]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/udf/inode.c
Merge tag 'pinctrl-v4.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-zesty-kernel.git] / fs / udf / inode.c
1 /*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39 #include <linux/crc-itu-t.h>
40 #include <linux/mpage.h>
41 #include <linux/uio.h>
42
43 #include "udf_i.h"
44 #include "udf_sb.h"
45
46 MODULE_AUTHOR("Ben Fennema");
47 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
48 MODULE_LICENSE("GPL");
49
50 #define EXTENT_MERGE_SIZE 5
51
52 static umode_t udf_convert_permissions(struct fileEntry *);
53 static int udf_update_inode(struct inode *, int);
54 static int udf_sync_inode(struct inode *inode);
55 static int udf_alloc_i_data(struct inode *inode, size_t size);
56 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 struct kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69
70 static void __udf_clear_extent_cache(struct inode *inode)
71 {
72 struct udf_inode_info *iinfo = UDF_I(inode);
73
74 if (iinfo->cached_extent.lstart != -1) {
75 brelse(iinfo->cached_extent.epos.bh);
76 iinfo->cached_extent.lstart = -1;
77 }
78 }
79
80 /* Invalidate extent cache */
81 static void udf_clear_extent_cache(struct inode *inode)
82 {
83 struct udf_inode_info *iinfo = UDF_I(inode);
84
85 spin_lock(&iinfo->i_extent_cache_lock);
86 __udf_clear_extent_cache(inode);
87 spin_unlock(&iinfo->i_extent_cache_lock);
88 }
89
90 /* Return contents of extent cache */
91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 loff_t *lbcount, struct extent_position *pos)
93 {
94 struct udf_inode_info *iinfo = UDF_I(inode);
95 int ret = 0;
96
97 spin_lock(&iinfo->i_extent_cache_lock);
98 if ((iinfo->cached_extent.lstart <= bcount) &&
99 (iinfo->cached_extent.lstart != -1)) {
100 /* Cache hit */
101 *lbcount = iinfo->cached_extent.lstart;
102 memcpy(pos, &iinfo->cached_extent.epos,
103 sizeof(struct extent_position));
104 if (pos->bh)
105 get_bh(pos->bh);
106 ret = 1;
107 }
108 spin_unlock(&iinfo->i_extent_cache_lock);
109 return ret;
110 }
111
112 /* Add extent to extent cache */
113 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 struct extent_position *pos, int next_epos)
115 {
116 struct udf_inode_info *iinfo = UDF_I(inode);
117
118 spin_lock(&iinfo->i_extent_cache_lock);
119 /* Invalidate previously cached extent */
120 __udf_clear_extent_cache(inode);
121 if (pos->bh)
122 get_bh(pos->bh);
123 memcpy(&iinfo->cached_extent.epos, pos,
124 sizeof(struct extent_position));
125 iinfo->cached_extent.lstart = estart;
126 if (next_epos)
127 switch (iinfo->i_alloc_type) {
128 case ICBTAG_FLAG_AD_SHORT:
129 iinfo->cached_extent.epos.offset -=
130 sizeof(struct short_ad);
131 break;
132 case ICBTAG_FLAG_AD_LONG:
133 iinfo->cached_extent.epos.offset -=
134 sizeof(struct long_ad);
135 }
136 spin_unlock(&iinfo->i_extent_cache_lock);
137 }
138
139 void udf_evict_inode(struct inode *inode)
140 {
141 struct udf_inode_info *iinfo = UDF_I(inode);
142 int want_delete = 0;
143
144 if (!inode->i_nlink && !is_bad_inode(inode)) {
145 want_delete = 1;
146 udf_setsize(inode, 0);
147 udf_update_inode(inode, IS_SYNC(inode));
148 }
149 truncate_inode_pages_final(&inode->i_data);
150 invalidate_inode_buffers(inode);
151 clear_inode(inode);
152 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
153 inode->i_size != iinfo->i_lenExtents) {
154 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
155 inode->i_ino, inode->i_mode,
156 (unsigned long long)inode->i_size,
157 (unsigned long long)iinfo->i_lenExtents);
158 }
159 kfree(iinfo->i_ext.i_data);
160 iinfo->i_ext.i_data = NULL;
161 udf_clear_extent_cache(inode);
162 if (want_delete) {
163 udf_free_inode(inode);
164 }
165 }
166
167 static void udf_write_failed(struct address_space *mapping, loff_t to)
168 {
169 struct inode *inode = mapping->host;
170 struct udf_inode_info *iinfo = UDF_I(inode);
171 loff_t isize = inode->i_size;
172
173 if (to > isize) {
174 truncate_pagecache(inode, isize);
175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 down_write(&iinfo->i_data_sem);
177 udf_clear_extent_cache(inode);
178 udf_truncate_extents(inode);
179 up_write(&iinfo->i_data_sem);
180 }
181 }
182 }
183
184 static int udf_writepage(struct page *page, struct writeback_control *wbc)
185 {
186 return block_write_full_page(page, udf_get_block, wbc);
187 }
188
189 static int udf_writepages(struct address_space *mapping,
190 struct writeback_control *wbc)
191 {
192 return mpage_writepages(mapping, wbc, udf_get_block);
193 }
194
195 static int udf_readpage(struct file *file, struct page *page)
196 {
197 return mpage_readpage(page, udf_get_block);
198 }
199
200 static int udf_readpages(struct file *file, struct address_space *mapping,
201 struct list_head *pages, unsigned nr_pages)
202 {
203 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
204 }
205
206 static int udf_write_begin(struct file *file, struct address_space *mapping,
207 loff_t pos, unsigned len, unsigned flags,
208 struct page **pagep, void **fsdata)
209 {
210 int ret;
211
212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213 if (unlikely(ret))
214 udf_write_failed(mapping, pos + len);
215 return ret;
216 }
217
218 static ssize_t udf_direct_IO(int rw, struct kiocb *iocb,
219 struct iov_iter *iter,
220 loff_t offset)
221 {
222 struct file *file = iocb->ki_filp;
223 struct address_space *mapping = file->f_mapping;
224 struct inode *inode = mapping->host;
225 size_t count = iov_iter_count(iter);
226 ssize_t ret;
227
228 ret = blockdev_direct_IO(rw, iocb, inode, iter, offset, udf_get_block);
229 if (unlikely(ret < 0 && (rw & WRITE)))
230 udf_write_failed(mapping, offset + count);
231 return ret;
232 }
233
234 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
235 {
236 return generic_block_bmap(mapping, block, udf_get_block);
237 }
238
239 const struct address_space_operations udf_aops = {
240 .readpage = udf_readpage,
241 .readpages = udf_readpages,
242 .writepage = udf_writepage,
243 .writepages = udf_writepages,
244 .write_begin = udf_write_begin,
245 .write_end = generic_write_end,
246 .direct_IO = udf_direct_IO,
247 .bmap = udf_bmap,
248 };
249
250 /*
251 * Expand file stored in ICB to a normal one-block-file
252 *
253 * This function requires i_data_sem for writing and releases it.
254 * This function requires i_mutex held
255 */
256 int udf_expand_file_adinicb(struct inode *inode)
257 {
258 struct page *page;
259 char *kaddr;
260 struct udf_inode_info *iinfo = UDF_I(inode);
261 int err;
262 struct writeback_control udf_wbc = {
263 .sync_mode = WB_SYNC_NONE,
264 .nr_to_write = 1,
265 };
266
267 WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex));
268 if (!iinfo->i_lenAlloc) {
269 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
270 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
271 else
272 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
273 /* from now on we have normal address_space methods */
274 inode->i_data.a_ops = &udf_aops;
275 up_write(&iinfo->i_data_sem);
276 mark_inode_dirty(inode);
277 return 0;
278 }
279 /*
280 * Release i_data_sem so that we can lock a page - page lock ranks
281 * above i_data_sem. i_mutex still protects us against file changes.
282 */
283 up_write(&iinfo->i_data_sem);
284
285 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
286 if (!page)
287 return -ENOMEM;
288
289 if (!PageUptodate(page)) {
290 kaddr = kmap(page);
291 memset(kaddr + iinfo->i_lenAlloc, 0x00,
292 PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
293 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
294 iinfo->i_lenAlloc);
295 flush_dcache_page(page);
296 SetPageUptodate(page);
297 kunmap(page);
298 }
299 down_write(&iinfo->i_data_sem);
300 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
301 iinfo->i_lenAlloc);
302 iinfo->i_lenAlloc = 0;
303 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
304 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
305 else
306 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
307 /* from now on we have normal address_space methods */
308 inode->i_data.a_ops = &udf_aops;
309 up_write(&iinfo->i_data_sem);
310 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
311 if (err) {
312 /* Restore everything back so that we don't lose data... */
313 lock_page(page);
314 kaddr = kmap(page);
315 down_write(&iinfo->i_data_sem);
316 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
317 inode->i_size);
318 kunmap(page);
319 unlock_page(page);
320 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
321 inode->i_data.a_ops = &udf_adinicb_aops;
322 up_write(&iinfo->i_data_sem);
323 }
324 page_cache_release(page);
325 mark_inode_dirty(inode);
326
327 return err;
328 }
329
330 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
331 int *err)
332 {
333 int newblock;
334 struct buffer_head *dbh = NULL;
335 struct kernel_lb_addr eloc;
336 uint8_t alloctype;
337 struct extent_position epos;
338
339 struct udf_fileident_bh sfibh, dfibh;
340 loff_t f_pos = udf_ext0_offset(inode);
341 int size = udf_ext0_offset(inode) + inode->i_size;
342 struct fileIdentDesc cfi, *sfi, *dfi;
343 struct udf_inode_info *iinfo = UDF_I(inode);
344
345 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
346 alloctype = ICBTAG_FLAG_AD_SHORT;
347 else
348 alloctype = ICBTAG_FLAG_AD_LONG;
349
350 if (!inode->i_size) {
351 iinfo->i_alloc_type = alloctype;
352 mark_inode_dirty(inode);
353 return NULL;
354 }
355
356 /* alloc block, and copy data to it */
357 *block = udf_new_block(inode->i_sb, inode,
358 iinfo->i_location.partitionReferenceNum,
359 iinfo->i_location.logicalBlockNum, err);
360 if (!(*block))
361 return NULL;
362 newblock = udf_get_pblock(inode->i_sb, *block,
363 iinfo->i_location.partitionReferenceNum,
364 0);
365 if (!newblock)
366 return NULL;
367 dbh = udf_tgetblk(inode->i_sb, newblock);
368 if (!dbh)
369 return NULL;
370 lock_buffer(dbh);
371 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
372 set_buffer_uptodate(dbh);
373 unlock_buffer(dbh);
374 mark_buffer_dirty_inode(dbh, inode);
375
376 sfibh.soffset = sfibh.eoffset =
377 f_pos & (inode->i_sb->s_blocksize - 1);
378 sfibh.sbh = sfibh.ebh = NULL;
379 dfibh.soffset = dfibh.eoffset = 0;
380 dfibh.sbh = dfibh.ebh = dbh;
381 while (f_pos < size) {
382 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
383 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
384 NULL, NULL, NULL);
385 if (!sfi) {
386 brelse(dbh);
387 return NULL;
388 }
389 iinfo->i_alloc_type = alloctype;
390 sfi->descTag.tagLocation = cpu_to_le32(*block);
391 dfibh.soffset = dfibh.eoffset;
392 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
393 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
394 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
395 sfi->fileIdent +
396 le16_to_cpu(sfi->lengthOfImpUse))) {
397 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
398 brelse(dbh);
399 return NULL;
400 }
401 }
402 mark_buffer_dirty_inode(dbh, inode);
403
404 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
405 iinfo->i_lenAlloc);
406 iinfo->i_lenAlloc = 0;
407 eloc.logicalBlockNum = *block;
408 eloc.partitionReferenceNum =
409 iinfo->i_location.partitionReferenceNum;
410 iinfo->i_lenExtents = inode->i_size;
411 epos.bh = NULL;
412 epos.block = iinfo->i_location;
413 epos.offset = udf_file_entry_alloc_offset(inode);
414 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
415 /* UniqueID stuff */
416
417 brelse(epos.bh);
418 mark_inode_dirty(inode);
419 return dbh;
420 }
421
422 static int udf_get_block(struct inode *inode, sector_t block,
423 struct buffer_head *bh_result, int create)
424 {
425 int err, new;
426 sector_t phys = 0;
427 struct udf_inode_info *iinfo;
428
429 if (!create) {
430 phys = udf_block_map(inode, block);
431 if (phys)
432 map_bh(bh_result, inode->i_sb, phys);
433 return 0;
434 }
435
436 err = -EIO;
437 new = 0;
438 iinfo = UDF_I(inode);
439
440 down_write(&iinfo->i_data_sem);
441 if (block == iinfo->i_next_alloc_block + 1) {
442 iinfo->i_next_alloc_block++;
443 iinfo->i_next_alloc_goal++;
444 }
445
446 udf_clear_extent_cache(inode);
447 phys = inode_getblk(inode, block, &err, &new);
448 if (!phys)
449 goto abort;
450
451 if (new)
452 set_buffer_new(bh_result);
453 map_bh(bh_result, inode->i_sb, phys);
454
455 abort:
456 up_write(&iinfo->i_data_sem);
457 return err;
458 }
459
460 static struct buffer_head *udf_getblk(struct inode *inode, long block,
461 int create, int *err)
462 {
463 struct buffer_head *bh;
464 struct buffer_head dummy;
465
466 dummy.b_state = 0;
467 dummy.b_blocknr = -1000;
468 *err = udf_get_block(inode, block, &dummy, create);
469 if (!*err && buffer_mapped(&dummy)) {
470 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
471 if (buffer_new(&dummy)) {
472 lock_buffer(bh);
473 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
474 set_buffer_uptodate(bh);
475 unlock_buffer(bh);
476 mark_buffer_dirty_inode(bh, inode);
477 }
478 return bh;
479 }
480
481 return NULL;
482 }
483
484 /* Extend the file by 'blocks' blocks, return the number of extents added */
485 static int udf_do_extend_file(struct inode *inode,
486 struct extent_position *last_pos,
487 struct kernel_long_ad *last_ext,
488 sector_t blocks)
489 {
490 sector_t add;
491 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
492 struct super_block *sb = inode->i_sb;
493 struct kernel_lb_addr prealloc_loc = {};
494 int prealloc_len = 0;
495 struct udf_inode_info *iinfo;
496 int err;
497
498 /* The previous extent is fake and we should not extend by anything
499 * - there's nothing to do... */
500 if (!blocks && fake)
501 return 0;
502
503 iinfo = UDF_I(inode);
504 /* Round the last extent up to a multiple of block size */
505 if (last_ext->extLength & (sb->s_blocksize - 1)) {
506 last_ext->extLength =
507 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
508 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
509 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
510 iinfo->i_lenExtents =
511 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
512 ~(sb->s_blocksize - 1);
513 }
514
515 /* Last extent are just preallocated blocks? */
516 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
517 EXT_NOT_RECORDED_ALLOCATED) {
518 /* Save the extent so that we can reattach it to the end */
519 prealloc_loc = last_ext->extLocation;
520 prealloc_len = last_ext->extLength;
521 /* Mark the extent as a hole */
522 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
523 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
524 last_ext->extLocation.logicalBlockNum = 0;
525 last_ext->extLocation.partitionReferenceNum = 0;
526 }
527
528 /* Can we merge with the previous extent? */
529 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
530 EXT_NOT_RECORDED_NOT_ALLOCATED) {
531 add = ((1 << 30) - sb->s_blocksize -
532 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
533 sb->s_blocksize_bits;
534 if (add > blocks)
535 add = blocks;
536 blocks -= add;
537 last_ext->extLength += add << sb->s_blocksize_bits;
538 }
539
540 if (fake) {
541 udf_add_aext(inode, last_pos, &last_ext->extLocation,
542 last_ext->extLength, 1);
543 count++;
544 } else
545 udf_write_aext(inode, last_pos, &last_ext->extLocation,
546 last_ext->extLength, 1);
547
548 /* Managed to do everything necessary? */
549 if (!blocks)
550 goto out;
551
552 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
553 last_ext->extLocation.logicalBlockNum = 0;
554 last_ext->extLocation.partitionReferenceNum = 0;
555 add = (1 << (30-sb->s_blocksize_bits)) - 1;
556 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
557 (add << sb->s_blocksize_bits);
558
559 /* Create enough extents to cover the whole hole */
560 while (blocks > add) {
561 blocks -= add;
562 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
563 last_ext->extLength, 1);
564 if (err)
565 return err;
566 count++;
567 }
568 if (blocks) {
569 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
570 (blocks << sb->s_blocksize_bits);
571 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
572 last_ext->extLength, 1);
573 if (err)
574 return err;
575 count++;
576 }
577
578 out:
579 /* Do we have some preallocated blocks saved? */
580 if (prealloc_len) {
581 err = udf_add_aext(inode, last_pos, &prealloc_loc,
582 prealloc_len, 1);
583 if (err)
584 return err;
585 last_ext->extLocation = prealloc_loc;
586 last_ext->extLength = prealloc_len;
587 count++;
588 }
589
590 /* last_pos should point to the last written extent... */
591 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
592 last_pos->offset -= sizeof(struct short_ad);
593 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
594 last_pos->offset -= sizeof(struct long_ad);
595 else
596 return -EIO;
597
598 return count;
599 }
600
601 static int udf_extend_file(struct inode *inode, loff_t newsize)
602 {
603
604 struct extent_position epos;
605 struct kernel_lb_addr eloc;
606 uint32_t elen;
607 int8_t etype;
608 struct super_block *sb = inode->i_sb;
609 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
610 int adsize;
611 struct udf_inode_info *iinfo = UDF_I(inode);
612 struct kernel_long_ad extent;
613 int err;
614
615 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
616 adsize = sizeof(struct short_ad);
617 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
618 adsize = sizeof(struct long_ad);
619 else
620 BUG();
621
622 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
623
624 /* File has extent covering the new size (could happen when extending
625 * inside a block)? */
626 if (etype != -1)
627 return 0;
628 if (newsize & (sb->s_blocksize - 1))
629 offset++;
630 /* Extended file just to the boundary of the last file block? */
631 if (offset == 0)
632 return 0;
633
634 /* Truncate is extending the file by 'offset' blocks */
635 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
636 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
637 /* File has no extents at all or has empty last
638 * indirect extent! Create a fake extent... */
639 extent.extLocation.logicalBlockNum = 0;
640 extent.extLocation.partitionReferenceNum = 0;
641 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
642 } else {
643 epos.offset -= adsize;
644 etype = udf_next_aext(inode, &epos, &extent.extLocation,
645 &extent.extLength, 0);
646 extent.extLength |= etype << 30;
647 }
648 err = udf_do_extend_file(inode, &epos, &extent, offset);
649 if (err < 0)
650 goto out;
651 err = 0;
652 iinfo->i_lenExtents = newsize;
653 out:
654 brelse(epos.bh);
655 return err;
656 }
657
658 static sector_t inode_getblk(struct inode *inode, sector_t block,
659 int *err, int *new)
660 {
661 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
662 struct extent_position prev_epos, cur_epos, next_epos;
663 int count = 0, startnum = 0, endnum = 0;
664 uint32_t elen = 0, tmpelen;
665 struct kernel_lb_addr eloc, tmpeloc;
666 int c = 1;
667 loff_t lbcount = 0, b_off = 0;
668 uint32_t newblocknum, newblock;
669 sector_t offset = 0;
670 int8_t etype;
671 struct udf_inode_info *iinfo = UDF_I(inode);
672 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
673 int lastblock = 0;
674 bool isBeyondEOF;
675
676 *err = 0;
677 *new = 0;
678 prev_epos.offset = udf_file_entry_alloc_offset(inode);
679 prev_epos.block = iinfo->i_location;
680 prev_epos.bh = NULL;
681 cur_epos = next_epos = prev_epos;
682 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
683
684 /* find the extent which contains the block we are looking for.
685 alternate between laarr[0] and laarr[1] for locations of the
686 current extent, and the previous extent */
687 do {
688 if (prev_epos.bh != cur_epos.bh) {
689 brelse(prev_epos.bh);
690 get_bh(cur_epos.bh);
691 prev_epos.bh = cur_epos.bh;
692 }
693 if (cur_epos.bh != next_epos.bh) {
694 brelse(cur_epos.bh);
695 get_bh(next_epos.bh);
696 cur_epos.bh = next_epos.bh;
697 }
698
699 lbcount += elen;
700
701 prev_epos.block = cur_epos.block;
702 cur_epos.block = next_epos.block;
703
704 prev_epos.offset = cur_epos.offset;
705 cur_epos.offset = next_epos.offset;
706
707 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
708 if (etype == -1)
709 break;
710
711 c = !c;
712
713 laarr[c].extLength = (etype << 30) | elen;
714 laarr[c].extLocation = eloc;
715
716 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
717 pgoal = eloc.logicalBlockNum +
718 ((elen + inode->i_sb->s_blocksize - 1) >>
719 inode->i_sb->s_blocksize_bits);
720
721 count++;
722 } while (lbcount + elen <= b_off);
723
724 b_off -= lbcount;
725 offset = b_off >> inode->i_sb->s_blocksize_bits;
726 /*
727 * Move prev_epos and cur_epos into indirect extent if we are at
728 * the pointer to it
729 */
730 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
731 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
732
733 /* if the extent is allocated and recorded, return the block
734 if the extent is not a multiple of the blocksize, round up */
735
736 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
737 if (elen & (inode->i_sb->s_blocksize - 1)) {
738 elen = EXT_RECORDED_ALLOCATED |
739 ((elen + inode->i_sb->s_blocksize - 1) &
740 ~(inode->i_sb->s_blocksize - 1));
741 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
742 }
743 brelse(prev_epos.bh);
744 brelse(cur_epos.bh);
745 brelse(next_epos.bh);
746 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
747 return newblock;
748 }
749
750 /* Are we beyond EOF? */
751 if (etype == -1) {
752 int ret;
753 isBeyondEOF = true;
754 if (count) {
755 if (c)
756 laarr[0] = laarr[1];
757 startnum = 1;
758 } else {
759 /* Create a fake extent when there's not one */
760 memset(&laarr[0].extLocation, 0x00,
761 sizeof(struct kernel_lb_addr));
762 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
763 /* Will udf_do_extend_file() create real extent from
764 a fake one? */
765 startnum = (offset > 0);
766 }
767 /* Create extents for the hole between EOF and offset */
768 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
769 if (ret < 0) {
770 brelse(prev_epos.bh);
771 brelse(cur_epos.bh);
772 brelse(next_epos.bh);
773 *err = ret;
774 return 0;
775 }
776 c = 0;
777 offset = 0;
778 count += ret;
779 /* We are not covered by a preallocated extent? */
780 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
781 EXT_NOT_RECORDED_ALLOCATED) {
782 /* Is there any real extent? - otherwise we overwrite
783 * the fake one... */
784 if (count)
785 c = !c;
786 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
787 inode->i_sb->s_blocksize;
788 memset(&laarr[c].extLocation, 0x00,
789 sizeof(struct kernel_lb_addr));
790 count++;
791 }
792 endnum = c + 1;
793 lastblock = 1;
794 } else {
795 isBeyondEOF = false;
796 endnum = startnum = ((count > 2) ? 2 : count);
797
798 /* if the current extent is in position 0,
799 swap it with the previous */
800 if (!c && count != 1) {
801 laarr[2] = laarr[0];
802 laarr[0] = laarr[1];
803 laarr[1] = laarr[2];
804 c = 1;
805 }
806
807 /* if the current block is located in an extent,
808 read the next extent */
809 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
810 if (etype != -1) {
811 laarr[c + 1].extLength = (etype << 30) | elen;
812 laarr[c + 1].extLocation = eloc;
813 count++;
814 startnum++;
815 endnum++;
816 } else
817 lastblock = 1;
818 }
819
820 /* if the current extent is not recorded but allocated, get the
821 * block in the extent corresponding to the requested block */
822 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
823 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
824 else { /* otherwise, allocate a new block */
825 if (iinfo->i_next_alloc_block == block)
826 goal = iinfo->i_next_alloc_goal;
827
828 if (!goal) {
829 if (!(goal = pgoal)) /* XXX: what was intended here? */
830 goal = iinfo->i_location.logicalBlockNum + 1;
831 }
832
833 newblocknum = udf_new_block(inode->i_sb, inode,
834 iinfo->i_location.partitionReferenceNum,
835 goal, err);
836 if (!newblocknum) {
837 brelse(prev_epos.bh);
838 brelse(cur_epos.bh);
839 brelse(next_epos.bh);
840 *err = -ENOSPC;
841 return 0;
842 }
843 if (isBeyondEOF)
844 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
845 }
846
847 /* if the extent the requsted block is located in contains multiple
848 * blocks, split the extent into at most three extents. blocks prior
849 * to requested block, requested block, and blocks after requested
850 * block */
851 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
852
853 #ifdef UDF_PREALLOCATE
854 /* We preallocate blocks only for regular files. It also makes sense
855 * for directories but there's a problem when to drop the
856 * preallocation. We might use some delayed work for that but I feel
857 * it's overengineering for a filesystem like UDF. */
858 if (S_ISREG(inode->i_mode))
859 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
860 #endif
861
862 /* merge any continuous blocks in laarr */
863 udf_merge_extents(inode, laarr, &endnum);
864
865 /* write back the new extents, inserting new extents if the new number
866 * of extents is greater than the old number, and deleting extents if
867 * the new number of extents is less than the old number */
868 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
869
870 brelse(prev_epos.bh);
871 brelse(cur_epos.bh);
872 brelse(next_epos.bh);
873
874 newblock = udf_get_pblock(inode->i_sb, newblocknum,
875 iinfo->i_location.partitionReferenceNum, 0);
876 if (!newblock) {
877 *err = -EIO;
878 return 0;
879 }
880 *new = 1;
881 iinfo->i_next_alloc_block = block;
882 iinfo->i_next_alloc_goal = newblocknum;
883 inode->i_ctime = current_fs_time(inode->i_sb);
884
885 if (IS_SYNC(inode))
886 udf_sync_inode(inode);
887 else
888 mark_inode_dirty(inode);
889
890 return newblock;
891 }
892
893 static void udf_split_extents(struct inode *inode, int *c, int offset,
894 int newblocknum,
895 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
896 int *endnum)
897 {
898 unsigned long blocksize = inode->i_sb->s_blocksize;
899 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
900
901 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
902 (laarr[*c].extLength >> 30) ==
903 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
904 int curr = *c;
905 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
906 blocksize - 1) >> blocksize_bits;
907 int8_t etype = (laarr[curr].extLength >> 30);
908
909 if (blen == 1)
910 ;
911 else if (!offset || blen == offset + 1) {
912 laarr[curr + 2] = laarr[curr + 1];
913 laarr[curr + 1] = laarr[curr];
914 } else {
915 laarr[curr + 3] = laarr[curr + 1];
916 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
917 }
918
919 if (offset) {
920 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
921 udf_free_blocks(inode->i_sb, inode,
922 &laarr[curr].extLocation,
923 0, offset);
924 laarr[curr].extLength =
925 EXT_NOT_RECORDED_NOT_ALLOCATED |
926 (offset << blocksize_bits);
927 laarr[curr].extLocation.logicalBlockNum = 0;
928 laarr[curr].extLocation.
929 partitionReferenceNum = 0;
930 } else
931 laarr[curr].extLength = (etype << 30) |
932 (offset << blocksize_bits);
933 curr++;
934 (*c)++;
935 (*endnum)++;
936 }
937
938 laarr[curr].extLocation.logicalBlockNum = newblocknum;
939 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
940 laarr[curr].extLocation.partitionReferenceNum =
941 UDF_I(inode)->i_location.partitionReferenceNum;
942 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
943 blocksize;
944 curr++;
945
946 if (blen != offset + 1) {
947 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
948 laarr[curr].extLocation.logicalBlockNum +=
949 offset + 1;
950 laarr[curr].extLength = (etype << 30) |
951 ((blen - (offset + 1)) << blocksize_bits);
952 curr++;
953 (*endnum)++;
954 }
955 }
956 }
957
958 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
959 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
960 int *endnum)
961 {
962 int start, length = 0, currlength = 0, i;
963
964 if (*endnum >= (c + 1)) {
965 if (!lastblock)
966 return;
967 else
968 start = c;
969 } else {
970 if ((laarr[c + 1].extLength >> 30) ==
971 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
972 start = c + 1;
973 length = currlength =
974 (((laarr[c + 1].extLength &
975 UDF_EXTENT_LENGTH_MASK) +
976 inode->i_sb->s_blocksize - 1) >>
977 inode->i_sb->s_blocksize_bits);
978 } else
979 start = c;
980 }
981
982 for (i = start + 1; i <= *endnum; i++) {
983 if (i == *endnum) {
984 if (lastblock)
985 length += UDF_DEFAULT_PREALLOC_BLOCKS;
986 } else if ((laarr[i].extLength >> 30) ==
987 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
988 length += (((laarr[i].extLength &
989 UDF_EXTENT_LENGTH_MASK) +
990 inode->i_sb->s_blocksize - 1) >>
991 inode->i_sb->s_blocksize_bits);
992 } else
993 break;
994 }
995
996 if (length) {
997 int next = laarr[start].extLocation.logicalBlockNum +
998 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
999 inode->i_sb->s_blocksize - 1) >>
1000 inode->i_sb->s_blocksize_bits);
1001 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1002 laarr[start].extLocation.partitionReferenceNum,
1003 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1004 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1005 currlength);
1006 if (numalloc) {
1007 if (start == (c + 1))
1008 laarr[start].extLength +=
1009 (numalloc <<
1010 inode->i_sb->s_blocksize_bits);
1011 else {
1012 memmove(&laarr[c + 2], &laarr[c + 1],
1013 sizeof(struct long_ad) * (*endnum - (c + 1)));
1014 (*endnum)++;
1015 laarr[c + 1].extLocation.logicalBlockNum = next;
1016 laarr[c + 1].extLocation.partitionReferenceNum =
1017 laarr[c].extLocation.
1018 partitionReferenceNum;
1019 laarr[c + 1].extLength =
1020 EXT_NOT_RECORDED_ALLOCATED |
1021 (numalloc <<
1022 inode->i_sb->s_blocksize_bits);
1023 start = c + 1;
1024 }
1025
1026 for (i = start + 1; numalloc && i < *endnum; i++) {
1027 int elen = ((laarr[i].extLength &
1028 UDF_EXTENT_LENGTH_MASK) +
1029 inode->i_sb->s_blocksize - 1) >>
1030 inode->i_sb->s_blocksize_bits;
1031
1032 if (elen > numalloc) {
1033 laarr[i].extLength -=
1034 (numalloc <<
1035 inode->i_sb->s_blocksize_bits);
1036 numalloc = 0;
1037 } else {
1038 numalloc -= elen;
1039 if (*endnum > (i + 1))
1040 memmove(&laarr[i],
1041 &laarr[i + 1],
1042 sizeof(struct long_ad) *
1043 (*endnum - (i + 1)));
1044 i--;
1045 (*endnum)--;
1046 }
1047 }
1048 UDF_I(inode)->i_lenExtents +=
1049 numalloc << inode->i_sb->s_blocksize_bits;
1050 }
1051 }
1052 }
1053
1054 static void udf_merge_extents(struct inode *inode,
1055 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1056 int *endnum)
1057 {
1058 int i;
1059 unsigned long blocksize = inode->i_sb->s_blocksize;
1060 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1061
1062 for (i = 0; i < (*endnum - 1); i++) {
1063 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1064 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1065
1066 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1067 (((li->extLength >> 30) ==
1068 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1069 ((lip1->extLocation.logicalBlockNum -
1070 li->extLocation.logicalBlockNum) ==
1071 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1072 blocksize - 1) >> blocksize_bits)))) {
1073
1074 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1075 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1076 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1077 lip1->extLength = (lip1->extLength -
1078 (li->extLength &
1079 UDF_EXTENT_LENGTH_MASK) +
1080 UDF_EXTENT_LENGTH_MASK) &
1081 ~(blocksize - 1);
1082 li->extLength = (li->extLength &
1083 UDF_EXTENT_FLAG_MASK) +
1084 (UDF_EXTENT_LENGTH_MASK + 1) -
1085 blocksize;
1086 lip1->extLocation.logicalBlockNum =
1087 li->extLocation.logicalBlockNum +
1088 ((li->extLength &
1089 UDF_EXTENT_LENGTH_MASK) >>
1090 blocksize_bits);
1091 } else {
1092 li->extLength = lip1->extLength +
1093 (((li->extLength &
1094 UDF_EXTENT_LENGTH_MASK) +
1095 blocksize - 1) & ~(blocksize - 1));
1096 if (*endnum > (i + 2))
1097 memmove(&laarr[i + 1], &laarr[i + 2],
1098 sizeof(struct long_ad) *
1099 (*endnum - (i + 2)));
1100 i--;
1101 (*endnum)--;
1102 }
1103 } else if (((li->extLength >> 30) ==
1104 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1105 ((lip1->extLength >> 30) ==
1106 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1107 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1108 ((li->extLength &
1109 UDF_EXTENT_LENGTH_MASK) +
1110 blocksize - 1) >> blocksize_bits);
1111 li->extLocation.logicalBlockNum = 0;
1112 li->extLocation.partitionReferenceNum = 0;
1113
1114 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1115 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1116 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1117 lip1->extLength = (lip1->extLength -
1118 (li->extLength &
1119 UDF_EXTENT_LENGTH_MASK) +
1120 UDF_EXTENT_LENGTH_MASK) &
1121 ~(blocksize - 1);
1122 li->extLength = (li->extLength &
1123 UDF_EXTENT_FLAG_MASK) +
1124 (UDF_EXTENT_LENGTH_MASK + 1) -
1125 blocksize;
1126 } else {
1127 li->extLength = lip1->extLength +
1128 (((li->extLength &
1129 UDF_EXTENT_LENGTH_MASK) +
1130 blocksize - 1) & ~(blocksize - 1));
1131 if (*endnum > (i + 2))
1132 memmove(&laarr[i + 1], &laarr[i + 2],
1133 sizeof(struct long_ad) *
1134 (*endnum - (i + 2)));
1135 i--;
1136 (*endnum)--;
1137 }
1138 } else if ((li->extLength >> 30) ==
1139 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1140 udf_free_blocks(inode->i_sb, inode,
1141 &li->extLocation, 0,
1142 ((li->extLength &
1143 UDF_EXTENT_LENGTH_MASK) +
1144 blocksize - 1) >> blocksize_bits);
1145 li->extLocation.logicalBlockNum = 0;
1146 li->extLocation.partitionReferenceNum = 0;
1147 li->extLength = (li->extLength &
1148 UDF_EXTENT_LENGTH_MASK) |
1149 EXT_NOT_RECORDED_NOT_ALLOCATED;
1150 }
1151 }
1152 }
1153
1154 static void udf_update_extents(struct inode *inode,
1155 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1156 int startnum, int endnum,
1157 struct extent_position *epos)
1158 {
1159 int start = 0, i;
1160 struct kernel_lb_addr tmploc;
1161 uint32_t tmplen;
1162
1163 if (startnum > endnum) {
1164 for (i = 0; i < (startnum - endnum); i++)
1165 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1166 laarr[i].extLength);
1167 } else if (startnum < endnum) {
1168 for (i = 0; i < (endnum - startnum); i++) {
1169 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1170 laarr[i].extLength);
1171 udf_next_aext(inode, epos, &laarr[i].extLocation,
1172 &laarr[i].extLength, 1);
1173 start++;
1174 }
1175 }
1176
1177 for (i = start; i < endnum; i++) {
1178 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1179 udf_write_aext(inode, epos, &laarr[i].extLocation,
1180 laarr[i].extLength, 1);
1181 }
1182 }
1183
1184 struct buffer_head *udf_bread(struct inode *inode, int block,
1185 int create, int *err)
1186 {
1187 struct buffer_head *bh = NULL;
1188
1189 bh = udf_getblk(inode, block, create, err);
1190 if (!bh)
1191 return NULL;
1192
1193 if (buffer_uptodate(bh))
1194 return bh;
1195
1196 ll_rw_block(READ, 1, &bh);
1197
1198 wait_on_buffer(bh);
1199 if (buffer_uptodate(bh))
1200 return bh;
1201
1202 brelse(bh);
1203 *err = -EIO;
1204 return NULL;
1205 }
1206
1207 int udf_setsize(struct inode *inode, loff_t newsize)
1208 {
1209 int err;
1210 struct udf_inode_info *iinfo;
1211 int bsize = 1 << inode->i_blkbits;
1212
1213 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1214 S_ISLNK(inode->i_mode)))
1215 return -EINVAL;
1216 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1217 return -EPERM;
1218
1219 iinfo = UDF_I(inode);
1220 if (newsize > inode->i_size) {
1221 down_write(&iinfo->i_data_sem);
1222 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1223 if (bsize <
1224 (udf_file_entry_alloc_offset(inode) + newsize)) {
1225 err = udf_expand_file_adinicb(inode);
1226 if (err)
1227 return err;
1228 down_write(&iinfo->i_data_sem);
1229 } else {
1230 iinfo->i_lenAlloc = newsize;
1231 goto set_size;
1232 }
1233 }
1234 err = udf_extend_file(inode, newsize);
1235 if (err) {
1236 up_write(&iinfo->i_data_sem);
1237 return err;
1238 }
1239 set_size:
1240 truncate_setsize(inode, newsize);
1241 up_write(&iinfo->i_data_sem);
1242 } else {
1243 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1244 down_write(&iinfo->i_data_sem);
1245 udf_clear_extent_cache(inode);
1246 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1247 0x00, bsize - newsize -
1248 udf_file_entry_alloc_offset(inode));
1249 iinfo->i_lenAlloc = newsize;
1250 truncate_setsize(inode, newsize);
1251 up_write(&iinfo->i_data_sem);
1252 goto update_time;
1253 }
1254 err = block_truncate_page(inode->i_mapping, newsize,
1255 udf_get_block);
1256 if (err)
1257 return err;
1258 down_write(&iinfo->i_data_sem);
1259 udf_clear_extent_cache(inode);
1260 truncate_setsize(inode, newsize);
1261 udf_truncate_extents(inode);
1262 up_write(&iinfo->i_data_sem);
1263 }
1264 update_time:
1265 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1266 if (IS_SYNC(inode))
1267 udf_sync_inode(inode);
1268 else
1269 mark_inode_dirty(inode);
1270 return 0;
1271 }
1272
1273 /*
1274 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1275 * arbitrary - just that we hopefully don't limit any real use of rewritten
1276 * inode on write-once media but avoid looping for too long on corrupted media.
1277 */
1278 #define UDF_MAX_ICB_NESTING 1024
1279
1280 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1281 {
1282 struct buffer_head *bh = NULL;
1283 struct fileEntry *fe;
1284 struct extendedFileEntry *efe;
1285 uint16_t ident;
1286 struct udf_inode_info *iinfo = UDF_I(inode);
1287 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1288 struct kernel_lb_addr *iloc = &iinfo->i_location;
1289 unsigned int link_count;
1290 unsigned int indirections = 0;
1291 int bs = inode->i_sb->s_blocksize;
1292 int ret = -EIO;
1293
1294 reread:
1295 if (iloc->logicalBlockNum >=
1296 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1297 udf_debug("block=%d, partition=%d out of range\n",
1298 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1299 return -EIO;
1300 }
1301
1302 /*
1303 * Set defaults, but the inode is still incomplete!
1304 * Note: get_new_inode() sets the following on a new inode:
1305 * i_sb = sb
1306 * i_no = ino
1307 * i_flags = sb->s_flags
1308 * i_state = 0
1309 * clean_inode(): zero fills and sets
1310 * i_count = 1
1311 * i_nlink = 1
1312 * i_op = NULL;
1313 */
1314 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1315 if (!bh) {
1316 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1317 return -EIO;
1318 }
1319
1320 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1321 ident != TAG_IDENT_USE) {
1322 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1323 inode->i_ino, ident);
1324 goto out;
1325 }
1326
1327 fe = (struct fileEntry *)bh->b_data;
1328 efe = (struct extendedFileEntry *)bh->b_data;
1329
1330 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1331 struct buffer_head *ibh;
1332
1333 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1334 if (ident == TAG_IDENT_IE && ibh) {
1335 struct kernel_lb_addr loc;
1336 struct indirectEntry *ie;
1337
1338 ie = (struct indirectEntry *)ibh->b_data;
1339 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1340
1341 if (ie->indirectICB.extLength) {
1342 brelse(ibh);
1343 memcpy(&iinfo->i_location, &loc,
1344 sizeof(struct kernel_lb_addr));
1345 if (++indirections > UDF_MAX_ICB_NESTING) {
1346 udf_err(inode->i_sb,
1347 "too many ICBs in ICB hierarchy"
1348 " (max %d supported)\n",
1349 UDF_MAX_ICB_NESTING);
1350 goto out;
1351 }
1352 brelse(bh);
1353 goto reread;
1354 }
1355 }
1356 brelse(ibh);
1357 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1358 udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1359 le16_to_cpu(fe->icbTag.strategyType));
1360 goto out;
1361 }
1362 if (fe->icbTag.strategyType == cpu_to_le16(4))
1363 iinfo->i_strat4096 = 0;
1364 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1365 iinfo->i_strat4096 = 1;
1366
1367 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1368 ICBTAG_FLAG_AD_MASK;
1369 iinfo->i_unique = 0;
1370 iinfo->i_lenEAttr = 0;
1371 iinfo->i_lenExtents = 0;
1372 iinfo->i_lenAlloc = 0;
1373 iinfo->i_next_alloc_block = 0;
1374 iinfo->i_next_alloc_goal = 0;
1375 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1376 iinfo->i_efe = 1;
1377 iinfo->i_use = 0;
1378 ret = udf_alloc_i_data(inode, bs -
1379 sizeof(struct extendedFileEntry));
1380 if (ret)
1381 goto out;
1382 memcpy(iinfo->i_ext.i_data,
1383 bh->b_data + sizeof(struct extendedFileEntry),
1384 bs - sizeof(struct extendedFileEntry));
1385 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1386 iinfo->i_efe = 0;
1387 iinfo->i_use = 0;
1388 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1389 if (ret)
1390 goto out;
1391 memcpy(iinfo->i_ext.i_data,
1392 bh->b_data + sizeof(struct fileEntry),
1393 bs - sizeof(struct fileEntry));
1394 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1395 iinfo->i_efe = 0;
1396 iinfo->i_use = 1;
1397 iinfo->i_lenAlloc = le32_to_cpu(
1398 ((struct unallocSpaceEntry *)bh->b_data)->
1399 lengthAllocDescs);
1400 ret = udf_alloc_i_data(inode, bs -
1401 sizeof(struct unallocSpaceEntry));
1402 if (ret)
1403 goto out;
1404 memcpy(iinfo->i_ext.i_data,
1405 bh->b_data + sizeof(struct unallocSpaceEntry),
1406 bs - sizeof(struct unallocSpaceEntry));
1407 return 0;
1408 }
1409
1410 ret = -EIO;
1411 read_lock(&sbi->s_cred_lock);
1412 i_uid_write(inode, le32_to_cpu(fe->uid));
1413 if (!uid_valid(inode->i_uid) ||
1414 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1415 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1416 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1417
1418 i_gid_write(inode, le32_to_cpu(fe->gid));
1419 if (!gid_valid(inode->i_gid) ||
1420 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1421 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1422 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1423
1424 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1425 sbi->s_fmode != UDF_INVALID_MODE)
1426 inode->i_mode = sbi->s_fmode;
1427 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1428 sbi->s_dmode != UDF_INVALID_MODE)
1429 inode->i_mode = sbi->s_dmode;
1430 else
1431 inode->i_mode = udf_convert_permissions(fe);
1432 inode->i_mode &= ~sbi->s_umask;
1433 read_unlock(&sbi->s_cred_lock);
1434
1435 link_count = le16_to_cpu(fe->fileLinkCount);
1436 if (!link_count) {
1437 if (!hidden_inode) {
1438 ret = -ESTALE;
1439 goto out;
1440 }
1441 link_count = 1;
1442 }
1443 set_nlink(inode, link_count);
1444
1445 inode->i_size = le64_to_cpu(fe->informationLength);
1446 iinfo->i_lenExtents = inode->i_size;
1447
1448 if (iinfo->i_efe == 0) {
1449 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1450 (inode->i_sb->s_blocksize_bits - 9);
1451
1452 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1453 inode->i_atime = sbi->s_record_time;
1454
1455 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1456 fe->modificationTime))
1457 inode->i_mtime = sbi->s_record_time;
1458
1459 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1460 inode->i_ctime = sbi->s_record_time;
1461
1462 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1463 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1464 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1465 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1466 } else {
1467 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1468 (inode->i_sb->s_blocksize_bits - 9);
1469
1470 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1471 inode->i_atime = sbi->s_record_time;
1472
1473 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1474 efe->modificationTime))
1475 inode->i_mtime = sbi->s_record_time;
1476
1477 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1478 iinfo->i_crtime = sbi->s_record_time;
1479
1480 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1481 inode->i_ctime = sbi->s_record_time;
1482
1483 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1484 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1485 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1486 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1487 }
1488 inode->i_generation = iinfo->i_unique;
1489
1490 /*
1491 * Sanity check length of allocation descriptors and extended attrs to
1492 * avoid integer overflows
1493 */
1494 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1495 goto out;
1496 /* Now do exact checks */
1497 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1498 goto out;
1499 /* Sanity checks for files in ICB so that we don't get confused later */
1500 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1501 /*
1502 * For file in ICB data is stored in allocation descriptor
1503 * so sizes should match
1504 */
1505 if (iinfo->i_lenAlloc != inode->i_size)
1506 goto out;
1507 /* File in ICB has to fit in there... */
1508 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1509 goto out;
1510 }
1511
1512 switch (fe->icbTag.fileType) {
1513 case ICBTAG_FILE_TYPE_DIRECTORY:
1514 inode->i_op = &udf_dir_inode_operations;
1515 inode->i_fop = &udf_dir_operations;
1516 inode->i_mode |= S_IFDIR;
1517 inc_nlink(inode);
1518 break;
1519 case ICBTAG_FILE_TYPE_REALTIME:
1520 case ICBTAG_FILE_TYPE_REGULAR:
1521 case ICBTAG_FILE_TYPE_UNDEF:
1522 case ICBTAG_FILE_TYPE_VAT20:
1523 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1524 inode->i_data.a_ops = &udf_adinicb_aops;
1525 else
1526 inode->i_data.a_ops = &udf_aops;
1527 inode->i_op = &udf_file_inode_operations;
1528 inode->i_fop = &udf_file_operations;
1529 inode->i_mode |= S_IFREG;
1530 break;
1531 case ICBTAG_FILE_TYPE_BLOCK:
1532 inode->i_mode |= S_IFBLK;
1533 break;
1534 case ICBTAG_FILE_TYPE_CHAR:
1535 inode->i_mode |= S_IFCHR;
1536 break;
1537 case ICBTAG_FILE_TYPE_FIFO:
1538 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1539 break;
1540 case ICBTAG_FILE_TYPE_SOCKET:
1541 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1542 break;
1543 case ICBTAG_FILE_TYPE_SYMLINK:
1544 inode->i_data.a_ops = &udf_symlink_aops;
1545 inode->i_op = &udf_symlink_inode_operations;
1546 inode->i_mode = S_IFLNK | S_IRWXUGO;
1547 break;
1548 case ICBTAG_FILE_TYPE_MAIN:
1549 udf_debug("METADATA FILE-----\n");
1550 break;
1551 case ICBTAG_FILE_TYPE_MIRROR:
1552 udf_debug("METADATA MIRROR FILE-----\n");
1553 break;
1554 case ICBTAG_FILE_TYPE_BITMAP:
1555 udf_debug("METADATA BITMAP FILE-----\n");
1556 break;
1557 default:
1558 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1559 inode->i_ino, fe->icbTag.fileType);
1560 goto out;
1561 }
1562 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1563 struct deviceSpec *dsea =
1564 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1565 if (dsea) {
1566 init_special_inode(inode, inode->i_mode,
1567 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1568 le32_to_cpu(dsea->minorDeviceIdent)));
1569 /* Developer ID ??? */
1570 } else
1571 goto out;
1572 }
1573 ret = 0;
1574 out:
1575 brelse(bh);
1576 return ret;
1577 }
1578
1579 static int udf_alloc_i_data(struct inode *inode, size_t size)
1580 {
1581 struct udf_inode_info *iinfo = UDF_I(inode);
1582 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1583
1584 if (!iinfo->i_ext.i_data) {
1585 udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1586 inode->i_ino);
1587 return -ENOMEM;
1588 }
1589
1590 return 0;
1591 }
1592
1593 static umode_t udf_convert_permissions(struct fileEntry *fe)
1594 {
1595 umode_t mode;
1596 uint32_t permissions;
1597 uint32_t flags;
1598
1599 permissions = le32_to_cpu(fe->permissions);
1600 flags = le16_to_cpu(fe->icbTag.flags);
1601
1602 mode = ((permissions) & S_IRWXO) |
1603 ((permissions >> 2) & S_IRWXG) |
1604 ((permissions >> 4) & S_IRWXU) |
1605 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1606 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1607 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1608
1609 return mode;
1610 }
1611
1612 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1613 {
1614 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1615 }
1616
1617 static int udf_sync_inode(struct inode *inode)
1618 {
1619 return udf_update_inode(inode, 1);
1620 }
1621
1622 static int udf_update_inode(struct inode *inode, int do_sync)
1623 {
1624 struct buffer_head *bh = NULL;
1625 struct fileEntry *fe;
1626 struct extendedFileEntry *efe;
1627 uint64_t lb_recorded;
1628 uint32_t udfperms;
1629 uint16_t icbflags;
1630 uint16_t crclen;
1631 int err = 0;
1632 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1633 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1634 struct udf_inode_info *iinfo = UDF_I(inode);
1635
1636 bh = udf_tgetblk(inode->i_sb,
1637 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1638 if (!bh) {
1639 udf_debug("getblk failure\n");
1640 return -ENOMEM;
1641 }
1642
1643 lock_buffer(bh);
1644 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1645 fe = (struct fileEntry *)bh->b_data;
1646 efe = (struct extendedFileEntry *)bh->b_data;
1647
1648 if (iinfo->i_use) {
1649 struct unallocSpaceEntry *use =
1650 (struct unallocSpaceEntry *)bh->b_data;
1651
1652 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1653 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1654 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1655 sizeof(struct unallocSpaceEntry));
1656 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1657 use->descTag.tagLocation =
1658 cpu_to_le32(iinfo->i_location.logicalBlockNum);
1659 crclen = sizeof(struct unallocSpaceEntry) +
1660 iinfo->i_lenAlloc - sizeof(struct tag);
1661 use->descTag.descCRCLength = cpu_to_le16(crclen);
1662 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1663 sizeof(struct tag),
1664 crclen));
1665 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1666
1667 goto out;
1668 }
1669
1670 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1671 fe->uid = cpu_to_le32(-1);
1672 else
1673 fe->uid = cpu_to_le32(i_uid_read(inode));
1674
1675 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1676 fe->gid = cpu_to_le32(-1);
1677 else
1678 fe->gid = cpu_to_le32(i_gid_read(inode));
1679
1680 udfperms = ((inode->i_mode & S_IRWXO)) |
1681 ((inode->i_mode & S_IRWXG) << 2) |
1682 ((inode->i_mode & S_IRWXU) << 4);
1683
1684 udfperms |= (le32_to_cpu(fe->permissions) &
1685 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1686 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1687 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1688 fe->permissions = cpu_to_le32(udfperms);
1689
1690 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1691 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1692 else
1693 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1694
1695 fe->informationLength = cpu_to_le64(inode->i_size);
1696
1697 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1698 struct regid *eid;
1699 struct deviceSpec *dsea =
1700 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1701 if (!dsea) {
1702 dsea = (struct deviceSpec *)
1703 udf_add_extendedattr(inode,
1704 sizeof(struct deviceSpec) +
1705 sizeof(struct regid), 12, 0x3);
1706 dsea->attrType = cpu_to_le32(12);
1707 dsea->attrSubtype = 1;
1708 dsea->attrLength = cpu_to_le32(
1709 sizeof(struct deviceSpec) +
1710 sizeof(struct regid));
1711 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1712 }
1713 eid = (struct regid *)dsea->impUse;
1714 memset(eid, 0, sizeof(struct regid));
1715 strcpy(eid->ident, UDF_ID_DEVELOPER);
1716 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1717 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1718 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1719 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1720 }
1721
1722 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1723 lb_recorded = 0; /* No extents => no blocks! */
1724 else
1725 lb_recorded =
1726 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1727 (blocksize_bits - 9);
1728
1729 if (iinfo->i_efe == 0) {
1730 memcpy(bh->b_data + sizeof(struct fileEntry),
1731 iinfo->i_ext.i_data,
1732 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1733 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1734
1735 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1736 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1737 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1738 memset(&(fe->impIdent), 0, sizeof(struct regid));
1739 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1740 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1741 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1742 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1743 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1744 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1745 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1746 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1747 crclen = sizeof(struct fileEntry);
1748 } else {
1749 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1750 iinfo->i_ext.i_data,
1751 inode->i_sb->s_blocksize -
1752 sizeof(struct extendedFileEntry));
1753 efe->objectSize = cpu_to_le64(inode->i_size);
1754 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1755
1756 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1757 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1758 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1759 iinfo->i_crtime = inode->i_atime;
1760
1761 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1762 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1763 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1764 iinfo->i_crtime = inode->i_mtime;
1765
1766 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1767 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1768 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1769 iinfo->i_crtime = inode->i_ctime;
1770
1771 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1772 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1773 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1774 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1775
1776 memset(&(efe->impIdent), 0, sizeof(struct regid));
1777 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1778 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1779 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1780 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1781 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1782 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1783 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1784 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1785 crclen = sizeof(struct extendedFileEntry);
1786 }
1787 if (iinfo->i_strat4096) {
1788 fe->icbTag.strategyType = cpu_to_le16(4096);
1789 fe->icbTag.strategyParameter = cpu_to_le16(1);
1790 fe->icbTag.numEntries = cpu_to_le16(2);
1791 } else {
1792 fe->icbTag.strategyType = cpu_to_le16(4);
1793 fe->icbTag.numEntries = cpu_to_le16(1);
1794 }
1795
1796 if (S_ISDIR(inode->i_mode))
1797 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1798 else if (S_ISREG(inode->i_mode))
1799 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1800 else if (S_ISLNK(inode->i_mode))
1801 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1802 else if (S_ISBLK(inode->i_mode))
1803 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1804 else if (S_ISCHR(inode->i_mode))
1805 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1806 else if (S_ISFIFO(inode->i_mode))
1807 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1808 else if (S_ISSOCK(inode->i_mode))
1809 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1810
1811 icbflags = iinfo->i_alloc_type |
1812 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1813 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1814 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1815 (le16_to_cpu(fe->icbTag.flags) &
1816 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1817 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1818
1819 fe->icbTag.flags = cpu_to_le16(icbflags);
1820 if (sbi->s_udfrev >= 0x0200)
1821 fe->descTag.descVersion = cpu_to_le16(3);
1822 else
1823 fe->descTag.descVersion = cpu_to_le16(2);
1824 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1825 fe->descTag.tagLocation = cpu_to_le32(
1826 iinfo->i_location.logicalBlockNum);
1827 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1828 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1829 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1830 crclen));
1831 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1832
1833 out:
1834 set_buffer_uptodate(bh);
1835 unlock_buffer(bh);
1836
1837 /* write the data blocks */
1838 mark_buffer_dirty(bh);
1839 if (do_sync) {
1840 sync_dirty_buffer(bh);
1841 if (buffer_write_io_error(bh)) {
1842 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1843 inode->i_ino);
1844 err = -EIO;
1845 }
1846 }
1847 brelse(bh);
1848
1849 return err;
1850 }
1851
1852 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1853 bool hidden_inode)
1854 {
1855 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1856 struct inode *inode = iget_locked(sb, block);
1857 int err;
1858
1859 if (!inode)
1860 return ERR_PTR(-ENOMEM);
1861
1862 if (!(inode->i_state & I_NEW))
1863 return inode;
1864
1865 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1866 err = udf_read_inode(inode, hidden_inode);
1867 if (err < 0) {
1868 iget_failed(inode);
1869 return ERR_PTR(err);
1870 }
1871 unlock_new_inode(inode);
1872
1873 return inode;
1874 }
1875
1876 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1877 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1878 {
1879 int adsize;
1880 struct short_ad *sad = NULL;
1881 struct long_ad *lad = NULL;
1882 struct allocExtDesc *aed;
1883 uint8_t *ptr;
1884 struct udf_inode_info *iinfo = UDF_I(inode);
1885
1886 if (!epos->bh)
1887 ptr = iinfo->i_ext.i_data + epos->offset -
1888 udf_file_entry_alloc_offset(inode) +
1889 iinfo->i_lenEAttr;
1890 else
1891 ptr = epos->bh->b_data + epos->offset;
1892
1893 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1894 adsize = sizeof(struct short_ad);
1895 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1896 adsize = sizeof(struct long_ad);
1897 else
1898 return -EIO;
1899
1900 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1901 unsigned char *sptr, *dptr;
1902 struct buffer_head *nbh;
1903 int err, loffset;
1904 struct kernel_lb_addr obloc = epos->block;
1905
1906 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1907 obloc.partitionReferenceNum,
1908 obloc.logicalBlockNum, &err);
1909 if (!epos->block.logicalBlockNum)
1910 return -ENOSPC;
1911 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1912 &epos->block,
1913 0));
1914 if (!nbh)
1915 return -EIO;
1916 lock_buffer(nbh);
1917 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1918 set_buffer_uptodate(nbh);
1919 unlock_buffer(nbh);
1920 mark_buffer_dirty_inode(nbh, inode);
1921
1922 aed = (struct allocExtDesc *)(nbh->b_data);
1923 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1924 aed->previousAllocExtLocation =
1925 cpu_to_le32(obloc.logicalBlockNum);
1926 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1927 loffset = epos->offset;
1928 aed->lengthAllocDescs = cpu_to_le32(adsize);
1929 sptr = ptr - adsize;
1930 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1931 memcpy(dptr, sptr, adsize);
1932 epos->offset = sizeof(struct allocExtDesc) + adsize;
1933 } else {
1934 loffset = epos->offset + adsize;
1935 aed->lengthAllocDescs = cpu_to_le32(0);
1936 sptr = ptr;
1937 epos->offset = sizeof(struct allocExtDesc);
1938
1939 if (epos->bh) {
1940 aed = (struct allocExtDesc *)epos->bh->b_data;
1941 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1942 } else {
1943 iinfo->i_lenAlloc += adsize;
1944 mark_inode_dirty(inode);
1945 }
1946 }
1947 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1948 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1949 epos->block.logicalBlockNum, sizeof(struct tag));
1950 else
1951 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1952 epos->block.logicalBlockNum, sizeof(struct tag));
1953 switch (iinfo->i_alloc_type) {
1954 case ICBTAG_FLAG_AD_SHORT:
1955 sad = (struct short_ad *)sptr;
1956 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1957 inode->i_sb->s_blocksize);
1958 sad->extPosition =
1959 cpu_to_le32(epos->block.logicalBlockNum);
1960 break;
1961 case ICBTAG_FLAG_AD_LONG:
1962 lad = (struct long_ad *)sptr;
1963 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1964 inode->i_sb->s_blocksize);
1965 lad->extLocation = cpu_to_lelb(epos->block);
1966 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1967 break;
1968 }
1969 if (epos->bh) {
1970 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1971 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1972 udf_update_tag(epos->bh->b_data, loffset);
1973 else
1974 udf_update_tag(epos->bh->b_data,
1975 sizeof(struct allocExtDesc));
1976 mark_buffer_dirty_inode(epos->bh, inode);
1977 brelse(epos->bh);
1978 } else {
1979 mark_inode_dirty(inode);
1980 }
1981 epos->bh = nbh;
1982 }
1983
1984 udf_write_aext(inode, epos, eloc, elen, inc);
1985
1986 if (!epos->bh) {
1987 iinfo->i_lenAlloc += adsize;
1988 mark_inode_dirty(inode);
1989 } else {
1990 aed = (struct allocExtDesc *)epos->bh->b_data;
1991 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1992 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1993 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1994 udf_update_tag(epos->bh->b_data,
1995 epos->offset + (inc ? 0 : adsize));
1996 else
1997 udf_update_tag(epos->bh->b_data,
1998 sizeof(struct allocExtDesc));
1999 mark_buffer_dirty_inode(epos->bh, inode);
2000 }
2001
2002 return 0;
2003 }
2004
2005 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2006 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2007 {
2008 int adsize;
2009 uint8_t *ptr;
2010 struct short_ad *sad;
2011 struct long_ad *lad;
2012 struct udf_inode_info *iinfo = UDF_I(inode);
2013
2014 if (!epos->bh)
2015 ptr = iinfo->i_ext.i_data + epos->offset -
2016 udf_file_entry_alloc_offset(inode) +
2017 iinfo->i_lenEAttr;
2018 else
2019 ptr = epos->bh->b_data + epos->offset;
2020
2021 switch (iinfo->i_alloc_type) {
2022 case ICBTAG_FLAG_AD_SHORT:
2023 sad = (struct short_ad *)ptr;
2024 sad->extLength = cpu_to_le32(elen);
2025 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2026 adsize = sizeof(struct short_ad);
2027 break;
2028 case ICBTAG_FLAG_AD_LONG:
2029 lad = (struct long_ad *)ptr;
2030 lad->extLength = cpu_to_le32(elen);
2031 lad->extLocation = cpu_to_lelb(*eloc);
2032 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2033 adsize = sizeof(struct long_ad);
2034 break;
2035 default:
2036 return;
2037 }
2038
2039 if (epos->bh) {
2040 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2041 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2042 struct allocExtDesc *aed =
2043 (struct allocExtDesc *)epos->bh->b_data;
2044 udf_update_tag(epos->bh->b_data,
2045 le32_to_cpu(aed->lengthAllocDescs) +
2046 sizeof(struct allocExtDesc));
2047 }
2048 mark_buffer_dirty_inode(epos->bh, inode);
2049 } else {
2050 mark_inode_dirty(inode);
2051 }
2052
2053 if (inc)
2054 epos->offset += adsize;
2055 }
2056
2057 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2058 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2059 {
2060 int8_t etype;
2061
2062 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2063 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2064 int block;
2065 epos->block = *eloc;
2066 epos->offset = sizeof(struct allocExtDesc);
2067 brelse(epos->bh);
2068 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2069 epos->bh = udf_tread(inode->i_sb, block);
2070 if (!epos->bh) {
2071 udf_debug("reading block %d failed!\n", block);
2072 return -1;
2073 }
2074 }
2075
2076 return etype;
2077 }
2078
2079 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2080 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2081 {
2082 int alen;
2083 int8_t etype;
2084 uint8_t *ptr;
2085 struct short_ad *sad;
2086 struct long_ad *lad;
2087 struct udf_inode_info *iinfo = UDF_I(inode);
2088
2089 if (!epos->bh) {
2090 if (!epos->offset)
2091 epos->offset = udf_file_entry_alloc_offset(inode);
2092 ptr = iinfo->i_ext.i_data + epos->offset -
2093 udf_file_entry_alloc_offset(inode) +
2094 iinfo->i_lenEAttr;
2095 alen = udf_file_entry_alloc_offset(inode) +
2096 iinfo->i_lenAlloc;
2097 } else {
2098 if (!epos->offset)
2099 epos->offset = sizeof(struct allocExtDesc);
2100 ptr = epos->bh->b_data + epos->offset;
2101 alen = sizeof(struct allocExtDesc) +
2102 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2103 lengthAllocDescs);
2104 }
2105
2106 switch (iinfo->i_alloc_type) {
2107 case ICBTAG_FLAG_AD_SHORT:
2108 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2109 if (!sad)
2110 return -1;
2111 etype = le32_to_cpu(sad->extLength) >> 30;
2112 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2113 eloc->partitionReferenceNum =
2114 iinfo->i_location.partitionReferenceNum;
2115 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2116 break;
2117 case ICBTAG_FLAG_AD_LONG:
2118 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2119 if (!lad)
2120 return -1;
2121 etype = le32_to_cpu(lad->extLength) >> 30;
2122 *eloc = lelb_to_cpu(lad->extLocation);
2123 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2124 break;
2125 default:
2126 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2127 return -1;
2128 }
2129
2130 return etype;
2131 }
2132
2133 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2134 struct kernel_lb_addr neloc, uint32_t nelen)
2135 {
2136 struct kernel_lb_addr oeloc;
2137 uint32_t oelen;
2138 int8_t etype;
2139
2140 if (epos.bh)
2141 get_bh(epos.bh);
2142
2143 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2144 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2145 neloc = oeloc;
2146 nelen = (etype << 30) | oelen;
2147 }
2148 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2149 brelse(epos.bh);
2150
2151 return (nelen >> 30);
2152 }
2153
2154 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2155 struct kernel_lb_addr eloc, uint32_t elen)
2156 {
2157 struct extent_position oepos;
2158 int adsize;
2159 int8_t etype;
2160 struct allocExtDesc *aed;
2161 struct udf_inode_info *iinfo;
2162
2163 if (epos.bh) {
2164 get_bh(epos.bh);
2165 get_bh(epos.bh);
2166 }
2167
2168 iinfo = UDF_I(inode);
2169 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2170 adsize = sizeof(struct short_ad);
2171 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2172 adsize = sizeof(struct long_ad);
2173 else
2174 adsize = 0;
2175
2176 oepos = epos;
2177 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2178 return -1;
2179
2180 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2181 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2182 if (oepos.bh != epos.bh) {
2183 oepos.block = epos.block;
2184 brelse(oepos.bh);
2185 get_bh(epos.bh);
2186 oepos.bh = epos.bh;
2187 oepos.offset = epos.offset - adsize;
2188 }
2189 }
2190 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2191 elen = 0;
2192
2193 if (epos.bh != oepos.bh) {
2194 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2195 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2196 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2197 if (!oepos.bh) {
2198 iinfo->i_lenAlloc -= (adsize * 2);
2199 mark_inode_dirty(inode);
2200 } else {
2201 aed = (struct allocExtDesc *)oepos.bh->b_data;
2202 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2203 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2204 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2205 udf_update_tag(oepos.bh->b_data,
2206 oepos.offset - (2 * adsize));
2207 else
2208 udf_update_tag(oepos.bh->b_data,
2209 sizeof(struct allocExtDesc));
2210 mark_buffer_dirty_inode(oepos.bh, inode);
2211 }
2212 } else {
2213 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2214 if (!oepos.bh) {
2215 iinfo->i_lenAlloc -= adsize;
2216 mark_inode_dirty(inode);
2217 } else {
2218 aed = (struct allocExtDesc *)oepos.bh->b_data;
2219 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2220 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2221 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2222 udf_update_tag(oepos.bh->b_data,
2223 epos.offset - adsize);
2224 else
2225 udf_update_tag(oepos.bh->b_data,
2226 sizeof(struct allocExtDesc));
2227 mark_buffer_dirty_inode(oepos.bh, inode);
2228 }
2229 }
2230
2231 brelse(epos.bh);
2232 brelse(oepos.bh);
2233
2234 return (elen >> 30);
2235 }
2236
2237 int8_t inode_bmap(struct inode *inode, sector_t block,
2238 struct extent_position *pos, struct kernel_lb_addr *eloc,
2239 uint32_t *elen, sector_t *offset)
2240 {
2241 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2242 loff_t lbcount = 0, bcount =
2243 (loff_t) block << blocksize_bits;
2244 int8_t etype;
2245 struct udf_inode_info *iinfo;
2246
2247 iinfo = UDF_I(inode);
2248 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2249 pos->offset = 0;
2250 pos->block = iinfo->i_location;
2251 pos->bh = NULL;
2252 }
2253 *elen = 0;
2254 do {
2255 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2256 if (etype == -1) {
2257 *offset = (bcount - lbcount) >> blocksize_bits;
2258 iinfo->i_lenExtents = lbcount;
2259 return -1;
2260 }
2261 lbcount += *elen;
2262 } while (lbcount <= bcount);
2263 /* update extent cache */
2264 udf_update_extent_cache(inode, lbcount - *elen, pos, 1);
2265 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2266
2267 return etype;
2268 }
2269
2270 long udf_block_map(struct inode *inode, sector_t block)
2271 {
2272 struct kernel_lb_addr eloc;
2273 uint32_t elen;
2274 sector_t offset;
2275 struct extent_position epos = {};
2276 int ret;
2277
2278 down_read(&UDF_I(inode)->i_data_sem);
2279
2280 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2281 (EXT_RECORDED_ALLOCATED >> 30))
2282 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2283 else
2284 ret = 0;
2285
2286 up_read(&UDF_I(inode)->i_data_sem);
2287 brelse(epos.bh);
2288
2289 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2290 return udf_fixed_to_variable(ret);
2291 else
2292 return ret;
2293 }