]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/udf/inode.c
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-artful-kernel.git] / fs / udf / inode.c
1 /*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42
43 #include "udf_i.h"
44 #include "udf_sb.h"
45
46 #define EXTENT_MERGE_SIZE 5
47
48 static umode_t udf_convert_permissions(struct fileEntry *);
49 static int udf_update_inode(struct inode *, int);
50 static int udf_sync_inode(struct inode *inode);
51 static int udf_alloc_i_data(struct inode *inode, size_t size);
52 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
53 static int8_t udf_insert_aext(struct inode *, struct extent_position,
54 struct kernel_lb_addr, uint32_t);
55 static void udf_split_extents(struct inode *, int *, int, int,
56 struct kernel_long_ad *, int *);
57 static void udf_prealloc_extents(struct inode *, int, int,
58 struct kernel_long_ad *, int *);
59 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
60 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
61 int, struct extent_position *);
62 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
63
64 static void __udf_clear_extent_cache(struct inode *inode)
65 {
66 struct udf_inode_info *iinfo = UDF_I(inode);
67
68 if (iinfo->cached_extent.lstart != -1) {
69 brelse(iinfo->cached_extent.epos.bh);
70 iinfo->cached_extent.lstart = -1;
71 }
72 }
73
74 /* Invalidate extent cache */
75 static void udf_clear_extent_cache(struct inode *inode)
76 {
77 struct udf_inode_info *iinfo = UDF_I(inode);
78
79 spin_lock(&iinfo->i_extent_cache_lock);
80 __udf_clear_extent_cache(inode);
81 spin_unlock(&iinfo->i_extent_cache_lock);
82 }
83
84 /* Return contents of extent cache */
85 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
86 loff_t *lbcount, struct extent_position *pos)
87 {
88 struct udf_inode_info *iinfo = UDF_I(inode);
89 int ret = 0;
90
91 spin_lock(&iinfo->i_extent_cache_lock);
92 if ((iinfo->cached_extent.lstart <= bcount) &&
93 (iinfo->cached_extent.lstart != -1)) {
94 /* Cache hit */
95 *lbcount = iinfo->cached_extent.lstart;
96 memcpy(pos, &iinfo->cached_extent.epos,
97 sizeof(struct extent_position));
98 if (pos->bh)
99 get_bh(pos->bh);
100 ret = 1;
101 }
102 spin_unlock(&iinfo->i_extent_cache_lock);
103 return ret;
104 }
105
106 /* Add extent to extent cache */
107 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
108 struct extent_position *pos)
109 {
110 struct udf_inode_info *iinfo = UDF_I(inode);
111
112 spin_lock(&iinfo->i_extent_cache_lock);
113 /* Invalidate previously cached extent */
114 __udf_clear_extent_cache(inode);
115 if (pos->bh)
116 get_bh(pos->bh);
117 memcpy(&iinfo->cached_extent.epos, pos, sizeof(struct extent_position));
118 iinfo->cached_extent.lstart = estart;
119 switch (iinfo->i_alloc_type) {
120 case ICBTAG_FLAG_AD_SHORT:
121 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
122 break;
123 case ICBTAG_FLAG_AD_LONG:
124 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
125 break;
126 }
127 spin_unlock(&iinfo->i_extent_cache_lock);
128 }
129
130 void udf_evict_inode(struct inode *inode)
131 {
132 struct udf_inode_info *iinfo = UDF_I(inode);
133 int want_delete = 0;
134
135 if (!inode->i_nlink && !is_bad_inode(inode)) {
136 want_delete = 1;
137 udf_setsize(inode, 0);
138 udf_update_inode(inode, IS_SYNC(inode));
139 }
140 truncate_inode_pages_final(&inode->i_data);
141 invalidate_inode_buffers(inode);
142 clear_inode(inode);
143 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
144 inode->i_size != iinfo->i_lenExtents) {
145 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
146 inode->i_ino, inode->i_mode,
147 (unsigned long long)inode->i_size,
148 (unsigned long long)iinfo->i_lenExtents);
149 }
150 kfree(iinfo->i_ext.i_data);
151 iinfo->i_ext.i_data = NULL;
152 udf_clear_extent_cache(inode);
153 if (want_delete) {
154 udf_free_inode(inode);
155 }
156 }
157
158 static void udf_write_failed(struct address_space *mapping, loff_t to)
159 {
160 struct inode *inode = mapping->host;
161 struct udf_inode_info *iinfo = UDF_I(inode);
162 loff_t isize = inode->i_size;
163
164 if (to > isize) {
165 truncate_pagecache(inode, isize);
166 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
167 down_write(&iinfo->i_data_sem);
168 udf_clear_extent_cache(inode);
169 udf_truncate_extents(inode);
170 up_write(&iinfo->i_data_sem);
171 }
172 }
173 }
174
175 static int udf_writepage(struct page *page, struct writeback_control *wbc)
176 {
177 return block_write_full_page(page, udf_get_block, wbc);
178 }
179
180 static int udf_writepages(struct address_space *mapping,
181 struct writeback_control *wbc)
182 {
183 return mpage_writepages(mapping, wbc, udf_get_block);
184 }
185
186 static int udf_readpage(struct file *file, struct page *page)
187 {
188 return mpage_readpage(page, udf_get_block);
189 }
190
191 static int udf_readpages(struct file *file, struct address_space *mapping,
192 struct list_head *pages, unsigned nr_pages)
193 {
194 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
195 }
196
197 static int udf_write_begin(struct file *file, struct address_space *mapping,
198 loff_t pos, unsigned len, unsigned flags,
199 struct page **pagep, void **fsdata)
200 {
201 int ret;
202
203 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
204 if (unlikely(ret))
205 udf_write_failed(mapping, pos + len);
206 return ret;
207 }
208
209 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
210 {
211 struct file *file = iocb->ki_filp;
212 struct address_space *mapping = file->f_mapping;
213 struct inode *inode = mapping->host;
214 size_t count = iov_iter_count(iter);
215 ssize_t ret;
216
217 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
218 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
219 udf_write_failed(mapping, iocb->ki_pos + count);
220 return ret;
221 }
222
223 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
224 {
225 return generic_block_bmap(mapping, block, udf_get_block);
226 }
227
228 const struct address_space_operations udf_aops = {
229 .readpage = udf_readpage,
230 .readpages = udf_readpages,
231 .writepage = udf_writepage,
232 .writepages = udf_writepages,
233 .write_begin = udf_write_begin,
234 .write_end = generic_write_end,
235 .direct_IO = udf_direct_IO,
236 .bmap = udf_bmap,
237 };
238
239 /*
240 * Expand file stored in ICB to a normal one-block-file
241 *
242 * This function requires i_data_sem for writing and releases it.
243 * This function requires i_mutex held
244 */
245 int udf_expand_file_adinicb(struct inode *inode)
246 {
247 struct page *page;
248 char *kaddr;
249 struct udf_inode_info *iinfo = UDF_I(inode);
250 int err;
251 struct writeback_control udf_wbc = {
252 .sync_mode = WB_SYNC_NONE,
253 .nr_to_write = 1,
254 };
255
256 WARN_ON_ONCE(!inode_is_locked(inode));
257 if (!iinfo->i_lenAlloc) {
258 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
259 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
260 else
261 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
262 /* from now on we have normal address_space methods */
263 inode->i_data.a_ops = &udf_aops;
264 up_write(&iinfo->i_data_sem);
265 mark_inode_dirty(inode);
266 return 0;
267 }
268 /*
269 * Release i_data_sem so that we can lock a page - page lock ranks
270 * above i_data_sem. i_mutex still protects us against file changes.
271 */
272 up_write(&iinfo->i_data_sem);
273
274 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
275 if (!page)
276 return -ENOMEM;
277
278 if (!PageUptodate(page)) {
279 kaddr = kmap(page);
280 memset(kaddr + iinfo->i_lenAlloc, 0x00,
281 PAGE_SIZE - iinfo->i_lenAlloc);
282 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
283 iinfo->i_lenAlloc);
284 flush_dcache_page(page);
285 SetPageUptodate(page);
286 kunmap(page);
287 }
288 down_write(&iinfo->i_data_sem);
289 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
290 iinfo->i_lenAlloc);
291 iinfo->i_lenAlloc = 0;
292 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
293 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
294 else
295 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
296 /* from now on we have normal address_space methods */
297 inode->i_data.a_ops = &udf_aops;
298 up_write(&iinfo->i_data_sem);
299 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
300 if (err) {
301 /* Restore everything back so that we don't lose data... */
302 lock_page(page);
303 kaddr = kmap(page);
304 down_write(&iinfo->i_data_sem);
305 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
306 inode->i_size);
307 kunmap(page);
308 unlock_page(page);
309 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
310 inode->i_data.a_ops = &udf_adinicb_aops;
311 up_write(&iinfo->i_data_sem);
312 }
313 put_page(page);
314 mark_inode_dirty(inode);
315
316 return err;
317 }
318
319 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
320 int *err)
321 {
322 int newblock;
323 struct buffer_head *dbh = NULL;
324 struct kernel_lb_addr eloc;
325 uint8_t alloctype;
326 struct extent_position epos;
327
328 struct udf_fileident_bh sfibh, dfibh;
329 loff_t f_pos = udf_ext0_offset(inode);
330 int size = udf_ext0_offset(inode) + inode->i_size;
331 struct fileIdentDesc cfi, *sfi, *dfi;
332 struct udf_inode_info *iinfo = UDF_I(inode);
333
334 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
335 alloctype = ICBTAG_FLAG_AD_SHORT;
336 else
337 alloctype = ICBTAG_FLAG_AD_LONG;
338
339 if (!inode->i_size) {
340 iinfo->i_alloc_type = alloctype;
341 mark_inode_dirty(inode);
342 return NULL;
343 }
344
345 /* alloc block, and copy data to it */
346 *block = udf_new_block(inode->i_sb, inode,
347 iinfo->i_location.partitionReferenceNum,
348 iinfo->i_location.logicalBlockNum, err);
349 if (!(*block))
350 return NULL;
351 newblock = udf_get_pblock(inode->i_sb, *block,
352 iinfo->i_location.partitionReferenceNum,
353 0);
354 if (!newblock)
355 return NULL;
356 dbh = udf_tgetblk(inode->i_sb, newblock);
357 if (!dbh)
358 return NULL;
359 lock_buffer(dbh);
360 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
361 set_buffer_uptodate(dbh);
362 unlock_buffer(dbh);
363 mark_buffer_dirty_inode(dbh, inode);
364
365 sfibh.soffset = sfibh.eoffset =
366 f_pos & (inode->i_sb->s_blocksize - 1);
367 sfibh.sbh = sfibh.ebh = NULL;
368 dfibh.soffset = dfibh.eoffset = 0;
369 dfibh.sbh = dfibh.ebh = dbh;
370 while (f_pos < size) {
371 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
372 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
373 NULL, NULL, NULL);
374 if (!sfi) {
375 brelse(dbh);
376 return NULL;
377 }
378 iinfo->i_alloc_type = alloctype;
379 sfi->descTag.tagLocation = cpu_to_le32(*block);
380 dfibh.soffset = dfibh.eoffset;
381 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
382 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
383 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
384 sfi->fileIdent +
385 le16_to_cpu(sfi->lengthOfImpUse))) {
386 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
387 brelse(dbh);
388 return NULL;
389 }
390 }
391 mark_buffer_dirty_inode(dbh, inode);
392
393 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
394 iinfo->i_lenAlloc);
395 iinfo->i_lenAlloc = 0;
396 eloc.logicalBlockNum = *block;
397 eloc.partitionReferenceNum =
398 iinfo->i_location.partitionReferenceNum;
399 iinfo->i_lenExtents = inode->i_size;
400 epos.bh = NULL;
401 epos.block = iinfo->i_location;
402 epos.offset = udf_file_entry_alloc_offset(inode);
403 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
404 /* UniqueID stuff */
405
406 brelse(epos.bh);
407 mark_inode_dirty(inode);
408 return dbh;
409 }
410
411 static int udf_get_block(struct inode *inode, sector_t block,
412 struct buffer_head *bh_result, int create)
413 {
414 int err, new;
415 sector_t phys = 0;
416 struct udf_inode_info *iinfo;
417
418 if (!create) {
419 phys = udf_block_map(inode, block);
420 if (phys)
421 map_bh(bh_result, inode->i_sb, phys);
422 return 0;
423 }
424
425 err = -EIO;
426 new = 0;
427 iinfo = UDF_I(inode);
428
429 down_write(&iinfo->i_data_sem);
430 if (block == iinfo->i_next_alloc_block + 1) {
431 iinfo->i_next_alloc_block++;
432 iinfo->i_next_alloc_goal++;
433 }
434
435 udf_clear_extent_cache(inode);
436 phys = inode_getblk(inode, block, &err, &new);
437 if (!phys)
438 goto abort;
439
440 if (new)
441 set_buffer_new(bh_result);
442 map_bh(bh_result, inode->i_sb, phys);
443
444 abort:
445 up_write(&iinfo->i_data_sem);
446 return err;
447 }
448
449 static struct buffer_head *udf_getblk(struct inode *inode, long block,
450 int create, int *err)
451 {
452 struct buffer_head *bh;
453 struct buffer_head dummy;
454
455 dummy.b_state = 0;
456 dummy.b_blocknr = -1000;
457 *err = udf_get_block(inode, block, &dummy, create);
458 if (!*err && buffer_mapped(&dummy)) {
459 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
460 if (buffer_new(&dummy)) {
461 lock_buffer(bh);
462 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
463 set_buffer_uptodate(bh);
464 unlock_buffer(bh);
465 mark_buffer_dirty_inode(bh, inode);
466 }
467 return bh;
468 }
469
470 return NULL;
471 }
472
473 /* Extend the file by 'blocks' blocks, return the number of extents added */
474 static int udf_do_extend_file(struct inode *inode,
475 struct extent_position *last_pos,
476 struct kernel_long_ad *last_ext,
477 sector_t blocks)
478 {
479 sector_t add;
480 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
481 struct super_block *sb = inode->i_sb;
482 struct kernel_lb_addr prealloc_loc = {};
483 int prealloc_len = 0;
484 struct udf_inode_info *iinfo;
485 int err;
486
487 /* The previous extent is fake and we should not extend by anything
488 * - there's nothing to do... */
489 if (!blocks && fake)
490 return 0;
491
492 iinfo = UDF_I(inode);
493 /* Round the last extent up to a multiple of block size */
494 if (last_ext->extLength & (sb->s_blocksize - 1)) {
495 last_ext->extLength =
496 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
497 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
498 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
499 iinfo->i_lenExtents =
500 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
501 ~(sb->s_blocksize - 1);
502 }
503
504 /* Last extent are just preallocated blocks? */
505 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
506 EXT_NOT_RECORDED_ALLOCATED) {
507 /* Save the extent so that we can reattach it to the end */
508 prealloc_loc = last_ext->extLocation;
509 prealloc_len = last_ext->extLength;
510 /* Mark the extent as a hole */
511 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
512 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
513 last_ext->extLocation.logicalBlockNum = 0;
514 last_ext->extLocation.partitionReferenceNum = 0;
515 }
516
517 /* Can we merge with the previous extent? */
518 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
519 EXT_NOT_RECORDED_NOT_ALLOCATED) {
520 add = ((1 << 30) - sb->s_blocksize -
521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
522 sb->s_blocksize_bits;
523 if (add > blocks)
524 add = blocks;
525 blocks -= add;
526 last_ext->extLength += add << sb->s_blocksize_bits;
527 }
528
529 if (fake) {
530 udf_add_aext(inode, last_pos, &last_ext->extLocation,
531 last_ext->extLength, 1);
532 count++;
533 } else {
534 struct kernel_lb_addr tmploc;
535 uint32_t tmplen;
536
537 udf_write_aext(inode, last_pos, &last_ext->extLocation,
538 last_ext->extLength, 1);
539 /*
540 * We've rewritten the last extent but there may be empty
541 * indirect extent after it - enter it.
542 */
543 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
544 }
545
546 /* Managed to do everything necessary? */
547 if (!blocks)
548 goto out;
549
550 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
551 last_ext->extLocation.logicalBlockNum = 0;
552 last_ext->extLocation.partitionReferenceNum = 0;
553 add = (1 << (30-sb->s_blocksize_bits)) - 1;
554 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
555 (add << sb->s_blocksize_bits);
556
557 /* Create enough extents to cover the whole hole */
558 while (blocks > add) {
559 blocks -= add;
560 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
561 last_ext->extLength, 1);
562 if (err)
563 return err;
564 count++;
565 }
566 if (blocks) {
567 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
568 (blocks << sb->s_blocksize_bits);
569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570 last_ext->extLength, 1);
571 if (err)
572 return err;
573 count++;
574 }
575
576 out:
577 /* Do we have some preallocated blocks saved? */
578 if (prealloc_len) {
579 err = udf_add_aext(inode, last_pos, &prealloc_loc,
580 prealloc_len, 1);
581 if (err)
582 return err;
583 last_ext->extLocation = prealloc_loc;
584 last_ext->extLength = prealloc_len;
585 count++;
586 }
587
588 /* last_pos should point to the last written extent... */
589 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
590 last_pos->offset -= sizeof(struct short_ad);
591 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
592 last_pos->offset -= sizeof(struct long_ad);
593 else
594 return -EIO;
595
596 return count;
597 }
598
599 static int udf_extend_file(struct inode *inode, loff_t newsize)
600 {
601
602 struct extent_position epos;
603 struct kernel_lb_addr eloc;
604 uint32_t elen;
605 int8_t etype;
606 struct super_block *sb = inode->i_sb;
607 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
608 int adsize;
609 struct udf_inode_info *iinfo = UDF_I(inode);
610 struct kernel_long_ad extent;
611 int err;
612
613 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
614 adsize = sizeof(struct short_ad);
615 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
616 adsize = sizeof(struct long_ad);
617 else
618 BUG();
619
620 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
621
622 /* File has extent covering the new size (could happen when extending
623 * inside a block)? */
624 if (etype != -1)
625 return 0;
626 if (newsize & (sb->s_blocksize - 1))
627 offset++;
628 /* Extended file just to the boundary of the last file block? */
629 if (offset == 0)
630 return 0;
631
632 /* Truncate is extending the file by 'offset' blocks */
633 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
634 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
635 /* File has no extents at all or has empty last
636 * indirect extent! Create a fake extent... */
637 extent.extLocation.logicalBlockNum = 0;
638 extent.extLocation.partitionReferenceNum = 0;
639 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
640 } else {
641 epos.offset -= adsize;
642 etype = udf_next_aext(inode, &epos, &extent.extLocation,
643 &extent.extLength, 0);
644 extent.extLength |= etype << 30;
645 }
646 err = udf_do_extend_file(inode, &epos, &extent, offset);
647 if (err < 0)
648 goto out;
649 err = 0;
650 iinfo->i_lenExtents = newsize;
651 out:
652 brelse(epos.bh);
653 return err;
654 }
655
656 static sector_t inode_getblk(struct inode *inode, sector_t block,
657 int *err, int *new)
658 {
659 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
660 struct extent_position prev_epos, cur_epos, next_epos;
661 int count = 0, startnum = 0, endnum = 0;
662 uint32_t elen = 0, tmpelen;
663 struct kernel_lb_addr eloc, tmpeloc;
664 int c = 1;
665 loff_t lbcount = 0, b_off = 0;
666 uint32_t newblocknum, newblock;
667 sector_t offset = 0;
668 int8_t etype;
669 struct udf_inode_info *iinfo = UDF_I(inode);
670 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
671 int lastblock = 0;
672 bool isBeyondEOF;
673
674 *err = 0;
675 *new = 0;
676 prev_epos.offset = udf_file_entry_alloc_offset(inode);
677 prev_epos.block = iinfo->i_location;
678 prev_epos.bh = NULL;
679 cur_epos = next_epos = prev_epos;
680 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
681
682 /* find the extent which contains the block we are looking for.
683 alternate between laarr[0] and laarr[1] for locations of the
684 current extent, and the previous extent */
685 do {
686 if (prev_epos.bh != cur_epos.bh) {
687 brelse(prev_epos.bh);
688 get_bh(cur_epos.bh);
689 prev_epos.bh = cur_epos.bh;
690 }
691 if (cur_epos.bh != next_epos.bh) {
692 brelse(cur_epos.bh);
693 get_bh(next_epos.bh);
694 cur_epos.bh = next_epos.bh;
695 }
696
697 lbcount += elen;
698
699 prev_epos.block = cur_epos.block;
700 cur_epos.block = next_epos.block;
701
702 prev_epos.offset = cur_epos.offset;
703 cur_epos.offset = next_epos.offset;
704
705 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
706 if (etype == -1)
707 break;
708
709 c = !c;
710
711 laarr[c].extLength = (etype << 30) | elen;
712 laarr[c].extLocation = eloc;
713
714 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
715 pgoal = eloc.logicalBlockNum +
716 ((elen + inode->i_sb->s_blocksize - 1) >>
717 inode->i_sb->s_blocksize_bits);
718
719 count++;
720 } while (lbcount + elen <= b_off);
721
722 b_off -= lbcount;
723 offset = b_off >> inode->i_sb->s_blocksize_bits;
724 /*
725 * Move prev_epos and cur_epos into indirect extent if we are at
726 * the pointer to it
727 */
728 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
729 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
730
731 /* if the extent is allocated and recorded, return the block
732 if the extent is not a multiple of the blocksize, round up */
733
734 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
735 if (elen & (inode->i_sb->s_blocksize - 1)) {
736 elen = EXT_RECORDED_ALLOCATED |
737 ((elen + inode->i_sb->s_blocksize - 1) &
738 ~(inode->i_sb->s_blocksize - 1));
739 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
740 }
741 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
742 goto out_free;
743 }
744
745 /* Are we beyond EOF? */
746 if (etype == -1) {
747 int ret;
748 isBeyondEOF = true;
749 if (count) {
750 if (c)
751 laarr[0] = laarr[1];
752 startnum = 1;
753 } else {
754 /* Create a fake extent when there's not one */
755 memset(&laarr[0].extLocation, 0x00,
756 sizeof(struct kernel_lb_addr));
757 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
758 /* Will udf_do_extend_file() create real extent from
759 a fake one? */
760 startnum = (offset > 0);
761 }
762 /* Create extents for the hole between EOF and offset */
763 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
764 if (ret < 0) {
765 *err = ret;
766 newblock = 0;
767 goto out_free;
768 }
769 c = 0;
770 offset = 0;
771 count += ret;
772 /* We are not covered by a preallocated extent? */
773 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
774 EXT_NOT_RECORDED_ALLOCATED) {
775 /* Is there any real extent? - otherwise we overwrite
776 * the fake one... */
777 if (count)
778 c = !c;
779 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
780 inode->i_sb->s_blocksize;
781 memset(&laarr[c].extLocation, 0x00,
782 sizeof(struct kernel_lb_addr));
783 count++;
784 }
785 endnum = c + 1;
786 lastblock = 1;
787 } else {
788 isBeyondEOF = false;
789 endnum = startnum = ((count > 2) ? 2 : count);
790
791 /* if the current extent is in position 0,
792 swap it with the previous */
793 if (!c && count != 1) {
794 laarr[2] = laarr[0];
795 laarr[0] = laarr[1];
796 laarr[1] = laarr[2];
797 c = 1;
798 }
799
800 /* if the current block is located in an extent,
801 read the next extent */
802 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
803 if (etype != -1) {
804 laarr[c + 1].extLength = (etype << 30) | elen;
805 laarr[c + 1].extLocation = eloc;
806 count++;
807 startnum++;
808 endnum++;
809 } else
810 lastblock = 1;
811 }
812
813 /* if the current extent is not recorded but allocated, get the
814 * block in the extent corresponding to the requested block */
815 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
816 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
817 else { /* otherwise, allocate a new block */
818 if (iinfo->i_next_alloc_block == block)
819 goal = iinfo->i_next_alloc_goal;
820
821 if (!goal) {
822 if (!(goal = pgoal)) /* XXX: what was intended here? */
823 goal = iinfo->i_location.logicalBlockNum + 1;
824 }
825
826 newblocknum = udf_new_block(inode->i_sb, inode,
827 iinfo->i_location.partitionReferenceNum,
828 goal, err);
829 if (!newblocknum) {
830 *err = -ENOSPC;
831 newblock = 0;
832 goto out_free;
833 }
834 if (isBeyondEOF)
835 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
836 }
837
838 /* if the extent the requsted block is located in contains multiple
839 * blocks, split the extent into at most three extents. blocks prior
840 * to requested block, requested block, and blocks after requested
841 * block */
842 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
843
844 /* We preallocate blocks only for regular files. It also makes sense
845 * for directories but there's a problem when to drop the
846 * preallocation. We might use some delayed work for that but I feel
847 * it's overengineering for a filesystem like UDF. */
848 if (S_ISREG(inode->i_mode))
849 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
850
851 /* merge any continuous blocks in laarr */
852 udf_merge_extents(inode, laarr, &endnum);
853
854 /* write back the new extents, inserting new extents if the new number
855 * of extents is greater than the old number, and deleting extents if
856 * the new number of extents is less than the old number */
857 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
858
859 newblock = udf_get_pblock(inode->i_sb, newblocknum,
860 iinfo->i_location.partitionReferenceNum, 0);
861 if (!newblock) {
862 *err = -EIO;
863 goto out_free;
864 }
865 *new = 1;
866 iinfo->i_next_alloc_block = block;
867 iinfo->i_next_alloc_goal = newblocknum;
868 inode->i_ctime = current_time(inode);
869
870 if (IS_SYNC(inode))
871 udf_sync_inode(inode);
872 else
873 mark_inode_dirty(inode);
874 out_free:
875 brelse(prev_epos.bh);
876 brelse(cur_epos.bh);
877 brelse(next_epos.bh);
878 return newblock;
879 }
880
881 static void udf_split_extents(struct inode *inode, int *c, int offset,
882 int newblocknum, struct kernel_long_ad *laarr,
883 int *endnum)
884 {
885 unsigned long blocksize = inode->i_sb->s_blocksize;
886 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
887
888 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
889 (laarr[*c].extLength >> 30) ==
890 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
891 int curr = *c;
892 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
893 blocksize - 1) >> blocksize_bits;
894 int8_t etype = (laarr[curr].extLength >> 30);
895
896 if (blen == 1)
897 ;
898 else if (!offset || blen == offset + 1) {
899 laarr[curr + 2] = laarr[curr + 1];
900 laarr[curr + 1] = laarr[curr];
901 } else {
902 laarr[curr + 3] = laarr[curr + 1];
903 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
904 }
905
906 if (offset) {
907 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
908 udf_free_blocks(inode->i_sb, inode,
909 &laarr[curr].extLocation,
910 0, offset);
911 laarr[curr].extLength =
912 EXT_NOT_RECORDED_NOT_ALLOCATED |
913 (offset << blocksize_bits);
914 laarr[curr].extLocation.logicalBlockNum = 0;
915 laarr[curr].extLocation.
916 partitionReferenceNum = 0;
917 } else
918 laarr[curr].extLength = (etype << 30) |
919 (offset << blocksize_bits);
920 curr++;
921 (*c)++;
922 (*endnum)++;
923 }
924
925 laarr[curr].extLocation.logicalBlockNum = newblocknum;
926 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
927 laarr[curr].extLocation.partitionReferenceNum =
928 UDF_I(inode)->i_location.partitionReferenceNum;
929 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
930 blocksize;
931 curr++;
932
933 if (blen != offset + 1) {
934 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
935 laarr[curr].extLocation.logicalBlockNum +=
936 offset + 1;
937 laarr[curr].extLength = (etype << 30) |
938 ((blen - (offset + 1)) << blocksize_bits);
939 curr++;
940 (*endnum)++;
941 }
942 }
943 }
944
945 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
946 struct kernel_long_ad *laarr,
947 int *endnum)
948 {
949 int start, length = 0, currlength = 0, i;
950
951 if (*endnum >= (c + 1)) {
952 if (!lastblock)
953 return;
954 else
955 start = c;
956 } else {
957 if ((laarr[c + 1].extLength >> 30) ==
958 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
959 start = c + 1;
960 length = currlength =
961 (((laarr[c + 1].extLength &
962 UDF_EXTENT_LENGTH_MASK) +
963 inode->i_sb->s_blocksize - 1) >>
964 inode->i_sb->s_blocksize_bits);
965 } else
966 start = c;
967 }
968
969 for (i = start + 1; i <= *endnum; i++) {
970 if (i == *endnum) {
971 if (lastblock)
972 length += UDF_DEFAULT_PREALLOC_BLOCKS;
973 } else if ((laarr[i].extLength >> 30) ==
974 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
975 length += (((laarr[i].extLength &
976 UDF_EXTENT_LENGTH_MASK) +
977 inode->i_sb->s_blocksize - 1) >>
978 inode->i_sb->s_blocksize_bits);
979 } else
980 break;
981 }
982
983 if (length) {
984 int next = laarr[start].extLocation.logicalBlockNum +
985 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
986 inode->i_sb->s_blocksize - 1) >>
987 inode->i_sb->s_blocksize_bits);
988 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
989 laarr[start].extLocation.partitionReferenceNum,
990 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
991 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
992 currlength);
993 if (numalloc) {
994 if (start == (c + 1))
995 laarr[start].extLength +=
996 (numalloc <<
997 inode->i_sb->s_blocksize_bits);
998 else {
999 memmove(&laarr[c + 2], &laarr[c + 1],
1000 sizeof(struct long_ad) * (*endnum - (c + 1)));
1001 (*endnum)++;
1002 laarr[c + 1].extLocation.logicalBlockNum = next;
1003 laarr[c + 1].extLocation.partitionReferenceNum =
1004 laarr[c].extLocation.
1005 partitionReferenceNum;
1006 laarr[c + 1].extLength =
1007 EXT_NOT_RECORDED_ALLOCATED |
1008 (numalloc <<
1009 inode->i_sb->s_blocksize_bits);
1010 start = c + 1;
1011 }
1012
1013 for (i = start + 1; numalloc && i < *endnum; i++) {
1014 int elen = ((laarr[i].extLength &
1015 UDF_EXTENT_LENGTH_MASK) +
1016 inode->i_sb->s_blocksize - 1) >>
1017 inode->i_sb->s_blocksize_bits;
1018
1019 if (elen > numalloc) {
1020 laarr[i].extLength -=
1021 (numalloc <<
1022 inode->i_sb->s_blocksize_bits);
1023 numalloc = 0;
1024 } else {
1025 numalloc -= elen;
1026 if (*endnum > (i + 1))
1027 memmove(&laarr[i],
1028 &laarr[i + 1],
1029 sizeof(struct long_ad) *
1030 (*endnum - (i + 1)));
1031 i--;
1032 (*endnum)--;
1033 }
1034 }
1035 UDF_I(inode)->i_lenExtents +=
1036 numalloc << inode->i_sb->s_blocksize_bits;
1037 }
1038 }
1039 }
1040
1041 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1042 int *endnum)
1043 {
1044 int i;
1045 unsigned long blocksize = inode->i_sb->s_blocksize;
1046 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1047
1048 for (i = 0; i < (*endnum - 1); i++) {
1049 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1050 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1051
1052 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1053 (((li->extLength >> 30) ==
1054 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1055 ((lip1->extLocation.logicalBlockNum -
1056 li->extLocation.logicalBlockNum) ==
1057 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1058 blocksize - 1) >> blocksize_bits)))) {
1059
1060 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1061 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1062 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1063 lip1->extLength = (lip1->extLength -
1064 (li->extLength &
1065 UDF_EXTENT_LENGTH_MASK) +
1066 UDF_EXTENT_LENGTH_MASK) &
1067 ~(blocksize - 1);
1068 li->extLength = (li->extLength &
1069 UDF_EXTENT_FLAG_MASK) +
1070 (UDF_EXTENT_LENGTH_MASK + 1) -
1071 blocksize;
1072 lip1->extLocation.logicalBlockNum =
1073 li->extLocation.logicalBlockNum +
1074 ((li->extLength &
1075 UDF_EXTENT_LENGTH_MASK) >>
1076 blocksize_bits);
1077 } else {
1078 li->extLength = lip1->extLength +
1079 (((li->extLength &
1080 UDF_EXTENT_LENGTH_MASK) +
1081 blocksize - 1) & ~(blocksize - 1));
1082 if (*endnum > (i + 2))
1083 memmove(&laarr[i + 1], &laarr[i + 2],
1084 sizeof(struct long_ad) *
1085 (*endnum - (i + 2)));
1086 i--;
1087 (*endnum)--;
1088 }
1089 } else if (((li->extLength >> 30) ==
1090 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1091 ((lip1->extLength >> 30) ==
1092 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1093 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1094 ((li->extLength &
1095 UDF_EXTENT_LENGTH_MASK) +
1096 blocksize - 1) >> blocksize_bits);
1097 li->extLocation.logicalBlockNum = 0;
1098 li->extLocation.partitionReferenceNum = 0;
1099
1100 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1101 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1102 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1103 lip1->extLength = (lip1->extLength -
1104 (li->extLength &
1105 UDF_EXTENT_LENGTH_MASK) +
1106 UDF_EXTENT_LENGTH_MASK) &
1107 ~(blocksize - 1);
1108 li->extLength = (li->extLength &
1109 UDF_EXTENT_FLAG_MASK) +
1110 (UDF_EXTENT_LENGTH_MASK + 1) -
1111 blocksize;
1112 } else {
1113 li->extLength = lip1->extLength +
1114 (((li->extLength &
1115 UDF_EXTENT_LENGTH_MASK) +
1116 blocksize - 1) & ~(blocksize - 1));
1117 if (*endnum > (i + 2))
1118 memmove(&laarr[i + 1], &laarr[i + 2],
1119 sizeof(struct long_ad) *
1120 (*endnum - (i + 2)));
1121 i--;
1122 (*endnum)--;
1123 }
1124 } else if ((li->extLength >> 30) ==
1125 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1126 udf_free_blocks(inode->i_sb, inode,
1127 &li->extLocation, 0,
1128 ((li->extLength &
1129 UDF_EXTENT_LENGTH_MASK) +
1130 blocksize - 1) >> blocksize_bits);
1131 li->extLocation.logicalBlockNum = 0;
1132 li->extLocation.partitionReferenceNum = 0;
1133 li->extLength = (li->extLength &
1134 UDF_EXTENT_LENGTH_MASK) |
1135 EXT_NOT_RECORDED_NOT_ALLOCATED;
1136 }
1137 }
1138 }
1139
1140 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1141 int startnum, int endnum,
1142 struct extent_position *epos)
1143 {
1144 int start = 0, i;
1145 struct kernel_lb_addr tmploc;
1146 uint32_t tmplen;
1147
1148 if (startnum > endnum) {
1149 for (i = 0; i < (startnum - endnum); i++)
1150 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1151 laarr[i].extLength);
1152 } else if (startnum < endnum) {
1153 for (i = 0; i < (endnum - startnum); i++) {
1154 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1155 laarr[i].extLength);
1156 udf_next_aext(inode, epos, &laarr[i].extLocation,
1157 &laarr[i].extLength, 1);
1158 start++;
1159 }
1160 }
1161
1162 for (i = start; i < endnum; i++) {
1163 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1164 udf_write_aext(inode, epos, &laarr[i].extLocation,
1165 laarr[i].extLength, 1);
1166 }
1167 }
1168
1169 struct buffer_head *udf_bread(struct inode *inode, int block,
1170 int create, int *err)
1171 {
1172 struct buffer_head *bh = NULL;
1173
1174 bh = udf_getblk(inode, block, create, err);
1175 if (!bh)
1176 return NULL;
1177
1178 if (buffer_uptodate(bh))
1179 return bh;
1180
1181 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1182
1183 wait_on_buffer(bh);
1184 if (buffer_uptodate(bh))
1185 return bh;
1186
1187 brelse(bh);
1188 *err = -EIO;
1189 return NULL;
1190 }
1191
1192 int udf_setsize(struct inode *inode, loff_t newsize)
1193 {
1194 int err;
1195 struct udf_inode_info *iinfo;
1196 int bsize = 1 << inode->i_blkbits;
1197
1198 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1199 S_ISLNK(inode->i_mode)))
1200 return -EINVAL;
1201 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1202 return -EPERM;
1203
1204 iinfo = UDF_I(inode);
1205 if (newsize > inode->i_size) {
1206 down_write(&iinfo->i_data_sem);
1207 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1208 if (bsize <
1209 (udf_file_entry_alloc_offset(inode) + newsize)) {
1210 err = udf_expand_file_adinicb(inode);
1211 if (err)
1212 return err;
1213 down_write(&iinfo->i_data_sem);
1214 } else {
1215 iinfo->i_lenAlloc = newsize;
1216 goto set_size;
1217 }
1218 }
1219 err = udf_extend_file(inode, newsize);
1220 if (err) {
1221 up_write(&iinfo->i_data_sem);
1222 return err;
1223 }
1224 set_size:
1225 truncate_setsize(inode, newsize);
1226 up_write(&iinfo->i_data_sem);
1227 } else {
1228 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1229 down_write(&iinfo->i_data_sem);
1230 udf_clear_extent_cache(inode);
1231 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1232 0x00, bsize - newsize -
1233 udf_file_entry_alloc_offset(inode));
1234 iinfo->i_lenAlloc = newsize;
1235 truncate_setsize(inode, newsize);
1236 up_write(&iinfo->i_data_sem);
1237 goto update_time;
1238 }
1239 err = block_truncate_page(inode->i_mapping, newsize,
1240 udf_get_block);
1241 if (err)
1242 return err;
1243 down_write(&iinfo->i_data_sem);
1244 udf_clear_extent_cache(inode);
1245 truncate_setsize(inode, newsize);
1246 udf_truncate_extents(inode);
1247 up_write(&iinfo->i_data_sem);
1248 }
1249 update_time:
1250 inode->i_mtime = inode->i_ctime = current_time(inode);
1251 if (IS_SYNC(inode))
1252 udf_sync_inode(inode);
1253 else
1254 mark_inode_dirty(inode);
1255 return 0;
1256 }
1257
1258 /*
1259 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1260 * arbitrary - just that we hopefully don't limit any real use of rewritten
1261 * inode on write-once media but avoid looping for too long on corrupted media.
1262 */
1263 #define UDF_MAX_ICB_NESTING 1024
1264
1265 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1266 {
1267 struct buffer_head *bh = NULL;
1268 struct fileEntry *fe;
1269 struct extendedFileEntry *efe;
1270 uint16_t ident;
1271 struct udf_inode_info *iinfo = UDF_I(inode);
1272 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1273 struct kernel_lb_addr *iloc = &iinfo->i_location;
1274 unsigned int link_count;
1275 unsigned int indirections = 0;
1276 int bs = inode->i_sb->s_blocksize;
1277 int ret = -EIO;
1278
1279 reread:
1280 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1281 udf_debug("partition reference: %d > logical volume partitions: %d\n",
1282 iloc->partitionReferenceNum, sbi->s_partitions);
1283 return -EIO;
1284 }
1285
1286 if (iloc->logicalBlockNum >=
1287 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1288 udf_debug("block=%d, partition=%d out of range\n",
1289 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1290 return -EIO;
1291 }
1292
1293 /*
1294 * Set defaults, but the inode is still incomplete!
1295 * Note: get_new_inode() sets the following on a new inode:
1296 * i_sb = sb
1297 * i_no = ino
1298 * i_flags = sb->s_flags
1299 * i_state = 0
1300 * clean_inode(): zero fills and sets
1301 * i_count = 1
1302 * i_nlink = 1
1303 * i_op = NULL;
1304 */
1305 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1306 if (!bh) {
1307 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1308 return -EIO;
1309 }
1310
1311 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1312 ident != TAG_IDENT_USE) {
1313 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1314 inode->i_ino, ident);
1315 goto out;
1316 }
1317
1318 fe = (struct fileEntry *)bh->b_data;
1319 efe = (struct extendedFileEntry *)bh->b_data;
1320
1321 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1322 struct buffer_head *ibh;
1323
1324 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1325 if (ident == TAG_IDENT_IE && ibh) {
1326 struct kernel_lb_addr loc;
1327 struct indirectEntry *ie;
1328
1329 ie = (struct indirectEntry *)ibh->b_data;
1330 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1331
1332 if (ie->indirectICB.extLength) {
1333 brelse(ibh);
1334 memcpy(&iinfo->i_location, &loc,
1335 sizeof(struct kernel_lb_addr));
1336 if (++indirections > UDF_MAX_ICB_NESTING) {
1337 udf_err(inode->i_sb,
1338 "too many ICBs in ICB hierarchy"
1339 " (max %d supported)\n",
1340 UDF_MAX_ICB_NESTING);
1341 goto out;
1342 }
1343 brelse(bh);
1344 goto reread;
1345 }
1346 }
1347 brelse(ibh);
1348 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1349 udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1350 le16_to_cpu(fe->icbTag.strategyType));
1351 goto out;
1352 }
1353 if (fe->icbTag.strategyType == cpu_to_le16(4))
1354 iinfo->i_strat4096 = 0;
1355 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1356 iinfo->i_strat4096 = 1;
1357
1358 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1359 ICBTAG_FLAG_AD_MASK;
1360 iinfo->i_unique = 0;
1361 iinfo->i_lenEAttr = 0;
1362 iinfo->i_lenExtents = 0;
1363 iinfo->i_lenAlloc = 0;
1364 iinfo->i_next_alloc_block = 0;
1365 iinfo->i_next_alloc_goal = 0;
1366 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1367 iinfo->i_efe = 1;
1368 iinfo->i_use = 0;
1369 ret = udf_alloc_i_data(inode, bs -
1370 sizeof(struct extendedFileEntry));
1371 if (ret)
1372 goto out;
1373 memcpy(iinfo->i_ext.i_data,
1374 bh->b_data + sizeof(struct extendedFileEntry),
1375 bs - sizeof(struct extendedFileEntry));
1376 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1377 iinfo->i_efe = 0;
1378 iinfo->i_use = 0;
1379 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1380 if (ret)
1381 goto out;
1382 memcpy(iinfo->i_ext.i_data,
1383 bh->b_data + sizeof(struct fileEntry),
1384 bs - sizeof(struct fileEntry));
1385 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1386 iinfo->i_efe = 0;
1387 iinfo->i_use = 1;
1388 iinfo->i_lenAlloc = le32_to_cpu(
1389 ((struct unallocSpaceEntry *)bh->b_data)->
1390 lengthAllocDescs);
1391 ret = udf_alloc_i_data(inode, bs -
1392 sizeof(struct unallocSpaceEntry));
1393 if (ret)
1394 goto out;
1395 memcpy(iinfo->i_ext.i_data,
1396 bh->b_data + sizeof(struct unallocSpaceEntry),
1397 bs - sizeof(struct unallocSpaceEntry));
1398 return 0;
1399 }
1400
1401 ret = -EIO;
1402 read_lock(&sbi->s_cred_lock);
1403 i_uid_write(inode, le32_to_cpu(fe->uid));
1404 if (!uid_valid(inode->i_uid) ||
1405 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1406 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1407 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1408
1409 i_gid_write(inode, le32_to_cpu(fe->gid));
1410 if (!gid_valid(inode->i_gid) ||
1411 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1412 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1413 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1414
1415 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1416 sbi->s_fmode != UDF_INVALID_MODE)
1417 inode->i_mode = sbi->s_fmode;
1418 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1419 sbi->s_dmode != UDF_INVALID_MODE)
1420 inode->i_mode = sbi->s_dmode;
1421 else
1422 inode->i_mode = udf_convert_permissions(fe);
1423 inode->i_mode &= ~sbi->s_umask;
1424 read_unlock(&sbi->s_cred_lock);
1425
1426 link_count = le16_to_cpu(fe->fileLinkCount);
1427 if (!link_count) {
1428 if (!hidden_inode) {
1429 ret = -ESTALE;
1430 goto out;
1431 }
1432 link_count = 1;
1433 }
1434 set_nlink(inode, link_count);
1435
1436 inode->i_size = le64_to_cpu(fe->informationLength);
1437 iinfo->i_lenExtents = inode->i_size;
1438
1439 if (iinfo->i_efe == 0) {
1440 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1441 (inode->i_sb->s_blocksize_bits - 9);
1442
1443 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1444 inode->i_atime = sbi->s_record_time;
1445
1446 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1447 fe->modificationTime))
1448 inode->i_mtime = sbi->s_record_time;
1449
1450 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1451 inode->i_ctime = sbi->s_record_time;
1452
1453 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1454 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1455 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1456 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1457 } else {
1458 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1459 (inode->i_sb->s_blocksize_bits - 9);
1460
1461 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1462 inode->i_atime = sbi->s_record_time;
1463
1464 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1465 efe->modificationTime))
1466 inode->i_mtime = sbi->s_record_time;
1467
1468 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1469 iinfo->i_crtime = sbi->s_record_time;
1470
1471 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1472 inode->i_ctime = sbi->s_record_time;
1473
1474 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1475 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1476 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1477 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1478 }
1479 inode->i_generation = iinfo->i_unique;
1480
1481 /*
1482 * Sanity check length of allocation descriptors and extended attrs to
1483 * avoid integer overflows
1484 */
1485 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1486 goto out;
1487 /* Now do exact checks */
1488 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1489 goto out;
1490 /* Sanity checks for files in ICB so that we don't get confused later */
1491 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1492 /*
1493 * For file in ICB data is stored in allocation descriptor
1494 * so sizes should match
1495 */
1496 if (iinfo->i_lenAlloc != inode->i_size)
1497 goto out;
1498 /* File in ICB has to fit in there... */
1499 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1500 goto out;
1501 }
1502
1503 switch (fe->icbTag.fileType) {
1504 case ICBTAG_FILE_TYPE_DIRECTORY:
1505 inode->i_op = &udf_dir_inode_operations;
1506 inode->i_fop = &udf_dir_operations;
1507 inode->i_mode |= S_IFDIR;
1508 inc_nlink(inode);
1509 break;
1510 case ICBTAG_FILE_TYPE_REALTIME:
1511 case ICBTAG_FILE_TYPE_REGULAR:
1512 case ICBTAG_FILE_TYPE_UNDEF:
1513 case ICBTAG_FILE_TYPE_VAT20:
1514 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1515 inode->i_data.a_ops = &udf_adinicb_aops;
1516 else
1517 inode->i_data.a_ops = &udf_aops;
1518 inode->i_op = &udf_file_inode_operations;
1519 inode->i_fop = &udf_file_operations;
1520 inode->i_mode |= S_IFREG;
1521 break;
1522 case ICBTAG_FILE_TYPE_BLOCK:
1523 inode->i_mode |= S_IFBLK;
1524 break;
1525 case ICBTAG_FILE_TYPE_CHAR:
1526 inode->i_mode |= S_IFCHR;
1527 break;
1528 case ICBTAG_FILE_TYPE_FIFO:
1529 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1530 break;
1531 case ICBTAG_FILE_TYPE_SOCKET:
1532 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1533 break;
1534 case ICBTAG_FILE_TYPE_SYMLINK:
1535 inode->i_data.a_ops = &udf_symlink_aops;
1536 inode->i_op = &udf_symlink_inode_operations;
1537 inode_nohighmem(inode);
1538 inode->i_mode = S_IFLNK | S_IRWXUGO;
1539 break;
1540 case ICBTAG_FILE_TYPE_MAIN:
1541 udf_debug("METADATA FILE-----\n");
1542 break;
1543 case ICBTAG_FILE_TYPE_MIRROR:
1544 udf_debug("METADATA MIRROR FILE-----\n");
1545 break;
1546 case ICBTAG_FILE_TYPE_BITMAP:
1547 udf_debug("METADATA BITMAP FILE-----\n");
1548 break;
1549 default:
1550 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1551 inode->i_ino, fe->icbTag.fileType);
1552 goto out;
1553 }
1554 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1555 struct deviceSpec *dsea =
1556 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1557 if (dsea) {
1558 init_special_inode(inode, inode->i_mode,
1559 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1560 le32_to_cpu(dsea->minorDeviceIdent)));
1561 /* Developer ID ??? */
1562 } else
1563 goto out;
1564 }
1565 ret = 0;
1566 out:
1567 brelse(bh);
1568 return ret;
1569 }
1570
1571 static int udf_alloc_i_data(struct inode *inode, size_t size)
1572 {
1573 struct udf_inode_info *iinfo = UDF_I(inode);
1574 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1575
1576 if (!iinfo->i_ext.i_data) {
1577 udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1578 inode->i_ino);
1579 return -ENOMEM;
1580 }
1581
1582 return 0;
1583 }
1584
1585 static umode_t udf_convert_permissions(struct fileEntry *fe)
1586 {
1587 umode_t mode;
1588 uint32_t permissions;
1589 uint32_t flags;
1590
1591 permissions = le32_to_cpu(fe->permissions);
1592 flags = le16_to_cpu(fe->icbTag.flags);
1593
1594 mode = ((permissions) & S_IRWXO) |
1595 ((permissions >> 2) & S_IRWXG) |
1596 ((permissions >> 4) & S_IRWXU) |
1597 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1598 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1599 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1600
1601 return mode;
1602 }
1603
1604 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1605 {
1606 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1607 }
1608
1609 static int udf_sync_inode(struct inode *inode)
1610 {
1611 return udf_update_inode(inode, 1);
1612 }
1613
1614 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec time)
1615 {
1616 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1617 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1618 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1619 iinfo->i_crtime = time;
1620 }
1621
1622 static int udf_update_inode(struct inode *inode, int do_sync)
1623 {
1624 struct buffer_head *bh = NULL;
1625 struct fileEntry *fe;
1626 struct extendedFileEntry *efe;
1627 uint64_t lb_recorded;
1628 uint32_t udfperms;
1629 uint16_t icbflags;
1630 uint16_t crclen;
1631 int err = 0;
1632 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1633 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1634 struct udf_inode_info *iinfo = UDF_I(inode);
1635
1636 bh = udf_tgetblk(inode->i_sb,
1637 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1638 if (!bh) {
1639 udf_debug("getblk failure\n");
1640 return -EIO;
1641 }
1642
1643 lock_buffer(bh);
1644 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1645 fe = (struct fileEntry *)bh->b_data;
1646 efe = (struct extendedFileEntry *)bh->b_data;
1647
1648 if (iinfo->i_use) {
1649 struct unallocSpaceEntry *use =
1650 (struct unallocSpaceEntry *)bh->b_data;
1651
1652 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1653 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1654 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1655 sizeof(struct unallocSpaceEntry));
1656 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1657 crclen = sizeof(struct unallocSpaceEntry);
1658
1659 goto finish;
1660 }
1661
1662 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1663 fe->uid = cpu_to_le32(-1);
1664 else
1665 fe->uid = cpu_to_le32(i_uid_read(inode));
1666
1667 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1668 fe->gid = cpu_to_le32(-1);
1669 else
1670 fe->gid = cpu_to_le32(i_gid_read(inode));
1671
1672 udfperms = ((inode->i_mode & S_IRWXO)) |
1673 ((inode->i_mode & S_IRWXG) << 2) |
1674 ((inode->i_mode & S_IRWXU) << 4);
1675
1676 udfperms |= (le32_to_cpu(fe->permissions) &
1677 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1678 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1679 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1680 fe->permissions = cpu_to_le32(udfperms);
1681
1682 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1683 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1684 else
1685 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1686
1687 fe->informationLength = cpu_to_le64(inode->i_size);
1688
1689 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1690 struct regid *eid;
1691 struct deviceSpec *dsea =
1692 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1693 if (!dsea) {
1694 dsea = (struct deviceSpec *)
1695 udf_add_extendedattr(inode,
1696 sizeof(struct deviceSpec) +
1697 sizeof(struct regid), 12, 0x3);
1698 dsea->attrType = cpu_to_le32(12);
1699 dsea->attrSubtype = 1;
1700 dsea->attrLength = cpu_to_le32(
1701 sizeof(struct deviceSpec) +
1702 sizeof(struct regid));
1703 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1704 }
1705 eid = (struct regid *)dsea->impUse;
1706 memset(eid, 0, sizeof(struct regid));
1707 strcpy(eid->ident, UDF_ID_DEVELOPER);
1708 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1709 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1710 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1711 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1712 }
1713
1714 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1715 lb_recorded = 0; /* No extents => no blocks! */
1716 else
1717 lb_recorded =
1718 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1719 (blocksize_bits - 9);
1720
1721 if (iinfo->i_efe == 0) {
1722 memcpy(bh->b_data + sizeof(struct fileEntry),
1723 iinfo->i_ext.i_data,
1724 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1725 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1726
1727 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1728 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1729 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1730 memset(&(fe->impIdent), 0, sizeof(struct regid));
1731 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1732 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1733 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1734 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1735 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1736 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1737 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1738 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1739 crclen = sizeof(struct fileEntry);
1740 } else {
1741 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1742 iinfo->i_ext.i_data,
1743 inode->i_sb->s_blocksize -
1744 sizeof(struct extendedFileEntry));
1745 efe->objectSize = cpu_to_le64(inode->i_size);
1746 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1747
1748 udf_adjust_time(iinfo, inode->i_atime);
1749 udf_adjust_time(iinfo, inode->i_mtime);
1750 udf_adjust_time(iinfo, inode->i_ctime);
1751
1752 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1753 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1754 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1755 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1756
1757 memset(&(efe->impIdent), 0, sizeof(struct regid));
1758 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1759 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1760 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1761 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1762 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1763 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1764 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1765 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1766 crclen = sizeof(struct extendedFileEntry);
1767 }
1768
1769 finish:
1770 if (iinfo->i_strat4096) {
1771 fe->icbTag.strategyType = cpu_to_le16(4096);
1772 fe->icbTag.strategyParameter = cpu_to_le16(1);
1773 fe->icbTag.numEntries = cpu_to_le16(2);
1774 } else {
1775 fe->icbTag.strategyType = cpu_to_le16(4);
1776 fe->icbTag.numEntries = cpu_to_le16(1);
1777 }
1778
1779 if (iinfo->i_use)
1780 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1781 else if (S_ISDIR(inode->i_mode))
1782 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1783 else if (S_ISREG(inode->i_mode))
1784 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1785 else if (S_ISLNK(inode->i_mode))
1786 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1787 else if (S_ISBLK(inode->i_mode))
1788 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1789 else if (S_ISCHR(inode->i_mode))
1790 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1791 else if (S_ISFIFO(inode->i_mode))
1792 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1793 else if (S_ISSOCK(inode->i_mode))
1794 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1795
1796 icbflags = iinfo->i_alloc_type |
1797 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1798 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1799 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1800 (le16_to_cpu(fe->icbTag.flags) &
1801 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1802 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1803
1804 fe->icbTag.flags = cpu_to_le16(icbflags);
1805 if (sbi->s_udfrev >= 0x0200)
1806 fe->descTag.descVersion = cpu_to_le16(3);
1807 else
1808 fe->descTag.descVersion = cpu_to_le16(2);
1809 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1810 fe->descTag.tagLocation = cpu_to_le32(
1811 iinfo->i_location.logicalBlockNum);
1812 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1813 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1814 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1815 crclen));
1816 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1817
1818 set_buffer_uptodate(bh);
1819 unlock_buffer(bh);
1820
1821 /* write the data blocks */
1822 mark_buffer_dirty(bh);
1823 if (do_sync) {
1824 sync_dirty_buffer(bh);
1825 if (buffer_write_io_error(bh)) {
1826 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1827 inode->i_ino);
1828 err = -EIO;
1829 }
1830 }
1831 brelse(bh);
1832
1833 return err;
1834 }
1835
1836 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1837 bool hidden_inode)
1838 {
1839 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1840 struct inode *inode = iget_locked(sb, block);
1841 int err;
1842
1843 if (!inode)
1844 return ERR_PTR(-ENOMEM);
1845
1846 if (!(inode->i_state & I_NEW))
1847 return inode;
1848
1849 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1850 err = udf_read_inode(inode, hidden_inode);
1851 if (err < 0) {
1852 iget_failed(inode);
1853 return ERR_PTR(err);
1854 }
1855 unlock_new_inode(inode);
1856
1857 return inode;
1858 }
1859
1860 int udf_setup_indirect_aext(struct inode *inode, int block,
1861 struct extent_position *epos)
1862 {
1863 struct super_block *sb = inode->i_sb;
1864 struct buffer_head *bh;
1865 struct allocExtDesc *aed;
1866 struct extent_position nepos;
1867 struct kernel_lb_addr neloc;
1868 int ver, adsize;
1869
1870 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1871 adsize = sizeof(struct short_ad);
1872 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1873 adsize = sizeof(struct long_ad);
1874 else
1875 return -EIO;
1876
1877 neloc.logicalBlockNum = block;
1878 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1879
1880 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1881 if (!bh)
1882 return -EIO;
1883 lock_buffer(bh);
1884 memset(bh->b_data, 0x00, sb->s_blocksize);
1885 set_buffer_uptodate(bh);
1886 unlock_buffer(bh);
1887 mark_buffer_dirty_inode(bh, inode);
1888
1889 aed = (struct allocExtDesc *)(bh->b_data);
1890 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1891 aed->previousAllocExtLocation =
1892 cpu_to_le32(epos->block.logicalBlockNum);
1893 }
1894 aed->lengthAllocDescs = cpu_to_le32(0);
1895 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1896 ver = 3;
1897 else
1898 ver = 2;
1899 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1900 sizeof(struct tag));
1901
1902 nepos.block = neloc;
1903 nepos.offset = sizeof(struct allocExtDesc);
1904 nepos.bh = bh;
1905
1906 /*
1907 * Do we have to copy current last extent to make space for indirect
1908 * one?
1909 */
1910 if (epos->offset + adsize > sb->s_blocksize) {
1911 struct kernel_lb_addr cp_loc;
1912 uint32_t cp_len;
1913 int cp_type;
1914
1915 epos->offset -= adsize;
1916 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1917 cp_len |= ((uint32_t)cp_type) << 30;
1918
1919 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1920 udf_write_aext(inode, epos, &nepos.block,
1921 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1922 } else {
1923 __udf_add_aext(inode, epos, &nepos.block,
1924 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1925 }
1926
1927 brelse(epos->bh);
1928 *epos = nepos;
1929
1930 return 0;
1931 }
1932
1933 /*
1934 * Append extent at the given position - should be the first free one in inode
1935 * / indirect extent. This function assumes there is enough space in the inode
1936 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1937 */
1938 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1939 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1940 {
1941 struct udf_inode_info *iinfo = UDF_I(inode);
1942 struct allocExtDesc *aed;
1943 int adsize;
1944
1945 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1946 adsize = sizeof(struct short_ad);
1947 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1948 adsize = sizeof(struct long_ad);
1949 else
1950 return -EIO;
1951
1952 if (!epos->bh) {
1953 WARN_ON(iinfo->i_lenAlloc !=
1954 epos->offset - udf_file_entry_alloc_offset(inode));
1955 } else {
1956 aed = (struct allocExtDesc *)epos->bh->b_data;
1957 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1958 epos->offset - sizeof(struct allocExtDesc));
1959 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
1960 }
1961
1962 udf_write_aext(inode, epos, eloc, elen, inc);
1963
1964 if (!epos->bh) {
1965 iinfo->i_lenAlloc += adsize;
1966 mark_inode_dirty(inode);
1967 } else {
1968 aed = (struct allocExtDesc *)epos->bh->b_data;
1969 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1970 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1971 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1972 udf_update_tag(epos->bh->b_data,
1973 epos->offset + (inc ? 0 : adsize));
1974 else
1975 udf_update_tag(epos->bh->b_data,
1976 sizeof(struct allocExtDesc));
1977 mark_buffer_dirty_inode(epos->bh, inode);
1978 }
1979
1980 return 0;
1981 }
1982
1983 /*
1984 * Append extent at given position - should be the first free one in inode
1985 * / indirect extent. Takes care of allocating and linking indirect blocks.
1986 */
1987 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1988 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1989 {
1990 int adsize;
1991 struct super_block *sb = inode->i_sb;
1992
1993 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1994 adsize = sizeof(struct short_ad);
1995 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1996 adsize = sizeof(struct long_ad);
1997 else
1998 return -EIO;
1999
2000 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2001 int err;
2002 int new_block;
2003
2004 new_block = udf_new_block(sb, NULL,
2005 epos->block.partitionReferenceNum,
2006 epos->block.logicalBlockNum, &err);
2007 if (!new_block)
2008 return -ENOSPC;
2009
2010 err = udf_setup_indirect_aext(inode, new_block, epos);
2011 if (err)
2012 return err;
2013 }
2014
2015 return __udf_add_aext(inode, epos, eloc, elen, inc);
2016 }
2017
2018 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2019 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2020 {
2021 int adsize;
2022 uint8_t *ptr;
2023 struct short_ad *sad;
2024 struct long_ad *lad;
2025 struct udf_inode_info *iinfo = UDF_I(inode);
2026
2027 if (!epos->bh)
2028 ptr = iinfo->i_ext.i_data + epos->offset -
2029 udf_file_entry_alloc_offset(inode) +
2030 iinfo->i_lenEAttr;
2031 else
2032 ptr = epos->bh->b_data + epos->offset;
2033
2034 switch (iinfo->i_alloc_type) {
2035 case ICBTAG_FLAG_AD_SHORT:
2036 sad = (struct short_ad *)ptr;
2037 sad->extLength = cpu_to_le32(elen);
2038 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2039 adsize = sizeof(struct short_ad);
2040 break;
2041 case ICBTAG_FLAG_AD_LONG:
2042 lad = (struct long_ad *)ptr;
2043 lad->extLength = cpu_to_le32(elen);
2044 lad->extLocation = cpu_to_lelb(*eloc);
2045 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2046 adsize = sizeof(struct long_ad);
2047 break;
2048 default:
2049 return;
2050 }
2051
2052 if (epos->bh) {
2053 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2054 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2055 struct allocExtDesc *aed =
2056 (struct allocExtDesc *)epos->bh->b_data;
2057 udf_update_tag(epos->bh->b_data,
2058 le32_to_cpu(aed->lengthAllocDescs) +
2059 sizeof(struct allocExtDesc));
2060 }
2061 mark_buffer_dirty_inode(epos->bh, inode);
2062 } else {
2063 mark_inode_dirty(inode);
2064 }
2065
2066 if (inc)
2067 epos->offset += adsize;
2068 }
2069
2070 /*
2071 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2072 * someone does some weird stuff.
2073 */
2074 #define UDF_MAX_INDIR_EXTS 16
2075
2076 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2077 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2078 {
2079 int8_t etype;
2080 unsigned int indirections = 0;
2081
2082 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2083 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2084 int block;
2085
2086 if (++indirections > UDF_MAX_INDIR_EXTS) {
2087 udf_err(inode->i_sb,
2088 "too many indirect extents in inode %lu\n",
2089 inode->i_ino);
2090 return -1;
2091 }
2092
2093 epos->block = *eloc;
2094 epos->offset = sizeof(struct allocExtDesc);
2095 brelse(epos->bh);
2096 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2097 epos->bh = udf_tread(inode->i_sb, block);
2098 if (!epos->bh) {
2099 udf_debug("reading block %d failed!\n", block);
2100 return -1;
2101 }
2102 }
2103
2104 return etype;
2105 }
2106
2107 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2108 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2109 {
2110 int alen;
2111 int8_t etype;
2112 uint8_t *ptr;
2113 struct short_ad *sad;
2114 struct long_ad *lad;
2115 struct udf_inode_info *iinfo = UDF_I(inode);
2116
2117 if (!epos->bh) {
2118 if (!epos->offset)
2119 epos->offset = udf_file_entry_alloc_offset(inode);
2120 ptr = iinfo->i_ext.i_data + epos->offset -
2121 udf_file_entry_alloc_offset(inode) +
2122 iinfo->i_lenEAttr;
2123 alen = udf_file_entry_alloc_offset(inode) +
2124 iinfo->i_lenAlloc;
2125 } else {
2126 if (!epos->offset)
2127 epos->offset = sizeof(struct allocExtDesc);
2128 ptr = epos->bh->b_data + epos->offset;
2129 alen = sizeof(struct allocExtDesc) +
2130 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2131 lengthAllocDescs);
2132 }
2133
2134 switch (iinfo->i_alloc_type) {
2135 case ICBTAG_FLAG_AD_SHORT:
2136 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2137 if (!sad)
2138 return -1;
2139 etype = le32_to_cpu(sad->extLength) >> 30;
2140 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2141 eloc->partitionReferenceNum =
2142 iinfo->i_location.partitionReferenceNum;
2143 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2144 break;
2145 case ICBTAG_FLAG_AD_LONG:
2146 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2147 if (!lad)
2148 return -1;
2149 etype = le32_to_cpu(lad->extLength) >> 30;
2150 *eloc = lelb_to_cpu(lad->extLocation);
2151 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2152 break;
2153 default:
2154 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2155 return -1;
2156 }
2157
2158 return etype;
2159 }
2160
2161 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2162 struct kernel_lb_addr neloc, uint32_t nelen)
2163 {
2164 struct kernel_lb_addr oeloc;
2165 uint32_t oelen;
2166 int8_t etype;
2167
2168 if (epos.bh)
2169 get_bh(epos.bh);
2170
2171 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2172 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2173 neloc = oeloc;
2174 nelen = (etype << 30) | oelen;
2175 }
2176 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2177 brelse(epos.bh);
2178
2179 return (nelen >> 30);
2180 }
2181
2182 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2183 struct kernel_lb_addr eloc, uint32_t elen)
2184 {
2185 struct extent_position oepos;
2186 int adsize;
2187 int8_t etype;
2188 struct allocExtDesc *aed;
2189 struct udf_inode_info *iinfo;
2190
2191 if (epos.bh) {
2192 get_bh(epos.bh);
2193 get_bh(epos.bh);
2194 }
2195
2196 iinfo = UDF_I(inode);
2197 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2198 adsize = sizeof(struct short_ad);
2199 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2200 adsize = sizeof(struct long_ad);
2201 else
2202 adsize = 0;
2203
2204 oepos = epos;
2205 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2206 return -1;
2207
2208 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2209 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2210 if (oepos.bh != epos.bh) {
2211 oepos.block = epos.block;
2212 brelse(oepos.bh);
2213 get_bh(epos.bh);
2214 oepos.bh = epos.bh;
2215 oepos.offset = epos.offset - adsize;
2216 }
2217 }
2218 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2219 elen = 0;
2220
2221 if (epos.bh != oepos.bh) {
2222 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2223 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2224 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2225 if (!oepos.bh) {
2226 iinfo->i_lenAlloc -= (adsize * 2);
2227 mark_inode_dirty(inode);
2228 } else {
2229 aed = (struct allocExtDesc *)oepos.bh->b_data;
2230 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2231 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2232 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2233 udf_update_tag(oepos.bh->b_data,
2234 oepos.offset - (2 * adsize));
2235 else
2236 udf_update_tag(oepos.bh->b_data,
2237 sizeof(struct allocExtDesc));
2238 mark_buffer_dirty_inode(oepos.bh, inode);
2239 }
2240 } else {
2241 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2242 if (!oepos.bh) {
2243 iinfo->i_lenAlloc -= adsize;
2244 mark_inode_dirty(inode);
2245 } else {
2246 aed = (struct allocExtDesc *)oepos.bh->b_data;
2247 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2248 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2249 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2250 udf_update_tag(oepos.bh->b_data,
2251 epos.offset - adsize);
2252 else
2253 udf_update_tag(oepos.bh->b_data,
2254 sizeof(struct allocExtDesc));
2255 mark_buffer_dirty_inode(oepos.bh, inode);
2256 }
2257 }
2258
2259 brelse(epos.bh);
2260 brelse(oepos.bh);
2261
2262 return (elen >> 30);
2263 }
2264
2265 int8_t inode_bmap(struct inode *inode, sector_t block,
2266 struct extent_position *pos, struct kernel_lb_addr *eloc,
2267 uint32_t *elen, sector_t *offset)
2268 {
2269 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2270 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2271 int8_t etype;
2272 struct udf_inode_info *iinfo;
2273
2274 iinfo = UDF_I(inode);
2275 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2276 pos->offset = 0;
2277 pos->block = iinfo->i_location;
2278 pos->bh = NULL;
2279 }
2280 *elen = 0;
2281 do {
2282 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2283 if (etype == -1) {
2284 *offset = (bcount - lbcount) >> blocksize_bits;
2285 iinfo->i_lenExtents = lbcount;
2286 return -1;
2287 }
2288 lbcount += *elen;
2289 } while (lbcount <= bcount);
2290 /* update extent cache */
2291 udf_update_extent_cache(inode, lbcount - *elen, pos);
2292 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2293
2294 return etype;
2295 }
2296
2297 long udf_block_map(struct inode *inode, sector_t block)
2298 {
2299 struct kernel_lb_addr eloc;
2300 uint32_t elen;
2301 sector_t offset;
2302 struct extent_position epos = {};
2303 int ret;
2304
2305 down_read(&UDF_I(inode)->i_data_sem);
2306
2307 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2308 (EXT_RECORDED_ALLOCATED >> 30))
2309 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2310 else
2311 ret = 0;
2312
2313 up_read(&UDF_I(inode)->i_data_sem);
2314 brelse(epos.bh);
2315
2316 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2317 return udf_fixed_to_variable(ret);
2318 else
2319 return ret;
2320 }