRROR:
1428 udf_debug("METADATA MIRROR FILE-----\n");
1429 break;
1430 case ICBTAG_FILE_TYPE_BITMAP:
1431 udf_debug("METADATA BITMAP FILE-----\n");
1432 break;
1433 default:
1434 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1435 inode->i_ino, fe->icbTag.fileType);
1436 make_bad_inode(inode);
1437 return;
1438 }
1439 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1440 struct deviceSpec *dsea =
1441 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1442 if (dsea) {
1443 init_special_inode(inode, inode->i_mode,
1444 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1445 le32_to_cpu(dsea->minorDeviceIdent)));
1446 /* Developer ID ??? */
1447 } else
1448 make_bad_inode(inode);
1449 }
1450 }
1451
1452 static int udf_alloc_i_data(struct inode *inode, size_t size)
1453 {
1454 struct udf_inode_info *iinfo = UDF_I(inode);
1455 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1456
1457 if (!iinfo->i_ext.i_data) {
1458 udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1459 inode->i_ino);
1460 return -ENOMEM;
1461 }
1462
1463 return 0;
1464 }
1465
1466 static umode_t udf_convert_permissions(struct fileEntry *fe)
1467 {
1468 umode_t mode;
1469 uint32_t permissions;
1470 uint32_t flags;
1471
1472 permissions = le32_to_cpu(fe->permissions);
1473 flags = le16_to_cpu(fe->icbTag.flags);
1474
1475 mode = ((permissions) & S_IRWXO) |
1476 ((permissions >> 2) & S_IRWXG) |
1477 ((permissions >> 4) & S_IRWXU) |
1478 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1479 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1480 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1481
1482 return mode;
1483 }
1484
1485 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1486 {
1487 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1488 }
1489
1490 static int udf_sync_inode(struct inode *inode)
1491 {
1492 return udf_update_inode(inode, 1);
1493 }
1494
1495 static int udf_update_inode(struct inode *inode, int do_sync)
1496 {
1497 struct buffer_head *bh = NULL;
1498 struct fileEntry *fe;
1499 struct extendedFileEntry *efe;
1500 uint64_t lb_recorded;
1501 uint32_t udfperms;
1502 uint16_t icbflags;
1503 uint16_t crclen;
1504 int err = 0;
1505 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1506 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1507 struct udf_inode_info *iinfo = UDF_I(inode);
1508
1509 bh = udf_tgetblk(inode->i_sb,
1510 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1511 if (!bh) {
1512 udf_debug("getblk failure\n");
1513 return -ENOMEM;
1514 }
1515
1516 lock_buffer(bh);
1517 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1518 fe = (struct fileEntry *)bh->b_data;
1519 efe = (struct extendedFileEntry *)bh->b_data;
1520
1521 if (iinfo->i_use) {
1522 struct unallocSpaceEntry *use =
1523 (struct unallocSpaceEntry *)bh->b_data;
1524
1525 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1526 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1527 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1528 sizeof(struct unallocSpaceEntry));
1529 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1530 use->descTag.tagLocation =
1531 cpu_to_le32(iinfo->i_location.logicalBlockNum);
1532 crclen = sizeof(struct unallocSpaceEntry) +
1533 iinfo->i_lenAlloc - sizeof(struct tag);
1534 use->descTag.descCRCLength = cpu_to_le16(crclen);
1535 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1536 sizeof(struct tag),
1537 crclen));
1538 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1539
1540 goto out;
1541 }
1542
1543 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1544 fe->uid = cpu_to_le32(-1);
1545 else
1546 fe->uid = cpu_to_le32(inode->i_uid);
1547
1548 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1549 fe->gid = cpu_to_le32(-1);
1550 else
1551 fe->gid = cpu_to_le32(inode->i_gid);
1552
1553 udfperms = ((inode->i_mode & S_IRWXO)) |
1554 ((inode->i_mode & S_IRWXG) << 2) |
1555 ((inode->i_mode & S_IRWXU) << 4);
1556
1557 udfperms |= (le32_to_cpu(fe->permissions) &
1558 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1559 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1560 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1561 fe->permissions = cpu_to_le32(udfperms);
1562
1563 if (S_ISDIR(inode->i_mode))
1564 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1565 else
1566 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1567
1568 fe->informationLength = cpu_to_le64(inode->i_size);
1569
1570 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1571 struct regid *eid;
1572 struct deviceSpec *dsea =
1573 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1574 if (!dsea) {
1575 dsea = (struct deviceSpec *)
1576 udf_add_extendedattr(inode,
1577 sizeof(struct deviceSpec) +
1578 sizeof(struct regid), 12, 0x3);
1579 dsea->attrType = cpu_to_le32(12);
1580 dsea->attrSubtype = 1;
1581 dsea->attrLength = cpu_to_le32(
1582 sizeof(struct deviceSpec) +
1583 sizeof(struct regid));
1584 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1585 }
1586 eid = (struct regid *)dsea->impUse;
1587 memset(eid, 0, sizeof(struct regid));
1588 strcpy(eid->ident, UDF_ID_DEVELOPER);
1589 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1590 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1591 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1592 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1593 }
1594
1595 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1596 lb_recorded = 0; /* No extents => no blocks! */
1597 else
1598 lb_recorded =
1599 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1600 (blocksize_bits - 9);
1601
1602 if (iinfo->i_efe == 0) {
1603 memcpy(bh->b_data + sizeof(struct fileEntry),
1604 iinfo->i_ext.i_data,
1605 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1606 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1607
1608 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1609 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1610 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1611 memset(&(fe->impIdent), 0, sizeof(struct regid));
1612 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1613 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1614 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1615 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1616 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1617 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1618 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1619 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1620 crclen = sizeof(struct fileEntry);
1621 } else {
1622 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1623 iinfo->i_ext.i_data,
1624 inode->i_sb->s_blocksize -
1625 sizeof(struct extendedFileEntry));
1626 efe->objectSize = cpu_to_le64(inode->i_size);
1627 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1628
1629 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1630 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1631 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1632 iinfo->i_crtime = inode->i_atime;
1633
1634 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1635 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1636 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1637 iinfo->i_crtime = inode->i_mtime;
1638
1639 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1640 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1641 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1642 iinfo->i_crtime = inode->i_ctime;
1643
1644 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1645 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1646 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1647 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1648
1649 memset(&(efe->impIdent), 0, sizeof(struct regid));
1650 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1651 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1652 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1653 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1654 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1655 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1656 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1657 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1658 crclen = sizeof(struct extendedFileEntry);
1659 }
1660 if (iinfo->i_strat4096) {
1661 fe->icbTag.strategyType = cpu_to_le16(4096);
1662 fe->icbTag.strategyParameter = cpu_to_le16(1);
1663 fe->icbTag.numEntries = cpu_to_le16(2);
1664 } else {
1665 fe->icbTag.strategyType = cpu_to_le16(4);
1666 fe->icbTag.numEntries = cpu_to_le16(1);
1667 }
1668
1669 if (S_ISDIR(inode->i_mode))
1670 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1671 else if (S_ISREG(inode->i_mode))
1672 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1673 else if (S_ISLNK(inode->i_mode))
1674 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1675 else if (S_ISBLK(inode->i_mode))
1676 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1677 else if (S_ISCHR(inode->i_mode))
1678 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1679 else if (S_ISFIFO(inode->i_mode))
1680 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1681 else if (S_ISSOCK(inode->i_mode))
1682 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1683
1684 icbflags = iinfo->i_alloc_type |
1685 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1686 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1687 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1688 (le16_to_cpu(fe->icbTag.flags) &
1689 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1690 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1691
1692 fe->icbTag.flags = cpu_to_le16(icbflags);
1693 if (sbi->s_udfrev >= 0x0200)
1694 fe->descTag.descVersion = cpu_to_le16(3);
1695 else
1696 fe->descTag.descVersion = cpu_to_le16(2);
1697 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1698 fe->descTag.tagLocation = cpu_to_le32(
1699 iinfo->i_location.logicalBlockNum);
1700 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1701 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1702 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1703 crclen));
1704 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1705
1706 out:
1707 set_buffer_uptodate(bh);
1708 unlock_buffer(bh);
1709
1710 /* write the data blocks */
1711 mark_buffer_dirty(bh);
1712 if (do_sync) {
1713 sync_dirty_buffer(bh);
1714 if (buffer_write_io_error(bh)) {
1715 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1716 inode->i_ino);
1717 err = -EIO;
1718 }
1719 }
1720 brelse(bh);
1721
1722 return err;
1723 }
1724
1725 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1726 {
1727 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1728 struct inode *inode = iget_locked(sb, block);
1729
1730 if (!inode)
1731 return NULL;
1732
1733 if (inode->i_state & I_NEW) {
1734 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1735 __udf_read_inode(inode);
1736 unlock_new_inode(inode);
1737 }
1738
1739 if (is_bad_inode(inode))
1740 goto out_iput;
1741
1742 if (ino->logicalBlockNum >= UDF_SB(sb)->
1743 s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1744 udf_debug("block=%d, partition=%d out of range\n",
1745 ino->logicalBlockNum, ino->partitionReferenceNum);
1746 make_bad_inode(inode);
1747 goto out_iput;
1748 }
1749
1750 return inode;
1751
1752 out_iput:
1753 iput(inode);
1754 return NULL;
1755 }
1756
1757 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1758 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1759 {
1760 int adsize;
1761 struct short_ad *sad = NULL;
1762 struct long_ad *lad = NULL;
1763 struct allocExtDesc *aed;
1764 uint8_t *ptr;
1765 struct udf_inode_info *iinfo = UDF_I(inode);
1766
1767 if (!epos->bh)
1768 ptr = iinfo->i_ext.i_data + epos->offset -
1769 udf_file_entry_alloc_offset(inode) +
1770 iinfo->i_lenEAttr;
1771 else
1772 ptr = epos->bh->b_data + epos->offset;
1773
1774 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1775 adsize = sizeof(struct short_ad);
1776 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1777 adsize = sizeof(struct long_ad);
1778 else
1779 return -EIO;
1780
1781 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1782 unsigned char *sptr, *dptr;
1783 struct buffer_head *nbh;
1784 int err, loffset;
1785 struct kernel_lb_addr obloc = epos->block;
1786
1787 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1788 obloc.partitionReferenceNum,
1789 obloc.logicalBlockNum, &err);
1790 if (!epos->block.logicalBlockNum)
1791 return -ENOSPC;
1792 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1793 &epos->block,
1794 0));
1795 if (!nbh)
1796 return -EIO;
1797 lock_buffer(nbh);
1798 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1799 set_buffer_uptodate(nbh);
1800 unlock_buffer(nbh);
1801 mark_buffer_dirty_inode(nbh, inode);
1802
1803 aed = (struct allocExtDesc *)(nbh->b_data);
1804 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1805 aed->previousAllocExtLocation =
1806 cpu_to_le32(obloc.logicalBlockNum);
1807 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1808 loffset = epos->offset;
1809 aed->lengthAllocDescs = cpu_to_le32(adsize);
1810 sptr = ptr - adsize;
1811 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1812 memcpy(dptr, sptr, adsize);
1813 epos->offset = sizeof(struct allocExtDesc) + adsize;
1814 } else {
1815 loffset = epos->offset + adsize;
1816 aed->lengthAllocDescs = cpu_to_le32(0);
1817 sptr = ptr;
1818 epos->offset = sizeof(struct allocExtDesc);
1819
1820 if (epos->bh) {
1821 aed = (struct allocExtDesc *)epos->bh->b_data;
1822 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1823 } else {
1824 iinfo->i_lenAlloc += adsize;
1825 mark_inode_dirty(inode);
1826 }
1827 }
1828 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1829 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1830 epos->block.logicalBlockNum, sizeof(struct tag));
1831 else
1832 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1833 epos->block.logicalBlockNum, sizeof(struct tag));
1834 switch (iinfo->i_alloc_type) {
1835 case ICBTAG_FLAG_AD_SHORT:
1836 sad = (struct short_ad *)sptr;
1837 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1838 inode->i_sb->s_blocksize);
1839 sad->extPosition =
1840 cpu_to_le32(epos->block.logicalBlockNum);
1841 break;
1842 case ICBTAG_FLAG_AD_LONG:
1843 lad = (struct long_ad *)sptr;
1844 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1845 inode->i_sb->s_blocksize);
1846 lad->extLocation = cpu_to_lelb(epos->block);
1847 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1848 break;
1849 }
1850 if (epos->bh) {
1851 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1852 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1853 udf_update_tag(epos->bh->b_data, loffset);
1854 else
1855 udf_update_tag(epos->bh->b_data,
1856 sizeof(struct allocExtDesc));
1857 mark_buffer_dirty_inode(epos->bh, inode);
1858 brelse(epos->bh);
1859 } else {
1860 mark_inode_dirty(inode);
1861 }
1862 epos->bh = nbh;
1863 }
1864
1865 udf_write_aext(inode, epos, eloc, elen, inc);
1866
1867 if (!epos->bh) {
1868 iinfo->i_lenAlloc += adsize;
1869 mark_inode_dirty(inode);
1870 } else {
1871 aed = (struct allocExtDesc *)epos->bh->b_data;
1872 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1873 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1874 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1875 udf_update_tag(epos->bh->b_data,
1876 epos->offset + (inc ? 0 : adsize));
1877 else
1878 udf_update_tag(epos->bh->b_data,
1879 sizeof(struct allocExtDesc));
1880 mark_buffer_dirty_inode(epos->bh, inode);
1881 }
1882
1883 return 0;
1884 }
1885
1886 void udf_write_aext(struct inode *inode, struct extent_position *epos,
1887 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1888 {
1889 int adsize;
1890 uint8_t *ptr;
1891 struct short_ad *sad;
1892 struct long_ad *lad;
1893 struct udf_inode_info *iinfo = UDF_I(inode);
1894
1895 if (!epos->bh)
1896 ptr = iinfo->i_ext.i_data + epos->offset -
1897 udf_file_entry_alloc_offset(inode) +
1898 iinfo->i_lenEAttr;
1899 else
1900 ptr = epos->bh->b_data + epos->offset;
1901
1902 switch (iinfo->i_alloc_type) {
1903 case ICBTAG_FLAG_AD_SHORT:
1904 sad = (struct short_ad *)ptr;
1905 sad->extLength = cpu_to_le32(elen);
1906 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1907 adsize = sizeof(struct short_ad);
1908 break;
1909 case ICBTAG_FLAG_AD_LONG:
1910 lad = (struct long_ad *)ptr;
1911 lad->extLength = cpu_to_le32(elen);
1912 lad->extLocation = cpu_to_lelb(*eloc);
1913 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1914 adsize = sizeof(struct long_ad);
1915 break;
1916 default:
1917 return;
1918 }
1919
1920 if (epos->bh) {
1921 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1922 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1923 struct allocExtDesc *aed =
1924 (struct allocExtDesc *)epos->bh->b_data;
1925 udf_update_tag(epos->bh->b_data,
1926 le32_to_cpu(aed->lengthAllocDescs) +
1927 sizeof(struct allocExtDesc));
1928 }
1929 mark_buffer_dirty_inode(epos->bh, inode);
1930 } else {
1931 mark_inode_dirty(inode);
1932 }
1933
1934 if (inc)
1935 epos->offset += adsize;
1936 }
1937
1938 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1939 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1940 {
1941 int8_t etype;
1942
1943 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1944 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1945 int block;
1946 epos->block = *eloc;
1947 epos->offset = sizeof(struct allocExtDesc);
1948 brelse(epos->bh);
1949 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1950 epos->bh = udf_tread(inode->i_sb, block);
1951 if (!epos->bh) {
1952 udf_debug("reading block %d failed!\n", block);
1953 return -1;
1954 }
1955 }
1956
1957 return etype;
1958 }
1959
1960 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1961 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1962 {
1963 int alen;
1964 int8_t etype;
1965 uint8_t *ptr;
1966 struct short_ad *sad;
1967 struct long_ad *lad;
1968 struct udf_inode_info *iinfo = UDF_I(inode);
1969
1970 if (!epos->bh) {
1971 if (!epos->offset)
1972 epos->offset = udf_file_entry_alloc_offset(inode);
1973 ptr = iinfo->i_ext.i_data + epos->offset -
1974 udf_file_entry_alloc_offset(inode) +
1975 iinfo->i_lenEAttr;
1976 alen = udf_file_entry_alloc_offset(inode) +
1977 iinfo->i_lenAlloc;
1978 } else {
1979 if (!epos->offset)
1980 epos->offset = sizeof(struct allocExtDesc);
1981 ptr = epos->bh->b_data + epos->offset;
1982 alen = sizeof(struct allocExtDesc) +
1983 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1984 lengthAllocDescs);
1985 }
1986
1987 switch (iinfo->i_alloc_type) {
1988 case ICBTAG_FLAG_AD_SHORT:
1989 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1990 if (!sad)
1991 return -1;
1992 etype = le32_to_cpu(sad->extLength) >> 30;
1993 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1994 eloc->partitionReferenceNum =
1995 iinfo->i_location.partitionReferenceNum;
1996 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1997 break;
1998 case ICBTAG_FLAG_AD_LONG:
1999 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2000 if (!lad)
2001 return -1;
2002 etype = le32_to_cpu(lad->extLength) >> 30;
2003 *eloc = lelb_to_cpu(lad->extLocation);
2004 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2005 break;
2006 default:
2007 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2008 return -1;
2009 }
2010
2011 return etype;
2012 }
2013
2014 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2015 struct kernel_lb_addr neloc, uint32_t nelen)
2016 {
2017 struct kernel_lb_addr oeloc;
2018 uint32_t oelen;
2019 int8_t etype;
2020
2021 if (epos.bh)
2022 get_bh(epos.bh);
2023
2024 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2025 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2026 neloc = oeloc;
2027 nelen = (etype << 30) | oelen;
2028 }
2029 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2030 brelse(epos.bh);
2031
2032 return (nelen >> 30);
2033 }
2034
2035 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2036 struct kernel_lb_addr eloc, uint32_t elen)
2037 {
2038 struct extent_position oepos;
2039 int adsize;
2040 int8_t etype;
2041 struct allocExtDesc *aed;
2042 struct udf_inode_info *iinfo;
2043
2044 if (epos.bh) {
2045 get_bh(epos.bh);
2046 get_bh(epos.bh);
2047 }
2048
2049 iinfo = UDF_I(inode);
2050 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2051 adsize = sizeof(struct short_ad);
2052 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2053 adsize = sizeof(struct long_ad);
2054 else
2055 adsize = 0;
2056
2057 oepos = epos;
2058 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2059 return -1;
2060
2061 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2062 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2063 if (oepos.bh != epos.bh) {
2064 oepos.block = epos.block;
2065 brelse(oepos.bh);
2066 get_bh(epos.bh);
2067 oepos.bh = epos.bh;
2068 oepos.offset = epos.offset - adsize;
2069 }
2070 }
2071 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2072 elen = 0;
2073
2074 if (epos.bh != oepos.bh) {
2075 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2076 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2077 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2078 if (!oepos.bh) {
2079 iinfo->i_lenAlloc -= (adsize * 2);
2080 mark_inode_dirty(inode);
2081 } else {
2082 aed = (struct allocExtDesc *)oepos.bh->b_data;
2083 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2084 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2085 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2086 udf_update_tag(oepos.bh->b_data,
2087 oepos.offset - (2 * adsize));
2088 else
2089 udf_update_tag(oepos.bh->b_data,
2090 sizeof(struct allocExtDesc));
2091 mark_buffer_dirty_inode(oepos.bh, inode);
2092 }
2093 } else {
2094 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2095 if (!oepos.bh) {
2096 iinfo->i_lenAlloc -= adsize;
2097 mark_inode_dirty(inode);
2098 } else {
2099 aed = (struct allocExtDesc *)oepos.bh->b_data;
2100 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2101 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2102 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2103 udf_update_tag(oepos.bh->b_data,
2104 epos.offset - adsize);
2105 else
2106 udf_update_tag(oepos.bh->b_data,
2107 sizeof(struct allocExtDesc));
2108 mark_buffer_dirty_inode(oepos.bh, inode);
2109 }
2110 }
2111
2112 brelse(epos.bh);
2113 brelse(oepos.bh);
2114
2115 return (elen >> 30);
2116 }
2117
2118 int8_t inode_bmap(struct inode *inode, sector_t block,
2119 struct extent_position *pos, struct kernel_lb_addr *eloc,
2120 uint32_t *elen, sector_t *offset)
2121 {
2122 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2123 loff_t lbcount = 0, bcount =
2124 (loff_t) block << blocksize_bits;
2125 int8_t etype;
2126 struct udf_inode_info *iinfo;
2127
2128 iinfo = UDF_I(inode);
2129 pos->offset = 0;
2130 pos->block = iinfo->i_location;
2131 pos->bh = NULL;
2132 *elen = 0;
2133
2134 do {
2135 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2136 if (etype == -1) {
2137 *offset = (bcount - lbcount) >> blocksize_bits;
2138 iinfo->i_lenExtents = lbcount;
2139 return -1;
2140 }
2141 lbcount += *elen;
2142 } while (lbcount <= bcount);
2143
2144 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2145
2146 return etype;
2147 }
2148
2149 long udf_block_map(struct inode *inode, sector_t block)
2150 {
2151 struct kernel_lb_addr eloc;
2152 uint32_t elen;
2153 sector_t offset;
2154 struct extent_position epos = {};
2155 int ret;
2156
2157 down_read(&UDF_I(inode)->i_data_sem);
2158
2159 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2160 (EXT_RECORDED_ALLOCATED >> 30))
2161 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2162 else
2163 ret = 0;
2164
2165 up_read(&UDF_I(inode)->i_data_sem);
2166 brelse(epos.bh);
2167
2168 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2169 return udf_fixed_to_variable(ret);
2170 else
2171 return ret;
2172 }