]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/udf/super.c
ARM: dts: socfgpa: remove ethernet aliases from dtsi
[mirror_ubuntu-focal-kernel.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68 VDS_POS_PRIMARY_VOL_DESC,
69 VDS_POS_UNALLOC_SPACE_DESC,
70 VDS_POS_LOGICAL_VOL_DESC,
71 VDS_POS_IMP_USE_VOL_DESC,
72 VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET 32768
76 #define VSD_MAX_SECTOR_OFFSET 0x800000
77
78 /*
79 * Maximum number of Terminating Descriptor / Logical Volume Integrity
80 * Descriptor redirections. The chosen numbers are arbitrary - just that we
81 * hopefully don't limit any real use of rewritten inode on write-once media
82 * but avoid looping for too long on corrupted media.
83 */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96 struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98 struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107 struct logicalVolIntegrityDesc *lvid;
108 unsigned int partnum;
109 unsigned int offset;
110
111 if (!UDF_SB(sb)->s_lvid_bh)
112 return NULL;
113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114 partnum = le32_to_cpu(lvid->numOfPartitions);
115 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116 offsetof(struct logicalVolIntegrityDesc, impUse)) /
117 (2 * sizeof(uint32_t)) < partnum) {
118 udf_err(sb, "Logical volume integrity descriptor corrupted "
119 "(numOfPartitions = %u)!\n", partnum);
120 return NULL;
121 }
122 /* The offset is to skip freeSpaceTable and sizeTable arrays */
123 offset = partnum * 2 * sizeof(uint32_t);
124 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125 }
126
127 /* UDF filesystem type */
128 static struct dentry *udf_mount(struct file_system_type *fs_type,
129 int flags, const char *dev_name, void *data)
130 {
131 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132 }
133
134 static struct file_system_type udf_fstype = {
135 .owner = THIS_MODULE,
136 .name = "udf",
137 .mount = udf_mount,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("udf");
142
143 static struct kmem_cache *udf_inode_cachep;
144
145 static struct inode *udf_alloc_inode(struct super_block *sb)
146 {
147 struct udf_inode_info *ei;
148 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149 if (!ei)
150 return NULL;
151
152 ei->i_unique = 0;
153 ei->i_lenExtents = 0;
154 ei->i_next_alloc_block = 0;
155 ei->i_next_alloc_goal = 0;
156 ei->i_strat4096 = 0;
157 init_rwsem(&ei->i_data_sem);
158 ei->cached_extent.lstart = -1;
159 spin_lock_init(&ei->i_extent_cache_lock);
160
161 return &ei->vfs_inode;
162 }
163
164 static void udf_i_callback(struct rcu_head *head)
165 {
166 struct inode *inode = container_of(head, struct inode, i_rcu);
167 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168 }
169
170 static void udf_destroy_inode(struct inode *inode)
171 {
172 call_rcu(&inode->i_rcu, udf_i_callback);
173 }
174
175 static void init_once(void *foo)
176 {
177 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178
179 ei->i_ext.i_data = NULL;
180 inode_init_once(&ei->vfs_inode);
181 }
182
183 static int __init init_inodecache(void)
184 {
185 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186 sizeof(struct udf_inode_info),
187 0, (SLAB_RECLAIM_ACCOUNT |
188 SLAB_MEM_SPREAD |
189 SLAB_ACCOUNT),
190 init_once);
191 if (!udf_inode_cachep)
192 return -ENOMEM;
193 return 0;
194 }
195
196 static void destroy_inodecache(void)
197 {
198 /*
199 * Make sure all delayed rcu free inodes are flushed before we
200 * destroy cache.
201 */
202 rcu_barrier();
203 kmem_cache_destroy(udf_inode_cachep);
204 }
205
206 /* Superblock operations */
207 static const struct super_operations udf_sb_ops = {
208 .alloc_inode = udf_alloc_inode,
209 .destroy_inode = udf_destroy_inode,
210 .write_inode = udf_write_inode,
211 .evict_inode = udf_evict_inode,
212 .put_super = udf_put_super,
213 .sync_fs = udf_sync_fs,
214 .statfs = udf_statfs,
215 .remount_fs = udf_remount_fs,
216 .show_options = udf_show_options,
217 };
218
219 struct udf_options {
220 unsigned char novrs;
221 unsigned int blocksize;
222 unsigned int session;
223 unsigned int lastblock;
224 unsigned int anchor;
225 unsigned int flags;
226 umode_t umask;
227 kgid_t gid;
228 kuid_t uid;
229 umode_t fmode;
230 umode_t dmode;
231 struct nls_table *nls_map;
232 };
233
234 static int __init init_udf_fs(void)
235 {
236 int err;
237
238 err = init_inodecache();
239 if (err)
240 goto out1;
241 err = register_filesystem(&udf_fstype);
242 if (err)
243 goto out;
244
245 return 0;
246
247 out:
248 destroy_inodecache();
249
250 out1:
251 return err;
252 }
253
254 static void __exit exit_udf_fs(void)
255 {
256 unregister_filesystem(&udf_fstype);
257 destroy_inodecache();
258 }
259
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262 struct udf_sb_info *sbi = UDF_SB(sb);
263
264 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265 if (!sbi->s_partmaps) {
266 sbi->s_partitions = 0;
267 return -ENOMEM;
268 }
269
270 sbi->s_partitions = count;
271 return 0;
272 }
273
274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275 {
276 int i;
277 int nr_groups = bitmap->s_nr_groups;
278
279 for (i = 0; i < nr_groups; i++)
280 if (bitmap->s_block_bitmap[i])
281 brelse(bitmap->s_block_bitmap[i]);
282
283 kvfree(bitmap);
284 }
285
286 static void udf_free_partition(struct udf_part_map *map)
287 {
288 int i;
289 struct udf_meta_data *mdata;
290
291 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292 iput(map->s_uspace.s_table);
293 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
294 iput(map->s_fspace.s_table);
295 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
296 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
297 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
298 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
299 if (map->s_partition_type == UDF_SPARABLE_MAP15)
300 for (i = 0; i < 4; i++)
301 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
302 else if (map->s_partition_type == UDF_METADATA_MAP25) {
303 mdata = &map->s_type_specific.s_metadata;
304 iput(mdata->s_metadata_fe);
305 mdata->s_metadata_fe = NULL;
306
307 iput(mdata->s_mirror_fe);
308 mdata->s_mirror_fe = NULL;
309
310 iput(mdata->s_bitmap_fe);
311 mdata->s_bitmap_fe = NULL;
312 }
313 }
314
315 static void udf_sb_free_partitions(struct super_block *sb)
316 {
317 struct udf_sb_info *sbi = UDF_SB(sb);
318 int i;
319
320 if (!sbi->s_partmaps)
321 return;
322 for (i = 0; i < sbi->s_partitions; i++)
323 udf_free_partition(&sbi->s_partmaps[i]);
324 kfree(sbi->s_partmaps);
325 sbi->s_partmaps = NULL;
326 }
327
328 static int udf_show_options(struct seq_file *seq, struct dentry *root)
329 {
330 struct super_block *sb = root->d_sb;
331 struct udf_sb_info *sbi = UDF_SB(sb);
332
333 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
334 seq_puts(seq, ",nostrict");
335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
336 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
338 seq_puts(seq, ",unhide");
339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
340 seq_puts(seq, ",undelete");
341 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
342 seq_puts(seq, ",noadinicb");
343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
344 seq_puts(seq, ",shortad");
345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
346 seq_puts(seq, ",uid=forget");
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
348 seq_puts(seq, ",gid=forget");
349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
350 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
352 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
353 if (sbi->s_umask != 0)
354 seq_printf(seq, ",umask=%ho", sbi->s_umask);
355 if (sbi->s_fmode != UDF_INVALID_MODE)
356 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
357 if (sbi->s_dmode != UDF_INVALID_MODE)
358 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
360 seq_printf(seq, ",session=%d", sbi->s_session);
361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
362 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
363 if (sbi->s_anchor != 0)
364 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
366 seq_puts(seq, ",utf8");
367 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
368 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
369
370 return 0;
371 }
372
373 /*
374 * udf_parse_options
375 *
376 * PURPOSE
377 * Parse mount options.
378 *
379 * DESCRIPTION
380 * The following mount options are supported:
381 *
382 * gid= Set the default group.
383 * umask= Set the default umask.
384 * mode= Set the default file permissions.
385 * dmode= Set the default directory permissions.
386 * uid= Set the default user.
387 * bs= Set the block size.
388 * unhide Show otherwise hidden files.
389 * undelete Show deleted files in lists.
390 * adinicb Embed data in the inode (default)
391 * noadinicb Don't embed data in the inode
392 * shortad Use short ad's
393 * longad Use long ad's (default)
394 * nostrict Unset strict conformance
395 * iocharset= Set the NLS character set
396 *
397 * The remaining are for debugging and disaster recovery:
398 *
399 * novrs Skip volume sequence recognition
400 *
401 * The following expect a offset from 0.
402 *
403 * session= Set the CDROM session (default= last session)
404 * anchor= Override standard anchor location. (default= 256)
405 * volume= Override the VolumeDesc location. (unused)
406 * partition= Override the PartitionDesc location. (unused)
407 * lastblock= Set the last block of the filesystem/
408 *
409 * The following expect a offset from the partition root.
410 *
411 * fileset= Override the fileset block location. (unused)
412 * rootdir= Override the root directory location. (unused)
413 * WARNING: overriding the rootdir to a non-directory may
414 * yield highly unpredictable results.
415 *
416 * PRE-CONDITIONS
417 * options Pointer to mount options string.
418 * uopts Pointer to mount options variable.
419 *
420 * POST-CONDITIONS
421 * <return> 1 Mount options parsed okay.
422 * <return> 0 Error parsing mount options.
423 *
424 * HISTORY
425 * July 1, 1997 - Andrew E. Mileski
426 * Written, tested, and released.
427 */
428
429 enum {
430 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
431 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
432 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
433 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
434 Opt_rootdir, Opt_utf8, Opt_iocharset,
435 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
436 Opt_fmode, Opt_dmode
437 };
438
439 static const match_table_t tokens = {
440 {Opt_novrs, "novrs"},
441 {Opt_nostrict, "nostrict"},
442 {Opt_bs, "bs=%u"},
443 {Opt_unhide, "unhide"},
444 {Opt_undelete, "undelete"},
445 {Opt_noadinicb, "noadinicb"},
446 {Opt_adinicb, "adinicb"},
447 {Opt_shortad, "shortad"},
448 {Opt_longad, "longad"},
449 {Opt_uforget, "uid=forget"},
450 {Opt_uignore, "uid=ignore"},
451 {Opt_gforget, "gid=forget"},
452 {Opt_gignore, "gid=ignore"},
453 {Opt_gid, "gid=%u"},
454 {Opt_uid, "uid=%u"},
455 {Opt_umask, "umask=%o"},
456 {Opt_session, "session=%u"},
457 {Opt_lastblock, "lastblock=%u"},
458 {Opt_anchor, "anchor=%u"},
459 {Opt_volume, "volume=%u"},
460 {Opt_partition, "partition=%u"},
461 {Opt_fileset, "fileset=%u"},
462 {Opt_rootdir, "rootdir=%u"},
463 {Opt_utf8, "utf8"},
464 {Opt_iocharset, "iocharset=%s"},
465 {Opt_fmode, "mode=%o"},
466 {Opt_dmode, "dmode=%o"},
467 {Opt_err, NULL}
468 };
469
470 static int udf_parse_options(char *options, struct udf_options *uopt,
471 bool remount)
472 {
473 char *p;
474 int option;
475
476 uopt->novrs = 0;
477 uopt->session = 0xFFFFFFFF;
478 uopt->lastblock = 0;
479 uopt->anchor = 0;
480
481 if (!options)
482 return 1;
483
484 while ((p = strsep(&options, ",")) != NULL) {
485 substring_t args[MAX_OPT_ARGS];
486 int token;
487 unsigned n;
488 if (!*p)
489 continue;
490
491 token = match_token(p, tokens, args);
492 switch (token) {
493 case Opt_novrs:
494 uopt->novrs = 1;
495 break;
496 case Opt_bs:
497 if (match_int(&args[0], &option))
498 return 0;
499 n = option;
500 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
501 return 0;
502 uopt->blocksize = n;
503 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
504 break;
505 case Opt_unhide:
506 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
507 break;
508 case Opt_undelete:
509 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
510 break;
511 case Opt_noadinicb:
512 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
513 break;
514 case Opt_adinicb:
515 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
516 break;
517 case Opt_shortad:
518 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
519 break;
520 case Opt_longad:
521 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
522 break;
523 case Opt_gid:
524 if (match_int(args, &option))
525 return 0;
526 uopt->gid = make_kgid(current_user_ns(), option);
527 if (!gid_valid(uopt->gid))
528 return 0;
529 uopt->flags |= (1 << UDF_FLAG_GID_SET);
530 break;
531 case Opt_uid:
532 if (match_int(args, &option))
533 return 0;
534 uopt->uid = make_kuid(current_user_ns(), option);
535 if (!uid_valid(uopt->uid))
536 return 0;
537 uopt->flags |= (1 << UDF_FLAG_UID_SET);
538 break;
539 case Opt_umask:
540 if (match_octal(args, &option))
541 return 0;
542 uopt->umask = option;
543 break;
544 case Opt_nostrict:
545 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
546 break;
547 case Opt_session:
548 if (match_int(args, &option))
549 return 0;
550 uopt->session = option;
551 if (!remount)
552 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
553 break;
554 case Opt_lastblock:
555 if (match_int(args, &option))
556 return 0;
557 uopt->lastblock = option;
558 if (!remount)
559 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
560 break;
561 case Opt_anchor:
562 if (match_int(args, &option))
563 return 0;
564 uopt->anchor = option;
565 break;
566 case Opt_volume:
567 case Opt_partition:
568 case Opt_fileset:
569 case Opt_rootdir:
570 /* Ignored (never implemented properly) */
571 break;
572 case Opt_utf8:
573 uopt->flags |= (1 << UDF_FLAG_UTF8);
574 break;
575 case Opt_iocharset:
576 if (!remount) {
577 if (uopt->nls_map)
578 unload_nls(uopt->nls_map);
579 uopt->nls_map = load_nls(args[0].from);
580 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
581 }
582 break;
583 case Opt_uforget:
584 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
585 break;
586 case Opt_uignore:
587 case Opt_gignore:
588 /* These options are superseeded by uid=<number> */
589 break;
590 case Opt_gforget:
591 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
592 break;
593 case Opt_fmode:
594 if (match_octal(args, &option))
595 return 0;
596 uopt->fmode = option & 0777;
597 break;
598 case Opt_dmode:
599 if (match_octal(args, &option))
600 return 0;
601 uopt->dmode = option & 0777;
602 break;
603 default:
604 pr_err("bad mount option \"%s\" or missing value\n", p);
605 return 0;
606 }
607 }
608 return 1;
609 }
610
611 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
612 {
613 struct udf_options uopt;
614 struct udf_sb_info *sbi = UDF_SB(sb);
615 int error = 0;
616 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
617
618 sync_filesystem(sb);
619 if (lvidiu) {
620 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
621 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY))
622 return -EACCES;
623 }
624
625 uopt.flags = sbi->s_flags;
626 uopt.uid = sbi->s_uid;
627 uopt.gid = sbi->s_gid;
628 uopt.umask = sbi->s_umask;
629 uopt.fmode = sbi->s_fmode;
630 uopt.dmode = sbi->s_dmode;
631 uopt.nls_map = NULL;
632
633 if (!udf_parse_options(options, &uopt, true))
634 return -EINVAL;
635
636 write_lock(&sbi->s_cred_lock);
637 sbi->s_flags = uopt.flags;
638 sbi->s_uid = uopt.uid;
639 sbi->s_gid = uopt.gid;
640 sbi->s_umask = uopt.umask;
641 sbi->s_fmode = uopt.fmode;
642 sbi->s_dmode = uopt.dmode;
643 write_unlock(&sbi->s_cred_lock);
644
645 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
646 goto out_unlock;
647
648 if (*flags & SB_RDONLY)
649 udf_close_lvid(sb);
650 else
651 udf_open_lvid(sb);
652
653 out_unlock:
654 return error;
655 }
656
657 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
658 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
659 static loff_t udf_check_vsd(struct super_block *sb)
660 {
661 struct volStructDesc *vsd = NULL;
662 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
663 int sectorsize;
664 struct buffer_head *bh = NULL;
665 int nsr02 = 0;
666 int nsr03 = 0;
667 struct udf_sb_info *sbi;
668
669 sbi = UDF_SB(sb);
670 if (sb->s_blocksize < sizeof(struct volStructDesc))
671 sectorsize = sizeof(struct volStructDesc);
672 else
673 sectorsize = sb->s_blocksize;
674
675 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
676
677 udf_debug("Starting at sector %u (%lu byte sectors)\n",
678 (unsigned int)(sector >> sb->s_blocksize_bits),
679 sb->s_blocksize);
680 /* Process the sequence (if applicable). The hard limit on the sector
681 * offset is arbitrary, hopefully large enough so that all valid UDF
682 * filesystems will be recognised. There is no mention of an upper
683 * bound to the size of the volume recognition area in the standard.
684 * The limit will prevent the code to read all the sectors of a
685 * specially crafted image (like a bluray disc full of CD001 sectors),
686 * potentially causing minutes or even hours of uninterruptible I/O
687 * activity. This actually happened with uninitialised SSD partitions
688 * (all 0xFF) before the check for the limit and all valid IDs were
689 * added */
690 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
691 sector += sectorsize) {
692 /* Read a block */
693 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
694 if (!bh)
695 break;
696
697 /* Look for ISO descriptors */
698 vsd = (struct volStructDesc *)(bh->b_data +
699 (sector & (sb->s_blocksize - 1)));
700
701 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
702 VSD_STD_ID_LEN)) {
703 switch (vsd->structType) {
704 case 0:
705 udf_debug("ISO9660 Boot Record found\n");
706 break;
707 case 1:
708 udf_debug("ISO9660 Primary Volume Descriptor found\n");
709 break;
710 case 2:
711 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
712 break;
713 case 3:
714 udf_debug("ISO9660 Volume Partition Descriptor found\n");
715 break;
716 case 255:
717 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
718 break;
719 default:
720 udf_debug("ISO9660 VRS (%u) found\n",
721 vsd->structType);
722 break;
723 }
724 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
725 VSD_STD_ID_LEN))
726 ; /* nothing */
727 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
728 VSD_STD_ID_LEN)) {
729 brelse(bh);
730 break;
731 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
732 VSD_STD_ID_LEN))
733 nsr02 = sector;
734 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
735 VSD_STD_ID_LEN))
736 nsr03 = sector;
737 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
738 VSD_STD_ID_LEN))
739 ; /* nothing */
740 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
741 VSD_STD_ID_LEN))
742 ; /* nothing */
743 else {
744 /* invalid id : end of volume recognition area */
745 brelse(bh);
746 break;
747 }
748 brelse(bh);
749 }
750
751 if (nsr03)
752 return nsr03;
753 else if (nsr02)
754 return nsr02;
755 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
756 VSD_FIRST_SECTOR_OFFSET)
757 return -1;
758 else
759 return 0;
760 }
761
762 static int udf_find_fileset(struct super_block *sb,
763 struct kernel_lb_addr *fileset,
764 struct kernel_lb_addr *root)
765 {
766 struct buffer_head *bh = NULL;
767 long lastblock;
768 uint16_t ident;
769 struct udf_sb_info *sbi;
770
771 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
772 fileset->partitionReferenceNum != 0xFFFF) {
773 bh = udf_read_ptagged(sb, fileset, 0, &ident);
774
775 if (!bh) {
776 return 1;
777 } else if (ident != TAG_IDENT_FSD) {
778 brelse(bh);
779 return 1;
780 }
781
782 }
783
784 sbi = UDF_SB(sb);
785 if (!bh) {
786 /* Search backwards through the partitions */
787 struct kernel_lb_addr newfileset;
788
789 /* --> cvg: FIXME - is it reasonable? */
790 return 1;
791
792 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
793 (newfileset.partitionReferenceNum != 0xFFFF &&
794 fileset->logicalBlockNum == 0xFFFFFFFF &&
795 fileset->partitionReferenceNum == 0xFFFF);
796 newfileset.partitionReferenceNum--) {
797 lastblock = sbi->s_partmaps
798 [newfileset.partitionReferenceNum]
799 .s_partition_len;
800 newfileset.logicalBlockNum = 0;
801
802 do {
803 bh = udf_read_ptagged(sb, &newfileset, 0,
804 &ident);
805 if (!bh) {
806 newfileset.logicalBlockNum++;
807 continue;
808 }
809
810 switch (ident) {
811 case TAG_IDENT_SBD:
812 {
813 struct spaceBitmapDesc *sp;
814 sp = (struct spaceBitmapDesc *)
815 bh->b_data;
816 newfileset.logicalBlockNum += 1 +
817 ((le32_to_cpu(sp->numOfBytes) +
818 sizeof(struct spaceBitmapDesc)
819 - 1) >> sb->s_blocksize_bits);
820 brelse(bh);
821 break;
822 }
823 case TAG_IDENT_FSD:
824 *fileset = newfileset;
825 break;
826 default:
827 newfileset.logicalBlockNum++;
828 brelse(bh);
829 bh = NULL;
830 break;
831 }
832 } while (newfileset.logicalBlockNum < lastblock &&
833 fileset->logicalBlockNum == 0xFFFFFFFF &&
834 fileset->partitionReferenceNum == 0xFFFF);
835 }
836 }
837
838 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
839 fileset->partitionReferenceNum != 0xFFFF) && bh) {
840 udf_debug("Fileset at block=%u, partition=%u\n",
841 fileset->logicalBlockNum,
842 fileset->partitionReferenceNum);
843
844 sbi->s_partition = fileset->partitionReferenceNum;
845 udf_load_fileset(sb, bh, root);
846 brelse(bh);
847 return 0;
848 }
849 return 1;
850 }
851
852 /*
853 * Load primary Volume Descriptor Sequence
854 *
855 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
856 * should be tried.
857 */
858 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
859 {
860 struct primaryVolDesc *pvoldesc;
861 uint8_t *outstr;
862 struct buffer_head *bh;
863 uint16_t ident;
864 int ret = -ENOMEM;
865 #ifdef UDFFS_DEBUG
866 struct timestamp *ts;
867 #endif
868
869 outstr = kmalloc(128, GFP_NOFS);
870 if (!outstr)
871 return -ENOMEM;
872
873 bh = udf_read_tagged(sb, block, block, &ident);
874 if (!bh) {
875 ret = -EAGAIN;
876 goto out2;
877 }
878
879 if (ident != TAG_IDENT_PVD) {
880 ret = -EIO;
881 goto out_bh;
882 }
883
884 pvoldesc = (struct primaryVolDesc *)bh->b_data;
885
886 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
887 pvoldesc->recordingDateAndTime);
888 #ifdef UDFFS_DEBUG
889 ts = &pvoldesc->recordingDateAndTime;
890 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
891 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
892 ts->minute, le16_to_cpu(ts->typeAndTimezone));
893 #endif
894
895
896 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
897 if (ret < 0)
898 goto out_bh;
899
900 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
901 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
902
903 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
904 if (ret < 0)
905 goto out_bh;
906
907 outstr[ret] = 0;
908 udf_debug("volSetIdent[] = '%s'\n", outstr);
909
910 ret = 0;
911 out_bh:
912 brelse(bh);
913 out2:
914 kfree(outstr);
915 return ret;
916 }
917
918 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
919 u32 meta_file_loc, u32 partition_ref)
920 {
921 struct kernel_lb_addr addr;
922 struct inode *metadata_fe;
923
924 addr.logicalBlockNum = meta_file_loc;
925 addr.partitionReferenceNum = partition_ref;
926
927 metadata_fe = udf_iget_special(sb, &addr);
928
929 if (IS_ERR(metadata_fe)) {
930 udf_warn(sb, "metadata inode efe not found\n");
931 return metadata_fe;
932 }
933 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
934 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
935 iput(metadata_fe);
936 return ERR_PTR(-EIO);
937 }
938
939 return metadata_fe;
940 }
941
942 static int udf_load_metadata_files(struct super_block *sb, int partition,
943 int type1_index)
944 {
945 struct udf_sb_info *sbi = UDF_SB(sb);
946 struct udf_part_map *map;
947 struct udf_meta_data *mdata;
948 struct kernel_lb_addr addr;
949 struct inode *fe;
950
951 map = &sbi->s_partmaps[partition];
952 mdata = &map->s_type_specific.s_metadata;
953 mdata->s_phys_partition_ref = type1_index;
954
955 /* metadata address */
956 udf_debug("Metadata file location: block = %u part = %u\n",
957 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
958
959 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
960 mdata->s_phys_partition_ref);
961 if (IS_ERR(fe)) {
962 /* mirror file entry */
963 udf_debug("Mirror metadata file location: block = %u part = %u\n",
964 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
965
966 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
967 mdata->s_phys_partition_ref);
968
969 if (IS_ERR(fe)) {
970 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
971 return PTR_ERR(fe);
972 }
973 mdata->s_mirror_fe = fe;
974 } else
975 mdata->s_metadata_fe = fe;
976
977
978 /*
979 * bitmap file entry
980 * Note:
981 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
982 */
983 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
984 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
985 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
986
987 udf_debug("Bitmap file location: block = %u part = %u\n",
988 addr.logicalBlockNum, addr.partitionReferenceNum);
989
990 fe = udf_iget_special(sb, &addr);
991 if (IS_ERR(fe)) {
992 if (sb_rdonly(sb))
993 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
994 else {
995 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
996 return PTR_ERR(fe);
997 }
998 } else
999 mdata->s_bitmap_fe = fe;
1000 }
1001
1002 udf_debug("udf_load_metadata_files Ok\n");
1003 return 0;
1004 }
1005
1006 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1007 struct kernel_lb_addr *root)
1008 {
1009 struct fileSetDesc *fset;
1010
1011 fset = (struct fileSetDesc *)bh->b_data;
1012
1013 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1014
1015 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1016
1017 udf_debug("Rootdir at block=%u, partition=%u\n",
1018 root->logicalBlockNum, root->partitionReferenceNum);
1019 }
1020
1021 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1022 {
1023 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1024 return DIV_ROUND_UP(map->s_partition_len +
1025 (sizeof(struct spaceBitmapDesc) << 3),
1026 sb->s_blocksize * 8);
1027 }
1028
1029 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1030 {
1031 struct udf_bitmap *bitmap;
1032 int nr_groups;
1033 int size;
1034
1035 nr_groups = udf_compute_nr_groups(sb, index);
1036 size = sizeof(struct udf_bitmap) +
1037 (sizeof(struct buffer_head *) * nr_groups);
1038
1039 if (size <= PAGE_SIZE)
1040 bitmap = kzalloc(size, GFP_KERNEL);
1041 else
1042 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1043
1044 if (!bitmap)
1045 return NULL;
1046
1047 bitmap->s_nr_groups = nr_groups;
1048 return bitmap;
1049 }
1050
1051 static int udf_fill_partdesc_info(struct super_block *sb,
1052 struct partitionDesc *p, int p_index)
1053 {
1054 struct udf_part_map *map;
1055 struct udf_sb_info *sbi = UDF_SB(sb);
1056 struct partitionHeaderDesc *phd;
1057
1058 map = &sbi->s_partmaps[p_index];
1059
1060 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1061 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1062
1063 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1064 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1065 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1066 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1067 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1068 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1069 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1070 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1071
1072 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1073 p_index, map->s_partition_type,
1074 map->s_partition_root, map->s_partition_len);
1075
1076 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1077 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1078 return 0;
1079
1080 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1081 if (phd->unallocSpaceTable.extLength) {
1082 struct kernel_lb_addr loc = {
1083 .logicalBlockNum = le32_to_cpu(
1084 phd->unallocSpaceTable.extPosition),
1085 .partitionReferenceNum = p_index,
1086 };
1087 struct inode *inode;
1088
1089 inode = udf_iget_special(sb, &loc);
1090 if (IS_ERR(inode)) {
1091 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1092 p_index);
1093 return PTR_ERR(inode);
1094 }
1095 map->s_uspace.s_table = inode;
1096 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1097 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1098 p_index, map->s_uspace.s_table->i_ino);
1099 }
1100
1101 if (phd->unallocSpaceBitmap.extLength) {
1102 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1103 if (!bitmap)
1104 return -ENOMEM;
1105 map->s_uspace.s_bitmap = bitmap;
1106 bitmap->s_extPosition = le32_to_cpu(
1107 phd->unallocSpaceBitmap.extPosition);
1108 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1109 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1110 p_index, bitmap->s_extPosition);
1111 }
1112
1113 if (phd->partitionIntegrityTable.extLength)
1114 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1115
1116 if (phd->freedSpaceTable.extLength) {
1117 struct kernel_lb_addr loc = {
1118 .logicalBlockNum = le32_to_cpu(
1119 phd->freedSpaceTable.extPosition),
1120 .partitionReferenceNum = p_index,
1121 };
1122 struct inode *inode;
1123
1124 inode = udf_iget_special(sb, &loc);
1125 if (IS_ERR(inode)) {
1126 udf_debug("cannot load freedSpaceTable (part %d)\n",
1127 p_index);
1128 return PTR_ERR(inode);
1129 }
1130 map->s_fspace.s_table = inode;
1131 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1132 udf_debug("freedSpaceTable (part %d) @ %lu\n",
1133 p_index, map->s_fspace.s_table->i_ino);
1134 }
1135
1136 if (phd->freedSpaceBitmap.extLength) {
1137 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1138 if (!bitmap)
1139 return -ENOMEM;
1140 map->s_fspace.s_bitmap = bitmap;
1141 bitmap->s_extPosition = le32_to_cpu(
1142 phd->freedSpaceBitmap.extPosition);
1143 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1144 udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1145 p_index, bitmap->s_extPosition);
1146 }
1147 return 0;
1148 }
1149
1150 static void udf_find_vat_block(struct super_block *sb, int p_index,
1151 int type1_index, sector_t start_block)
1152 {
1153 struct udf_sb_info *sbi = UDF_SB(sb);
1154 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1155 sector_t vat_block;
1156 struct kernel_lb_addr ino;
1157 struct inode *inode;
1158
1159 /*
1160 * VAT file entry is in the last recorded block. Some broken disks have
1161 * it a few blocks before so try a bit harder...
1162 */
1163 ino.partitionReferenceNum = type1_index;
1164 for (vat_block = start_block;
1165 vat_block >= map->s_partition_root &&
1166 vat_block >= start_block - 3; vat_block--) {
1167 ino.logicalBlockNum = vat_block - map->s_partition_root;
1168 inode = udf_iget_special(sb, &ino);
1169 if (!IS_ERR(inode)) {
1170 sbi->s_vat_inode = inode;
1171 break;
1172 }
1173 }
1174 }
1175
1176 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1177 {
1178 struct udf_sb_info *sbi = UDF_SB(sb);
1179 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1180 struct buffer_head *bh = NULL;
1181 struct udf_inode_info *vati;
1182 uint32_t pos;
1183 struct virtualAllocationTable20 *vat20;
1184 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1185 sb->s_blocksize_bits;
1186
1187 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1188 if (!sbi->s_vat_inode &&
1189 sbi->s_last_block != blocks - 1) {
1190 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1191 (unsigned long)sbi->s_last_block,
1192 (unsigned long)blocks - 1);
1193 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1194 }
1195 if (!sbi->s_vat_inode)
1196 return -EIO;
1197
1198 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1199 map->s_type_specific.s_virtual.s_start_offset = 0;
1200 map->s_type_specific.s_virtual.s_num_entries =
1201 (sbi->s_vat_inode->i_size - 36) >> 2;
1202 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1203 vati = UDF_I(sbi->s_vat_inode);
1204 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1205 pos = udf_block_map(sbi->s_vat_inode, 0);
1206 bh = sb_bread(sb, pos);
1207 if (!bh)
1208 return -EIO;
1209 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1210 } else {
1211 vat20 = (struct virtualAllocationTable20 *)
1212 vati->i_ext.i_data;
1213 }
1214
1215 map->s_type_specific.s_virtual.s_start_offset =
1216 le16_to_cpu(vat20->lengthHeader);
1217 map->s_type_specific.s_virtual.s_num_entries =
1218 (sbi->s_vat_inode->i_size -
1219 map->s_type_specific.s_virtual.
1220 s_start_offset) >> 2;
1221 brelse(bh);
1222 }
1223 return 0;
1224 }
1225
1226 /*
1227 * Load partition descriptor block
1228 *
1229 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1230 * sequence.
1231 */
1232 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1233 {
1234 struct buffer_head *bh;
1235 struct partitionDesc *p;
1236 struct udf_part_map *map;
1237 struct udf_sb_info *sbi = UDF_SB(sb);
1238 int i, type1_idx;
1239 uint16_t partitionNumber;
1240 uint16_t ident;
1241 int ret;
1242
1243 bh = udf_read_tagged(sb, block, block, &ident);
1244 if (!bh)
1245 return -EAGAIN;
1246 if (ident != TAG_IDENT_PD) {
1247 ret = 0;
1248 goto out_bh;
1249 }
1250
1251 p = (struct partitionDesc *)bh->b_data;
1252 partitionNumber = le16_to_cpu(p->partitionNumber);
1253
1254 /* First scan for TYPE1 and SPARABLE partitions */
1255 for (i = 0; i < sbi->s_partitions; i++) {
1256 map = &sbi->s_partmaps[i];
1257 udf_debug("Searching map: (%u == %u)\n",
1258 map->s_partition_num, partitionNumber);
1259 if (map->s_partition_num == partitionNumber &&
1260 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1261 map->s_partition_type == UDF_SPARABLE_MAP15))
1262 break;
1263 }
1264
1265 if (i >= sbi->s_partitions) {
1266 udf_debug("Partition (%u) not found in partition map\n",
1267 partitionNumber);
1268 ret = 0;
1269 goto out_bh;
1270 }
1271
1272 ret = udf_fill_partdesc_info(sb, p, i);
1273 if (ret < 0)
1274 goto out_bh;
1275
1276 /*
1277 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1278 * PHYSICAL partitions are already set up
1279 */
1280 type1_idx = i;
1281 #ifdef UDFFS_DEBUG
1282 map = NULL; /* supress 'maybe used uninitialized' warning */
1283 #endif
1284 for (i = 0; i < sbi->s_partitions; i++) {
1285 map = &sbi->s_partmaps[i];
1286
1287 if (map->s_partition_num == partitionNumber &&
1288 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1289 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1290 map->s_partition_type == UDF_METADATA_MAP25))
1291 break;
1292 }
1293
1294 if (i >= sbi->s_partitions) {
1295 ret = 0;
1296 goto out_bh;
1297 }
1298
1299 ret = udf_fill_partdesc_info(sb, p, i);
1300 if (ret < 0)
1301 goto out_bh;
1302
1303 if (map->s_partition_type == UDF_METADATA_MAP25) {
1304 ret = udf_load_metadata_files(sb, i, type1_idx);
1305 if (ret < 0) {
1306 udf_err(sb, "error loading MetaData partition map %d\n",
1307 i);
1308 goto out_bh;
1309 }
1310 } else {
1311 /*
1312 * If we have a partition with virtual map, we don't handle
1313 * writing to it (we overwrite blocks instead of relocating
1314 * them).
1315 */
1316 if (!sb_rdonly(sb)) {
1317 ret = -EACCES;
1318 goto out_bh;
1319 }
1320 ret = udf_load_vat(sb, i, type1_idx);
1321 if (ret < 0)
1322 goto out_bh;
1323 }
1324 ret = 0;
1325 out_bh:
1326 /* In case loading failed, we handle cleanup in udf_fill_super */
1327 brelse(bh);
1328 return ret;
1329 }
1330
1331 static int udf_load_sparable_map(struct super_block *sb,
1332 struct udf_part_map *map,
1333 struct sparablePartitionMap *spm)
1334 {
1335 uint32_t loc;
1336 uint16_t ident;
1337 struct sparingTable *st;
1338 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1339 int i;
1340 struct buffer_head *bh;
1341
1342 map->s_partition_type = UDF_SPARABLE_MAP15;
1343 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1344 if (!is_power_of_2(sdata->s_packet_len)) {
1345 udf_err(sb, "error loading logical volume descriptor: "
1346 "Invalid packet length %u\n",
1347 (unsigned)sdata->s_packet_len);
1348 return -EIO;
1349 }
1350 if (spm->numSparingTables > 4) {
1351 udf_err(sb, "error loading logical volume descriptor: "
1352 "Too many sparing tables (%d)\n",
1353 (int)spm->numSparingTables);
1354 return -EIO;
1355 }
1356
1357 for (i = 0; i < spm->numSparingTables; i++) {
1358 loc = le32_to_cpu(spm->locSparingTable[i]);
1359 bh = udf_read_tagged(sb, loc, loc, &ident);
1360 if (!bh)
1361 continue;
1362
1363 st = (struct sparingTable *)bh->b_data;
1364 if (ident != 0 ||
1365 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1366 strlen(UDF_ID_SPARING)) ||
1367 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1368 sb->s_blocksize) {
1369 brelse(bh);
1370 continue;
1371 }
1372
1373 sdata->s_spar_map[i] = bh;
1374 }
1375 map->s_partition_func = udf_get_pblock_spar15;
1376 return 0;
1377 }
1378
1379 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1380 struct kernel_lb_addr *fileset)
1381 {
1382 struct logicalVolDesc *lvd;
1383 int i, offset;
1384 uint8_t type;
1385 struct udf_sb_info *sbi = UDF_SB(sb);
1386 struct genericPartitionMap *gpm;
1387 uint16_t ident;
1388 struct buffer_head *bh;
1389 unsigned int table_len;
1390 int ret;
1391
1392 bh = udf_read_tagged(sb, block, block, &ident);
1393 if (!bh)
1394 return -EAGAIN;
1395 BUG_ON(ident != TAG_IDENT_LVD);
1396 lvd = (struct logicalVolDesc *)bh->b_data;
1397 table_len = le32_to_cpu(lvd->mapTableLength);
1398 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1399 udf_err(sb, "error loading logical volume descriptor: "
1400 "Partition table too long (%u > %lu)\n", table_len,
1401 sb->s_blocksize - sizeof(*lvd));
1402 ret = -EIO;
1403 goto out_bh;
1404 }
1405
1406 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1407 if (ret)
1408 goto out_bh;
1409
1410 for (i = 0, offset = 0;
1411 i < sbi->s_partitions && offset < table_len;
1412 i++, offset += gpm->partitionMapLength) {
1413 struct udf_part_map *map = &sbi->s_partmaps[i];
1414 gpm = (struct genericPartitionMap *)
1415 &(lvd->partitionMaps[offset]);
1416 type = gpm->partitionMapType;
1417 if (type == 1) {
1418 struct genericPartitionMap1 *gpm1 =
1419 (struct genericPartitionMap1 *)gpm;
1420 map->s_partition_type = UDF_TYPE1_MAP15;
1421 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1422 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1423 map->s_partition_func = NULL;
1424 } else if (type == 2) {
1425 struct udfPartitionMap2 *upm2 =
1426 (struct udfPartitionMap2 *)gpm;
1427 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1428 strlen(UDF_ID_VIRTUAL))) {
1429 u16 suf =
1430 le16_to_cpu(((__le16 *)upm2->partIdent.
1431 identSuffix)[0]);
1432 if (suf < 0x0200) {
1433 map->s_partition_type =
1434 UDF_VIRTUAL_MAP15;
1435 map->s_partition_func =
1436 udf_get_pblock_virt15;
1437 } else {
1438 map->s_partition_type =
1439 UDF_VIRTUAL_MAP20;
1440 map->s_partition_func =
1441 udf_get_pblock_virt20;
1442 }
1443 } else if (!strncmp(upm2->partIdent.ident,
1444 UDF_ID_SPARABLE,
1445 strlen(UDF_ID_SPARABLE))) {
1446 ret = udf_load_sparable_map(sb, map,
1447 (struct sparablePartitionMap *)gpm);
1448 if (ret < 0)
1449 goto out_bh;
1450 } else if (!strncmp(upm2->partIdent.ident,
1451 UDF_ID_METADATA,
1452 strlen(UDF_ID_METADATA))) {
1453 struct udf_meta_data *mdata =
1454 &map->s_type_specific.s_metadata;
1455 struct metadataPartitionMap *mdm =
1456 (struct metadataPartitionMap *)
1457 &(lvd->partitionMaps[offset]);
1458 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1459 i, type, UDF_ID_METADATA);
1460
1461 map->s_partition_type = UDF_METADATA_MAP25;
1462 map->s_partition_func = udf_get_pblock_meta25;
1463
1464 mdata->s_meta_file_loc =
1465 le32_to_cpu(mdm->metadataFileLoc);
1466 mdata->s_mirror_file_loc =
1467 le32_to_cpu(mdm->metadataMirrorFileLoc);
1468 mdata->s_bitmap_file_loc =
1469 le32_to_cpu(mdm->metadataBitmapFileLoc);
1470 mdata->s_alloc_unit_size =
1471 le32_to_cpu(mdm->allocUnitSize);
1472 mdata->s_align_unit_size =
1473 le16_to_cpu(mdm->alignUnitSize);
1474 if (mdm->flags & 0x01)
1475 mdata->s_flags |= MF_DUPLICATE_MD;
1476
1477 udf_debug("Metadata Ident suffix=0x%x\n",
1478 le16_to_cpu(*(__le16 *)
1479 mdm->partIdent.identSuffix));
1480 udf_debug("Metadata part num=%u\n",
1481 le16_to_cpu(mdm->partitionNum));
1482 udf_debug("Metadata part alloc unit size=%u\n",
1483 le32_to_cpu(mdm->allocUnitSize));
1484 udf_debug("Metadata file loc=%u\n",
1485 le32_to_cpu(mdm->metadataFileLoc));
1486 udf_debug("Mirror file loc=%u\n",
1487 le32_to_cpu(mdm->metadataMirrorFileLoc));
1488 udf_debug("Bitmap file loc=%u\n",
1489 le32_to_cpu(mdm->metadataBitmapFileLoc));
1490 udf_debug("Flags: %d %u\n",
1491 mdata->s_flags, mdm->flags);
1492 } else {
1493 udf_debug("Unknown ident: %s\n",
1494 upm2->partIdent.ident);
1495 continue;
1496 }
1497 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1498 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1499 }
1500 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1501 i, map->s_partition_num, type, map->s_volumeseqnum);
1502 }
1503
1504 if (fileset) {
1505 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1506
1507 *fileset = lelb_to_cpu(la->extLocation);
1508 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1509 fileset->logicalBlockNum,
1510 fileset->partitionReferenceNum);
1511 }
1512 if (lvd->integritySeqExt.extLength)
1513 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1514 ret = 0;
1515 out_bh:
1516 brelse(bh);
1517 return ret;
1518 }
1519
1520 /*
1521 * Find the prevailing Logical Volume Integrity Descriptor.
1522 */
1523 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1524 {
1525 struct buffer_head *bh, *final_bh;
1526 uint16_t ident;
1527 struct udf_sb_info *sbi = UDF_SB(sb);
1528 struct logicalVolIntegrityDesc *lvid;
1529 int indirections = 0;
1530
1531 while (++indirections <= UDF_MAX_LVID_NESTING) {
1532 final_bh = NULL;
1533 while (loc.extLength > 0 &&
1534 (bh = udf_read_tagged(sb, loc.extLocation,
1535 loc.extLocation, &ident))) {
1536 if (ident != TAG_IDENT_LVID) {
1537 brelse(bh);
1538 break;
1539 }
1540
1541 brelse(final_bh);
1542 final_bh = bh;
1543
1544 loc.extLength -= sb->s_blocksize;
1545 loc.extLocation++;
1546 }
1547
1548 if (!final_bh)
1549 return;
1550
1551 brelse(sbi->s_lvid_bh);
1552 sbi->s_lvid_bh = final_bh;
1553
1554 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1555 if (lvid->nextIntegrityExt.extLength == 0)
1556 return;
1557
1558 loc = leea_to_cpu(lvid->nextIntegrityExt);
1559 }
1560
1561 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1562 UDF_MAX_LVID_NESTING);
1563 brelse(sbi->s_lvid_bh);
1564 sbi->s_lvid_bh = NULL;
1565 }
1566
1567 /*
1568 * Step for reallocation of table of partition descriptor sequence numbers.
1569 * Must be power of 2.
1570 */
1571 #define PART_DESC_ALLOC_STEP 32
1572
1573 struct desc_seq_scan_data {
1574 struct udf_vds_record vds[VDS_POS_LENGTH];
1575 unsigned int size_part_descs;
1576 struct udf_vds_record *part_descs_loc;
1577 };
1578
1579 static struct udf_vds_record *handle_partition_descriptor(
1580 struct buffer_head *bh,
1581 struct desc_seq_scan_data *data)
1582 {
1583 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1584 int partnum;
1585
1586 partnum = le16_to_cpu(desc->partitionNumber);
1587 if (partnum >= data->size_part_descs) {
1588 struct udf_vds_record *new_loc;
1589 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1590
1591 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1592 if (!new_loc)
1593 return ERR_PTR(-ENOMEM);
1594 memcpy(new_loc, data->part_descs_loc,
1595 data->size_part_descs * sizeof(*new_loc));
1596 kfree(data->part_descs_loc);
1597 data->part_descs_loc = new_loc;
1598 data->size_part_descs = new_size;
1599 }
1600 return &(data->part_descs_loc[partnum]);
1601 }
1602
1603
1604 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1605 struct buffer_head *bh, struct desc_seq_scan_data *data)
1606 {
1607 switch (ident) {
1608 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1609 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1610 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1611 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1612 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1613 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1614 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1615 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1616 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1617 return handle_partition_descriptor(bh, data);
1618 }
1619 return NULL;
1620 }
1621
1622 /*
1623 * Process a main/reserve volume descriptor sequence.
1624 * @block First block of first extent of the sequence.
1625 * @lastblock Lastblock of first extent of the sequence.
1626 * @fileset There we store extent containing root fileset
1627 *
1628 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1629 * sequence
1630 */
1631 static noinline int udf_process_sequence(
1632 struct super_block *sb,
1633 sector_t block, sector_t lastblock,
1634 struct kernel_lb_addr *fileset)
1635 {
1636 struct buffer_head *bh = NULL;
1637 struct udf_vds_record *curr;
1638 struct generic_desc *gd;
1639 struct volDescPtr *vdp;
1640 bool done = false;
1641 uint32_t vdsn;
1642 uint16_t ident;
1643 int ret;
1644 unsigned int indirections = 0;
1645 struct desc_seq_scan_data data;
1646 unsigned int i;
1647
1648 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1649 data.size_part_descs = PART_DESC_ALLOC_STEP;
1650 data.part_descs_loc = kcalloc(data.size_part_descs,
1651 sizeof(*data.part_descs_loc),
1652 GFP_KERNEL);
1653 if (!data.part_descs_loc)
1654 return -ENOMEM;
1655
1656 /*
1657 * Read the main descriptor sequence and find which descriptors
1658 * are in it.
1659 */
1660 for (; (!done && block <= lastblock); block++) {
1661
1662 bh = udf_read_tagged(sb, block, block, &ident);
1663 if (!bh)
1664 break;
1665
1666 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1667 gd = (struct generic_desc *)bh->b_data;
1668 vdsn = le32_to_cpu(gd->volDescSeqNum);
1669 switch (ident) {
1670 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1671 if (++indirections > UDF_MAX_TD_NESTING) {
1672 udf_err(sb, "too many Volume Descriptor "
1673 "Pointers (max %u supported)\n",
1674 UDF_MAX_TD_NESTING);
1675 brelse(bh);
1676 return -EIO;
1677 }
1678
1679 vdp = (struct volDescPtr *)bh->b_data;
1680 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1681 lastblock = le32_to_cpu(
1682 vdp->nextVolDescSeqExt.extLength) >>
1683 sb->s_blocksize_bits;
1684 lastblock += block - 1;
1685 /* For loop is going to increment 'block' again */
1686 block--;
1687 break;
1688 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1689 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1690 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1691 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1692 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1693 curr = get_volume_descriptor_record(ident, bh, &data);
1694 if (IS_ERR(curr)) {
1695 brelse(bh);
1696 return PTR_ERR(curr);
1697 }
1698 /* Descriptor we don't care about? */
1699 if (!curr)
1700 break;
1701 if (vdsn >= curr->volDescSeqNum) {
1702 curr->volDescSeqNum = vdsn;
1703 curr->block = block;
1704 }
1705 break;
1706 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1707 done = true;
1708 break;
1709 }
1710 brelse(bh);
1711 }
1712 /*
1713 * Now read interesting descriptors again and process them
1714 * in a suitable order
1715 */
1716 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1717 udf_err(sb, "Primary Volume Descriptor not found!\n");
1718 return -EAGAIN;
1719 }
1720 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1721 if (ret < 0)
1722 return ret;
1723
1724 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1725 ret = udf_load_logicalvol(sb,
1726 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1727 fileset);
1728 if (ret < 0)
1729 return ret;
1730 }
1731
1732 /* Now handle prevailing Partition Descriptors */
1733 for (i = 0; i < data.size_part_descs; i++) {
1734 if (data.part_descs_loc[i].block) {
1735 ret = udf_load_partdesc(sb,
1736 data.part_descs_loc[i].block);
1737 if (ret < 0)
1738 return ret;
1739 }
1740 }
1741
1742 return 0;
1743 }
1744
1745 /*
1746 * Load Volume Descriptor Sequence described by anchor in bh
1747 *
1748 * Returns <0 on error, 0 on success
1749 */
1750 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1751 struct kernel_lb_addr *fileset)
1752 {
1753 struct anchorVolDescPtr *anchor;
1754 sector_t main_s, main_e, reserve_s, reserve_e;
1755 int ret;
1756
1757 anchor = (struct anchorVolDescPtr *)bh->b_data;
1758
1759 /* Locate the main sequence */
1760 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1761 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1762 main_e = main_e >> sb->s_blocksize_bits;
1763 main_e += main_s - 1;
1764
1765 /* Locate the reserve sequence */
1766 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1767 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1768 reserve_e = reserve_e >> sb->s_blocksize_bits;
1769 reserve_e += reserve_s - 1;
1770
1771 /* Process the main & reserve sequences */
1772 /* responsible for finding the PartitionDesc(s) */
1773 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1774 if (ret != -EAGAIN)
1775 return ret;
1776 udf_sb_free_partitions(sb);
1777 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1778 if (ret < 0) {
1779 udf_sb_free_partitions(sb);
1780 /* No sequence was OK, return -EIO */
1781 if (ret == -EAGAIN)
1782 ret = -EIO;
1783 }
1784 return ret;
1785 }
1786
1787 /*
1788 * Check whether there is an anchor block in the given block and
1789 * load Volume Descriptor Sequence if so.
1790 *
1791 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1792 * block
1793 */
1794 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1795 struct kernel_lb_addr *fileset)
1796 {
1797 struct buffer_head *bh;
1798 uint16_t ident;
1799 int ret;
1800
1801 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1802 udf_fixed_to_variable(block) >=
1803 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1804 return -EAGAIN;
1805
1806 bh = udf_read_tagged(sb, block, block, &ident);
1807 if (!bh)
1808 return -EAGAIN;
1809 if (ident != TAG_IDENT_AVDP) {
1810 brelse(bh);
1811 return -EAGAIN;
1812 }
1813 ret = udf_load_sequence(sb, bh, fileset);
1814 brelse(bh);
1815 return ret;
1816 }
1817
1818 /*
1819 * Search for an anchor volume descriptor pointer.
1820 *
1821 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1822 * of anchors.
1823 */
1824 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1825 struct kernel_lb_addr *fileset)
1826 {
1827 sector_t last[6];
1828 int i;
1829 struct udf_sb_info *sbi = UDF_SB(sb);
1830 int last_count = 0;
1831 int ret;
1832
1833 /* First try user provided anchor */
1834 if (sbi->s_anchor) {
1835 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1836 if (ret != -EAGAIN)
1837 return ret;
1838 }
1839 /*
1840 * according to spec, anchor is in either:
1841 * block 256
1842 * lastblock-256
1843 * lastblock
1844 * however, if the disc isn't closed, it could be 512.
1845 */
1846 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1847 if (ret != -EAGAIN)
1848 return ret;
1849 /*
1850 * The trouble is which block is the last one. Drives often misreport
1851 * this so we try various possibilities.
1852 */
1853 last[last_count++] = *lastblock;
1854 if (*lastblock >= 1)
1855 last[last_count++] = *lastblock - 1;
1856 last[last_count++] = *lastblock + 1;
1857 if (*lastblock >= 2)
1858 last[last_count++] = *lastblock - 2;
1859 if (*lastblock >= 150)
1860 last[last_count++] = *lastblock - 150;
1861 if (*lastblock >= 152)
1862 last[last_count++] = *lastblock - 152;
1863
1864 for (i = 0; i < last_count; i++) {
1865 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1866 sb->s_blocksize_bits)
1867 continue;
1868 ret = udf_check_anchor_block(sb, last[i], fileset);
1869 if (ret != -EAGAIN) {
1870 if (!ret)
1871 *lastblock = last[i];
1872 return ret;
1873 }
1874 if (last[i] < 256)
1875 continue;
1876 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1877 if (ret != -EAGAIN) {
1878 if (!ret)
1879 *lastblock = last[i];
1880 return ret;
1881 }
1882 }
1883
1884 /* Finally try block 512 in case media is open */
1885 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1886 }
1887
1888 /*
1889 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1890 * area specified by it. The function expects sbi->s_lastblock to be the last
1891 * block on the media.
1892 *
1893 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1894 * was not found.
1895 */
1896 static int udf_find_anchor(struct super_block *sb,
1897 struct kernel_lb_addr *fileset)
1898 {
1899 struct udf_sb_info *sbi = UDF_SB(sb);
1900 sector_t lastblock = sbi->s_last_block;
1901 int ret;
1902
1903 ret = udf_scan_anchors(sb, &lastblock, fileset);
1904 if (ret != -EAGAIN)
1905 goto out;
1906
1907 /* No anchor found? Try VARCONV conversion of block numbers */
1908 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1909 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1910 /* Firstly, we try to not convert number of the last block */
1911 ret = udf_scan_anchors(sb, &lastblock, fileset);
1912 if (ret != -EAGAIN)
1913 goto out;
1914
1915 lastblock = sbi->s_last_block;
1916 /* Secondly, we try with converted number of the last block */
1917 ret = udf_scan_anchors(sb, &lastblock, fileset);
1918 if (ret < 0) {
1919 /* VARCONV didn't help. Clear it. */
1920 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1921 }
1922 out:
1923 if (ret == 0)
1924 sbi->s_last_block = lastblock;
1925 return ret;
1926 }
1927
1928 /*
1929 * Check Volume Structure Descriptor, find Anchor block and load Volume
1930 * Descriptor Sequence.
1931 *
1932 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1933 * block was not found.
1934 */
1935 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1936 int silent, struct kernel_lb_addr *fileset)
1937 {
1938 struct udf_sb_info *sbi = UDF_SB(sb);
1939 loff_t nsr_off;
1940 int ret;
1941
1942 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1943 if (!silent)
1944 udf_warn(sb, "Bad block size\n");
1945 return -EINVAL;
1946 }
1947 sbi->s_last_block = uopt->lastblock;
1948 if (!uopt->novrs) {
1949 /* Check that it is NSR02 compliant */
1950 nsr_off = udf_check_vsd(sb);
1951 if (!nsr_off) {
1952 if (!silent)
1953 udf_warn(sb, "No VRS found\n");
1954 return -EINVAL;
1955 }
1956 if (nsr_off == -1)
1957 udf_debug("Failed to read sector at offset %d. "
1958 "Assuming open disc. Skipping validity "
1959 "check\n", VSD_FIRST_SECTOR_OFFSET);
1960 if (!sbi->s_last_block)
1961 sbi->s_last_block = udf_get_last_block(sb);
1962 } else {
1963 udf_debug("Validity check skipped because of novrs option\n");
1964 }
1965
1966 /* Look for anchor block and load Volume Descriptor Sequence */
1967 sbi->s_anchor = uopt->anchor;
1968 ret = udf_find_anchor(sb, fileset);
1969 if (ret < 0) {
1970 if (!silent && ret == -EAGAIN)
1971 udf_warn(sb, "No anchor found\n");
1972 return ret;
1973 }
1974 return 0;
1975 }
1976
1977 static void udf_open_lvid(struct super_block *sb)
1978 {
1979 struct udf_sb_info *sbi = UDF_SB(sb);
1980 struct buffer_head *bh = sbi->s_lvid_bh;
1981 struct logicalVolIntegrityDesc *lvid;
1982 struct logicalVolIntegrityDescImpUse *lvidiu;
1983 struct timespec64 ts;
1984
1985 if (!bh)
1986 return;
1987 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1988 lvidiu = udf_sb_lvidiu(sb);
1989 if (!lvidiu)
1990 return;
1991
1992 mutex_lock(&sbi->s_alloc_mutex);
1993 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1994 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1995 ktime_get_real_ts64(&ts);
1996 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1997 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1998 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1999 else
2000 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2001
2002 lvid->descTag.descCRC = cpu_to_le16(
2003 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2004 le16_to_cpu(lvid->descTag.descCRCLength)));
2005
2006 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2007 mark_buffer_dirty(bh);
2008 sbi->s_lvid_dirty = 0;
2009 mutex_unlock(&sbi->s_alloc_mutex);
2010 /* Make opening of filesystem visible on the media immediately */
2011 sync_dirty_buffer(bh);
2012 }
2013
2014 static void udf_close_lvid(struct super_block *sb)
2015 {
2016 struct udf_sb_info *sbi = UDF_SB(sb);
2017 struct buffer_head *bh = sbi->s_lvid_bh;
2018 struct logicalVolIntegrityDesc *lvid;
2019 struct logicalVolIntegrityDescImpUse *lvidiu;
2020 struct timespec64 ts;
2021
2022 if (!bh)
2023 return;
2024 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2025 lvidiu = udf_sb_lvidiu(sb);
2026 if (!lvidiu)
2027 return;
2028
2029 mutex_lock(&sbi->s_alloc_mutex);
2030 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2031 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2032 ktime_get_real_ts64(&ts);
2033 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2034 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2035 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2036 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2037 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2038 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2039 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2040 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2041 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2042
2043 lvid->descTag.descCRC = cpu_to_le16(
2044 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2045 le16_to_cpu(lvid->descTag.descCRCLength)));
2046
2047 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2048 /*
2049 * We set buffer uptodate unconditionally here to avoid spurious
2050 * warnings from mark_buffer_dirty() when previous EIO has marked
2051 * the buffer as !uptodate
2052 */
2053 set_buffer_uptodate(bh);
2054 mark_buffer_dirty(bh);
2055 sbi->s_lvid_dirty = 0;
2056 mutex_unlock(&sbi->s_alloc_mutex);
2057 /* Make closing of filesystem visible on the media immediately */
2058 sync_dirty_buffer(bh);
2059 }
2060
2061 u64 lvid_get_unique_id(struct super_block *sb)
2062 {
2063 struct buffer_head *bh;
2064 struct udf_sb_info *sbi = UDF_SB(sb);
2065 struct logicalVolIntegrityDesc *lvid;
2066 struct logicalVolHeaderDesc *lvhd;
2067 u64 uniqueID;
2068 u64 ret;
2069
2070 bh = sbi->s_lvid_bh;
2071 if (!bh)
2072 return 0;
2073
2074 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2075 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2076
2077 mutex_lock(&sbi->s_alloc_mutex);
2078 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2079 if (!(++uniqueID & 0xFFFFFFFF))
2080 uniqueID += 16;
2081 lvhd->uniqueID = cpu_to_le64(uniqueID);
2082 mutex_unlock(&sbi->s_alloc_mutex);
2083 mark_buffer_dirty(bh);
2084
2085 return ret;
2086 }
2087
2088 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2089 {
2090 int ret = -EINVAL;
2091 struct inode *inode = NULL;
2092 struct udf_options uopt;
2093 struct kernel_lb_addr rootdir, fileset;
2094 struct udf_sb_info *sbi;
2095 bool lvid_open = false;
2096
2097 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2098 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2099 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2100 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2101 uopt.umask = 0;
2102 uopt.fmode = UDF_INVALID_MODE;
2103 uopt.dmode = UDF_INVALID_MODE;
2104 uopt.nls_map = NULL;
2105
2106 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2107 if (!sbi)
2108 return -ENOMEM;
2109
2110 sb->s_fs_info = sbi;
2111
2112 mutex_init(&sbi->s_alloc_mutex);
2113
2114 if (!udf_parse_options((char *)options, &uopt, false))
2115 goto parse_options_failure;
2116
2117 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2118 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2119 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2120 goto parse_options_failure;
2121 }
2122 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2123 uopt.nls_map = load_nls_default();
2124 if (!uopt.nls_map)
2125 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2126 else
2127 udf_debug("Using default NLS map\n");
2128 }
2129 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2130 uopt.flags |= (1 << UDF_FLAG_UTF8);
2131
2132 fileset.logicalBlockNum = 0xFFFFFFFF;
2133 fileset.partitionReferenceNum = 0xFFFF;
2134
2135 sbi->s_flags = uopt.flags;
2136 sbi->s_uid = uopt.uid;
2137 sbi->s_gid = uopt.gid;
2138 sbi->s_umask = uopt.umask;
2139 sbi->s_fmode = uopt.fmode;
2140 sbi->s_dmode = uopt.dmode;
2141 sbi->s_nls_map = uopt.nls_map;
2142 rwlock_init(&sbi->s_cred_lock);
2143
2144 if (uopt.session == 0xFFFFFFFF)
2145 sbi->s_session = udf_get_last_session(sb);
2146 else
2147 sbi->s_session = uopt.session;
2148
2149 udf_debug("Multi-session=%d\n", sbi->s_session);
2150
2151 /* Fill in the rest of the superblock */
2152 sb->s_op = &udf_sb_ops;
2153 sb->s_export_op = &udf_export_ops;
2154
2155 sb->s_magic = UDF_SUPER_MAGIC;
2156 sb->s_time_gran = 1000;
2157
2158 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2159 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2160 } else {
2161 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2162 while (uopt.blocksize <= 4096) {
2163 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2164 if (ret < 0) {
2165 if (!silent && ret != -EACCES) {
2166 pr_notice("Scanning with blocksize %u failed\n",
2167 uopt.blocksize);
2168 }
2169 brelse(sbi->s_lvid_bh);
2170 sbi->s_lvid_bh = NULL;
2171 /*
2172 * EACCES is special - we want to propagate to
2173 * upper layers that we cannot handle RW mount.
2174 */
2175 if (ret == -EACCES)
2176 break;
2177 } else
2178 break;
2179
2180 uopt.blocksize <<= 1;
2181 }
2182 }
2183 if (ret < 0) {
2184 if (ret == -EAGAIN) {
2185 udf_warn(sb, "No partition found (1)\n");
2186 ret = -EINVAL;
2187 }
2188 goto error_out;
2189 }
2190
2191 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2192
2193 if (sbi->s_lvid_bh) {
2194 struct logicalVolIntegrityDescImpUse *lvidiu =
2195 udf_sb_lvidiu(sb);
2196 uint16_t minUDFReadRev;
2197 uint16_t minUDFWriteRev;
2198
2199 if (!lvidiu) {
2200 ret = -EINVAL;
2201 goto error_out;
2202 }
2203 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2204 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2205 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2206 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2207 minUDFReadRev,
2208 UDF_MAX_READ_VERSION);
2209 ret = -EINVAL;
2210 goto error_out;
2211 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2212 !sb_rdonly(sb)) {
2213 ret = -EACCES;
2214 goto error_out;
2215 }
2216
2217 sbi->s_udfrev = minUDFWriteRev;
2218
2219 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2220 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2221 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2222 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2223 }
2224
2225 if (!sbi->s_partitions) {
2226 udf_warn(sb, "No partition found (2)\n");
2227 ret = -EINVAL;
2228 goto error_out;
2229 }
2230
2231 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2232 UDF_PART_FLAG_READ_ONLY &&
2233 !sb_rdonly(sb)) {
2234 ret = -EACCES;
2235 goto error_out;
2236 }
2237
2238 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2239 udf_warn(sb, "No fileset found\n");
2240 ret = -EINVAL;
2241 goto error_out;
2242 }
2243
2244 if (!silent) {
2245 struct timestamp ts;
2246 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2247 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2248 sbi->s_volume_ident,
2249 le16_to_cpu(ts.year), ts.month, ts.day,
2250 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2251 }
2252 if (!sb_rdonly(sb)) {
2253 udf_open_lvid(sb);
2254 lvid_open = true;
2255 }
2256
2257 /* Assign the root inode */
2258 /* assign inodes by physical block number */
2259 /* perhaps it's not extensible enough, but for now ... */
2260 inode = udf_iget(sb, &rootdir);
2261 if (IS_ERR(inode)) {
2262 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2263 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2264 ret = PTR_ERR(inode);
2265 goto error_out;
2266 }
2267
2268 /* Allocate a dentry for the root inode */
2269 sb->s_root = d_make_root(inode);
2270 if (!sb->s_root) {
2271 udf_err(sb, "Couldn't allocate root dentry\n");
2272 ret = -ENOMEM;
2273 goto error_out;
2274 }
2275 sb->s_maxbytes = MAX_LFS_FILESIZE;
2276 sb->s_max_links = UDF_MAX_LINKS;
2277 return 0;
2278
2279 error_out:
2280 iput(sbi->s_vat_inode);
2281 parse_options_failure:
2282 if (uopt.nls_map)
2283 unload_nls(uopt.nls_map);
2284 if (lvid_open)
2285 udf_close_lvid(sb);
2286 brelse(sbi->s_lvid_bh);
2287 udf_sb_free_partitions(sb);
2288 kfree(sbi);
2289 sb->s_fs_info = NULL;
2290
2291 return ret;
2292 }
2293
2294 void _udf_err(struct super_block *sb, const char *function,
2295 const char *fmt, ...)
2296 {
2297 struct va_format vaf;
2298 va_list args;
2299
2300 va_start(args, fmt);
2301
2302 vaf.fmt = fmt;
2303 vaf.va = &args;
2304
2305 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2306
2307 va_end(args);
2308 }
2309
2310 void _udf_warn(struct super_block *sb, const char *function,
2311 const char *fmt, ...)
2312 {
2313 struct va_format vaf;
2314 va_list args;
2315
2316 va_start(args, fmt);
2317
2318 vaf.fmt = fmt;
2319 vaf.va = &args;
2320
2321 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2322
2323 va_end(args);
2324 }
2325
2326 static void udf_put_super(struct super_block *sb)
2327 {
2328 struct udf_sb_info *sbi;
2329
2330 sbi = UDF_SB(sb);
2331
2332 iput(sbi->s_vat_inode);
2333 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2334 unload_nls(sbi->s_nls_map);
2335 if (!sb_rdonly(sb))
2336 udf_close_lvid(sb);
2337 brelse(sbi->s_lvid_bh);
2338 udf_sb_free_partitions(sb);
2339 mutex_destroy(&sbi->s_alloc_mutex);
2340 kfree(sb->s_fs_info);
2341 sb->s_fs_info = NULL;
2342 }
2343
2344 static int udf_sync_fs(struct super_block *sb, int wait)
2345 {
2346 struct udf_sb_info *sbi = UDF_SB(sb);
2347
2348 mutex_lock(&sbi->s_alloc_mutex);
2349 if (sbi->s_lvid_dirty) {
2350 /*
2351 * Blockdevice will be synced later so we don't have to submit
2352 * the buffer for IO
2353 */
2354 mark_buffer_dirty(sbi->s_lvid_bh);
2355 sbi->s_lvid_dirty = 0;
2356 }
2357 mutex_unlock(&sbi->s_alloc_mutex);
2358
2359 return 0;
2360 }
2361
2362 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2363 {
2364 struct super_block *sb = dentry->d_sb;
2365 struct udf_sb_info *sbi = UDF_SB(sb);
2366 struct logicalVolIntegrityDescImpUse *lvidiu;
2367 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2368
2369 lvidiu = udf_sb_lvidiu(sb);
2370 buf->f_type = UDF_SUPER_MAGIC;
2371 buf->f_bsize = sb->s_blocksize;
2372 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2373 buf->f_bfree = udf_count_free(sb);
2374 buf->f_bavail = buf->f_bfree;
2375 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2376 le32_to_cpu(lvidiu->numDirs)) : 0)
2377 + buf->f_bfree;
2378 buf->f_ffree = buf->f_bfree;
2379 buf->f_namelen = UDF_NAME_LEN;
2380 buf->f_fsid.val[0] = (u32)id;
2381 buf->f_fsid.val[1] = (u32)(id >> 32);
2382
2383 return 0;
2384 }
2385
2386 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2387 struct udf_bitmap *bitmap)
2388 {
2389 struct buffer_head *bh = NULL;
2390 unsigned int accum = 0;
2391 int index;
2392 udf_pblk_t block = 0, newblock;
2393 struct kernel_lb_addr loc;
2394 uint32_t bytes;
2395 uint8_t *ptr;
2396 uint16_t ident;
2397 struct spaceBitmapDesc *bm;
2398
2399 loc.logicalBlockNum = bitmap->s_extPosition;
2400 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2401 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2402
2403 if (!bh) {
2404 udf_err(sb, "udf_count_free failed\n");
2405 goto out;
2406 } else if (ident != TAG_IDENT_SBD) {
2407 brelse(bh);
2408 udf_err(sb, "udf_count_free failed\n");
2409 goto out;
2410 }
2411
2412 bm = (struct spaceBitmapDesc *)bh->b_data;
2413 bytes = le32_to_cpu(bm->numOfBytes);
2414 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2415 ptr = (uint8_t *)bh->b_data;
2416
2417 while (bytes > 0) {
2418 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2419 accum += bitmap_weight((const unsigned long *)(ptr + index),
2420 cur_bytes * 8);
2421 bytes -= cur_bytes;
2422 if (bytes) {
2423 brelse(bh);
2424 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2425 bh = udf_tread(sb, newblock);
2426 if (!bh) {
2427 udf_debug("read failed\n");
2428 goto out;
2429 }
2430 index = 0;
2431 ptr = (uint8_t *)bh->b_data;
2432 }
2433 }
2434 brelse(bh);
2435 out:
2436 return accum;
2437 }
2438
2439 static unsigned int udf_count_free_table(struct super_block *sb,
2440 struct inode *table)
2441 {
2442 unsigned int accum = 0;
2443 uint32_t elen;
2444 struct kernel_lb_addr eloc;
2445 int8_t etype;
2446 struct extent_position epos;
2447
2448 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2449 epos.block = UDF_I(table)->i_location;
2450 epos.offset = sizeof(struct unallocSpaceEntry);
2451 epos.bh = NULL;
2452
2453 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2454 accum += (elen >> table->i_sb->s_blocksize_bits);
2455
2456 brelse(epos.bh);
2457 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2458
2459 return accum;
2460 }
2461
2462 static unsigned int udf_count_free(struct super_block *sb)
2463 {
2464 unsigned int accum = 0;
2465 struct udf_sb_info *sbi;
2466 struct udf_part_map *map;
2467
2468 sbi = UDF_SB(sb);
2469 if (sbi->s_lvid_bh) {
2470 struct logicalVolIntegrityDesc *lvid =
2471 (struct logicalVolIntegrityDesc *)
2472 sbi->s_lvid_bh->b_data;
2473 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2474 accum = le32_to_cpu(
2475 lvid->freeSpaceTable[sbi->s_partition]);
2476 if (accum == 0xFFFFFFFF)
2477 accum = 0;
2478 }
2479 }
2480
2481 if (accum)
2482 return accum;
2483
2484 map = &sbi->s_partmaps[sbi->s_partition];
2485 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2486 accum += udf_count_free_bitmap(sb,
2487 map->s_uspace.s_bitmap);
2488 }
2489 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2490 accum += udf_count_free_bitmap(sb,
2491 map->s_fspace.s_bitmap);
2492 }
2493 if (accum)
2494 return accum;
2495
2496 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2497 accum += udf_count_free_table(sb,
2498 map->s_uspace.s_table);
2499 }
2500 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2501 accum += udf_count_free_table(sb,
2502 map->s_fspace.s_table);
2503 }
2504
2505 return accum;
2506 }
2507
2508 MODULE_AUTHOR("Ben Fennema");
2509 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2510 MODULE_LICENSE("GPL");
2511 module_init(init_udf_fs)
2512 module_exit(exit_udf_fs)