]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/udf/inode.c
Merge git://git.infradead.org/intel-iommu
[mirror_ubuntu-zesty-kernel.git] / fs / udf / inode.c
1 /*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41
42 #include "udf_i.h"
43 #include "udf_sb.h"
44
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
48
49 #define EXTENT_MERGE_SIZE 5
50
51 static umode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static int udf_sync_inode(struct inode *inode);
54 static int udf_alloc_i_data(struct inode *inode, size_t size);
55 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
56 static int8_t udf_insert_aext(struct inode *, struct extent_position,
57 struct kernel_lb_addr, uint32_t);
58 static void udf_split_extents(struct inode *, int *, int, int,
59 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
60 static void udf_prealloc_extents(struct inode *, int, int,
61 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
62 static void udf_merge_extents(struct inode *,
63 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
64 static void udf_update_extents(struct inode *,
65 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
66 struct extent_position *);
67 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
68
69 static void __udf_clear_extent_cache(struct inode *inode)
70 {
71 struct udf_inode_info *iinfo = UDF_I(inode);
72
73 if (iinfo->cached_extent.lstart != -1) {
74 brelse(iinfo->cached_extent.epos.bh);
75 iinfo->cached_extent.lstart = -1;
76 }
77 }
78
79 /* Invalidate extent cache */
80 static void udf_clear_extent_cache(struct inode *inode)
81 {
82 struct udf_inode_info *iinfo = UDF_I(inode);
83
84 spin_lock(&iinfo->i_extent_cache_lock);
85 __udf_clear_extent_cache(inode);
86 spin_unlock(&iinfo->i_extent_cache_lock);
87 }
88
89 /* Return contents of extent cache */
90 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
91 loff_t *lbcount, struct extent_position *pos)
92 {
93 struct udf_inode_info *iinfo = UDF_I(inode);
94 int ret = 0;
95
96 spin_lock(&iinfo->i_extent_cache_lock);
97 if ((iinfo->cached_extent.lstart <= bcount) &&
98 (iinfo->cached_extent.lstart != -1)) {
99 /* Cache hit */
100 *lbcount = iinfo->cached_extent.lstart;
101 memcpy(pos, &iinfo->cached_extent.epos,
102 sizeof(struct extent_position));
103 if (pos->bh)
104 get_bh(pos->bh);
105 ret = 1;
106 }
107 spin_unlock(&iinfo->i_extent_cache_lock);
108 return ret;
109 }
110
111 /* Add extent to extent cache */
112 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
113 struct extent_position *pos, int next_epos)
114 {
115 struct udf_inode_info *iinfo = UDF_I(inode);
116
117 spin_lock(&iinfo->i_extent_cache_lock);
118 /* Invalidate previously cached extent */
119 __udf_clear_extent_cache(inode);
120 if (pos->bh)
121 get_bh(pos->bh);
122 memcpy(&iinfo->cached_extent.epos, pos,
123 sizeof(struct extent_position));
124 iinfo->cached_extent.lstart = estart;
125 if (next_epos)
126 switch (iinfo->i_alloc_type) {
127 case ICBTAG_FLAG_AD_SHORT:
128 iinfo->cached_extent.epos.offset -=
129 sizeof(struct short_ad);
130 break;
131 case ICBTAG_FLAG_AD_LONG:
132 iinfo->cached_extent.epos.offset -=
133 sizeof(struct long_ad);
134 }
135 spin_unlock(&iinfo->i_extent_cache_lock);
136 }
137
138 void udf_evict_inode(struct inode *inode)
139 {
140 struct udf_inode_info *iinfo = UDF_I(inode);
141 int want_delete = 0;
142
143 if (!inode->i_nlink && !is_bad_inode(inode)) {
144 want_delete = 1;
145 udf_setsize(inode, 0);
146 udf_update_inode(inode, IS_SYNC(inode));
147 }
148 truncate_inode_pages_final(&inode->i_data);
149 invalidate_inode_buffers(inode);
150 clear_inode(inode);
151 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
152 inode->i_size != iinfo->i_lenExtents) {
153 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
154 inode->i_ino, inode->i_mode,
155 (unsigned long long)inode->i_size,
156 (unsigned long long)iinfo->i_lenExtents);
157 }
158 kfree(iinfo->i_ext.i_data);
159 iinfo->i_ext.i_data = NULL;
160 udf_clear_extent_cache(inode);
161 if (want_delete) {
162 udf_free_inode(inode);
163 }
164 }
165
166 static void udf_write_failed(struct address_space *mapping, loff_t to)
167 {
168 struct inode *inode = mapping->host;
169 struct udf_inode_info *iinfo = UDF_I(inode);
170 loff_t isize = inode->i_size;
171
172 if (to > isize) {
173 truncate_pagecache(inode, isize);
174 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
175 down_write(&iinfo->i_data_sem);
176 udf_clear_extent_cache(inode);
177 udf_truncate_extents(inode);
178 up_write(&iinfo->i_data_sem);
179 }
180 }
181 }
182
183 static int udf_writepage(struct page *page, struct writeback_control *wbc)
184 {
185 return block_write_full_page(page, udf_get_block, wbc);
186 }
187
188 static int udf_writepages(struct address_space *mapping,
189 struct writeback_control *wbc)
190 {
191 return mpage_writepages(mapping, wbc, udf_get_block);
192 }
193
194 static int udf_readpage(struct file *file, struct page *page)
195 {
196 return mpage_readpage(page, udf_get_block);
197 }
198
199 static int udf_readpages(struct file *file, struct address_space *mapping,
200 struct list_head *pages, unsigned nr_pages)
201 {
202 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
203 }
204
205 static int udf_write_begin(struct file *file, struct address_space *mapping,
206 loff_t pos, unsigned len, unsigned flags,
207 struct page **pagep, void **fsdata)
208 {
209 int ret;
210
211 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
212 if (unlikely(ret))
213 udf_write_failed(mapping, pos + len);
214 return ret;
215 }
216
217 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
218 loff_t offset)
219 {
220 struct file *file = iocb->ki_filp;
221 struct address_space *mapping = file->f_mapping;
222 struct inode *inode = mapping->host;
223 size_t count = iov_iter_count(iter);
224 ssize_t ret;
225
226 ret = blockdev_direct_IO(iocb, inode, iter, offset, udf_get_block);
227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 udf_write_failed(mapping, offset + count);
229 return ret;
230 }
231
232 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233 {
234 return generic_block_bmap(mapping, block, udf_get_block);
235 }
236
237 const struct address_space_operations udf_aops = {
238 .readpage = udf_readpage,
239 .readpages = udf_readpages,
240 .writepage = udf_writepage,
241 .writepages = udf_writepages,
242 .write_begin = udf_write_begin,
243 .write_end = generic_write_end,
244 .direct_IO = udf_direct_IO,
245 .bmap = udf_bmap,
246 };
247
248 /*
249 * Expand file stored in ICB to a normal one-block-file
250 *
251 * This function requires i_data_sem for writing and releases it.
252 * This function requires i_mutex held
253 */
254 int udf_expand_file_adinicb(struct inode *inode)
255 {
256 struct page *page;
257 char *kaddr;
258 struct udf_inode_info *iinfo = UDF_I(inode);
259 int err;
260 struct writeback_control udf_wbc = {
261 .sync_mode = WB_SYNC_NONE,
262 .nr_to_write = 1,
263 };
264
265 WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex));
266 if (!iinfo->i_lenAlloc) {
267 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
268 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
269 else
270 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
271 /* from now on we have normal address_space methods */
272 inode->i_data.a_ops = &udf_aops;
273 up_write(&iinfo->i_data_sem);
274 mark_inode_dirty(inode);
275 return 0;
276 }
277 /*
278 * Release i_data_sem so that we can lock a page - page lock ranks
279 * above i_data_sem. i_mutex still protects us against file changes.
280 */
281 up_write(&iinfo->i_data_sem);
282
283 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
284 if (!page)
285 return -ENOMEM;
286
287 if (!PageUptodate(page)) {
288 kaddr = kmap(page);
289 memset(kaddr + iinfo->i_lenAlloc, 0x00,
290 PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
291 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
292 iinfo->i_lenAlloc);
293 flush_dcache_page(page);
294 SetPageUptodate(page);
295 kunmap(page);
296 }
297 down_write(&iinfo->i_data_sem);
298 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
299 iinfo->i_lenAlloc);
300 iinfo->i_lenAlloc = 0;
301 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
302 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
303 else
304 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
305 /* from now on we have normal address_space methods */
306 inode->i_data.a_ops = &udf_aops;
307 up_write(&iinfo->i_data_sem);
308 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
309 if (err) {
310 /* Restore everything back so that we don't lose data... */
311 lock_page(page);
312 kaddr = kmap(page);
313 down_write(&iinfo->i_data_sem);
314 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
315 inode->i_size);
316 kunmap(page);
317 unlock_page(page);
318 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
319 inode->i_data.a_ops = &udf_adinicb_aops;
320 up_write(&iinfo->i_data_sem);
321 }
322 page_cache_release(page);
323 mark_inode_dirty(inode);
324
325 return err;
326 }
327
328 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
329 int *err)
330 {
331 int newblock;
332 struct buffer_head *dbh = NULL;
333 struct kernel_lb_addr eloc;
334 uint8_t alloctype;
335 struct extent_position epos;
336
337 struct udf_fileident_bh sfibh, dfibh;
338 loff_t f_pos = udf_ext0_offset(inode);
339 int size = udf_ext0_offset(inode) + inode->i_size;
340 struct fileIdentDesc cfi, *sfi, *dfi;
341 struct udf_inode_info *iinfo = UDF_I(inode);
342
343 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344 alloctype = ICBTAG_FLAG_AD_SHORT;
345 else
346 alloctype = ICBTAG_FLAG_AD_LONG;
347
348 if (!inode->i_size) {
349 iinfo->i_alloc_type = alloctype;
350 mark_inode_dirty(inode);
351 return NULL;
352 }
353
354 /* alloc block, and copy data to it */
355 *block = udf_new_block(inode->i_sb, inode,
356 iinfo->i_location.partitionReferenceNum,
357 iinfo->i_location.logicalBlockNum, err);
358 if (!(*block))
359 return NULL;
360 newblock = udf_get_pblock(inode->i_sb, *block,
361 iinfo->i_location.partitionReferenceNum,
362 0);
363 if (!newblock)
364 return NULL;
365 dbh = udf_tgetblk(inode->i_sb, newblock);
366 if (!dbh)
367 return NULL;
368 lock_buffer(dbh);
369 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370 set_buffer_uptodate(dbh);
371 unlock_buffer(dbh);
372 mark_buffer_dirty_inode(dbh, inode);
373
374 sfibh.soffset = sfibh.eoffset =
375 f_pos & (inode->i_sb->s_blocksize - 1);
376 sfibh.sbh = sfibh.ebh = NULL;
377 dfibh.soffset = dfibh.eoffset = 0;
378 dfibh.sbh = dfibh.ebh = dbh;
379 while (f_pos < size) {
380 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382 NULL, NULL, NULL);
383 if (!sfi) {
384 brelse(dbh);
385 return NULL;
386 }
387 iinfo->i_alloc_type = alloctype;
388 sfi->descTag.tagLocation = cpu_to_le32(*block);
389 dfibh.soffset = dfibh.eoffset;
390 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393 sfi->fileIdent +
394 le16_to_cpu(sfi->lengthOfImpUse))) {
395 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
396 brelse(dbh);
397 return NULL;
398 }
399 }
400 mark_buffer_dirty_inode(dbh, inode);
401
402 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
403 iinfo->i_lenAlloc);
404 iinfo->i_lenAlloc = 0;
405 eloc.logicalBlockNum = *block;
406 eloc.partitionReferenceNum =
407 iinfo->i_location.partitionReferenceNum;
408 iinfo->i_lenExtents = inode->i_size;
409 epos.bh = NULL;
410 epos.block = iinfo->i_location;
411 epos.offset = udf_file_entry_alloc_offset(inode);
412 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
413 /* UniqueID stuff */
414
415 brelse(epos.bh);
416 mark_inode_dirty(inode);
417 return dbh;
418 }
419
420 static int udf_get_block(struct inode *inode, sector_t block,
421 struct buffer_head *bh_result, int create)
422 {
423 int err, new;
424 sector_t phys = 0;
425 struct udf_inode_info *iinfo;
426
427 if (!create) {
428 phys = udf_block_map(inode, block);
429 if (phys)
430 map_bh(bh_result, inode->i_sb, phys);
431 return 0;
432 }
433
434 err = -EIO;
435 new = 0;
436 iinfo = UDF_I(inode);
437
438 down_write(&iinfo->i_data_sem);
439 if (block == iinfo->i_next_alloc_block + 1) {
440 iinfo->i_next_alloc_block++;
441 iinfo->i_next_alloc_goal++;
442 }
443
444 udf_clear_extent_cache(inode);
445 phys = inode_getblk(inode, block, &err, &new);
446 if (!phys)
447 goto abort;
448
449 if (new)
450 set_buffer_new(bh_result);
451 map_bh(bh_result, inode->i_sb, phys);
452
453 abort:
454 up_write(&iinfo->i_data_sem);
455 return err;
456 }
457
458 static struct buffer_head *udf_getblk(struct inode *inode, long block,
459 int create, int *err)
460 {
461 struct buffer_head *bh;
462 struct buffer_head dummy;
463
464 dummy.b_state = 0;
465 dummy.b_blocknr = -1000;
466 *err = udf_get_block(inode, block, &dummy, create);
467 if (!*err && buffer_mapped(&dummy)) {
468 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
469 if (buffer_new(&dummy)) {
470 lock_buffer(bh);
471 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
472 set_buffer_uptodate(bh);
473 unlock_buffer(bh);
474 mark_buffer_dirty_inode(bh, inode);
475 }
476 return bh;
477 }
478
479 return NULL;
480 }
481
482 /* Extend the file by 'blocks' blocks, return the number of extents added */
483 static int udf_do_extend_file(struct inode *inode,
484 struct extent_position *last_pos,
485 struct kernel_long_ad *last_ext,
486 sector_t blocks)
487 {
488 sector_t add;
489 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
490 struct super_block *sb = inode->i_sb;
491 struct kernel_lb_addr prealloc_loc = {};
492 int prealloc_len = 0;
493 struct udf_inode_info *iinfo;
494 int err;
495
496 /* The previous extent is fake and we should not extend by anything
497 * - there's nothing to do... */
498 if (!blocks && fake)
499 return 0;
500
501 iinfo = UDF_I(inode);
502 /* Round the last extent up to a multiple of block size */
503 if (last_ext->extLength & (sb->s_blocksize - 1)) {
504 last_ext->extLength =
505 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
506 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
507 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
508 iinfo->i_lenExtents =
509 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
510 ~(sb->s_blocksize - 1);
511 }
512
513 /* Last extent are just preallocated blocks? */
514 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
515 EXT_NOT_RECORDED_ALLOCATED) {
516 /* Save the extent so that we can reattach it to the end */
517 prealloc_loc = last_ext->extLocation;
518 prealloc_len = last_ext->extLength;
519 /* Mark the extent as a hole */
520 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522 last_ext->extLocation.logicalBlockNum = 0;
523 last_ext->extLocation.partitionReferenceNum = 0;
524 }
525
526 /* Can we merge with the previous extent? */
527 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
528 EXT_NOT_RECORDED_NOT_ALLOCATED) {
529 add = ((1 << 30) - sb->s_blocksize -
530 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
531 sb->s_blocksize_bits;
532 if (add > blocks)
533 add = blocks;
534 blocks -= add;
535 last_ext->extLength += add << sb->s_blocksize_bits;
536 }
537
538 if (fake) {
539 udf_add_aext(inode, last_pos, &last_ext->extLocation,
540 last_ext->extLength, 1);
541 count++;
542 } else
543 udf_write_aext(inode, last_pos, &last_ext->extLocation,
544 last_ext->extLength, 1);
545
546 /* Managed to do everything necessary? */
547 if (!blocks)
548 goto out;
549
550 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
551 last_ext->extLocation.logicalBlockNum = 0;
552 last_ext->extLocation.partitionReferenceNum = 0;
553 add = (1 << (30-sb->s_blocksize_bits)) - 1;
554 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
555 (add << sb->s_blocksize_bits);
556
557 /* Create enough extents to cover the whole hole */
558 while (blocks > add) {
559 blocks -= add;
560 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
561 last_ext->extLength, 1);
562 if (err)
563 return err;
564 count++;
565 }
566 if (blocks) {
567 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
568 (blocks << sb->s_blocksize_bits);
569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570 last_ext->extLength, 1);
571 if (err)
572 return err;
573 count++;
574 }
575
576 out:
577 /* Do we have some preallocated blocks saved? */
578 if (prealloc_len) {
579 err = udf_add_aext(inode, last_pos, &prealloc_loc,
580 prealloc_len, 1);
581 if (err)
582 return err;
583 last_ext->extLocation = prealloc_loc;
584 last_ext->extLength = prealloc_len;
585 count++;
586 }
587
588 /* last_pos should point to the last written extent... */
589 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
590 last_pos->offset -= sizeof(struct short_ad);
591 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
592 last_pos->offset -= sizeof(struct long_ad);
593 else
594 return -EIO;
595
596 return count;
597 }
598
599 static int udf_extend_file(struct inode *inode, loff_t newsize)
600 {
601
602 struct extent_position epos;
603 struct kernel_lb_addr eloc;
604 uint32_t elen;
605 int8_t etype;
606 struct super_block *sb = inode->i_sb;
607 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
608 int adsize;
609 struct udf_inode_info *iinfo = UDF_I(inode);
610 struct kernel_long_ad extent;
611 int err;
612
613 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
614 adsize = sizeof(struct short_ad);
615 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
616 adsize = sizeof(struct long_ad);
617 else
618 BUG();
619
620 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
621
622 /* File has extent covering the new size (could happen when extending
623 * inside a block)? */
624 if (etype != -1)
625 return 0;
626 if (newsize & (sb->s_blocksize - 1))
627 offset++;
628 /* Extended file just to the boundary of the last file block? */
629 if (offset == 0)
630 return 0;
631
632 /* Truncate is extending the file by 'offset' blocks */
633 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
634 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
635 /* File has no extents at all or has empty last
636 * indirect extent! Create a fake extent... */
637 extent.extLocation.logicalBlockNum = 0;
638 extent.extLocation.partitionReferenceNum = 0;
639 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
640 } else {
641 epos.offset -= adsize;
642 etype = udf_next_aext(inode, &epos, &extent.extLocation,
643 &extent.extLength, 0);
644 extent.extLength |= etype << 30;
645 }
646 err = udf_do_extend_file(inode, &epos, &extent, offset);
647 if (err < 0)
648 goto out;
649 err = 0;
650 iinfo->i_lenExtents = newsize;
651 out:
652 brelse(epos.bh);
653 return err;
654 }
655
656 static sector_t inode_getblk(struct inode *inode, sector_t block,
657 int *err, int *new)
658 {
659 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
660 struct extent_position prev_epos, cur_epos, next_epos;
661 int count = 0, startnum = 0, endnum = 0;
662 uint32_t elen = 0, tmpelen;
663 struct kernel_lb_addr eloc, tmpeloc;
664 int c = 1;
665 loff_t lbcount = 0, b_off = 0;
666 uint32_t newblocknum, newblock;
667 sector_t offset = 0;
668 int8_t etype;
669 struct udf_inode_info *iinfo = UDF_I(inode);
670 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
671 int lastblock = 0;
672 bool isBeyondEOF;
673
674 *err = 0;
675 *new = 0;
676 prev_epos.offset = udf_file_entry_alloc_offset(inode);
677 prev_epos.block = iinfo->i_location;
678 prev_epos.bh = NULL;
679 cur_epos = next_epos = prev_epos;
680 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
681
682 /* find the extent which contains the block we are looking for.
683 alternate between laarr[0] and laarr[1] for locations of the
684 current extent, and the previous extent */
685 do {
686 if (prev_epos.bh != cur_epos.bh) {
687 brelse(prev_epos.bh);
688 get_bh(cur_epos.bh);
689 prev_epos.bh = cur_epos.bh;
690 }
691 if (cur_epos.bh != next_epos.bh) {
692 brelse(cur_epos.bh);
693 get_bh(next_epos.bh);
694 cur_epos.bh = next_epos.bh;
695 }
696
697 lbcount += elen;
698
699 prev_epos.block = cur_epos.block;
700 cur_epos.block = next_epos.block;
701
702 prev_epos.offset = cur_epos.offset;
703 cur_epos.offset = next_epos.offset;
704
705 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
706 if (etype == -1)
707 break;
708
709 c = !c;
710
711 laarr[c].extLength = (etype << 30) | elen;
712 laarr[c].extLocation = eloc;
713
714 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
715 pgoal = eloc.logicalBlockNum +
716 ((elen + inode->i_sb->s_blocksize - 1) >>
717 inode->i_sb->s_blocksize_bits);
718
719 count++;
720 } while (lbcount + elen <= b_off);
721
722 b_off -= lbcount;
723 offset = b_off >> inode->i_sb->s_blocksize_bits;
724 /*
725 * Move prev_epos and cur_epos into indirect extent if we are at
726 * the pointer to it
727 */
728 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
729 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
730
731 /* if the extent is allocated and recorded, return the block
732 if the extent is not a multiple of the blocksize, round up */
733
734 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
735 if (elen & (inode->i_sb->s_blocksize - 1)) {
736 elen = EXT_RECORDED_ALLOCATED |
737 ((elen + inode->i_sb->s_blocksize - 1) &
738 ~(inode->i_sb->s_blocksize - 1));
739 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
740 }
741 brelse(prev_epos.bh);
742 brelse(cur_epos.bh);
743 brelse(next_epos.bh);
744 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
745 return newblock;
746 }
747
748 /* Are we beyond EOF? */
749 if (etype == -1) {
750 int ret;
751 isBeyondEOF = true;
752 if (count) {
753 if (c)
754 laarr[0] = laarr[1];
755 startnum = 1;
756 } else {
757 /* Create a fake extent when there's not one */
758 memset(&laarr[0].extLocation, 0x00,
759 sizeof(struct kernel_lb_addr));
760 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
761 /* Will udf_do_extend_file() create real extent from
762 a fake one? */
763 startnum = (offset > 0);
764 }
765 /* Create extents for the hole between EOF and offset */
766 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
767 if (ret < 0) {
768 brelse(prev_epos.bh);
769 brelse(cur_epos.bh);
770 brelse(next_epos.bh);
771 *err = ret;
772 return 0;
773 }
774 c = 0;
775 offset = 0;
776 count += ret;
777 /* We are not covered by a preallocated extent? */
778 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
779 EXT_NOT_RECORDED_ALLOCATED) {
780 /* Is there any real extent? - otherwise we overwrite
781 * the fake one... */
782 if (count)
783 c = !c;
784 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
785 inode->i_sb->s_blocksize;
786 memset(&laarr[c].extLocation, 0x00,
787 sizeof(struct kernel_lb_addr));
788 count++;
789 }
790 endnum = c + 1;
791 lastblock = 1;
792 } else {
793 isBeyondEOF = false;
794 endnum = startnum = ((count > 2) ? 2 : count);
795
796 /* if the current extent is in position 0,
797 swap it with the previous */
798 if (!c && count != 1) {
799 laarr[2] = laarr[0];
800 laarr[0] = laarr[1];
801 laarr[1] = laarr[2];
802 c = 1;
803 }
804
805 /* if the current block is located in an extent,
806 read the next extent */
807 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
808 if (etype != -1) {
809 laarr[c + 1].extLength = (etype << 30) | elen;
810 laarr[c + 1].extLocation = eloc;
811 count++;
812 startnum++;
813 endnum++;
814 } else
815 lastblock = 1;
816 }
817
818 /* if the current extent is not recorded but allocated, get the
819 * block in the extent corresponding to the requested block */
820 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
821 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
822 else { /* otherwise, allocate a new block */
823 if (iinfo->i_next_alloc_block == block)
824 goal = iinfo->i_next_alloc_goal;
825
826 if (!goal) {
827 if (!(goal = pgoal)) /* XXX: what was intended here? */
828 goal = iinfo->i_location.logicalBlockNum + 1;
829 }
830
831 newblocknum = udf_new_block(inode->i_sb, inode,
832 iinfo->i_location.partitionReferenceNum,
833 goal, err);
834 if (!newblocknum) {
835 brelse(prev_epos.bh);
836 brelse(cur_epos.bh);
837 brelse(next_epos.bh);
838 *err = -ENOSPC;
839 return 0;
840 }
841 if (isBeyondEOF)
842 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
843 }
844
845 /* if the extent the requsted block is located in contains multiple
846 * blocks, split the extent into at most three extents. blocks prior
847 * to requested block, requested block, and blocks after requested
848 * block */
849 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
850
851 #ifdef UDF_PREALLOCATE
852 /* We preallocate blocks only for regular files. It also makes sense
853 * for directories but there's a problem when to drop the
854 * preallocation. We might use some delayed work for that but I feel
855 * it's overengineering for a filesystem like UDF. */
856 if (S_ISREG(inode->i_mode))
857 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
858 #endif
859
860 /* merge any continuous blocks in laarr */
861 udf_merge_extents(inode, laarr, &endnum);
862
863 /* write back the new extents, inserting new extents if the new number
864 * of extents is greater than the old number, and deleting extents if
865 * the new number of extents is less than the old number */
866 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
867
868 brelse(prev_epos.bh);
869 brelse(cur_epos.bh);
870 brelse(next_epos.bh);
871
872 newblock = udf_get_pblock(inode->i_sb, newblocknum,
873 iinfo->i_location.partitionReferenceNum, 0);
874 if (!newblock) {
875 *err = -EIO;
876 return 0;
877 }
878 *new = 1;
879 iinfo->i_next_alloc_block = block;
880 iinfo->i_next_alloc_goal = newblocknum;
881 inode->i_ctime = current_fs_time(inode->i_sb);
882
883 if (IS_SYNC(inode))
884 udf_sync_inode(inode);
885 else
886 mark_inode_dirty(inode);
887
888 return newblock;
889 }
890
891 static void udf_split_extents(struct inode *inode, int *c, int offset,
892 int newblocknum,
893 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
894 int *endnum)
895 {
896 unsigned long blocksize = inode->i_sb->s_blocksize;
897 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
898
899 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
900 (laarr[*c].extLength >> 30) ==
901 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
902 int curr = *c;
903 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
904 blocksize - 1) >> blocksize_bits;
905 int8_t etype = (laarr[curr].extLength >> 30);
906
907 if (blen == 1)
908 ;
909 else if (!offset || blen == offset + 1) {
910 laarr[curr + 2] = laarr[curr + 1];
911 laarr[curr + 1] = laarr[curr];
912 } else {
913 laarr[curr + 3] = laarr[curr + 1];
914 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
915 }
916
917 if (offset) {
918 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
919 udf_free_blocks(inode->i_sb, inode,
920 &laarr[curr].extLocation,
921 0, offset);
922 laarr[curr].extLength =
923 EXT_NOT_RECORDED_NOT_ALLOCATED |
924 (offset << blocksize_bits);
925 laarr[curr].extLocation.logicalBlockNum = 0;
926 laarr[curr].extLocation.
927 partitionReferenceNum = 0;
928 } else
929 laarr[curr].extLength = (etype << 30) |
930 (offset << blocksize_bits);
931 curr++;
932 (*c)++;
933 (*endnum)++;
934 }
935
936 laarr[curr].extLocation.logicalBlockNum = newblocknum;
937 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
938 laarr[curr].extLocation.partitionReferenceNum =
939 UDF_I(inode)->i_location.partitionReferenceNum;
940 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
941 blocksize;
942 curr++;
943
944 if (blen != offset + 1) {
945 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
946 laarr[curr].extLocation.logicalBlockNum +=
947 offset + 1;
948 laarr[curr].extLength = (etype << 30) |
949 ((blen - (offset + 1)) << blocksize_bits);
950 curr++;
951 (*endnum)++;
952 }
953 }
954 }
955
956 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
957 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
958 int *endnum)
959 {
960 int start, length = 0, currlength = 0, i;
961
962 if (*endnum >= (c + 1)) {
963 if (!lastblock)
964 return;
965 else
966 start = c;
967 } else {
968 if ((laarr[c + 1].extLength >> 30) ==
969 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
970 start = c + 1;
971 length = currlength =
972 (((laarr[c + 1].extLength &
973 UDF_EXTENT_LENGTH_MASK) +
974 inode->i_sb->s_blocksize - 1) >>
975 inode->i_sb->s_blocksize_bits);
976 } else
977 start = c;
978 }
979
980 for (i = start + 1; i <= *endnum; i++) {
981 if (i == *endnum) {
982 if (lastblock)
983 length += UDF_DEFAULT_PREALLOC_BLOCKS;
984 } else if ((laarr[i].extLength >> 30) ==
985 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
986 length += (((laarr[i].extLength &
987 UDF_EXTENT_LENGTH_MASK) +
988 inode->i_sb->s_blocksize - 1) >>
989 inode->i_sb->s_blocksize_bits);
990 } else
991 break;
992 }
993
994 if (length) {
995 int next = laarr[start].extLocation.logicalBlockNum +
996 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
997 inode->i_sb->s_blocksize - 1) >>
998 inode->i_sb->s_blocksize_bits);
999 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1000 laarr[start].extLocation.partitionReferenceNum,
1001 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1002 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1003 currlength);
1004 if (numalloc) {
1005 if (start == (c + 1))
1006 laarr[start].extLength +=
1007 (numalloc <<
1008 inode->i_sb->s_blocksize_bits);
1009 else {
1010 memmove(&laarr[c + 2], &laarr[c + 1],
1011 sizeof(struct long_ad) * (*endnum - (c + 1)));
1012 (*endnum)++;
1013 laarr[c + 1].extLocation.logicalBlockNum = next;
1014 laarr[c + 1].extLocation.partitionReferenceNum =
1015 laarr[c].extLocation.
1016 partitionReferenceNum;
1017 laarr[c + 1].extLength =
1018 EXT_NOT_RECORDED_ALLOCATED |
1019 (numalloc <<
1020 inode->i_sb->s_blocksize_bits);
1021 start = c + 1;
1022 }
1023
1024 for (i = start + 1; numalloc && i < *endnum; i++) {
1025 int elen = ((laarr[i].extLength &
1026 UDF_EXTENT_LENGTH_MASK) +
1027 inode->i_sb->s_blocksize - 1) >>
1028 inode->i_sb->s_blocksize_bits;
1029
1030 if (elen > numalloc) {
1031 laarr[i].extLength -=
1032 (numalloc <<
1033 inode->i_sb->s_blocksize_bits);
1034 numalloc = 0;
1035 } else {
1036 numalloc -= elen;
1037 if (*endnum > (i + 1))
1038 memmove(&laarr[i],
1039 &laarr[i + 1],
1040 sizeof(struct long_ad) *
1041 (*endnum - (i + 1)));
1042 i--;
1043 (*endnum)--;
1044 }
1045 }
1046 UDF_I(inode)->i_lenExtents +=
1047 numalloc << inode->i_sb->s_blocksize_bits;
1048 }
1049 }
1050 }
1051
1052 static void udf_merge_extents(struct inode *inode,
1053 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1054 int *endnum)
1055 {
1056 int i;
1057 unsigned long blocksize = inode->i_sb->s_blocksize;
1058 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1059
1060 for (i = 0; i < (*endnum - 1); i++) {
1061 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1062 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1063
1064 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1065 (((li->extLength >> 30) ==
1066 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1067 ((lip1->extLocation.logicalBlockNum -
1068 li->extLocation.logicalBlockNum) ==
1069 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1070 blocksize - 1) >> blocksize_bits)))) {
1071
1072 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1073 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1074 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1075 lip1->extLength = (lip1->extLength -
1076 (li->extLength &
1077 UDF_EXTENT_LENGTH_MASK) +
1078 UDF_EXTENT_LENGTH_MASK) &
1079 ~(blocksize - 1);
1080 li->extLength = (li->extLength &
1081 UDF_EXTENT_FLAG_MASK) +
1082 (UDF_EXTENT_LENGTH_MASK + 1) -
1083 blocksize;
1084 lip1->extLocation.logicalBlockNum =
1085 li->extLocation.logicalBlockNum +
1086 ((li->extLength &
1087 UDF_EXTENT_LENGTH_MASK) >>
1088 blocksize_bits);
1089 } else {
1090 li->extLength = lip1->extLength +
1091 (((li->extLength &
1092 UDF_EXTENT_LENGTH_MASK) +
1093 blocksize - 1) & ~(blocksize - 1));
1094 if (*endnum > (i + 2))
1095 memmove(&laarr[i + 1], &laarr[i + 2],
1096 sizeof(struct long_ad) *
1097 (*endnum - (i + 2)));
1098 i--;
1099 (*endnum)--;
1100 }
1101 } else if (((li->extLength >> 30) ==
1102 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1103 ((lip1->extLength >> 30) ==
1104 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1105 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1106 ((li->extLength &
1107 UDF_EXTENT_LENGTH_MASK) +
1108 blocksize - 1) >> blocksize_bits);
1109 li->extLocation.logicalBlockNum = 0;
1110 li->extLocation.partitionReferenceNum = 0;
1111
1112 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1113 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1114 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1115 lip1->extLength = (lip1->extLength -
1116 (li->extLength &
1117 UDF_EXTENT_LENGTH_MASK) +
1118 UDF_EXTENT_LENGTH_MASK) &
1119 ~(blocksize - 1);
1120 li->extLength = (li->extLength &
1121 UDF_EXTENT_FLAG_MASK) +
1122 (UDF_EXTENT_LENGTH_MASK + 1) -
1123 blocksize;
1124 } else {
1125 li->extLength = lip1->extLength +
1126 (((li->extLength &
1127 UDF_EXTENT_LENGTH_MASK) +
1128 blocksize - 1) & ~(blocksize - 1));
1129 if (*endnum > (i + 2))
1130 memmove(&laarr[i + 1], &laarr[i + 2],
1131 sizeof(struct long_ad) *
1132 (*endnum - (i + 2)));
1133 i--;
1134 (*endnum)--;
1135 }
1136 } else if ((li->extLength >> 30) ==
1137 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1138 udf_free_blocks(inode->i_sb, inode,
1139 &li->extLocation, 0,
1140 ((li->extLength &
1141 UDF_EXTENT_LENGTH_MASK) +
1142 blocksize - 1) >> blocksize_bits);
1143 li->extLocation.logicalBlockNum = 0;
1144 li->extLocation.partitionReferenceNum = 0;
1145 li->extLength = (li->extLength &
1146 UDF_EXTENT_LENGTH_MASK) |
1147 EXT_NOT_RECORDED_NOT_ALLOCATED;
1148 }
1149 }
1150 }
1151
1152 static void udf_update_extents(struct inode *inode,
1153 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1154 int startnum, int endnum,
1155 struct extent_position *epos)
1156 {
1157 int start = 0, i;
1158 struct kernel_lb_addr tmploc;
1159 uint32_t tmplen;
1160
1161 if (startnum > endnum) {
1162 for (i = 0; i < (startnum - endnum); i++)
1163 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1164 laarr[i].extLength);
1165 } else if (startnum < endnum) {
1166 for (i = 0; i < (endnum - startnum); i++) {
1167 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1168 laarr[i].extLength);
1169 udf_next_aext(inode, epos, &laarr[i].extLocation,
1170 &laarr[i].extLength, 1);
1171 start++;
1172 }
1173 }
1174
1175 for (i = start; i < endnum; i++) {
1176 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1177 udf_write_aext(inode, epos, &laarr[i].extLocation,
1178 laarr[i].extLength, 1);
1179 }
1180 }
1181
1182 struct buffer_head *udf_bread(struct inode *inode, int block,
1183 int create, int *err)
1184 {
1185 struct buffer_head *bh = NULL;
1186
1187 bh = udf_getblk(inode, block, create, err);
1188 if (!bh)
1189 return NULL;
1190
1191 if (buffer_uptodate(bh))
1192 return bh;
1193
1194 ll_rw_block(READ, 1, &bh);
1195
1196 wait_on_buffer(bh);
1197 if (buffer_uptodate(bh))
1198 return bh;
1199
1200 brelse(bh);
1201 *err = -EIO;
1202 return NULL;
1203 }
1204
1205 int udf_setsize(struct inode *inode, loff_t newsize)
1206 {
1207 int err;
1208 struct udf_inode_info *iinfo;
1209 int bsize = 1 << inode->i_blkbits;
1210
1211 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1212 S_ISLNK(inode->i_mode)))
1213 return -EINVAL;
1214 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1215 return -EPERM;
1216
1217 iinfo = UDF_I(inode);
1218 if (newsize > inode->i_size) {
1219 down_write(&iinfo->i_data_sem);
1220 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1221 if (bsize <
1222 (udf_file_entry_alloc_offset(inode) + newsize)) {
1223 err = udf_expand_file_adinicb(inode);
1224 if (err)
1225 return err;
1226 down_write(&iinfo->i_data_sem);
1227 } else {
1228 iinfo->i_lenAlloc = newsize;
1229 goto set_size;
1230 }
1231 }
1232 err = udf_extend_file(inode, newsize);
1233 if (err) {
1234 up_write(&iinfo->i_data_sem);
1235 return err;
1236 }
1237 set_size:
1238 truncate_setsize(inode, newsize);
1239 up_write(&iinfo->i_data_sem);
1240 } else {
1241 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1242 down_write(&iinfo->i_data_sem);
1243 udf_clear_extent_cache(inode);
1244 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1245 0x00, bsize - newsize -
1246 udf_file_entry_alloc_offset(inode));
1247 iinfo->i_lenAlloc = newsize;
1248 truncate_setsize(inode, newsize);
1249 up_write(&iinfo->i_data_sem);
1250 goto update_time;
1251 }
1252 err = block_truncate_page(inode->i_mapping, newsize,
1253 udf_get_block);
1254 if (err)
1255 return err;
1256 down_write(&iinfo->i_data_sem);
1257 udf_clear_extent_cache(inode);
1258 truncate_setsize(inode, newsize);
1259 udf_truncate_extents(inode);
1260 up_write(&iinfo->i_data_sem);
1261 }
1262 update_time:
1263 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1264 if (IS_SYNC(inode))
1265 udf_sync_inode(inode);
1266 else
1267 mark_inode_dirty(inode);
1268 return 0;
1269 }
1270
1271 /*
1272 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1273 * arbitrary - just that we hopefully don't limit any real use of rewritten
1274 * inode on write-once media but avoid looping for too long on corrupted media.
1275 */
1276 #define UDF_MAX_ICB_NESTING 1024
1277
1278 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1279 {
1280 struct buffer_head *bh = NULL;
1281 struct fileEntry *fe;
1282 struct extendedFileEntry *efe;
1283 uint16_t ident;
1284 struct udf_inode_info *iinfo = UDF_I(inode);
1285 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1286 struct kernel_lb_addr *iloc = &iinfo->i_location;
1287 unsigned int link_count;
1288 unsigned int indirections = 0;
1289 int bs = inode->i_sb->s_blocksize;
1290 int ret = -EIO;
1291
1292 reread:
1293 if (iloc->logicalBlockNum >=
1294 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1295 udf_debug("block=%d, partition=%d out of range\n",
1296 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1297 return -EIO;
1298 }
1299
1300 /*
1301 * Set defaults, but the inode is still incomplete!
1302 * Note: get_new_inode() sets the following on a new inode:
1303 * i_sb = sb
1304 * i_no = ino
1305 * i_flags = sb->s_flags
1306 * i_state = 0
1307 * clean_inode(): zero fills and sets
1308 * i_count = 1
1309 * i_nlink = 1
1310 * i_op = NULL;
1311 */
1312 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1313 if (!bh) {
1314 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1315 return -EIO;
1316 }
1317
1318 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1319 ident != TAG_IDENT_USE) {
1320 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1321 inode->i_ino, ident);
1322 goto out;
1323 }
1324
1325 fe = (struct fileEntry *)bh->b_data;
1326 efe = (struct extendedFileEntry *)bh->b_data;
1327
1328 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1329 struct buffer_head *ibh;
1330
1331 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1332 if (ident == TAG_IDENT_IE && ibh) {
1333 struct kernel_lb_addr loc;
1334 struct indirectEntry *ie;
1335
1336 ie = (struct indirectEntry *)ibh->b_data;
1337 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1338
1339 if (ie->indirectICB.extLength) {
1340 brelse(ibh);
1341 memcpy(&iinfo->i_location, &loc,
1342 sizeof(struct kernel_lb_addr));
1343 if (++indirections > UDF_MAX_ICB_NESTING) {
1344 udf_err(inode->i_sb,
1345 "too many ICBs in ICB hierarchy"
1346 " (max %d supported)\n",
1347 UDF_MAX_ICB_NESTING);
1348 goto out;
1349 }
1350 brelse(bh);
1351 goto reread;
1352 }
1353 }
1354 brelse(ibh);
1355 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1356 udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1357 le16_to_cpu(fe->icbTag.strategyType));
1358 goto out;
1359 }
1360 if (fe->icbTag.strategyType == cpu_to_le16(4))
1361 iinfo->i_strat4096 = 0;
1362 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1363 iinfo->i_strat4096 = 1;
1364
1365 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1366 ICBTAG_FLAG_AD_MASK;
1367 iinfo->i_unique = 0;
1368 iinfo->i_lenEAttr = 0;
1369 iinfo->i_lenExtents = 0;
1370 iinfo->i_lenAlloc = 0;
1371 iinfo->i_next_alloc_block = 0;
1372 iinfo->i_next_alloc_goal = 0;
1373 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1374 iinfo->i_efe = 1;
1375 iinfo->i_use = 0;
1376 ret = udf_alloc_i_data(inode, bs -
1377 sizeof(struct extendedFileEntry));
1378 if (ret)
1379 goto out;
1380 memcpy(iinfo->i_ext.i_data,
1381 bh->b_data + sizeof(struct extendedFileEntry),
1382 bs - sizeof(struct extendedFileEntry));
1383 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1384 iinfo->i_efe = 0;
1385 iinfo->i_use = 0;
1386 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1387 if (ret)
1388 goto out;
1389 memcpy(iinfo->i_ext.i_data,
1390 bh->b_data + sizeof(struct fileEntry),
1391 bs - sizeof(struct fileEntry));
1392 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1393 iinfo->i_efe = 0;
1394 iinfo->i_use = 1;
1395 iinfo->i_lenAlloc = le32_to_cpu(
1396 ((struct unallocSpaceEntry *)bh->b_data)->
1397 lengthAllocDescs);
1398 ret = udf_alloc_i_data(inode, bs -
1399 sizeof(struct unallocSpaceEntry));
1400 if (ret)
1401 goto out;
1402 memcpy(iinfo->i_ext.i_data,
1403 bh->b_data + sizeof(struct unallocSpaceEntry),
1404 bs - sizeof(struct unallocSpaceEntry));
1405 return 0;
1406 }
1407
1408 ret = -EIO;
1409 read_lock(&sbi->s_cred_lock);
1410 i_uid_write(inode, le32_to_cpu(fe->uid));
1411 if (!uid_valid(inode->i_uid) ||
1412 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1413 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1414 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1415
1416 i_gid_write(inode, le32_to_cpu(fe->gid));
1417 if (!gid_valid(inode->i_gid) ||
1418 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1419 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1420 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1421
1422 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1423 sbi->s_fmode != UDF_INVALID_MODE)
1424 inode->i_mode = sbi->s_fmode;
1425 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1426 sbi->s_dmode != UDF_INVALID_MODE)
1427 inode->i_mode = sbi->s_dmode;
1428 else
1429 inode->i_mode = udf_convert_permissions(fe);
1430 inode->i_mode &= ~sbi->s_umask;
1431 read_unlock(&sbi->s_cred_lock);
1432
1433 link_count = le16_to_cpu(fe->fileLinkCount);
1434 if (!link_count) {
1435 if (!hidden_inode) {
1436 ret = -ESTALE;
1437 goto out;
1438 }
1439 link_count = 1;
1440 }
1441 set_nlink(inode, link_count);
1442
1443 inode->i_size = le64_to_cpu(fe->informationLength);
1444 iinfo->i_lenExtents = inode->i_size;
1445
1446 if (iinfo->i_efe == 0) {
1447 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1448 (inode->i_sb->s_blocksize_bits - 9);
1449
1450 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1451 inode->i_atime = sbi->s_record_time;
1452
1453 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1454 fe->modificationTime))
1455 inode->i_mtime = sbi->s_record_time;
1456
1457 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1458 inode->i_ctime = sbi->s_record_time;
1459
1460 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1461 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1462 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1463 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1464 } else {
1465 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1466 (inode->i_sb->s_blocksize_bits - 9);
1467
1468 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1469 inode->i_atime = sbi->s_record_time;
1470
1471 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1472 efe->modificationTime))
1473 inode->i_mtime = sbi->s_record_time;
1474
1475 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1476 iinfo->i_crtime = sbi->s_record_time;
1477
1478 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1479 inode->i_ctime = sbi->s_record_time;
1480
1481 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1482 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1483 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1484 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1485 }
1486 inode->i_generation = iinfo->i_unique;
1487
1488 /*
1489 * Sanity check length of allocation descriptors and extended attrs to
1490 * avoid integer overflows
1491 */
1492 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1493 goto out;
1494 /* Now do exact checks */
1495 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1496 goto out;
1497 /* Sanity checks for files in ICB so that we don't get confused later */
1498 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1499 /*
1500 * For file in ICB data is stored in allocation descriptor
1501 * so sizes should match
1502 */
1503 if (iinfo->i_lenAlloc != inode->i_size)
1504 goto out;
1505 /* File in ICB has to fit in there... */
1506 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1507 goto out;
1508 }
1509
1510 switch (fe->icbTag.fileType) {
1511 case ICBTAG_FILE_TYPE_DIRECTORY:
1512 inode->i_op = &udf_dir_inode_operations;
1513 inode->i_fop = &udf_dir_operations;
1514 inode->i_mode |= S_IFDIR;
1515 inc_nlink(inode);
1516 break;
1517 case ICBTAG_FILE_TYPE_REALTIME:
1518 case ICBTAG_FILE_TYPE_REGULAR:
1519 case ICBTAG_FILE_TYPE_UNDEF:
1520 case ICBTAG_FILE_TYPE_VAT20:
1521 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1522 inode->i_data.a_ops = &udf_adinicb_aops;
1523 else
1524 inode->i_data.a_ops = &udf_aops;
1525 inode->i_op = &udf_file_inode_operations;
1526 inode->i_fop = &udf_file_operations;
1527 inode->i_mode |= S_IFREG;
1528 break;
1529 case ICBTAG_FILE_TYPE_BLOCK:
1530 inode->i_mode |= S_IFBLK;
1531 break;
1532 case ICBTAG_FILE_TYPE_CHAR:
1533 inode->i_mode |= S_IFCHR;
1534 break;
1535 case ICBTAG_FILE_TYPE_FIFO:
1536 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1537 break;
1538 case ICBTAG_FILE_TYPE_SOCKET:
1539 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1540 break;
1541 case ICBTAG_FILE_TYPE_SYMLINK:
1542 inode->i_data.a_ops = &udf_symlink_aops;
1543 inode->i_op = &udf_symlink_inode_operations;
1544 inode->i_mode = S_IFLNK | S_IRWXUGO;
1545 break;
1546 case ICBTAG_FILE_TYPE_MAIN:
1547 udf_debug("METADATA FILE-----\n");
1548 break;
1549 case ICBTAG_FILE_TYPE_MIRROR:
1550 udf_debug("METADATA MIRROR FILE-----\n");
1551 break;
1552 case ICBTAG_FILE_TYPE_BITMAP:
1553 udf_debug("METADATA BITMAP FILE-----\n");
1554 break;
1555 default:
1556 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1557 inode->i_ino, fe->icbTag.fileType);
1558 goto out;
1559 }
1560 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1561 struct deviceSpec *dsea =
1562 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1563 if (dsea) {
1564 init_special_inode(inode, inode->i_mode,
1565 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1566 le32_to_cpu(dsea->minorDeviceIdent)));
1567 /* Developer ID ??? */
1568 } else
1569 goto out;
1570 }
1571 ret = 0;
1572 out:
1573 brelse(bh);
1574 return ret;
1575 }
1576
1577 static int udf_alloc_i_data(struct inode *inode, size_t size)
1578 {
1579 struct udf_inode_info *iinfo = UDF_I(inode);
1580 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1581
1582 if (!iinfo->i_ext.i_data) {
1583 udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1584 inode->i_ino);
1585 return -ENOMEM;
1586 }
1587
1588 return 0;
1589 }
1590
1591 static umode_t udf_convert_permissions(struct fileEntry *fe)
1592 {
1593 umode_t mode;
1594 uint32_t permissions;
1595 uint32_t flags;
1596
1597 permissions = le32_to_cpu(fe->permissions);
1598 flags = le16_to_cpu(fe->icbTag.flags);
1599
1600 mode = ((permissions) & S_IRWXO) |
1601 ((permissions >> 2) & S_IRWXG) |
1602 ((permissions >> 4) & S_IRWXU) |
1603 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1604 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1605 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1606
1607 return mode;
1608 }
1609
1610 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1611 {
1612 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1613 }
1614
1615 static int udf_sync_inode(struct inode *inode)
1616 {
1617 return udf_update_inode(inode, 1);
1618 }
1619
1620 static int udf_update_inode(struct inode *inode, int do_sync)
1621 {
1622 struct buffer_head *bh = NULL;
1623 struct fileEntry *fe;
1624 struct extendedFileEntry *efe;
1625 uint64_t lb_recorded;
1626 uint32_t udfperms;
1627 uint16_t icbflags;
1628 uint16_t crclen;
1629 int err = 0;
1630 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1631 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1632 struct udf_inode_info *iinfo = UDF_I(inode);
1633
1634 bh = udf_tgetblk(inode->i_sb,
1635 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1636 if (!bh) {
1637 udf_debug("getblk failure\n");
1638 return -EIO;
1639 }
1640
1641 lock_buffer(bh);
1642 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1643 fe = (struct fileEntry *)bh->b_data;
1644 efe = (struct extendedFileEntry *)bh->b_data;
1645
1646 if (iinfo->i_use) {
1647 struct unallocSpaceEntry *use =
1648 (struct unallocSpaceEntry *)bh->b_data;
1649
1650 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1651 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1652 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1653 sizeof(struct unallocSpaceEntry));
1654 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1655 crclen = sizeof(struct unallocSpaceEntry);
1656
1657 goto finish;
1658 }
1659
1660 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1661 fe->uid = cpu_to_le32(-1);
1662 else
1663 fe->uid = cpu_to_le32(i_uid_read(inode));
1664
1665 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1666 fe->gid = cpu_to_le32(-1);
1667 else
1668 fe->gid = cpu_to_le32(i_gid_read(inode));
1669
1670 udfperms = ((inode->i_mode & S_IRWXO)) |
1671 ((inode->i_mode & S_IRWXG) << 2) |
1672 ((inode->i_mode & S_IRWXU) << 4);
1673
1674 udfperms |= (le32_to_cpu(fe->permissions) &
1675 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1676 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1677 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1678 fe->permissions = cpu_to_le32(udfperms);
1679
1680 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1681 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1682 else
1683 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1684
1685 fe->informationLength = cpu_to_le64(inode->i_size);
1686
1687 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1688 struct regid *eid;
1689 struct deviceSpec *dsea =
1690 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1691 if (!dsea) {
1692 dsea = (struct deviceSpec *)
1693 udf_add_extendedattr(inode,
1694 sizeof(struct deviceSpec) +
1695 sizeof(struct regid), 12, 0x3);
1696 dsea->attrType = cpu_to_le32(12);
1697 dsea->attrSubtype = 1;
1698 dsea->attrLength = cpu_to_le32(
1699 sizeof(struct deviceSpec) +
1700 sizeof(struct regid));
1701 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1702 }
1703 eid = (struct regid *)dsea->impUse;
1704 memset(eid, 0, sizeof(struct regid));
1705 strcpy(eid->ident, UDF_ID_DEVELOPER);
1706 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1707 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1708 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1709 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1710 }
1711
1712 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1713 lb_recorded = 0; /* No extents => no blocks! */
1714 else
1715 lb_recorded =
1716 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1717 (blocksize_bits - 9);
1718
1719 if (iinfo->i_efe == 0) {
1720 memcpy(bh->b_data + sizeof(struct fileEntry),
1721 iinfo->i_ext.i_data,
1722 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1723 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1724
1725 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1726 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1727 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1728 memset(&(fe->impIdent), 0, sizeof(struct regid));
1729 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1730 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1731 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1732 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1733 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1734 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1735 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1736 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1737 crclen = sizeof(struct fileEntry);
1738 } else {
1739 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1740 iinfo->i_ext.i_data,
1741 inode->i_sb->s_blocksize -
1742 sizeof(struct extendedFileEntry));
1743 efe->objectSize = cpu_to_le64(inode->i_size);
1744 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1745
1746 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1747 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1748 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1749 iinfo->i_crtime = inode->i_atime;
1750
1751 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1752 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1753 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1754 iinfo->i_crtime = inode->i_mtime;
1755
1756 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1757 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1758 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1759 iinfo->i_crtime = inode->i_ctime;
1760
1761 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1762 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1763 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1764 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1765
1766 memset(&(efe->impIdent), 0, sizeof(struct regid));
1767 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1768 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1769 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1770 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1771 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1772 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1773 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1774 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1775 crclen = sizeof(struct extendedFileEntry);
1776 }
1777
1778 finish:
1779 if (iinfo->i_strat4096) {
1780 fe->icbTag.strategyType = cpu_to_le16(4096);
1781 fe->icbTag.strategyParameter = cpu_to_le16(1);
1782 fe->icbTag.numEntries = cpu_to_le16(2);
1783 } else {
1784 fe->icbTag.strategyType = cpu_to_le16(4);
1785 fe->icbTag.numEntries = cpu_to_le16(1);
1786 }
1787
1788 if (iinfo->i_use)
1789 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1790 else if (S_ISDIR(inode->i_mode))
1791 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1792 else if (S_ISREG(inode->i_mode))
1793 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1794 else if (S_ISLNK(inode->i_mode))
1795 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1796 else if (S_ISBLK(inode->i_mode))
1797 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1798 else if (S_ISCHR(inode->i_mode))
1799 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1800 else if (S_ISFIFO(inode->i_mode))
1801 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1802 else if (S_ISSOCK(inode->i_mode))
1803 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1804
1805 icbflags = iinfo->i_alloc_type |
1806 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1807 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1808 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1809 (le16_to_cpu(fe->icbTag.flags) &
1810 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1811 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1812
1813 fe->icbTag.flags = cpu_to_le16(icbflags);
1814 if (sbi->s_udfrev >= 0x0200)
1815 fe->descTag.descVersion = cpu_to_le16(3);
1816 else
1817 fe->descTag.descVersion = cpu_to_le16(2);
1818 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1819 fe->descTag.tagLocation = cpu_to_le32(
1820 iinfo->i_location.logicalBlockNum);
1821 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1822 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1823 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1824 crclen));
1825 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1826
1827 set_buffer_uptodate(bh);
1828 unlock_buffer(bh);
1829
1830 /* write the data blocks */
1831 mark_buffer_dirty(bh);
1832 if (do_sync) {
1833 sync_dirty_buffer(bh);
1834 if (buffer_write_io_error(bh)) {
1835 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1836 inode->i_ino);
1837 err = -EIO;
1838 }
1839 }
1840 brelse(bh);
1841
1842 return err;
1843 }
1844
1845 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1846 bool hidden_inode)
1847 {
1848 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1849 struct inode *inode = iget_locked(sb, block);
1850 int err;
1851
1852 if (!inode)
1853 return ERR_PTR(-ENOMEM);
1854
1855 if (!(inode->i_state & I_NEW))
1856 return inode;
1857
1858 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1859 err = udf_read_inode(inode, hidden_inode);
1860 if (err < 0) {
1861 iget_failed(inode);
1862 return ERR_PTR(err);
1863 }
1864 unlock_new_inode(inode);
1865
1866 return inode;
1867 }
1868
1869 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1870 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1871 {
1872 int adsize;
1873 struct short_ad *sad = NULL;
1874 struct long_ad *lad = NULL;
1875 struct allocExtDesc *aed;
1876 uint8_t *ptr;
1877 struct udf_inode_info *iinfo = UDF_I(inode);
1878
1879 if (!epos->bh)
1880 ptr = iinfo->i_ext.i_data + epos->offset -
1881 udf_file_entry_alloc_offset(inode) +
1882 iinfo->i_lenEAttr;
1883 else
1884 ptr = epos->bh->b_data + epos->offset;
1885
1886 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1887 adsize = sizeof(struct short_ad);
1888 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1889 adsize = sizeof(struct long_ad);
1890 else
1891 return -EIO;
1892
1893 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1894 unsigned char *sptr, *dptr;
1895 struct buffer_head *nbh;
1896 int err, loffset;
1897 struct kernel_lb_addr obloc = epos->block;
1898
1899 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1900 obloc.partitionReferenceNum,
1901 obloc.logicalBlockNum, &err);
1902 if (!epos->block.logicalBlockNum)
1903 return -ENOSPC;
1904 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1905 &epos->block,
1906 0));
1907 if (!nbh)
1908 return -EIO;
1909 lock_buffer(nbh);
1910 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1911 set_buffer_uptodate(nbh);
1912 unlock_buffer(nbh);
1913 mark_buffer_dirty_inode(nbh, inode);
1914
1915 aed = (struct allocExtDesc *)(nbh->b_data);
1916 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1917 aed->previousAllocExtLocation =
1918 cpu_to_le32(obloc.logicalBlockNum);
1919 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1920 loffset = epos->offset;
1921 aed->lengthAllocDescs = cpu_to_le32(adsize);
1922 sptr = ptr - adsize;
1923 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1924 memcpy(dptr, sptr, adsize);
1925 epos->offset = sizeof(struct allocExtDesc) + adsize;
1926 } else {
1927 loffset = epos->offset + adsize;
1928 aed->lengthAllocDescs = cpu_to_le32(0);
1929 sptr = ptr;
1930 epos->offset = sizeof(struct allocExtDesc);
1931
1932 if (epos->bh) {
1933 aed = (struct allocExtDesc *)epos->bh->b_data;
1934 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1935 } else {
1936 iinfo->i_lenAlloc += adsize;
1937 mark_inode_dirty(inode);
1938 }
1939 }
1940 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1941 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1942 epos->block.logicalBlockNum, sizeof(struct tag));
1943 else
1944 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1945 epos->block.logicalBlockNum, sizeof(struct tag));
1946 switch (iinfo->i_alloc_type) {
1947 case ICBTAG_FLAG_AD_SHORT:
1948 sad = (struct short_ad *)sptr;
1949 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1950 inode->i_sb->s_blocksize);
1951 sad->extPosition =
1952 cpu_to_le32(epos->block.logicalBlockNum);
1953 break;
1954 case ICBTAG_FLAG_AD_LONG:
1955 lad = (struct long_ad *)sptr;
1956 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1957 inode->i_sb->s_blocksize);
1958 lad->extLocation = cpu_to_lelb(epos->block);
1959 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1960 break;
1961 }
1962 if (epos->bh) {
1963 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1964 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1965 udf_update_tag(epos->bh->b_data, loffset);
1966 else
1967 udf_update_tag(epos->bh->b_data,
1968 sizeof(struct allocExtDesc));
1969 mark_buffer_dirty_inode(epos->bh, inode);
1970 brelse(epos->bh);
1971 } else {
1972 mark_inode_dirty(inode);
1973 }
1974 epos->bh = nbh;
1975 }
1976
1977 udf_write_aext(inode, epos, eloc, elen, inc);
1978
1979 if (!epos->bh) {
1980 iinfo->i_lenAlloc += adsize;
1981 mark_inode_dirty(inode);
1982 } else {
1983 aed = (struct allocExtDesc *)epos->bh->b_data;
1984 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1985 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1986 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1987 udf_update_tag(epos->bh->b_data,
1988 epos->offset + (inc ? 0 : adsize));
1989 else
1990 udf_update_tag(epos->bh->b_data,
1991 sizeof(struct allocExtDesc));
1992 mark_buffer_dirty_inode(epos->bh, inode);
1993 }
1994
1995 return 0;
1996 }
1997
1998 void udf_write_aext(struct inode *inode, struct extent_position *epos,
1999 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2000 {
2001 int adsize;
2002 uint8_t *ptr;
2003 struct short_ad *sad;
2004 struct long_ad *lad;
2005 struct udf_inode_info *iinfo = UDF_I(inode);
2006
2007 if (!epos->bh)
2008 ptr = iinfo->i_ext.i_data + epos->offset -
2009 udf_file_entry_alloc_offset(inode) +
2010 iinfo->i_lenEAttr;
2011 else
2012 ptr = epos->bh->b_data + epos->offset;
2013
2014 switch (iinfo->i_alloc_type) {
2015 case ICBTAG_FLAG_AD_SHORT:
2016 sad = (struct short_ad *)ptr;
2017 sad->extLength = cpu_to_le32(elen);
2018 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2019 adsize = sizeof(struct short_ad);
2020 break;
2021 case ICBTAG_FLAG_AD_LONG:
2022 lad = (struct long_ad *)ptr;
2023 lad->extLength = cpu_to_le32(elen);
2024 lad->extLocation = cpu_to_lelb(*eloc);
2025 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2026 adsize = sizeof(struct long_ad);
2027 break;
2028 default:
2029 return;
2030 }
2031
2032 if (epos->bh) {
2033 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2034 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2035 struct allocExtDesc *aed =
2036 (struct allocExtDesc *)epos->bh->b_data;
2037 udf_update_tag(epos->bh->b_data,
2038 le32_to_cpu(aed->lengthAllocDescs) +
2039 sizeof(struct allocExtDesc));
2040 }
2041 mark_buffer_dirty_inode(epos->bh, inode);
2042 } else {
2043 mark_inode_dirty(inode);
2044 }
2045
2046 if (inc)
2047 epos->offset += adsize;
2048 }
2049
2050 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2051 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2052 {
2053 int8_t etype;
2054
2055 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2056 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2057 int block;
2058 epos->block = *eloc;
2059 epos->offset = sizeof(struct allocExtDesc);
2060 brelse(epos->bh);
2061 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2062 epos->bh = udf_tread(inode->i_sb, block);
2063 if (!epos->bh) {
2064 udf_debug("reading block %d failed!\n", block);
2065 return -1;
2066 }
2067 }
2068
2069 return etype;
2070 }
2071
2072 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2073 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2074 {
2075 int alen;
2076 int8_t etype;
2077 uint8_t *ptr;
2078 struct short_ad *sad;
2079 struct long_ad *lad;
2080 struct udf_inode_info *iinfo = UDF_I(inode);
2081
2082 if (!epos->bh) {
2083 if (!epos->offset)
2084 epos->offset = udf_file_entry_alloc_offset(inode);
2085 ptr = iinfo->i_ext.i_data + epos->offset -
2086 udf_file_entry_alloc_offset(inode) +
2087 iinfo->i_lenEAttr;
2088 alen = udf_file_entry_alloc_offset(inode) +
2089 iinfo->i_lenAlloc;
2090 } else {
2091 if (!epos->offset)
2092 epos->offset = sizeof(struct allocExtDesc);
2093 ptr = epos->bh->b_data + epos->offset;
2094 alen = sizeof(struct allocExtDesc) +
2095 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2096 lengthAllocDescs);
2097 }
2098
2099 switch (iinfo->i_alloc_type) {
2100 case ICBTAG_FLAG_AD_SHORT:
2101 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2102 if (!sad)
2103 return -1;
2104 etype = le32_to_cpu(sad->extLength) >> 30;
2105 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2106 eloc->partitionReferenceNum =
2107 iinfo->i_location.partitionReferenceNum;
2108 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2109 break;
2110 case ICBTAG_FLAG_AD_LONG:
2111 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2112 if (!lad)
2113 return -1;
2114 etype = le32_to_cpu(lad->extLength) >> 30;
2115 *eloc = lelb_to_cpu(lad->extLocation);
2116 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2117 break;
2118 default:
2119 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2120 return -1;
2121 }
2122
2123 return etype;
2124 }
2125
2126 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2127 struct kernel_lb_addr neloc, uint32_t nelen)
2128 {
2129 struct kernel_lb_addr oeloc;
2130 uint32_t oelen;
2131 int8_t etype;
2132
2133 if (epos.bh)
2134 get_bh(epos.bh);
2135
2136 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2137 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2138 neloc = oeloc;
2139 nelen = (etype << 30) | oelen;
2140 }
2141 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2142 brelse(epos.bh);
2143
2144 return (nelen >> 30);
2145 }
2146
2147 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2148 struct kernel_lb_addr eloc, uint32_t elen)
2149 {
2150 struct extent_position oepos;
2151 int adsize;
2152 int8_t etype;
2153 struct allocExtDesc *aed;
2154 struct udf_inode_info *iinfo;
2155
2156 if (epos.bh) {
2157 get_bh(epos.bh);
2158 get_bh(epos.bh);
2159 }
2160
2161 iinfo = UDF_I(inode);
2162 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2163 adsize = sizeof(struct short_ad);
2164 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2165 adsize = sizeof(struct long_ad);
2166 else
2167 adsize = 0;
2168
2169 oepos = epos;
2170 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2171 return -1;
2172
2173 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2174 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2175 if (oepos.bh != epos.bh) {
2176 oepos.block = epos.block;
2177 brelse(oepos.bh);
2178 get_bh(epos.bh);
2179 oepos.bh = epos.bh;
2180 oepos.offset = epos.offset - adsize;
2181 }
2182 }
2183 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2184 elen = 0;
2185
2186 if (epos.bh != oepos.bh) {
2187 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2188 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2189 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2190 if (!oepos.bh) {
2191 iinfo->i_lenAlloc -= (adsize * 2);
2192 mark_inode_dirty(inode);
2193 } else {
2194 aed = (struct allocExtDesc *)oepos.bh->b_data;
2195 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2196 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2197 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2198 udf_update_tag(oepos.bh->b_data,
2199 oepos.offset - (2 * adsize));
2200 else
2201 udf_update_tag(oepos.bh->b_data,
2202 sizeof(struct allocExtDesc));
2203 mark_buffer_dirty_inode(oepos.bh, inode);
2204 }
2205 } else {
2206 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2207 if (!oepos.bh) {
2208 iinfo->i_lenAlloc -= adsize;
2209 mark_inode_dirty(inode);
2210 } else {
2211 aed = (struct allocExtDesc *)oepos.bh->b_data;
2212 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2213 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2214 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2215 udf_update_tag(oepos.bh->b_data,
2216 epos.offset - adsize);
2217 else
2218 udf_update_tag(oepos.bh->b_data,
2219 sizeof(struct allocExtDesc));
2220 mark_buffer_dirty_inode(oepos.bh, inode);
2221 }
2222 }
2223
2224 brelse(epos.bh);
2225 brelse(oepos.bh);
2226
2227 return (elen >> 30);
2228 }
2229
2230 int8_t inode_bmap(struct inode *inode, sector_t block,
2231 struct extent_position *pos, struct kernel_lb_addr *eloc,
2232 uint32_t *elen, sector_t *offset)
2233 {
2234 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2235 loff_t lbcount = 0, bcount =
2236 (loff_t) block << blocksize_bits;
2237 int8_t etype;
2238 struct udf_inode_info *iinfo;
2239
2240 iinfo = UDF_I(inode);
2241 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2242 pos->offset = 0;
2243 pos->block = iinfo->i_location;
2244 pos->bh = NULL;
2245 }
2246 *elen = 0;
2247 do {
2248 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2249 if (etype == -1) {
2250 *offset = (bcount - lbcount) >> blocksize_bits;
2251 iinfo->i_lenExtents = lbcount;
2252 return -1;
2253 }
2254 lbcount += *elen;
2255 } while (lbcount <= bcount);
2256 /* update extent cache */
2257 udf_update_extent_cache(inode, lbcount - *elen, pos, 1);
2258 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2259
2260 return etype;
2261 }
2262
2263 long udf_block_map(struct inode *inode, sector_t block)
2264 {
2265 struct kernel_lb_addr eloc;
2266 uint32_t elen;
2267 sector_t offset;
2268 struct extent_position epos = {};
2269 int ret;
2270
2271 down_read(&UDF_I(inode)->i_data_sem);
2272
2273 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2274 (EXT_RECORDED_ALLOCATED >> 30))
2275 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2276 else
2277 ret = 0;
2278
2279 up_read(&UDF_I(inode)->i_data_sem);
2280 brelse(epos.bh);
2281
2282 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2283 return udf_fixed_to_variable(ret);
2284 else
2285 return ret;
2286 }