]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/udf/super.c
scsi: cxgb4i: call neigh_event_send() to update MAC address
[mirror_ubuntu-artful-kernel.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC 0
68 #define VDS_POS_UNALLOC_SPACE_DESC 1
69 #define VDS_POS_LOGICAL_VOL_DESC 2
70 #define VDS_POS_PARTITION_DESC 3
71 #define VDS_POS_IMP_USE_VOL_DESC 4
72 #define VDS_POS_VOL_DESC_PTR 5
73 #define VDS_POS_TERMINATING_DESC 6
74 #define VDS_POS_LENGTH 7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 #define VSD_FIRST_SECTOR_OFFSET 32768
79 #define VSD_MAX_SECTOR_OFFSET 0x800000
80
81 /*
82 * Maximum number of Terminating Descriptor / Logical Volume Integrity
83 * Descriptor redirections. The chosen numbers are arbitrary - just that we
84 * hopefully don't limit any real use of rewritten inode on write-once media
85 * but avoid looping for too long on corrupted media.
86 */
87 #define UDF_MAX_TD_NESTING 64
88 #define UDF_MAX_LVID_NESTING 1000
89
90 enum { UDF_MAX_LINKS = 0xffff };
91
92 /* These are the "meat" - everything else is stuffing */
93 static int udf_fill_super(struct super_block *, void *, int);
94 static void udf_put_super(struct super_block *);
95 static int udf_sync_fs(struct super_block *, int);
96 static int udf_remount_fs(struct super_block *, int *, char *);
97 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
99 struct kernel_lb_addr *);
100 static void udf_load_fileset(struct super_block *, struct buffer_head *,
101 struct kernel_lb_addr *);
102 static void udf_open_lvid(struct super_block *);
103 static void udf_close_lvid(struct super_block *);
104 static unsigned int udf_count_free(struct super_block *);
105 static int udf_statfs(struct dentry *, struct kstatfs *);
106 static int udf_show_options(struct seq_file *, struct dentry *);
107
108 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
109 {
110 struct logicalVolIntegrityDesc *lvid;
111 unsigned int partnum;
112 unsigned int offset;
113
114 if (!UDF_SB(sb)->s_lvid_bh)
115 return NULL;
116 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
117 partnum = le32_to_cpu(lvid->numOfPartitions);
118 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
119 offsetof(struct logicalVolIntegrityDesc, impUse)) /
120 (2 * sizeof(uint32_t)) < partnum) {
121 udf_err(sb, "Logical volume integrity descriptor corrupted "
122 "(numOfPartitions = %u)!\n", partnum);
123 return NULL;
124 }
125 /* The offset is to skip freeSpaceTable and sizeTable arrays */
126 offset = partnum * 2 * sizeof(uint32_t);
127 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
128 }
129
130 /* UDF filesystem type */
131 static struct dentry *udf_mount(struct file_system_type *fs_type,
132 int flags, const char *dev_name, void *data)
133 {
134 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
135 }
136
137 static struct file_system_type udf_fstype = {
138 .owner = THIS_MODULE,
139 .name = "udf",
140 .mount = udf_mount,
141 .kill_sb = kill_block_super,
142 .fs_flags = FS_REQUIRES_DEV,
143 };
144 MODULE_ALIAS_FS("udf");
145
146 static struct kmem_cache *udf_inode_cachep;
147
148 static struct inode *udf_alloc_inode(struct super_block *sb)
149 {
150 struct udf_inode_info *ei;
151 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
152 if (!ei)
153 return NULL;
154
155 ei->i_unique = 0;
156 ei->i_lenExtents = 0;
157 ei->i_next_alloc_block = 0;
158 ei->i_next_alloc_goal = 0;
159 ei->i_strat4096 = 0;
160 init_rwsem(&ei->i_data_sem);
161 ei->cached_extent.lstart = -1;
162 spin_lock_init(&ei->i_extent_cache_lock);
163
164 return &ei->vfs_inode;
165 }
166
167 static void udf_i_callback(struct rcu_head *head)
168 {
169 struct inode *inode = container_of(head, struct inode, i_rcu);
170 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
171 }
172
173 static void udf_destroy_inode(struct inode *inode)
174 {
175 call_rcu(&inode->i_rcu, udf_i_callback);
176 }
177
178 static void init_once(void *foo)
179 {
180 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
181
182 ei->i_ext.i_data = NULL;
183 inode_init_once(&ei->vfs_inode);
184 }
185
186 static int __init init_inodecache(void)
187 {
188 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
189 sizeof(struct udf_inode_info),
190 0, (SLAB_RECLAIM_ACCOUNT |
191 SLAB_MEM_SPREAD |
192 SLAB_ACCOUNT),
193 init_once);
194 if (!udf_inode_cachep)
195 return -ENOMEM;
196 return 0;
197 }
198
199 static void destroy_inodecache(void)
200 {
201 /*
202 * Make sure all delayed rcu free inodes are flushed before we
203 * destroy cache.
204 */
205 rcu_barrier();
206 kmem_cache_destroy(udf_inode_cachep);
207 }
208
209 /* Superblock operations */
210 static const struct super_operations udf_sb_ops = {
211 .alloc_inode = udf_alloc_inode,
212 .destroy_inode = udf_destroy_inode,
213 .write_inode = udf_write_inode,
214 .evict_inode = udf_evict_inode,
215 .put_super = udf_put_super,
216 .sync_fs = udf_sync_fs,
217 .statfs = udf_statfs,
218 .remount_fs = udf_remount_fs,
219 .show_options = udf_show_options,
220 };
221
222 struct udf_options {
223 unsigned char novrs;
224 unsigned int blocksize;
225 unsigned int session;
226 unsigned int lastblock;
227 unsigned int anchor;
228 unsigned int volume;
229 unsigned short partition;
230 unsigned int fileset;
231 unsigned int rootdir;
232 unsigned int flags;
233 umode_t umask;
234 kgid_t gid;
235 kuid_t uid;
236 umode_t fmode;
237 umode_t dmode;
238 struct nls_table *nls_map;
239 };
240
241 static int __init init_udf_fs(void)
242 {
243 int err;
244
245 err = init_inodecache();
246 if (err)
247 goto out1;
248 err = register_filesystem(&udf_fstype);
249 if (err)
250 goto out;
251
252 return 0;
253
254 out:
255 destroy_inodecache();
256
257 out1:
258 return err;
259 }
260
261 static void __exit exit_udf_fs(void)
262 {
263 unregister_filesystem(&udf_fstype);
264 destroy_inodecache();
265 }
266
267 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
268 {
269 struct udf_sb_info *sbi = UDF_SB(sb);
270
271 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
272 GFP_KERNEL);
273 if (!sbi->s_partmaps) {
274 udf_err(sb, "Unable to allocate space for %d partition maps\n",
275 count);
276 sbi->s_partitions = 0;
277 return -ENOMEM;
278 }
279
280 sbi->s_partitions = count;
281 return 0;
282 }
283
284 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
285 {
286 int i;
287 int nr_groups = bitmap->s_nr_groups;
288
289 for (i = 0; i < nr_groups; i++)
290 if (bitmap->s_block_bitmap[i])
291 brelse(bitmap->s_block_bitmap[i]);
292
293 kvfree(bitmap);
294 }
295
296 static void udf_free_partition(struct udf_part_map *map)
297 {
298 int i;
299 struct udf_meta_data *mdata;
300
301 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
302 iput(map->s_uspace.s_table);
303 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
304 iput(map->s_fspace.s_table);
305 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
306 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
307 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
308 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
309 if (map->s_partition_type == UDF_SPARABLE_MAP15)
310 for (i = 0; i < 4; i++)
311 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
312 else if (map->s_partition_type == UDF_METADATA_MAP25) {
313 mdata = &map->s_type_specific.s_metadata;
314 iput(mdata->s_metadata_fe);
315 mdata->s_metadata_fe = NULL;
316
317 iput(mdata->s_mirror_fe);
318 mdata->s_mirror_fe = NULL;
319
320 iput(mdata->s_bitmap_fe);
321 mdata->s_bitmap_fe = NULL;
322 }
323 }
324
325 static void udf_sb_free_partitions(struct super_block *sb)
326 {
327 struct udf_sb_info *sbi = UDF_SB(sb);
328 int i;
329 if (sbi->s_partmaps == NULL)
330 return;
331 for (i = 0; i < sbi->s_partitions; i++)
332 udf_free_partition(&sbi->s_partmaps[i]);
333 kfree(sbi->s_partmaps);
334 sbi->s_partmaps = NULL;
335 }
336
337 static int udf_show_options(struct seq_file *seq, struct dentry *root)
338 {
339 struct super_block *sb = root->d_sb;
340 struct udf_sb_info *sbi = UDF_SB(sb);
341
342 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
343 seq_puts(seq, ",nostrict");
344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
345 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
347 seq_puts(seq, ",unhide");
348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
349 seq_puts(seq, ",undelete");
350 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
351 seq_puts(seq, ",noadinicb");
352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
353 seq_puts(seq, ",shortad");
354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
355 seq_puts(seq, ",uid=forget");
356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
357 seq_puts(seq, ",uid=ignore");
358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
359 seq_puts(seq, ",gid=forget");
360 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
361 seq_puts(seq, ",gid=ignore");
362 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
363 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
364 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
365 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
366 if (sbi->s_umask != 0)
367 seq_printf(seq, ",umask=%ho", sbi->s_umask);
368 if (sbi->s_fmode != UDF_INVALID_MODE)
369 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
370 if (sbi->s_dmode != UDF_INVALID_MODE)
371 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
372 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
373 seq_printf(seq, ",session=%u", sbi->s_session);
374 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
375 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
376 if (sbi->s_anchor != 0)
377 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
378 /*
379 * volume, partition, fileset and rootdir seem to be ignored
380 * currently
381 */
382 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
383 seq_puts(seq, ",utf8");
384 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
385 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
386
387 return 0;
388 }
389
390 /*
391 * udf_parse_options
392 *
393 * PURPOSE
394 * Parse mount options.
395 *
396 * DESCRIPTION
397 * The following mount options are supported:
398 *
399 * gid= Set the default group.
400 * umask= Set the default umask.
401 * mode= Set the default file permissions.
402 * dmode= Set the default directory permissions.
403 * uid= Set the default user.
404 * bs= Set the block size.
405 * unhide Show otherwise hidden files.
406 * undelete Show deleted files in lists.
407 * adinicb Embed data in the inode (default)
408 * noadinicb Don't embed data in the inode
409 * shortad Use short ad's
410 * longad Use long ad's (default)
411 * nostrict Unset strict conformance
412 * iocharset= Set the NLS character set
413 *
414 * The remaining are for debugging and disaster recovery:
415 *
416 * novrs Skip volume sequence recognition
417 *
418 * The following expect a offset from 0.
419 *
420 * session= Set the CDROM session (default= last session)
421 * anchor= Override standard anchor location. (default= 256)
422 * volume= Override the VolumeDesc location. (unused)
423 * partition= Override the PartitionDesc location. (unused)
424 * lastblock= Set the last block of the filesystem/
425 *
426 * The following expect a offset from the partition root.
427 *
428 * fileset= Override the fileset block location. (unused)
429 * rootdir= Override the root directory location. (unused)
430 * WARNING: overriding the rootdir to a non-directory may
431 * yield highly unpredictable results.
432 *
433 * PRE-CONDITIONS
434 * options Pointer to mount options string.
435 * uopts Pointer to mount options variable.
436 *
437 * POST-CONDITIONS
438 * <return> 1 Mount options parsed okay.
439 * <return> 0 Error parsing mount options.
440 *
441 * HISTORY
442 * July 1, 1997 - Andrew E. Mileski
443 * Written, tested, and released.
444 */
445
446 enum {
447 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
448 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
449 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
450 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
451 Opt_rootdir, Opt_utf8, Opt_iocharset,
452 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
453 Opt_fmode, Opt_dmode
454 };
455
456 static const match_table_t tokens = {
457 {Opt_novrs, "novrs"},
458 {Opt_nostrict, "nostrict"},
459 {Opt_bs, "bs=%u"},
460 {Opt_unhide, "unhide"},
461 {Opt_undelete, "undelete"},
462 {Opt_noadinicb, "noadinicb"},
463 {Opt_adinicb, "adinicb"},
464 {Opt_shortad, "shortad"},
465 {Opt_longad, "longad"},
466 {Opt_uforget, "uid=forget"},
467 {Opt_uignore, "uid=ignore"},
468 {Opt_gforget, "gid=forget"},
469 {Opt_gignore, "gid=ignore"},
470 {Opt_gid, "gid=%u"},
471 {Opt_uid, "uid=%u"},
472 {Opt_umask, "umask=%o"},
473 {Opt_session, "session=%u"},
474 {Opt_lastblock, "lastblock=%u"},
475 {Opt_anchor, "anchor=%u"},
476 {Opt_volume, "volume=%u"},
477 {Opt_partition, "partition=%u"},
478 {Opt_fileset, "fileset=%u"},
479 {Opt_rootdir, "rootdir=%u"},
480 {Opt_utf8, "utf8"},
481 {Opt_iocharset, "iocharset=%s"},
482 {Opt_fmode, "mode=%o"},
483 {Opt_dmode, "dmode=%o"},
484 {Opt_err, NULL}
485 };
486
487 static int udf_parse_options(char *options, struct udf_options *uopt,
488 bool remount)
489 {
490 char *p;
491 int option;
492
493 uopt->novrs = 0;
494 uopt->partition = 0xFFFF;
495 uopt->session = 0xFFFFFFFF;
496 uopt->lastblock = 0;
497 uopt->anchor = 0;
498 uopt->volume = 0xFFFFFFFF;
499 uopt->rootdir = 0xFFFFFFFF;
500 uopt->fileset = 0xFFFFFFFF;
501 uopt->nls_map = NULL;
502
503 if (!options)
504 return 1;
505
506 while ((p = strsep(&options, ",")) != NULL) {
507 substring_t args[MAX_OPT_ARGS];
508 int token;
509 unsigned n;
510 if (!*p)
511 continue;
512
513 token = match_token(p, tokens, args);
514 switch (token) {
515 case Opt_novrs:
516 uopt->novrs = 1;
517 break;
518 case Opt_bs:
519 if (match_int(&args[0], &option))
520 return 0;
521 n = option;
522 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
523 return 0;
524 uopt->blocksize = n;
525 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
526 break;
527 case Opt_unhide:
528 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
529 break;
530 case Opt_undelete:
531 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
532 break;
533 case Opt_noadinicb:
534 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
535 break;
536 case Opt_adinicb:
537 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
538 break;
539 case Opt_shortad:
540 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
541 break;
542 case Opt_longad:
543 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
544 break;
545 case Opt_gid:
546 if (match_int(args, &option))
547 return 0;
548 uopt->gid = make_kgid(current_user_ns(), option);
549 if (!gid_valid(uopt->gid))
550 return 0;
551 uopt->flags |= (1 << UDF_FLAG_GID_SET);
552 break;
553 case Opt_uid:
554 if (match_int(args, &option))
555 return 0;
556 uopt->uid = make_kuid(current_user_ns(), option);
557 if (!uid_valid(uopt->uid))
558 return 0;
559 uopt->flags |= (1 << UDF_FLAG_UID_SET);
560 break;
561 case Opt_umask:
562 if (match_octal(args, &option))
563 return 0;
564 uopt->umask = option;
565 break;
566 case Opt_nostrict:
567 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
568 break;
569 case Opt_session:
570 if (match_int(args, &option))
571 return 0;
572 uopt->session = option;
573 if (!remount)
574 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
575 break;
576 case Opt_lastblock:
577 if (match_int(args, &option))
578 return 0;
579 uopt->lastblock = option;
580 if (!remount)
581 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
582 break;
583 case Opt_anchor:
584 if (match_int(args, &option))
585 return 0;
586 uopt->anchor = option;
587 break;
588 case Opt_volume:
589 if (match_int(args, &option))
590 return 0;
591 uopt->volume = option;
592 break;
593 case Opt_partition:
594 if (match_int(args, &option))
595 return 0;
596 uopt->partition = option;
597 break;
598 case Opt_fileset:
599 if (match_int(args, &option))
600 return 0;
601 uopt->fileset = option;
602 break;
603 case Opt_rootdir:
604 if (match_int(args, &option))
605 return 0;
606 uopt->rootdir = option;
607 break;
608 case Opt_utf8:
609 uopt->flags |= (1 << UDF_FLAG_UTF8);
610 break;
611 #ifdef CONFIG_UDF_NLS
612 case Opt_iocharset:
613 uopt->nls_map = load_nls(args[0].from);
614 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
615 break;
616 #endif
617 case Opt_uignore:
618 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
619 break;
620 case Opt_uforget:
621 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
622 break;
623 case Opt_gignore:
624 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
625 break;
626 case Opt_gforget:
627 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
628 break;
629 case Opt_fmode:
630 if (match_octal(args, &option))
631 return 0;
632 uopt->fmode = option & 0777;
633 break;
634 case Opt_dmode:
635 if (match_octal(args, &option))
636 return 0;
637 uopt->dmode = option & 0777;
638 break;
639 default:
640 pr_err("bad mount option \"%s\" or missing value\n", p);
641 return 0;
642 }
643 }
644 return 1;
645 }
646
647 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
648 {
649 struct udf_options uopt;
650 struct udf_sb_info *sbi = UDF_SB(sb);
651 int error = 0;
652 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
653
654 sync_filesystem(sb);
655 if (lvidiu) {
656 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
657 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
658 return -EACCES;
659 }
660
661 uopt.flags = sbi->s_flags;
662 uopt.uid = sbi->s_uid;
663 uopt.gid = sbi->s_gid;
664 uopt.umask = sbi->s_umask;
665 uopt.fmode = sbi->s_fmode;
666 uopt.dmode = sbi->s_dmode;
667
668 if (!udf_parse_options(options, &uopt, true))
669 return -EINVAL;
670
671 write_lock(&sbi->s_cred_lock);
672 sbi->s_flags = uopt.flags;
673 sbi->s_uid = uopt.uid;
674 sbi->s_gid = uopt.gid;
675 sbi->s_umask = uopt.umask;
676 sbi->s_fmode = uopt.fmode;
677 sbi->s_dmode = uopt.dmode;
678 write_unlock(&sbi->s_cred_lock);
679
680 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
681 goto out_unlock;
682
683 if (*flags & MS_RDONLY)
684 udf_close_lvid(sb);
685 else
686 udf_open_lvid(sb);
687
688 out_unlock:
689 return error;
690 }
691
692 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
693 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
694 static loff_t udf_check_vsd(struct super_block *sb)
695 {
696 struct volStructDesc *vsd = NULL;
697 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
698 int sectorsize;
699 struct buffer_head *bh = NULL;
700 int nsr02 = 0;
701 int nsr03 = 0;
702 struct udf_sb_info *sbi;
703
704 sbi = UDF_SB(sb);
705 if (sb->s_blocksize < sizeof(struct volStructDesc))
706 sectorsize = sizeof(struct volStructDesc);
707 else
708 sectorsize = sb->s_blocksize;
709
710 sector += (sbi->s_session << sb->s_blocksize_bits);
711
712 udf_debug("Starting at sector %u (%ld byte sectors)\n",
713 (unsigned int)(sector >> sb->s_blocksize_bits),
714 sb->s_blocksize);
715 /* Process the sequence (if applicable). The hard limit on the sector
716 * offset is arbitrary, hopefully large enough so that all valid UDF
717 * filesystems will be recognised. There is no mention of an upper
718 * bound to the size of the volume recognition area in the standard.
719 * The limit will prevent the code to read all the sectors of a
720 * specially crafted image (like a bluray disc full of CD001 sectors),
721 * potentially causing minutes or even hours of uninterruptible I/O
722 * activity. This actually happened with uninitialised SSD partitions
723 * (all 0xFF) before the check for the limit and all valid IDs were
724 * added */
725 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
726 sector += sectorsize) {
727 /* Read a block */
728 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
729 if (!bh)
730 break;
731
732 /* Look for ISO descriptors */
733 vsd = (struct volStructDesc *)(bh->b_data +
734 (sector & (sb->s_blocksize - 1)));
735
736 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
737 VSD_STD_ID_LEN)) {
738 switch (vsd->structType) {
739 case 0:
740 udf_debug("ISO9660 Boot Record found\n");
741 break;
742 case 1:
743 udf_debug("ISO9660 Primary Volume Descriptor found\n");
744 break;
745 case 2:
746 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
747 break;
748 case 3:
749 udf_debug("ISO9660 Volume Partition Descriptor found\n");
750 break;
751 case 255:
752 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
753 break;
754 default:
755 udf_debug("ISO9660 VRS (%u) found\n",
756 vsd->structType);
757 break;
758 }
759 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
760 VSD_STD_ID_LEN))
761 ; /* nothing */
762 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
763 VSD_STD_ID_LEN)) {
764 brelse(bh);
765 break;
766 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
767 VSD_STD_ID_LEN))
768 nsr02 = sector;
769 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
770 VSD_STD_ID_LEN))
771 nsr03 = sector;
772 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
773 VSD_STD_ID_LEN))
774 ; /* nothing */
775 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
776 VSD_STD_ID_LEN))
777 ; /* nothing */
778 else {
779 /* invalid id : end of volume recognition area */
780 brelse(bh);
781 break;
782 }
783 brelse(bh);
784 }
785
786 if (nsr03)
787 return nsr03;
788 else if (nsr02)
789 return nsr02;
790 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
791 VSD_FIRST_SECTOR_OFFSET)
792 return -1;
793 else
794 return 0;
795 }
796
797 static int udf_find_fileset(struct super_block *sb,
798 struct kernel_lb_addr *fileset,
799 struct kernel_lb_addr *root)
800 {
801 struct buffer_head *bh = NULL;
802 long lastblock;
803 uint16_t ident;
804 struct udf_sb_info *sbi;
805
806 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
807 fileset->partitionReferenceNum != 0xFFFF) {
808 bh = udf_read_ptagged(sb, fileset, 0, &ident);
809
810 if (!bh) {
811 return 1;
812 } else if (ident != TAG_IDENT_FSD) {
813 brelse(bh);
814 return 1;
815 }
816
817 }
818
819 sbi = UDF_SB(sb);
820 if (!bh) {
821 /* Search backwards through the partitions */
822 struct kernel_lb_addr newfileset;
823
824 /* --> cvg: FIXME - is it reasonable? */
825 return 1;
826
827 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
828 (newfileset.partitionReferenceNum != 0xFFFF &&
829 fileset->logicalBlockNum == 0xFFFFFFFF &&
830 fileset->partitionReferenceNum == 0xFFFF);
831 newfileset.partitionReferenceNum--) {
832 lastblock = sbi->s_partmaps
833 [newfileset.partitionReferenceNum]
834 .s_partition_len;
835 newfileset.logicalBlockNum = 0;
836
837 do {
838 bh = udf_read_ptagged(sb, &newfileset, 0,
839 &ident);
840 if (!bh) {
841 newfileset.logicalBlockNum++;
842 continue;
843 }
844
845 switch (ident) {
846 case TAG_IDENT_SBD:
847 {
848 struct spaceBitmapDesc *sp;
849 sp = (struct spaceBitmapDesc *)
850 bh->b_data;
851 newfileset.logicalBlockNum += 1 +
852 ((le32_to_cpu(sp->numOfBytes) +
853 sizeof(struct spaceBitmapDesc)
854 - 1) >> sb->s_blocksize_bits);
855 brelse(bh);
856 break;
857 }
858 case TAG_IDENT_FSD:
859 *fileset = newfileset;
860 break;
861 default:
862 newfileset.logicalBlockNum++;
863 brelse(bh);
864 bh = NULL;
865 break;
866 }
867 } while (newfileset.logicalBlockNum < lastblock &&
868 fileset->logicalBlockNum == 0xFFFFFFFF &&
869 fileset->partitionReferenceNum == 0xFFFF);
870 }
871 }
872
873 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
874 fileset->partitionReferenceNum != 0xFFFF) && bh) {
875 udf_debug("Fileset at block=%d, partition=%d\n",
876 fileset->logicalBlockNum,
877 fileset->partitionReferenceNum);
878
879 sbi->s_partition = fileset->partitionReferenceNum;
880 udf_load_fileset(sb, bh, root);
881 brelse(bh);
882 return 0;
883 }
884 return 1;
885 }
886
887 /*
888 * Load primary Volume Descriptor Sequence
889 *
890 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
891 * should be tried.
892 */
893 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
894 {
895 struct primaryVolDesc *pvoldesc;
896 uint8_t *outstr;
897 struct buffer_head *bh;
898 uint16_t ident;
899 int ret = -ENOMEM;
900
901 outstr = kmalloc(128, GFP_NOFS);
902 if (!outstr)
903 return -ENOMEM;
904
905 bh = udf_read_tagged(sb, block, block, &ident);
906 if (!bh) {
907 ret = -EAGAIN;
908 goto out2;
909 }
910
911 if (ident != TAG_IDENT_PVD) {
912 ret = -EIO;
913 goto out_bh;
914 }
915
916 pvoldesc = (struct primaryVolDesc *)bh->b_data;
917
918 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
919 pvoldesc->recordingDateAndTime)) {
920 #ifdef UDFFS_DEBUG
921 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
922 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
923 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
924 ts->minute, le16_to_cpu(ts->typeAndTimezone));
925 #endif
926 }
927
928 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
929 if (ret < 0)
930 goto out_bh;
931
932 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
933 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
934
935 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
936 if (ret < 0)
937 goto out_bh;
938
939 outstr[ret] = 0;
940 udf_debug("volSetIdent[] = '%s'\n", outstr);
941
942 ret = 0;
943 out_bh:
944 brelse(bh);
945 out2:
946 kfree(outstr);
947 return ret;
948 }
949
950 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
951 u32 meta_file_loc, u32 partition_ref)
952 {
953 struct kernel_lb_addr addr;
954 struct inode *metadata_fe;
955
956 addr.logicalBlockNum = meta_file_loc;
957 addr.partitionReferenceNum = partition_ref;
958
959 metadata_fe = udf_iget_special(sb, &addr);
960
961 if (IS_ERR(metadata_fe)) {
962 udf_warn(sb, "metadata inode efe not found\n");
963 return metadata_fe;
964 }
965 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
966 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
967 iput(metadata_fe);
968 return ERR_PTR(-EIO);
969 }
970
971 return metadata_fe;
972 }
973
974 static int udf_load_metadata_files(struct super_block *sb, int partition,
975 int type1_index)
976 {
977 struct udf_sb_info *sbi = UDF_SB(sb);
978 struct udf_part_map *map;
979 struct udf_meta_data *mdata;
980 struct kernel_lb_addr addr;
981 struct inode *fe;
982
983 map = &sbi->s_partmaps[partition];
984 mdata = &map->s_type_specific.s_metadata;
985 mdata->s_phys_partition_ref = type1_index;
986
987 /* metadata address */
988 udf_debug("Metadata file location: block = %d part = %d\n",
989 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
990
991 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
992 mdata->s_phys_partition_ref);
993 if (IS_ERR(fe)) {
994 /* mirror file entry */
995 udf_debug("Mirror metadata file location: block = %d part = %d\n",
996 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
997
998 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
999 mdata->s_phys_partition_ref);
1000
1001 if (IS_ERR(fe)) {
1002 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1003 return PTR_ERR(fe);
1004 }
1005 mdata->s_mirror_fe = fe;
1006 } else
1007 mdata->s_metadata_fe = fe;
1008
1009
1010 /*
1011 * bitmap file entry
1012 * Note:
1013 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1014 */
1015 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1016 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1017 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1018
1019 udf_debug("Bitmap file location: block = %d part = %d\n",
1020 addr.logicalBlockNum, addr.partitionReferenceNum);
1021
1022 fe = udf_iget_special(sb, &addr);
1023 if (IS_ERR(fe)) {
1024 if (sb->s_flags & MS_RDONLY)
1025 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1026 else {
1027 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1028 return PTR_ERR(fe);
1029 }
1030 } else
1031 mdata->s_bitmap_fe = fe;
1032 }
1033
1034 udf_debug("udf_load_metadata_files Ok\n");
1035 return 0;
1036 }
1037
1038 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1039 struct kernel_lb_addr *root)
1040 {
1041 struct fileSetDesc *fset;
1042
1043 fset = (struct fileSetDesc *)bh->b_data;
1044
1045 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1046
1047 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1048
1049 udf_debug("Rootdir at block=%d, partition=%d\n",
1050 root->logicalBlockNum, root->partitionReferenceNum);
1051 }
1052
1053 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1054 {
1055 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1056 return DIV_ROUND_UP(map->s_partition_len +
1057 (sizeof(struct spaceBitmapDesc) << 3),
1058 sb->s_blocksize * 8);
1059 }
1060
1061 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1062 {
1063 struct udf_bitmap *bitmap;
1064 int nr_groups;
1065 int size;
1066
1067 nr_groups = udf_compute_nr_groups(sb, index);
1068 size = sizeof(struct udf_bitmap) +
1069 (sizeof(struct buffer_head *) * nr_groups);
1070
1071 if (size <= PAGE_SIZE)
1072 bitmap = kzalloc(size, GFP_KERNEL);
1073 else
1074 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1075
1076 if (bitmap == NULL)
1077 return NULL;
1078
1079 bitmap->s_nr_groups = nr_groups;
1080 return bitmap;
1081 }
1082
1083 static int udf_fill_partdesc_info(struct super_block *sb,
1084 struct partitionDesc *p, int p_index)
1085 {
1086 struct udf_part_map *map;
1087 struct udf_sb_info *sbi = UDF_SB(sb);
1088 struct partitionHeaderDesc *phd;
1089
1090 map = &sbi->s_partmaps[p_index];
1091
1092 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1093 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1094
1095 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1096 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1097 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1098 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1099 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1100 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1101 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1102 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1103
1104 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1105 p_index, map->s_partition_type,
1106 map->s_partition_root, map->s_partition_len);
1107
1108 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1109 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1110 return 0;
1111
1112 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1113 if (phd->unallocSpaceTable.extLength) {
1114 struct kernel_lb_addr loc = {
1115 .logicalBlockNum = le32_to_cpu(
1116 phd->unallocSpaceTable.extPosition),
1117 .partitionReferenceNum = p_index,
1118 };
1119 struct inode *inode;
1120
1121 inode = udf_iget_special(sb, &loc);
1122 if (IS_ERR(inode)) {
1123 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1124 p_index);
1125 return PTR_ERR(inode);
1126 }
1127 map->s_uspace.s_table = inode;
1128 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1129 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1130 p_index, map->s_uspace.s_table->i_ino);
1131 }
1132
1133 if (phd->unallocSpaceBitmap.extLength) {
1134 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1135 if (!bitmap)
1136 return -ENOMEM;
1137 map->s_uspace.s_bitmap = bitmap;
1138 bitmap->s_extPosition = le32_to_cpu(
1139 phd->unallocSpaceBitmap.extPosition);
1140 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1141 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1142 p_index, bitmap->s_extPosition);
1143 }
1144
1145 if (phd->partitionIntegrityTable.extLength)
1146 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1147
1148 if (phd->freedSpaceTable.extLength) {
1149 struct kernel_lb_addr loc = {
1150 .logicalBlockNum = le32_to_cpu(
1151 phd->freedSpaceTable.extPosition),
1152 .partitionReferenceNum = p_index,
1153 };
1154 struct inode *inode;
1155
1156 inode = udf_iget_special(sb, &loc);
1157 if (IS_ERR(inode)) {
1158 udf_debug("cannot load freedSpaceTable (part %d)\n",
1159 p_index);
1160 return PTR_ERR(inode);
1161 }
1162 map->s_fspace.s_table = inode;
1163 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1164 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1165 p_index, map->s_fspace.s_table->i_ino);
1166 }
1167
1168 if (phd->freedSpaceBitmap.extLength) {
1169 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1170 if (!bitmap)
1171 return -ENOMEM;
1172 map->s_fspace.s_bitmap = bitmap;
1173 bitmap->s_extPosition = le32_to_cpu(
1174 phd->freedSpaceBitmap.extPosition);
1175 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1176 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1177 p_index, bitmap->s_extPosition);
1178 }
1179 return 0;
1180 }
1181
1182 static void udf_find_vat_block(struct super_block *sb, int p_index,
1183 int type1_index, sector_t start_block)
1184 {
1185 struct udf_sb_info *sbi = UDF_SB(sb);
1186 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1187 sector_t vat_block;
1188 struct kernel_lb_addr ino;
1189 struct inode *inode;
1190
1191 /*
1192 * VAT file entry is in the last recorded block. Some broken disks have
1193 * it a few blocks before so try a bit harder...
1194 */
1195 ino.partitionReferenceNum = type1_index;
1196 for (vat_block = start_block;
1197 vat_block >= map->s_partition_root &&
1198 vat_block >= start_block - 3; vat_block--) {
1199 ino.logicalBlockNum = vat_block - map->s_partition_root;
1200 inode = udf_iget_special(sb, &ino);
1201 if (!IS_ERR(inode)) {
1202 sbi->s_vat_inode = inode;
1203 break;
1204 }
1205 }
1206 }
1207
1208 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1209 {
1210 struct udf_sb_info *sbi = UDF_SB(sb);
1211 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1212 struct buffer_head *bh = NULL;
1213 struct udf_inode_info *vati;
1214 uint32_t pos;
1215 struct virtualAllocationTable20 *vat20;
1216 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1217 sb->s_blocksize_bits;
1218
1219 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1220 if (!sbi->s_vat_inode &&
1221 sbi->s_last_block != blocks - 1) {
1222 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1223 (unsigned long)sbi->s_last_block,
1224 (unsigned long)blocks - 1);
1225 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1226 }
1227 if (!sbi->s_vat_inode)
1228 return -EIO;
1229
1230 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1231 map->s_type_specific.s_virtual.s_start_offset = 0;
1232 map->s_type_specific.s_virtual.s_num_entries =
1233 (sbi->s_vat_inode->i_size - 36) >> 2;
1234 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1235 vati = UDF_I(sbi->s_vat_inode);
1236 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1237 pos = udf_block_map(sbi->s_vat_inode, 0);
1238 bh = sb_bread(sb, pos);
1239 if (!bh)
1240 return -EIO;
1241 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1242 } else {
1243 vat20 = (struct virtualAllocationTable20 *)
1244 vati->i_ext.i_data;
1245 }
1246
1247 map->s_type_specific.s_virtual.s_start_offset =
1248 le16_to_cpu(vat20->lengthHeader);
1249 map->s_type_specific.s_virtual.s_num_entries =
1250 (sbi->s_vat_inode->i_size -
1251 map->s_type_specific.s_virtual.
1252 s_start_offset) >> 2;
1253 brelse(bh);
1254 }
1255 return 0;
1256 }
1257
1258 /*
1259 * Load partition descriptor block
1260 *
1261 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1262 * sequence.
1263 */
1264 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1265 {
1266 struct buffer_head *bh;
1267 struct partitionDesc *p;
1268 struct udf_part_map *map;
1269 struct udf_sb_info *sbi = UDF_SB(sb);
1270 int i, type1_idx;
1271 uint16_t partitionNumber;
1272 uint16_t ident;
1273 int ret;
1274
1275 bh = udf_read_tagged(sb, block, block, &ident);
1276 if (!bh)
1277 return -EAGAIN;
1278 if (ident != TAG_IDENT_PD) {
1279 ret = 0;
1280 goto out_bh;
1281 }
1282
1283 p = (struct partitionDesc *)bh->b_data;
1284 partitionNumber = le16_to_cpu(p->partitionNumber);
1285
1286 /* First scan for TYPE1 and SPARABLE partitions */
1287 for (i = 0; i < sbi->s_partitions; i++) {
1288 map = &sbi->s_partmaps[i];
1289 udf_debug("Searching map: (%d == %d)\n",
1290 map->s_partition_num, partitionNumber);
1291 if (map->s_partition_num == partitionNumber &&
1292 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1293 map->s_partition_type == UDF_SPARABLE_MAP15))
1294 break;
1295 }
1296
1297 if (i >= sbi->s_partitions) {
1298 udf_debug("Partition (%d) not found in partition map\n",
1299 partitionNumber);
1300 ret = 0;
1301 goto out_bh;
1302 }
1303
1304 ret = udf_fill_partdesc_info(sb, p, i);
1305 if (ret < 0)
1306 goto out_bh;
1307
1308 /*
1309 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1310 * PHYSICAL partitions are already set up
1311 */
1312 type1_idx = i;
1313 #ifdef UDFFS_DEBUG
1314 map = NULL; /* supress 'maybe used uninitialized' warning */
1315 #endif
1316 for (i = 0; i < sbi->s_partitions; i++) {
1317 map = &sbi->s_partmaps[i];
1318
1319 if (map->s_partition_num == partitionNumber &&
1320 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1321 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1322 map->s_partition_type == UDF_METADATA_MAP25))
1323 break;
1324 }
1325
1326 if (i >= sbi->s_partitions) {
1327 ret = 0;
1328 goto out_bh;
1329 }
1330
1331 ret = udf_fill_partdesc_info(sb, p, i);
1332 if (ret < 0)
1333 goto out_bh;
1334
1335 if (map->s_partition_type == UDF_METADATA_MAP25) {
1336 ret = udf_load_metadata_files(sb, i, type1_idx);
1337 if (ret < 0) {
1338 udf_err(sb, "error loading MetaData partition map %d\n",
1339 i);
1340 goto out_bh;
1341 }
1342 } else {
1343 /*
1344 * If we have a partition with virtual map, we don't handle
1345 * writing to it (we overwrite blocks instead of relocating
1346 * them).
1347 */
1348 if (!(sb->s_flags & MS_RDONLY)) {
1349 ret = -EACCES;
1350 goto out_bh;
1351 }
1352 ret = udf_load_vat(sb, i, type1_idx);
1353 if (ret < 0)
1354 goto out_bh;
1355 }
1356 ret = 0;
1357 out_bh:
1358 /* In case loading failed, we handle cleanup in udf_fill_super */
1359 brelse(bh);
1360 return ret;
1361 }
1362
1363 static int udf_load_sparable_map(struct super_block *sb,
1364 struct udf_part_map *map,
1365 struct sparablePartitionMap *spm)
1366 {
1367 uint32_t loc;
1368 uint16_t ident;
1369 struct sparingTable *st;
1370 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1371 int i;
1372 struct buffer_head *bh;
1373
1374 map->s_partition_type = UDF_SPARABLE_MAP15;
1375 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1376 if (!is_power_of_2(sdata->s_packet_len)) {
1377 udf_err(sb, "error loading logical volume descriptor: "
1378 "Invalid packet length %u\n",
1379 (unsigned)sdata->s_packet_len);
1380 return -EIO;
1381 }
1382 if (spm->numSparingTables > 4) {
1383 udf_err(sb, "error loading logical volume descriptor: "
1384 "Too many sparing tables (%d)\n",
1385 (int)spm->numSparingTables);
1386 return -EIO;
1387 }
1388
1389 for (i = 0; i < spm->numSparingTables; i++) {
1390 loc = le32_to_cpu(spm->locSparingTable[i]);
1391 bh = udf_read_tagged(sb, loc, loc, &ident);
1392 if (!bh)
1393 continue;
1394
1395 st = (struct sparingTable *)bh->b_data;
1396 if (ident != 0 ||
1397 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1398 strlen(UDF_ID_SPARING)) ||
1399 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1400 sb->s_blocksize) {
1401 brelse(bh);
1402 continue;
1403 }
1404
1405 sdata->s_spar_map[i] = bh;
1406 }
1407 map->s_partition_func = udf_get_pblock_spar15;
1408 return 0;
1409 }
1410
1411 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1412 struct kernel_lb_addr *fileset)
1413 {
1414 struct logicalVolDesc *lvd;
1415 int i, offset;
1416 uint8_t type;
1417 struct udf_sb_info *sbi = UDF_SB(sb);
1418 struct genericPartitionMap *gpm;
1419 uint16_t ident;
1420 struct buffer_head *bh;
1421 unsigned int table_len;
1422 int ret;
1423
1424 bh = udf_read_tagged(sb, block, block, &ident);
1425 if (!bh)
1426 return -EAGAIN;
1427 BUG_ON(ident != TAG_IDENT_LVD);
1428 lvd = (struct logicalVolDesc *)bh->b_data;
1429 table_len = le32_to_cpu(lvd->mapTableLength);
1430 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1431 udf_err(sb, "error loading logical volume descriptor: "
1432 "Partition table too long (%u > %lu)\n", table_len,
1433 sb->s_blocksize - sizeof(*lvd));
1434 ret = -EIO;
1435 goto out_bh;
1436 }
1437
1438 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1439 if (ret)
1440 goto out_bh;
1441
1442 for (i = 0, offset = 0;
1443 i < sbi->s_partitions && offset < table_len;
1444 i++, offset += gpm->partitionMapLength) {
1445 struct udf_part_map *map = &sbi->s_partmaps[i];
1446 gpm = (struct genericPartitionMap *)
1447 &(lvd->partitionMaps[offset]);
1448 type = gpm->partitionMapType;
1449 if (type == 1) {
1450 struct genericPartitionMap1 *gpm1 =
1451 (struct genericPartitionMap1 *)gpm;
1452 map->s_partition_type = UDF_TYPE1_MAP15;
1453 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1454 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1455 map->s_partition_func = NULL;
1456 } else if (type == 2) {
1457 struct udfPartitionMap2 *upm2 =
1458 (struct udfPartitionMap2 *)gpm;
1459 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1460 strlen(UDF_ID_VIRTUAL))) {
1461 u16 suf =
1462 le16_to_cpu(((__le16 *)upm2->partIdent.
1463 identSuffix)[0]);
1464 if (suf < 0x0200) {
1465 map->s_partition_type =
1466 UDF_VIRTUAL_MAP15;
1467 map->s_partition_func =
1468 udf_get_pblock_virt15;
1469 } else {
1470 map->s_partition_type =
1471 UDF_VIRTUAL_MAP20;
1472 map->s_partition_func =
1473 udf_get_pblock_virt20;
1474 }
1475 } else if (!strncmp(upm2->partIdent.ident,
1476 UDF_ID_SPARABLE,
1477 strlen(UDF_ID_SPARABLE))) {
1478 ret = udf_load_sparable_map(sb, map,
1479 (struct sparablePartitionMap *)gpm);
1480 if (ret < 0)
1481 goto out_bh;
1482 } else if (!strncmp(upm2->partIdent.ident,
1483 UDF_ID_METADATA,
1484 strlen(UDF_ID_METADATA))) {
1485 struct udf_meta_data *mdata =
1486 &map->s_type_specific.s_metadata;
1487 struct metadataPartitionMap *mdm =
1488 (struct metadataPartitionMap *)
1489 &(lvd->partitionMaps[offset]);
1490 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1491 i, type, UDF_ID_METADATA);
1492
1493 map->s_partition_type = UDF_METADATA_MAP25;
1494 map->s_partition_func = udf_get_pblock_meta25;
1495
1496 mdata->s_meta_file_loc =
1497 le32_to_cpu(mdm->metadataFileLoc);
1498 mdata->s_mirror_file_loc =
1499 le32_to_cpu(mdm->metadataMirrorFileLoc);
1500 mdata->s_bitmap_file_loc =
1501 le32_to_cpu(mdm->metadataBitmapFileLoc);
1502 mdata->s_alloc_unit_size =
1503 le32_to_cpu(mdm->allocUnitSize);
1504 mdata->s_align_unit_size =
1505 le16_to_cpu(mdm->alignUnitSize);
1506 if (mdm->flags & 0x01)
1507 mdata->s_flags |= MF_DUPLICATE_MD;
1508
1509 udf_debug("Metadata Ident suffix=0x%x\n",
1510 le16_to_cpu(*(__le16 *)
1511 mdm->partIdent.identSuffix));
1512 udf_debug("Metadata part num=%d\n",
1513 le16_to_cpu(mdm->partitionNum));
1514 udf_debug("Metadata part alloc unit size=%d\n",
1515 le32_to_cpu(mdm->allocUnitSize));
1516 udf_debug("Metadata file loc=%d\n",
1517 le32_to_cpu(mdm->metadataFileLoc));
1518 udf_debug("Mirror file loc=%d\n",
1519 le32_to_cpu(mdm->metadataMirrorFileLoc));
1520 udf_debug("Bitmap file loc=%d\n",
1521 le32_to_cpu(mdm->metadataBitmapFileLoc));
1522 udf_debug("Flags: %d %d\n",
1523 mdata->s_flags, mdm->flags);
1524 } else {
1525 udf_debug("Unknown ident: %s\n",
1526 upm2->partIdent.ident);
1527 continue;
1528 }
1529 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1530 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1531 }
1532 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1533 i, map->s_partition_num, type, map->s_volumeseqnum);
1534 }
1535
1536 if (fileset) {
1537 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1538
1539 *fileset = lelb_to_cpu(la->extLocation);
1540 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1541 fileset->logicalBlockNum,
1542 fileset->partitionReferenceNum);
1543 }
1544 if (lvd->integritySeqExt.extLength)
1545 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1546 ret = 0;
1547 out_bh:
1548 brelse(bh);
1549 return ret;
1550 }
1551
1552 /*
1553 * Find the prevailing Logical Volume Integrity Descriptor.
1554 */
1555 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1556 {
1557 struct buffer_head *bh, *final_bh;
1558 uint16_t ident;
1559 struct udf_sb_info *sbi = UDF_SB(sb);
1560 struct logicalVolIntegrityDesc *lvid;
1561 int indirections = 0;
1562
1563 while (++indirections <= UDF_MAX_LVID_NESTING) {
1564 final_bh = NULL;
1565 while (loc.extLength > 0 &&
1566 (bh = udf_read_tagged(sb, loc.extLocation,
1567 loc.extLocation, &ident))) {
1568 if (ident != TAG_IDENT_LVID) {
1569 brelse(bh);
1570 break;
1571 }
1572
1573 brelse(final_bh);
1574 final_bh = bh;
1575
1576 loc.extLength -= sb->s_blocksize;
1577 loc.extLocation++;
1578 }
1579
1580 if (!final_bh)
1581 return;
1582
1583 brelse(sbi->s_lvid_bh);
1584 sbi->s_lvid_bh = final_bh;
1585
1586 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1587 if (lvid->nextIntegrityExt.extLength == 0)
1588 return;
1589
1590 loc = leea_to_cpu(lvid->nextIntegrityExt);
1591 }
1592
1593 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1594 UDF_MAX_LVID_NESTING);
1595 brelse(sbi->s_lvid_bh);
1596 sbi->s_lvid_bh = NULL;
1597 }
1598
1599
1600 /*
1601 * Process a main/reserve volume descriptor sequence.
1602 * @block First block of first extent of the sequence.
1603 * @lastblock Lastblock of first extent of the sequence.
1604 * @fileset There we store extent containing root fileset
1605 *
1606 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1607 * sequence
1608 */
1609 static noinline int udf_process_sequence(
1610 struct super_block *sb,
1611 sector_t block, sector_t lastblock,
1612 struct kernel_lb_addr *fileset)
1613 {
1614 struct buffer_head *bh = NULL;
1615 struct udf_vds_record vds[VDS_POS_LENGTH];
1616 struct udf_vds_record *curr;
1617 struct generic_desc *gd;
1618 struct volDescPtr *vdp;
1619 bool done = false;
1620 uint32_t vdsn;
1621 uint16_t ident;
1622 long next_s = 0, next_e = 0;
1623 int ret;
1624 unsigned int indirections = 0;
1625
1626 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1627
1628 /*
1629 * Read the main descriptor sequence and find which descriptors
1630 * are in it.
1631 */
1632 for (; (!done && block <= lastblock); block++) {
1633
1634 bh = udf_read_tagged(sb, block, block, &ident);
1635 if (!bh) {
1636 udf_err(sb,
1637 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1638 (unsigned long long)block);
1639 return -EAGAIN;
1640 }
1641
1642 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1643 gd = (struct generic_desc *)bh->b_data;
1644 vdsn = le32_to_cpu(gd->volDescSeqNum);
1645 switch (ident) {
1646 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1647 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1648 if (vdsn >= curr->volDescSeqNum) {
1649 curr->volDescSeqNum = vdsn;
1650 curr->block = block;
1651 }
1652 break;
1653 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1654 curr = &vds[VDS_POS_VOL_DESC_PTR];
1655 if (vdsn >= curr->volDescSeqNum) {
1656 curr->volDescSeqNum = vdsn;
1657 curr->block = block;
1658
1659 vdp = (struct volDescPtr *)bh->b_data;
1660 next_s = le32_to_cpu(
1661 vdp->nextVolDescSeqExt.extLocation);
1662 next_e = le32_to_cpu(
1663 vdp->nextVolDescSeqExt.extLength);
1664 next_e = next_e >> sb->s_blocksize_bits;
1665 next_e += next_s;
1666 }
1667 break;
1668 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1669 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1670 if (vdsn >= curr->volDescSeqNum) {
1671 curr->volDescSeqNum = vdsn;
1672 curr->block = block;
1673 }
1674 break;
1675 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1676 curr = &vds[VDS_POS_PARTITION_DESC];
1677 if (!curr->block)
1678 curr->block = block;
1679 break;
1680 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1681 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1682 if (vdsn >= curr->volDescSeqNum) {
1683 curr->volDescSeqNum = vdsn;
1684 curr->block = block;
1685 }
1686 break;
1687 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1688 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1689 if (vdsn >= curr->volDescSeqNum) {
1690 curr->volDescSeqNum = vdsn;
1691 curr->block = block;
1692 }
1693 break;
1694 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1695 if (++indirections > UDF_MAX_TD_NESTING) {
1696 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1697 brelse(bh);
1698 return -EIO;
1699 }
1700
1701 vds[VDS_POS_TERMINATING_DESC].block = block;
1702 if (next_e) {
1703 block = next_s;
1704 lastblock = next_e;
1705 next_s = next_e = 0;
1706 } else
1707 done = true;
1708 break;
1709 }
1710 brelse(bh);
1711 }
1712 /*
1713 * Now read interesting descriptors again and process them
1714 * in a suitable order
1715 */
1716 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1717 udf_err(sb, "Primary Volume Descriptor not found!\n");
1718 return -EAGAIN;
1719 }
1720 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1721 if (ret < 0)
1722 return ret;
1723
1724 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1725 ret = udf_load_logicalvol(sb,
1726 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1727 fileset);
1728 if (ret < 0)
1729 return ret;
1730 }
1731
1732 if (vds[VDS_POS_PARTITION_DESC].block) {
1733 /*
1734 * We rescan the whole descriptor sequence to find
1735 * partition descriptor blocks and process them.
1736 */
1737 for (block = vds[VDS_POS_PARTITION_DESC].block;
1738 block < vds[VDS_POS_TERMINATING_DESC].block;
1739 block++) {
1740 ret = udf_load_partdesc(sb, block);
1741 if (ret < 0)
1742 return ret;
1743 }
1744 }
1745
1746 return 0;
1747 }
1748
1749 /*
1750 * Load Volume Descriptor Sequence described by anchor in bh
1751 *
1752 * Returns <0 on error, 0 on success
1753 */
1754 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1755 struct kernel_lb_addr *fileset)
1756 {
1757 struct anchorVolDescPtr *anchor;
1758 sector_t main_s, main_e, reserve_s, reserve_e;
1759 int ret;
1760
1761 anchor = (struct anchorVolDescPtr *)bh->b_data;
1762
1763 /* Locate the main sequence */
1764 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1765 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1766 main_e = main_e >> sb->s_blocksize_bits;
1767 main_e += main_s;
1768
1769 /* Locate the reserve sequence */
1770 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1771 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1772 reserve_e = reserve_e >> sb->s_blocksize_bits;
1773 reserve_e += reserve_s;
1774
1775 /* Process the main & reserve sequences */
1776 /* responsible for finding the PartitionDesc(s) */
1777 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1778 if (ret != -EAGAIN)
1779 return ret;
1780 udf_sb_free_partitions(sb);
1781 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1782 if (ret < 0) {
1783 udf_sb_free_partitions(sb);
1784 /* No sequence was OK, return -EIO */
1785 if (ret == -EAGAIN)
1786 ret = -EIO;
1787 }
1788 return ret;
1789 }
1790
1791 /*
1792 * Check whether there is an anchor block in the given block and
1793 * load Volume Descriptor Sequence if so.
1794 *
1795 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1796 * block
1797 */
1798 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1799 struct kernel_lb_addr *fileset)
1800 {
1801 struct buffer_head *bh;
1802 uint16_t ident;
1803 int ret;
1804
1805 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1806 udf_fixed_to_variable(block) >=
1807 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1808 return -EAGAIN;
1809
1810 bh = udf_read_tagged(sb, block, block, &ident);
1811 if (!bh)
1812 return -EAGAIN;
1813 if (ident != TAG_IDENT_AVDP) {
1814 brelse(bh);
1815 return -EAGAIN;
1816 }
1817 ret = udf_load_sequence(sb, bh, fileset);
1818 brelse(bh);
1819 return ret;
1820 }
1821
1822 /*
1823 * Search for an anchor volume descriptor pointer.
1824 *
1825 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1826 * of anchors.
1827 */
1828 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1829 struct kernel_lb_addr *fileset)
1830 {
1831 sector_t last[6];
1832 int i;
1833 struct udf_sb_info *sbi = UDF_SB(sb);
1834 int last_count = 0;
1835 int ret;
1836
1837 /* First try user provided anchor */
1838 if (sbi->s_anchor) {
1839 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1840 if (ret != -EAGAIN)
1841 return ret;
1842 }
1843 /*
1844 * according to spec, anchor is in either:
1845 * block 256
1846 * lastblock-256
1847 * lastblock
1848 * however, if the disc isn't closed, it could be 512.
1849 */
1850 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1851 if (ret != -EAGAIN)
1852 return ret;
1853 /*
1854 * The trouble is which block is the last one. Drives often misreport
1855 * this so we try various possibilities.
1856 */
1857 last[last_count++] = *lastblock;
1858 if (*lastblock >= 1)
1859 last[last_count++] = *lastblock - 1;
1860 last[last_count++] = *lastblock + 1;
1861 if (*lastblock >= 2)
1862 last[last_count++] = *lastblock - 2;
1863 if (*lastblock >= 150)
1864 last[last_count++] = *lastblock - 150;
1865 if (*lastblock >= 152)
1866 last[last_count++] = *lastblock - 152;
1867
1868 for (i = 0; i < last_count; i++) {
1869 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1870 sb->s_blocksize_bits)
1871 continue;
1872 ret = udf_check_anchor_block(sb, last[i], fileset);
1873 if (ret != -EAGAIN) {
1874 if (!ret)
1875 *lastblock = last[i];
1876 return ret;
1877 }
1878 if (last[i] < 256)
1879 continue;
1880 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1881 if (ret != -EAGAIN) {
1882 if (!ret)
1883 *lastblock = last[i];
1884 return ret;
1885 }
1886 }
1887
1888 /* Finally try block 512 in case media is open */
1889 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1890 }
1891
1892 /*
1893 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1894 * area specified by it. The function expects sbi->s_lastblock to be the last
1895 * block on the media.
1896 *
1897 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1898 * was not found.
1899 */
1900 static int udf_find_anchor(struct super_block *sb,
1901 struct kernel_lb_addr *fileset)
1902 {
1903 struct udf_sb_info *sbi = UDF_SB(sb);
1904 sector_t lastblock = sbi->s_last_block;
1905 int ret;
1906
1907 ret = udf_scan_anchors(sb, &lastblock, fileset);
1908 if (ret != -EAGAIN)
1909 goto out;
1910
1911 /* No anchor found? Try VARCONV conversion of block numbers */
1912 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1913 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1914 /* Firstly, we try to not convert number of the last block */
1915 ret = udf_scan_anchors(sb, &lastblock, fileset);
1916 if (ret != -EAGAIN)
1917 goto out;
1918
1919 lastblock = sbi->s_last_block;
1920 /* Secondly, we try with converted number of the last block */
1921 ret = udf_scan_anchors(sb, &lastblock, fileset);
1922 if (ret < 0) {
1923 /* VARCONV didn't help. Clear it. */
1924 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1925 }
1926 out:
1927 if (ret == 0)
1928 sbi->s_last_block = lastblock;
1929 return ret;
1930 }
1931
1932 /*
1933 * Check Volume Structure Descriptor, find Anchor block and load Volume
1934 * Descriptor Sequence.
1935 *
1936 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1937 * block was not found.
1938 */
1939 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1940 int silent, struct kernel_lb_addr *fileset)
1941 {
1942 struct udf_sb_info *sbi = UDF_SB(sb);
1943 loff_t nsr_off;
1944 int ret;
1945
1946 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1947 if (!silent)
1948 udf_warn(sb, "Bad block size\n");
1949 return -EINVAL;
1950 }
1951 sbi->s_last_block = uopt->lastblock;
1952 if (!uopt->novrs) {
1953 /* Check that it is NSR02 compliant */
1954 nsr_off = udf_check_vsd(sb);
1955 if (!nsr_off) {
1956 if (!silent)
1957 udf_warn(sb, "No VRS found\n");
1958 return -EINVAL;
1959 }
1960 if (nsr_off == -1)
1961 udf_debug("Failed to read sector at offset %d. "
1962 "Assuming open disc. Skipping validity "
1963 "check\n", VSD_FIRST_SECTOR_OFFSET);
1964 if (!sbi->s_last_block)
1965 sbi->s_last_block = udf_get_last_block(sb);
1966 } else {
1967 udf_debug("Validity check skipped because of novrs option\n");
1968 }
1969
1970 /* Look for anchor block and load Volume Descriptor Sequence */
1971 sbi->s_anchor = uopt->anchor;
1972 ret = udf_find_anchor(sb, fileset);
1973 if (ret < 0) {
1974 if (!silent && ret == -EAGAIN)
1975 udf_warn(sb, "No anchor found\n");
1976 return ret;
1977 }
1978 return 0;
1979 }
1980
1981 static void udf_open_lvid(struct super_block *sb)
1982 {
1983 struct udf_sb_info *sbi = UDF_SB(sb);
1984 struct buffer_head *bh = sbi->s_lvid_bh;
1985 struct logicalVolIntegrityDesc *lvid;
1986 struct logicalVolIntegrityDescImpUse *lvidiu;
1987 struct timespec ts;
1988
1989 if (!bh)
1990 return;
1991 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1992 lvidiu = udf_sb_lvidiu(sb);
1993 if (!lvidiu)
1994 return;
1995
1996 mutex_lock(&sbi->s_alloc_mutex);
1997 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1998 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1999 ktime_get_real_ts(&ts);
2000 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2001 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2002
2003 lvid->descTag.descCRC = cpu_to_le16(
2004 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2005 le16_to_cpu(lvid->descTag.descCRCLength)));
2006
2007 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2008 mark_buffer_dirty(bh);
2009 sbi->s_lvid_dirty = 0;
2010 mutex_unlock(&sbi->s_alloc_mutex);
2011 /* Make opening of filesystem visible on the media immediately */
2012 sync_dirty_buffer(bh);
2013 }
2014
2015 static void udf_close_lvid(struct super_block *sb)
2016 {
2017 struct udf_sb_info *sbi = UDF_SB(sb);
2018 struct buffer_head *bh = sbi->s_lvid_bh;
2019 struct logicalVolIntegrityDesc *lvid;
2020 struct logicalVolIntegrityDescImpUse *lvidiu;
2021 struct timespec ts;
2022
2023 if (!bh)
2024 return;
2025 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2026 lvidiu = udf_sb_lvidiu(sb);
2027 if (!lvidiu)
2028 return;
2029
2030 mutex_lock(&sbi->s_alloc_mutex);
2031 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2032 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2033 ktime_get_real_ts(&ts);
2034 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2035 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2036 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2037 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2038 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2039 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2040 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2041 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2042
2043 lvid->descTag.descCRC = cpu_to_le16(
2044 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2045 le16_to_cpu(lvid->descTag.descCRCLength)));
2046
2047 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2048 /*
2049 * We set buffer uptodate unconditionally here to avoid spurious
2050 * warnings from mark_buffer_dirty() when previous EIO has marked
2051 * the buffer as !uptodate
2052 */
2053 set_buffer_uptodate(bh);
2054 mark_buffer_dirty(bh);
2055 sbi->s_lvid_dirty = 0;
2056 mutex_unlock(&sbi->s_alloc_mutex);
2057 /* Make closing of filesystem visible on the media immediately */
2058 sync_dirty_buffer(bh);
2059 }
2060
2061 u64 lvid_get_unique_id(struct super_block *sb)
2062 {
2063 struct buffer_head *bh;
2064 struct udf_sb_info *sbi = UDF_SB(sb);
2065 struct logicalVolIntegrityDesc *lvid;
2066 struct logicalVolHeaderDesc *lvhd;
2067 u64 uniqueID;
2068 u64 ret;
2069
2070 bh = sbi->s_lvid_bh;
2071 if (!bh)
2072 return 0;
2073
2074 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2075 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2076
2077 mutex_lock(&sbi->s_alloc_mutex);
2078 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2079 if (!(++uniqueID & 0xFFFFFFFF))
2080 uniqueID += 16;
2081 lvhd->uniqueID = cpu_to_le64(uniqueID);
2082 mutex_unlock(&sbi->s_alloc_mutex);
2083 mark_buffer_dirty(bh);
2084
2085 return ret;
2086 }
2087
2088 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2089 {
2090 int ret = -EINVAL;
2091 struct inode *inode = NULL;
2092 struct udf_options uopt;
2093 struct kernel_lb_addr rootdir, fileset;
2094 struct udf_sb_info *sbi;
2095 bool lvid_open = false;
2096
2097 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2098 uopt.uid = INVALID_UID;
2099 uopt.gid = INVALID_GID;
2100 uopt.umask = 0;
2101 uopt.fmode = UDF_INVALID_MODE;
2102 uopt.dmode = UDF_INVALID_MODE;
2103
2104 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2105 if (!sbi)
2106 return -ENOMEM;
2107
2108 sb->s_fs_info = sbi;
2109
2110 mutex_init(&sbi->s_alloc_mutex);
2111
2112 if (!udf_parse_options((char *)options, &uopt, false))
2113 goto parse_options_failure;
2114
2115 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2116 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2117 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2118 goto parse_options_failure;
2119 }
2120 #ifdef CONFIG_UDF_NLS
2121 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2122 uopt.nls_map = load_nls_default();
2123 if (!uopt.nls_map)
2124 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2125 else
2126 udf_debug("Using default NLS map\n");
2127 }
2128 #endif
2129 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2130 uopt.flags |= (1 << UDF_FLAG_UTF8);
2131
2132 fileset.logicalBlockNum = 0xFFFFFFFF;
2133 fileset.partitionReferenceNum = 0xFFFF;
2134
2135 sbi->s_flags = uopt.flags;
2136 sbi->s_uid = uopt.uid;
2137 sbi->s_gid = uopt.gid;
2138 sbi->s_umask = uopt.umask;
2139 sbi->s_fmode = uopt.fmode;
2140 sbi->s_dmode = uopt.dmode;
2141 sbi->s_nls_map = uopt.nls_map;
2142 rwlock_init(&sbi->s_cred_lock);
2143
2144 if (uopt.session == 0xFFFFFFFF)
2145 sbi->s_session = udf_get_last_session(sb);
2146 else
2147 sbi->s_session = uopt.session;
2148
2149 udf_debug("Multi-session=%d\n", sbi->s_session);
2150
2151 /* Fill in the rest of the superblock */
2152 sb->s_op = &udf_sb_ops;
2153 sb->s_export_op = &udf_export_ops;
2154
2155 sb->s_magic = UDF_SUPER_MAGIC;
2156 sb->s_time_gran = 1000;
2157
2158 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2159 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2160 } else {
2161 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2162 while (uopt.blocksize <= 4096) {
2163 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2164 if (ret < 0) {
2165 if (!silent && ret != -EACCES) {
2166 pr_notice("Scanning with blocksize %d failed\n",
2167 uopt.blocksize);
2168 }
2169 brelse(sbi->s_lvid_bh);
2170 sbi->s_lvid_bh = NULL;
2171 /*
2172 * EACCES is special - we want to propagate to
2173 * upper layers that we cannot handle RW mount.
2174 */
2175 if (ret == -EACCES)
2176 break;
2177 } else
2178 break;
2179
2180 uopt.blocksize <<= 1;
2181 }
2182 }
2183 if (ret < 0) {
2184 if (ret == -EAGAIN) {
2185 udf_warn(sb, "No partition found (1)\n");
2186 ret = -EINVAL;
2187 }
2188 goto error_out;
2189 }
2190
2191 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2192
2193 if (sbi->s_lvid_bh) {
2194 struct logicalVolIntegrityDescImpUse *lvidiu =
2195 udf_sb_lvidiu(sb);
2196 uint16_t minUDFReadRev;
2197 uint16_t minUDFWriteRev;
2198
2199 if (!lvidiu) {
2200 ret = -EINVAL;
2201 goto error_out;
2202 }
2203 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2204 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2205 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2206 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2207 minUDFReadRev,
2208 UDF_MAX_READ_VERSION);
2209 ret = -EINVAL;
2210 goto error_out;
2211 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2212 !(sb->s_flags & MS_RDONLY)) {
2213 ret = -EACCES;
2214 goto error_out;
2215 }
2216
2217 sbi->s_udfrev = minUDFWriteRev;
2218
2219 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2220 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2221 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2222 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2223 }
2224
2225 if (!sbi->s_partitions) {
2226 udf_warn(sb, "No partition found (2)\n");
2227 ret = -EINVAL;
2228 goto error_out;
2229 }
2230
2231 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2232 UDF_PART_FLAG_READ_ONLY &&
2233 !(sb->s_flags & MS_RDONLY)) {
2234 ret = -EACCES;
2235 goto error_out;
2236 }
2237
2238 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2239 udf_warn(sb, "No fileset found\n");
2240 ret = -EINVAL;
2241 goto error_out;
2242 }
2243
2244 if (!silent) {
2245 struct timestamp ts;
2246 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2247 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2248 sbi->s_volume_ident,
2249 le16_to_cpu(ts.year), ts.month, ts.day,
2250 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2251 }
2252 if (!(sb->s_flags & MS_RDONLY)) {
2253 udf_open_lvid(sb);
2254 lvid_open = true;
2255 }
2256
2257 /* Assign the root inode */
2258 /* assign inodes by physical block number */
2259 /* perhaps it's not extensible enough, but for now ... */
2260 inode = udf_iget(sb, &rootdir);
2261 if (IS_ERR(inode)) {
2262 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2263 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2264 ret = PTR_ERR(inode);
2265 goto error_out;
2266 }
2267
2268 /* Allocate a dentry for the root inode */
2269 sb->s_root = d_make_root(inode);
2270 if (!sb->s_root) {
2271 udf_err(sb, "Couldn't allocate root dentry\n");
2272 ret = -ENOMEM;
2273 goto error_out;
2274 }
2275 sb->s_maxbytes = MAX_LFS_FILESIZE;
2276 sb->s_max_links = UDF_MAX_LINKS;
2277 return 0;
2278
2279 error_out:
2280 iput(sbi->s_vat_inode);
2281 parse_options_failure:
2282 #ifdef CONFIG_UDF_NLS
2283 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2284 unload_nls(sbi->s_nls_map);
2285 #endif
2286 if (lvid_open)
2287 udf_close_lvid(sb);
2288 brelse(sbi->s_lvid_bh);
2289 udf_sb_free_partitions(sb);
2290 kfree(sbi);
2291 sb->s_fs_info = NULL;
2292
2293 return ret;
2294 }
2295
2296 void _udf_err(struct super_block *sb, const char *function,
2297 const char *fmt, ...)
2298 {
2299 struct va_format vaf;
2300 va_list args;
2301
2302 va_start(args, fmt);
2303
2304 vaf.fmt = fmt;
2305 vaf.va = &args;
2306
2307 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2308
2309 va_end(args);
2310 }
2311
2312 void _udf_warn(struct super_block *sb, const char *function,
2313 const char *fmt, ...)
2314 {
2315 struct va_format vaf;
2316 va_list args;
2317
2318 va_start(args, fmt);
2319
2320 vaf.fmt = fmt;
2321 vaf.va = &args;
2322
2323 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2324
2325 va_end(args);
2326 }
2327
2328 static void udf_put_super(struct super_block *sb)
2329 {
2330 struct udf_sb_info *sbi;
2331
2332 sbi = UDF_SB(sb);
2333
2334 iput(sbi->s_vat_inode);
2335 #ifdef CONFIG_UDF_NLS
2336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2337 unload_nls(sbi->s_nls_map);
2338 #endif
2339 if (!(sb->s_flags & MS_RDONLY))
2340 udf_close_lvid(sb);
2341 brelse(sbi->s_lvid_bh);
2342 udf_sb_free_partitions(sb);
2343 mutex_destroy(&sbi->s_alloc_mutex);
2344 kfree(sb->s_fs_info);
2345 sb->s_fs_info = NULL;
2346 }
2347
2348 static int udf_sync_fs(struct super_block *sb, int wait)
2349 {
2350 struct udf_sb_info *sbi = UDF_SB(sb);
2351
2352 mutex_lock(&sbi->s_alloc_mutex);
2353 if (sbi->s_lvid_dirty) {
2354 /*
2355 * Blockdevice will be synced later so we don't have to submit
2356 * the buffer for IO
2357 */
2358 mark_buffer_dirty(sbi->s_lvid_bh);
2359 sbi->s_lvid_dirty = 0;
2360 }
2361 mutex_unlock(&sbi->s_alloc_mutex);
2362
2363 return 0;
2364 }
2365
2366 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2367 {
2368 struct super_block *sb = dentry->d_sb;
2369 struct udf_sb_info *sbi = UDF_SB(sb);
2370 struct logicalVolIntegrityDescImpUse *lvidiu;
2371 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2372
2373 lvidiu = udf_sb_lvidiu(sb);
2374 buf->f_type = UDF_SUPER_MAGIC;
2375 buf->f_bsize = sb->s_blocksize;
2376 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2377 buf->f_bfree = udf_count_free(sb);
2378 buf->f_bavail = buf->f_bfree;
2379 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2380 le32_to_cpu(lvidiu->numDirs)) : 0)
2381 + buf->f_bfree;
2382 buf->f_ffree = buf->f_bfree;
2383 buf->f_namelen = UDF_NAME_LEN;
2384 buf->f_fsid.val[0] = (u32)id;
2385 buf->f_fsid.val[1] = (u32)(id >> 32);
2386
2387 return 0;
2388 }
2389
2390 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2391 struct udf_bitmap *bitmap)
2392 {
2393 struct buffer_head *bh = NULL;
2394 unsigned int accum = 0;
2395 int index;
2396 int block = 0, newblock;
2397 struct kernel_lb_addr loc;
2398 uint32_t bytes;
2399 uint8_t *ptr;
2400 uint16_t ident;
2401 struct spaceBitmapDesc *bm;
2402
2403 loc.logicalBlockNum = bitmap->s_extPosition;
2404 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2405 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2406
2407 if (!bh) {
2408 udf_err(sb, "udf_count_free failed\n");
2409 goto out;
2410 } else if (ident != TAG_IDENT_SBD) {
2411 brelse(bh);
2412 udf_err(sb, "udf_count_free failed\n");
2413 goto out;
2414 }
2415
2416 bm = (struct spaceBitmapDesc *)bh->b_data;
2417 bytes = le32_to_cpu(bm->numOfBytes);
2418 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2419 ptr = (uint8_t *)bh->b_data;
2420
2421 while (bytes > 0) {
2422 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2423 accum += bitmap_weight((const unsigned long *)(ptr + index),
2424 cur_bytes * 8);
2425 bytes -= cur_bytes;
2426 if (bytes) {
2427 brelse(bh);
2428 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2429 bh = udf_tread(sb, newblock);
2430 if (!bh) {
2431 udf_debug("read failed\n");
2432 goto out;
2433 }
2434 index = 0;
2435 ptr = (uint8_t *)bh->b_data;
2436 }
2437 }
2438 brelse(bh);
2439 out:
2440 return accum;
2441 }
2442
2443 static unsigned int udf_count_free_table(struct super_block *sb,
2444 struct inode *table)
2445 {
2446 unsigned int accum = 0;
2447 uint32_t elen;
2448 struct kernel_lb_addr eloc;
2449 int8_t etype;
2450 struct extent_position epos;
2451
2452 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2453 epos.block = UDF_I(table)->i_location;
2454 epos.offset = sizeof(struct unallocSpaceEntry);
2455 epos.bh = NULL;
2456
2457 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2458 accum += (elen >> table->i_sb->s_blocksize_bits);
2459
2460 brelse(epos.bh);
2461 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2462
2463 return accum;
2464 }
2465
2466 static unsigned int udf_count_free(struct super_block *sb)
2467 {
2468 unsigned int accum = 0;
2469 struct udf_sb_info *sbi;
2470 struct udf_part_map *map;
2471
2472 sbi = UDF_SB(sb);
2473 if (sbi->s_lvid_bh) {
2474 struct logicalVolIntegrityDesc *lvid =
2475 (struct logicalVolIntegrityDesc *)
2476 sbi->s_lvid_bh->b_data;
2477 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2478 accum = le32_to_cpu(
2479 lvid->freeSpaceTable[sbi->s_partition]);
2480 if (accum == 0xFFFFFFFF)
2481 accum = 0;
2482 }
2483 }
2484
2485 if (accum)
2486 return accum;
2487
2488 map = &sbi->s_partmaps[sbi->s_partition];
2489 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2490 accum += udf_count_free_bitmap(sb,
2491 map->s_uspace.s_bitmap);
2492 }
2493 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2494 accum += udf_count_free_bitmap(sb,
2495 map->s_fspace.s_bitmap);
2496 }
2497 if (accum)
2498 return accum;
2499
2500 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2501 accum += udf_count_free_table(sb,
2502 map->s_uspace.s_table);
2503 }
2504 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2505 accum += udf_count_free_table(sb,
2506 map->s_fspace.s_table);
2507 }
2508
2509 return accum;
2510 }
2511
2512 MODULE_AUTHOR("Ben Fennema");
2513 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2514 MODULE_LICENSE("GPL");
2515 module_init(init_udf_fs)
2516 module_exit(exit_udf_fs)