]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/udf/super.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-artful-kernel.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC 0
68 #define VDS_POS_UNALLOC_SPACE_DESC 1
69 #define VDS_POS_LOGICAL_VOL_DESC 2
70 #define VDS_POS_PARTITION_DESC 3
71 #define VDS_POS_IMP_USE_VOL_DESC 4
72 #define VDS_POS_VOL_DESC_PTR 5
73 #define VDS_POS_TERMINATING_DESC 6
74 #define VDS_POS_LENGTH 7
75
76 #define VSD_FIRST_SECTOR_OFFSET 32768
77 #define VSD_MAX_SECTOR_OFFSET 0x800000
78
79 /*
80 * Maximum number of Terminating Descriptor / Logical Volume Integrity
81 * Descriptor redirections. The chosen numbers are arbitrary - just that we
82 * hopefully don't limit any real use of rewritten inode on write-once media
83 * but avoid looping for too long on corrupted media.
84 */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87
88 enum { UDF_MAX_LINKS = 0xffff };
89
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
97 struct kernel_lb_addr *);
98 static void udf_load_fileset(struct super_block *, struct buffer_head *,
99 struct kernel_lb_addr *);
100 static void udf_open_lvid(struct super_block *);
101 static void udf_close_lvid(struct super_block *);
102 static unsigned int udf_count_free(struct super_block *);
103 static int udf_statfs(struct dentry *, struct kstatfs *);
104 static int udf_show_options(struct seq_file *, struct dentry *);
105
106 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
107 {
108 struct logicalVolIntegrityDesc *lvid;
109 unsigned int partnum;
110 unsigned int offset;
111
112 if (!UDF_SB(sb)->s_lvid_bh)
113 return NULL;
114 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
115 partnum = le32_to_cpu(lvid->numOfPartitions);
116 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
117 offsetof(struct logicalVolIntegrityDesc, impUse)) /
118 (2 * sizeof(uint32_t)) < partnum) {
119 udf_err(sb, "Logical volume integrity descriptor corrupted "
120 "(numOfPartitions = %u)!\n", partnum);
121 return NULL;
122 }
123 /* The offset is to skip freeSpaceTable and sizeTable arrays */
124 offset = partnum * 2 * sizeof(uint32_t);
125 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
126 }
127
128 /* UDF filesystem type */
129 static struct dentry *udf_mount(struct file_system_type *fs_type,
130 int flags, const char *dev_name, void *data)
131 {
132 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
133 }
134
135 static struct file_system_type udf_fstype = {
136 .owner = THIS_MODULE,
137 .name = "udf",
138 .mount = udf_mount,
139 .kill_sb = kill_block_super,
140 .fs_flags = FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("udf");
143
144 static struct kmem_cache *udf_inode_cachep;
145
146 static struct inode *udf_alloc_inode(struct super_block *sb)
147 {
148 struct udf_inode_info *ei;
149 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
150 if (!ei)
151 return NULL;
152
153 ei->i_unique = 0;
154 ei->i_lenExtents = 0;
155 ei->i_next_alloc_block = 0;
156 ei->i_next_alloc_goal = 0;
157 ei->i_strat4096 = 0;
158 init_rwsem(&ei->i_data_sem);
159 ei->cached_extent.lstart = -1;
160 spin_lock_init(&ei->i_extent_cache_lock);
161
162 return &ei->vfs_inode;
163 }
164
165 static void udf_i_callback(struct rcu_head *head)
166 {
167 struct inode *inode = container_of(head, struct inode, i_rcu);
168 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
169 }
170
171 static void udf_destroy_inode(struct inode *inode)
172 {
173 call_rcu(&inode->i_rcu, udf_i_callback);
174 }
175
176 static void init_once(void *foo)
177 {
178 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
179
180 ei->i_ext.i_data = NULL;
181 inode_init_once(&ei->vfs_inode);
182 }
183
184 static int __init init_inodecache(void)
185 {
186 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
187 sizeof(struct udf_inode_info),
188 0, (SLAB_RECLAIM_ACCOUNT |
189 SLAB_MEM_SPREAD |
190 SLAB_ACCOUNT),
191 init_once);
192 if (!udf_inode_cachep)
193 return -ENOMEM;
194 return 0;
195 }
196
197 static void destroy_inodecache(void)
198 {
199 /*
200 * Make sure all delayed rcu free inodes are flushed before we
201 * destroy cache.
202 */
203 rcu_barrier();
204 kmem_cache_destroy(udf_inode_cachep);
205 }
206
207 /* Superblock operations */
208 static const struct super_operations udf_sb_ops = {
209 .alloc_inode = udf_alloc_inode,
210 .destroy_inode = udf_destroy_inode,
211 .write_inode = udf_write_inode,
212 .evict_inode = udf_evict_inode,
213 .put_super = udf_put_super,
214 .sync_fs = udf_sync_fs,
215 .statfs = udf_statfs,
216 .remount_fs = udf_remount_fs,
217 .show_options = udf_show_options,
218 };
219
220 struct udf_options {
221 unsigned char novrs;
222 unsigned int blocksize;
223 unsigned int session;
224 unsigned int lastblock;
225 unsigned int anchor;
226 unsigned int volume;
227 unsigned short partition;
228 unsigned int fileset;
229 unsigned int rootdir;
230 unsigned int flags;
231 umode_t umask;
232 kgid_t gid;
233 kuid_t uid;
234 umode_t fmode;
235 umode_t dmode;
236 struct nls_table *nls_map;
237 };
238
239 static int __init init_udf_fs(void)
240 {
241 int err;
242
243 err = init_inodecache();
244 if (err)
245 goto out1;
246 err = register_filesystem(&udf_fstype);
247 if (err)
248 goto out;
249
250 return 0;
251
252 out:
253 destroy_inodecache();
254
255 out1:
256 return err;
257 }
258
259 static void __exit exit_udf_fs(void)
260 {
261 unregister_filesystem(&udf_fstype);
262 destroy_inodecache();
263 }
264
265 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
266 {
267 struct udf_sb_info *sbi = UDF_SB(sb);
268
269 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
270 GFP_KERNEL);
271 if (!sbi->s_partmaps) {
272 udf_err(sb, "Unable to allocate space for %d partition maps\n",
273 count);
274 sbi->s_partitions = 0;
275 return -ENOMEM;
276 }
277
278 sbi->s_partitions = count;
279 return 0;
280 }
281
282 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
283 {
284 int i;
285 int nr_groups = bitmap->s_nr_groups;
286
287 for (i = 0; i < nr_groups; i++)
288 if (bitmap->s_block_bitmap[i])
289 brelse(bitmap->s_block_bitmap[i]);
290
291 kvfree(bitmap);
292 }
293
294 static void udf_free_partition(struct udf_part_map *map)
295 {
296 int i;
297 struct udf_meta_data *mdata;
298
299 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
300 iput(map->s_uspace.s_table);
301 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
302 iput(map->s_fspace.s_table);
303 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
304 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
305 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
306 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
307 if (map->s_partition_type == UDF_SPARABLE_MAP15)
308 for (i = 0; i < 4; i++)
309 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
310 else if (map->s_partition_type == UDF_METADATA_MAP25) {
311 mdata = &map->s_type_specific.s_metadata;
312 iput(mdata->s_metadata_fe);
313 mdata->s_metadata_fe = NULL;
314
315 iput(mdata->s_mirror_fe);
316 mdata->s_mirror_fe = NULL;
317
318 iput(mdata->s_bitmap_fe);
319 mdata->s_bitmap_fe = NULL;
320 }
321 }
322
323 static void udf_sb_free_partitions(struct super_block *sb)
324 {
325 struct udf_sb_info *sbi = UDF_SB(sb);
326 int i;
327 if (sbi->s_partmaps == NULL)
328 return;
329 for (i = 0; i < sbi->s_partitions; i++)
330 udf_free_partition(&sbi->s_partmaps[i]);
331 kfree(sbi->s_partmaps);
332 sbi->s_partmaps = NULL;
333 }
334
335 static int udf_show_options(struct seq_file *seq, struct dentry *root)
336 {
337 struct super_block *sb = root->d_sb;
338 struct udf_sb_info *sbi = UDF_SB(sb);
339
340 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
341 seq_puts(seq, ",nostrict");
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
343 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
345 seq_puts(seq, ",unhide");
346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
347 seq_puts(seq, ",undelete");
348 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
349 seq_puts(seq, ",noadinicb");
350 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
351 seq_puts(seq, ",shortad");
352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
353 seq_puts(seq, ",uid=forget");
354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
355 seq_puts(seq, ",uid=ignore");
356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
357 seq_puts(seq, ",gid=forget");
358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
359 seq_puts(seq, ",gid=ignore");
360 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
361 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
362 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
363 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
364 if (sbi->s_umask != 0)
365 seq_printf(seq, ",umask=%ho", sbi->s_umask);
366 if (sbi->s_fmode != UDF_INVALID_MODE)
367 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
368 if (sbi->s_dmode != UDF_INVALID_MODE)
369 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
370 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
371 seq_printf(seq, ",session=%u", sbi->s_session);
372 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
373 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
374 if (sbi->s_anchor != 0)
375 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
376 /*
377 * volume, partition, fileset and rootdir seem to be ignored
378 * currently
379 */
380 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
381 seq_puts(seq, ",utf8");
382 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
383 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
384
385 return 0;
386 }
387
388 /*
389 * udf_parse_options
390 *
391 * PURPOSE
392 * Parse mount options.
393 *
394 * DESCRIPTION
395 * The following mount options are supported:
396 *
397 * gid= Set the default group.
398 * umask= Set the default umask.
399 * mode= Set the default file permissions.
400 * dmode= Set the default directory permissions.
401 * uid= Set the default user.
402 * bs= Set the block size.
403 * unhide Show otherwise hidden files.
404 * undelete Show deleted files in lists.
405 * adinicb Embed data in the inode (default)
406 * noadinicb Don't embed data in the inode
407 * shortad Use short ad's
408 * longad Use long ad's (default)
409 * nostrict Unset strict conformance
410 * iocharset= Set the NLS character set
411 *
412 * The remaining are for debugging and disaster recovery:
413 *
414 * novrs Skip volume sequence recognition
415 *
416 * The following expect a offset from 0.
417 *
418 * session= Set the CDROM session (default= last session)
419 * anchor= Override standard anchor location. (default= 256)
420 * volume= Override the VolumeDesc location. (unused)
421 * partition= Override the PartitionDesc location. (unused)
422 * lastblock= Set the last block of the filesystem/
423 *
424 * The following expect a offset from the partition root.
425 *
426 * fileset= Override the fileset block location. (unused)
427 * rootdir= Override the root directory location. (unused)
428 * WARNING: overriding the rootdir to a non-directory may
429 * yield highly unpredictable results.
430 *
431 * PRE-CONDITIONS
432 * options Pointer to mount options string.
433 * uopts Pointer to mount options variable.
434 *
435 * POST-CONDITIONS
436 * <return> 1 Mount options parsed okay.
437 * <return> 0 Error parsing mount options.
438 *
439 * HISTORY
440 * July 1, 1997 - Andrew E. Mileski
441 * Written, tested, and released.
442 */
443
444 enum {
445 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
446 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
447 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
448 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
449 Opt_rootdir, Opt_utf8, Opt_iocharset,
450 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
451 Opt_fmode, Opt_dmode
452 };
453
454 static const match_table_t tokens = {
455 {Opt_novrs, "novrs"},
456 {Opt_nostrict, "nostrict"},
457 {Opt_bs, "bs=%u"},
458 {Opt_unhide, "unhide"},
459 {Opt_undelete, "undelete"},
460 {Opt_noadinicb, "noadinicb"},
461 {Opt_adinicb, "adinicb"},
462 {Opt_shortad, "shortad"},
463 {Opt_longad, "longad"},
464 {Opt_uforget, "uid=forget"},
465 {Opt_uignore, "uid=ignore"},
466 {Opt_gforget, "gid=forget"},
467 {Opt_gignore, "gid=ignore"},
468 {Opt_gid, "gid=%u"},
469 {Opt_uid, "uid=%u"},
470 {Opt_umask, "umask=%o"},
471 {Opt_session, "session=%u"},
472 {Opt_lastblock, "lastblock=%u"},
473 {Opt_anchor, "anchor=%u"},
474 {Opt_volume, "volume=%u"},
475 {Opt_partition, "partition=%u"},
476 {Opt_fileset, "fileset=%u"},
477 {Opt_rootdir, "rootdir=%u"},
478 {Opt_utf8, "utf8"},
479 {Opt_iocharset, "iocharset=%s"},
480 {Opt_fmode, "mode=%o"},
481 {Opt_dmode, "dmode=%o"},
482 {Opt_err, NULL}
483 };
484
485 static int udf_parse_options(char *options, struct udf_options *uopt,
486 bool remount)
487 {
488 char *p;
489 int option;
490
491 uopt->novrs = 0;
492 uopt->partition = 0xFFFF;
493 uopt->session = 0xFFFFFFFF;
494 uopt->lastblock = 0;
495 uopt->anchor = 0;
496 uopt->volume = 0xFFFFFFFF;
497 uopt->rootdir = 0xFFFFFFFF;
498 uopt->fileset = 0xFFFFFFFF;
499 uopt->nls_map = NULL;
500
501 if (!options)
502 return 1;
503
504 while ((p = strsep(&options, ",")) != NULL) {
505 substring_t args[MAX_OPT_ARGS];
506 int token;
507 unsigned n;
508 if (!*p)
509 continue;
510
511 token = match_token(p, tokens, args);
512 switch (token) {
513 case Opt_novrs:
514 uopt->novrs = 1;
515 break;
516 case Opt_bs:
517 if (match_int(&args[0], &option))
518 return 0;
519 n = option;
520 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
521 return 0;
522 uopt->blocksize = n;
523 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
524 break;
525 case Opt_unhide:
526 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
527 break;
528 case Opt_undelete:
529 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
530 break;
531 case Opt_noadinicb:
532 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
533 break;
534 case Opt_adinicb:
535 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
536 break;
537 case Opt_shortad:
538 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
539 break;
540 case Opt_longad:
541 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
542 break;
543 case Opt_gid:
544 if (match_int(args, &option))
545 return 0;
546 uopt->gid = make_kgid(current_user_ns(), option);
547 if (!gid_valid(uopt->gid))
548 return 0;
549 uopt->flags |= (1 << UDF_FLAG_GID_SET);
550 break;
551 case Opt_uid:
552 if (match_int(args, &option))
553 return 0;
554 uopt->uid = make_kuid(current_user_ns(), option);
555 if (!uid_valid(uopt->uid))
556 return 0;
557 uopt->flags |= (1 << UDF_FLAG_UID_SET);
558 break;
559 case Opt_umask:
560 if (match_octal(args, &option))
561 return 0;
562 uopt->umask = option;
563 break;
564 case Opt_nostrict:
565 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
566 break;
567 case Opt_session:
568 if (match_int(args, &option))
569 return 0;
570 uopt->session = option;
571 if (!remount)
572 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
573 break;
574 case Opt_lastblock:
575 if (match_int(args, &option))
576 return 0;
577 uopt->lastblock = option;
578 if (!remount)
579 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
580 break;
581 case Opt_anchor:
582 if (match_int(args, &option))
583 return 0;
584 uopt->anchor = option;
585 break;
586 case Opt_volume:
587 if (match_int(args, &option))
588 return 0;
589 uopt->volume = option;
590 break;
591 case Opt_partition:
592 if (match_int(args, &option))
593 return 0;
594 uopt->partition = option;
595 break;
596 case Opt_fileset:
597 if (match_int(args, &option))
598 return 0;
599 uopt->fileset = option;
600 break;
601 case Opt_rootdir:
602 if (match_int(args, &option))
603 return 0;
604 uopt->rootdir = option;
605 break;
606 case Opt_utf8:
607 uopt->flags |= (1 << UDF_FLAG_UTF8);
608 break;
609 #ifdef CONFIG_UDF_NLS
610 case Opt_iocharset:
611 uopt->nls_map = load_nls(args[0].from);
612 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
613 break;
614 #endif
615 case Opt_uignore:
616 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
617 break;
618 case Opt_uforget:
619 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
620 break;
621 case Opt_gignore:
622 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
623 break;
624 case Opt_gforget:
625 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
626 break;
627 case Opt_fmode:
628 if (match_octal(args, &option))
629 return 0;
630 uopt->fmode = option & 0777;
631 break;
632 case Opt_dmode:
633 if (match_octal(args, &option))
634 return 0;
635 uopt->dmode = option & 0777;
636 break;
637 default:
638 pr_err("bad mount option \"%s\" or missing value\n", p);
639 return 0;
640 }
641 }
642 return 1;
643 }
644
645 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
646 {
647 struct udf_options uopt;
648 struct udf_sb_info *sbi = UDF_SB(sb);
649 int error = 0;
650 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
651
652 sync_filesystem(sb);
653 if (lvidiu) {
654 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
655 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
656 return -EACCES;
657 }
658
659 uopt.flags = sbi->s_flags;
660 uopt.uid = sbi->s_uid;
661 uopt.gid = sbi->s_gid;
662 uopt.umask = sbi->s_umask;
663 uopt.fmode = sbi->s_fmode;
664 uopt.dmode = sbi->s_dmode;
665
666 if (!udf_parse_options(options, &uopt, true))
667 return -EINVAL;
668
669 write_lock(&sbi->s_cred_lock);
670 sbi->s_flags = uopt.flags;
671 sbi->s_uid = uopt.uid;
672 sbi->s_gid = uopt.gid;
673 sbi->s_umask = uopt.umask;
674 sbi->s_fmode = uopt.fmode;
675 sbi->s_dmode = uopt.dmode;
676 write_unlock(&sbi->s_cred_lock);
677
678 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
679 goto out_unlock;
680
681 if (*flags & MS_RDONLY)
682 udf_close_lvid(sb);
683 else
684 udf_open_lvid(sb);
685
686 out_unlock:
687 return error;
688 }
689
690 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
691 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
692 static loff_t udf_check_vsd(struct super_block *sb)
693 {
694 struct volStructDesc *vsd = NULL;
695 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
696 int sectorsize;
697 struct buffer_head *bh = NULL;
698 int nsr02 = 0;
699 int nsr03 = 0;
700 struct udf_sb_info *sbi;
701
702 sbi = UDF_SB(sb);
703 if (sb->s_blocksize < sizeof(struct volStructDesc))
704 sectorsize = sizeof(struct volStructDesc);
705 else
706 sectorsize = sb->s_blocksize;
707
708 sector += (sbi->s_session << sb->s_blocksize_bits);
709
710 udf_debug("Starting at sector %u (%ld byte sectors)\n",
711 (unsigned int)(sector >> sb->s_blocksize_bits),
712 sb->s_blocksize);
713 /* Process the sequence (if applicable). The hard limit on the sector
714 * offset is arbitrary, hopefully large enough so that all valid UDF
715 * filesystems will be recognised. There is no mention of an upper
716 * bound to the size of the volume recognition area in the standard.
717 * The limit will prevent the code to read all the sectors of a
718 * specially crafted image (like a bluray disc full of CD001 sectors),
719 * potentially causing minutes or even hours of uninterruptible I/O
720 * activity. This actually happened with uninitialised SSD partitions
721 * (all 0xFF) before the check for the limit and all valid IDs were
722 * added */
723 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
724 sector += sectorsize) {
725 /* Read a block */
726 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
727 if (!bh)
728 break;
729
730 /* Look for ISO descriptors */
731 vsd = (struct volStructDesc *)(bh->b_data +
732 (sector & (sb->s_blocksize - 1)));
733
734 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
735 VSD_STD_ID_LEN)) {
736 switch (vsd->structType) {
737 case 0:
738 udf_debug("ISO9660 Boot Record found\n");
739 break;
740 case 1:
741 udf_debug("ISO9660 Primary Volume Descriptor found\n");
742 break;
743 case 2:
744 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
745 break;
746 case 3:
747 udf_debug("ISO9660 Volume Partition Descriptor found\n");
748 break;
749 case 255:
750 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
751 break;
752 default:
753 udf_debug("ISO9660 VRS (%u) found\n",
754 vsd->structType);
755 break;
756 }
757 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
758 VSD_STD_ID_LEN))
759 ; /* nothing */
760 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
761 VSD_STD_ID_LEN)) {
762 brelse(bh);
763 break;
764 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
765 VSD_STD_ID_LEN))
766 nsr02 = sector;
767 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
768 VSD_STD_ID_LEN))
769 nsr03 = sector;
770 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
771 VSD_STD_ID_LEN))
772 ; /* nothing */
773 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
774 VSD_STD_ID_LEN))
775 ; /* nothing */
776 else {
777 /* invalid id : end of volume recognition area */
778 brelse(bh);
779 break;
780 }
781 brelse(bh);
782 }
783
784 if (nsr03)
785 return nsr03;
786 else if (nsr02)
787 return nsr02;
788 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
789 VSD_FIRST_SECTOR_OFFSET)
790 return -1;
791 else
792 return 0;
793 }
794
795 static int udf_find_fileset(struct super_block *sb,
796 struct kernel_lb_addr *fileset,
797 struct kernel_lb_addr *root)
798 {
799 struct buffer_head *bh = NULL;
800 long lastblock;
801 uint16_t ident;
802 struct udf_sb_info *sbi;
803
804 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
805 fileset->partitionReferenceNum != 0xFFFF) {
806 bh = udf_read_ptagged(sb, fileset, 0, &ident);
807
808 if (!bh) {
809 return 1;
810 } else if (ident != TAG_IDENT_FSD) {
811 brelse(bh);
812 return 1;
813 }
814
815 }
816
817 sbi = UDF_SB(sb);
818 if (!bh) {
819 /* Search backwards through the partitions */
820 struct kernel_lb_addr newfileset;
821
822 /* --> cvg: FIXME - is it reasonable? */
823 return 1;
824
825 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
826 (newfileset.partitionReferenceNum != 0xFFFF &&
827 fileset->logicalBlockNum == 0xFFFFFFFF &&
828 fileset->partitionReferenceNum == 0xFFFF);
829 newfileset.partitionReferenceNum--) {
830 lastblock = sbi->s_partmaps
831 [newfileset.partitionReferenceNum]
832 .s_partition_len;
833 newfileset.logicalBlockNum = 0;
834
835 do {
836 bh = udf_read_ptagged(sb, &newfileset, 0,
837 &ident);
838 if (!bh) {
839 newfileset.logicalBlockNum++;
840 continue;
841 }
842
843 switch (ident) {
844 case TAG_IDENT_SBD:
845 {
846 struct spaceBitmapDesc *sp;
847 sp = (struct spaceBitmapDesc *)
848 bh->b_data;
849 newfileset.logicalBlockNum += 1 +
850 ((le32_to_cpu(sp->numOfBytes) +
851 sizeof(struct spaceBitmapDesc)
852 - 1) >> sb->s_blocksize_bits);
853 brelse(bh);
854 break;
855 }
856 case TAG_IDENT_FSD:
857 *fileset = newfileset;
858 break;
859 default:
860 newfileset.logicalBlockNum++;
861 brelse(bh);
862 bh = NULL;
863 break;
864 }
865 } while (newfileset.logicalBlockNum < lastblock &&
866 fileset->logicalBlockNum == 0xFFFFFFFF &&
867 fileset->partitionReferenceNum == 0xFFFF);
868 }
869 }
870
871 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
872 fileset->partitionReferenceNum != 0xFFFF) && bh) {
873 udf_debug("Fileset at block=%d, partition=%d\n",
874 fileset->logicalBlockNum,
875 fileset->partitionReferenceNum);
876
877 sbi->s_partition = fileset->partitionReferenceNum;
878 udf_load_fileset(sb, bh, root);
879 brelse(bh);
880 return 0;
881 }
882 return 1;
883 }
884
885 /*
886 * Load primary Volume Descriptor Sequence
887 *
888 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
889 * should be tried.
890 */
891 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
892 {
893 struct primaryVolDesc *pvoldesc;
894 uint8_t *outstr;
895 struct buffer_head *bh;
896 uint16_t ident;
897 int ret = -ENOMEM;
898
899 outstr = kmalloc(128, GFP_NOFS);
900 if (!outstr)
901 return -ENOMEM;
902
903 bh = udf_read_tagged(sb, block, block, &ident);
904 if (!bh) {
905 ret = -EAGAIN;
906 goto out2;
907 }
908
909 if (ident != TAG_IDENT_PVD) {
910 ret = -EIO;
911 goto out_bh;
912 }
913
914 pvoldesc = (struct primaryVolDesc *)bh->b_data;
915
916 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
917 pvoldesc->recordingDateAndTime)) {
918 #ifdef UDFFS_DEBUG
919 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
920 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
921 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
922 ts->minute, le16_to_cpu(ts->typeAndTimezone));
923 #endif
924 }
925
926 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
927 if (ret < 0)
928 goto out_bh;
929
930 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
931 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
932
933 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
934 if (ret < 0)
935 goto out_bh;
936
937 outstr[ret] = 0;
938 udf_debug("volSetIdent[] = '%s'\n", outstr);
939
940 ret = 0;
941 out_bh:
942 brelse(bh);
943 out2:
944 kfree(outstr);
945 return ret;
946 }
947
948 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
949 u32 meta_file_loc, u32 partition_ref)
950 {
951 struct kernel_lb_addr addr;
952 struct inode *metadata_fe;
953
954 addr.logicalBlockNum = meta_file_loc;
955 addr.partitionReferenceNum = partition_ref;
956
957 metadata_fe = udf_iget_special(sb, &addr);
958
959 if (IS_ERR(metadata_fe)) {
960 udf_warn(sb, "metadata inode efe not found\n");
961 return metadata_fe;
962 }
963 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
964 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
965 iput(metadata_fe);
966 return ERR_PTR(-EIO);
967 }
968
969 return metadata_fe;
970 }
971
972 static int udf_load_metadata_files(struct super_block *sb, int partition,
973 int type1_index)
974 {
975 struct udf_sb_info *sbi = UDF_SB(sb);
976 struct udf_part_map *map;
977 struct udf_meta_data *mdata;
978 struct kernel_lb_addr addr;
979 struct inode *fe;
980
981 map = &sbi->s_partmaps[partition];
982 mdata = &map->s_type_specific.s_metadata;
983 mdata->s_phys_partition_ref = type1_index;
984
985 /* metadata address */
986 udf_debug("Metadata file location: block = %d part = %d\n",
987 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
988
989 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
990 mdata->s_phys_partition_ref);
991 if (IS_ERR(fe)) {
992 /* mirror file entry */
993 udf_debug("Mirror metadata file location: block = %d part = %d\n",
994 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
995
996 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
997 mdata->s_phys_partition_ref);
998
999 if (IS_ERR(fe)) {
1000 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1001 return PTR_ERR(fe);
1002 }
1003 mdata->s_mirror_fe = fe;
1004 } else
1005 mdata->s_metadata_fe = fe;
1006
1007
1008 /*
1009 * bitmap file entry
1010 * Note:
1011 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1012 */
1013 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1014 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1015 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1016
1017 udf_debug("Bitmap file location: block = %d part = %d\n",
1018 addr.logicalBlockNum, addr.partitionReferenceNum);
1019
1020 fe = udf_iget_special(sb, &addr);
1021 if (IS_ERR(fe)) {
1022 if (sb->s_flags & MS_RDONLY)
1023 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1024 else {
1025 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1026 return PTR_ERR(fe);
1027 }
1028 } else
1029 mdata->s_bitmap_fe = fe;
1030 }
1031
1032 udf_debug("udf_load_metadata_files Ok\n");
1033 return 0;
1034 }
1035
1036 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1037 struct kernel_lb_addr *root)
1038 {
1039 struct fileSetDesc *fset;
1040
1041 fset = (struct fileSetDesc *)bh->b_data;
1042
1043 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1044
1045 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1046
1047 udf_debug("Rootdir at block=%d, partition=%d\n",
1048 root->logicalBlockNum, root->partitionReferenceNum);
1049 }
1050
1051 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1052 {
1053 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1054 return DIV_ROUND_UP(map->s_partition_len +
1055 (sizeof(struct spaceBitmapDesc) << 3),
1056 sb->s_blocksize * 8);
1057 }
1058
1059 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1060 {
1061 struct udf_bitmap *bitmap;
1062 int nr_groups;
1063 int size;
1064
1065 nr_groups = udf_compute_nr_groups(sb, index);
1066 size = sizeof(struct udf_bitmap) +
1067 (sizeof(struct buffer_head *) * nr_groups);
1068
1069 if (size <= PAGE_SIZE)
1070 bitmap = kzalloc(size, GFP_KERNEL);
1071 else
1072 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1073
1074 if (bitmap == NULL)
1075 return NULL;
1076
1077 bitmap->s_nr_groups = nr_groups;
1078 return bitmap;
1079 }
1080
1081 static int udf_fill_partdesc_info(struct super_block *sb,
1082 struct partitionDesc *p, int p_index)
1083 {
1084 struct udf_part_map *map;
1085 struct udf_sb_info *sbi = UDF_SB(sb);
1086 struct partitionHeaderDesc *phd;
1087
1088 map = &sbi->s_partmaps[p_index];
1089
1090 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1091 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1092
1093 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1094 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1095 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1096 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1097 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1098 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1099 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1100 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1101
1102 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1103 p_index, map->s_partition_type,
1104 map->s_partition_root, map->s_partition_len);
1105
1106 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1107 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1108 return 0;
1109
1110 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1111 if (phd->unallocSpaceTable.extLength) {
1112 struct kernel_lb_addr loc = {
1113 .logicalBlockNum = le32_to_cpu(
1114 phd->unallocSpaceTable.extPosition),
1115 .partitionReferenceNum = p_index,
1116 };
1117 struct inode *inode;
1118
1119 inode = udf_iget_special(sb, &loc);
1120 if (IS_ERR(inode)) {
1121 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1122 p_index);
1123 return PTR_ERR(inode);
1124 }
1125 map->s_uspace.s_table = inode;
1126 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1127 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1128 p_index, map->s_uspace.s_table->i_ino);
1129 }
1130
1131 if (phd->unallocSpaceBitmap.extLength) {
1132 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1133 if (!bitmap)
1134 return -ENOMEM;
1135 map->s_uspace.s_bitmap = bitmap;
1136 bitmap->s_extPosition = le32_to_cpu(
1137 phd->unallocSpaceBitmap.extPosition);
1138 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1139 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1140 p_index, bitmap->s_extPosition);
1141 }
1142
1143 if (phd->partitionIntegrityTable.extLength)
1144 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1145
1146 if (phd->freedSpaceTable.extLength) {
1147 struct kernel_lb_addr loc = {
1148 .logicalBlockNum = le32_to_cpu(
1149 phd->freedSpaceTable.extPosition),
1150 .partitionReferenceNum = p_index,
1151 };
1152 struct inode *inode;
1153
1154 inode = udf_iget_special(sb, &loc);
1155 if (IS_ERR(inode)) {
1156 udf_debug("cannot load freedSpaceTable (part %d)\n",
1157 p_index);
1158 return PTR_ERR(inode);
1159 }
1160 map->s_fspace.s_table = inode;
1161 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1162 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1163 p_index, map->s_fspace.s_table->i_ino);
1164 }
1165
1166 if (phd->freedSpaceBitmap.extLength) {
1167 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1168 if (!bitmap)
1169 return -ENOMEM;
1170 map->s_fspace.s_bitmap = bitmap;
1171 bitmap->s_extPosition = le32_to_cpu(
1172 phd->freedSpaceBitmap.extPosition);
1173 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1174 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1175 p_index, bitmap->s_extPosition);
1176 }
1177 return 0;
1178 }
1179
1180 static void udf_find_vat_block(struct super_block *sb, int p_index,
1181 int type1_index, sector_t start_block)
1182 {
1183 struct udf_sb_info *sbi = UDF_SB(sb);
1184 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1185 sector_t vat_block;
1186 struct kernel_lb_addr ino;
1187 struct inode *inode;
1188
1189 /*
1190 * VAT file entry is in the last recorded block. Some broken disks have
1191 * it a few blocks before so try a bit harder...
1192 */
1193 ino.partitionReferenceNum = type1_index;
1194 for (vat_block = start_block;
1195 vat_block >= map->s_partition_root &&
1196 vat_block >= start_block - 3; vat_block--) {
1197 ino.logicalBlockNum = vat_block - map->s_partition_root;
1198 inode = udf_iget_special(sb, &ino);
1199 if (!IS_ERR(inode)) {
1200 sbi->s_vat_inode = inode;
1201 break;
1202 }
1203 }
1204 }
1205
1206 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1207 {
1208 struct udf_sb_info *sbi = UDF_SB(sb);
1209 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1210 struct buffer_head *bh = NULL;
1211 struct udf_inode_info *vati;
1212 uint32_t pos;
1213 struct virtualAllocationTable20 *vat20;
1214 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1215 sb->s_blocksize_bits;
1216
1217 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1218 if (!sbi->s_vat_inode &&
1219 sbi->s_last_block != blocks - 1) {
1220 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1221 (unsigned long)sbi->s_last_block,
1222 (unsigned long)blocks - 1);
1223 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1224 }
1225 if (!sbi->s_vat_inode)
1226 return -EIO;
1227
1228 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1229 map->s_type_specific.s_virtual.s_start_offset = 0;
1230 map->s_type_specific.s_virtual.s_num_entries =
1231 (sbi->s_vat_inode->i_size - 36) >> 2;
1232 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1233 vati = UDF_I(sbi->s_vat_inode);
1234 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1235 pos = udf_block_map(sbi->s_vat_inode, 0);
1236 bh = sb_bread(sb, pos);
1237 if (!bh)
1238 return -EIO;
1239 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1240 } else {
1241 vat20 = (struct virtualAllocationTable20 *)
1242 vati->i_ext.i_data;
1243 }
1244
1245 map->s_type_specific.s_virtual.s_start_offset =
1246 le16_to_cpu(vat20->lengthHeader);
1247 map->s_type_specific.s_virtual.s_num_entries =
1248 (sbi->s_vat_inode->i_size -
1249 map->s_type_specific.s_virtual.
1250 s_start_offset) >> 2;
1251 brelse(bh);
1252 }
1253 return 0;
1254 }
1255
1256 /*
1257 * Load partition descriptor block
1258 *
1259 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1260 * sequence.
1261 */
1262 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1263 {
1264 struct buffer_head *bh;
1265 struct partitionDesc *p;
1266 struct udf_part_map *map;
1267 struct udf_sb_info *sbi = UDF_SB(sb);
1268 int i, type1_idx;
1269 uint16_t partitionNumber;
1270 uint16_t ident;
1271 int ret;
1272
1273 bh = udf_read_tagged(sb, block, block, &ident);
1274 if (!bh)
1275 return -EAGAIN;
1276 if (ident != TAG_IDENT_PD) {
1277 ret = 0;
1278 goto out_bh;
1279 }
1280
1281 p = (struct partitionDesc *)bh->b_data;
1282 partitionNumber = le16_to_cpu(p->partitionNumber);
1283
1284 /* First scan for TYPE1 and SPARABLE partitions */
1285 for (i = 0; i < sbi->s_partitions; i++) {
1286 map = &sbi->s_partmaps[i];
1287 udf_debug("Searching map: (%d == %d)\n",
1288 map->s_partition_num, partitionNumber);
1289 if (map->s_partition_num == partitionNumber &&
1290 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1291 map->s_partition_type == UDF_SPARABLE_MAP15))
1292 break;
1293 }
1294
1295 if (i >= sbi->s_partitions) {
1296 udf_debug("Partition (%d) not found in partition map\n",
1297 partitionNumber);
1298 ret = 0;
1299 goto out_bh;
1300 }
1301
1302 ret = udf_fill_partdesc_info(sb, p, i);
1303 if (ret < 0)
1304 goto out_bh;
1305
1306 /*
1307 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1308 * PHYSICAL partitions are already set up
1309 */
1310 type1_idx = i;
1311 #ifdef UDFFS_DEBUG
1312 map = NULL; /* supress 'maybe used uninitialized' warning */
1313 #endif
1314 for (i = 0; i < sbi->s_partitions; i++) {
1315 map = &sbi->s_partmaps[i];
1316
1317 if (map->s_partition_num == partitionNumber &&
1318 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1319 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1320 map->s_partition_type == UDF_METADATA_MAP25))
1321 break;
1322 }
1323
1324 if (i >= sbi->s_partitions) {
1325 ret = 0;
1326 goto out_bh;
1327 }
1328
1329 ret = udf_fill_partdesc_info(sb, p, i);
1330 if (ret < 0)
1331 goto out_bh;
1332
1333 if (map->s_partition_type == UDF_METADATA_MAP25) {
1334 ret = udf_load_metadata_files(sb, i, type1_idx);
1335 if (ret < 0) {
1336 udf_err(sb, "error loading MetaData partition map %d\n",
1337 i);
1338 goto out_bh;
1339 }
1340 } else {
1341 /*
1342 * If we have a partition with virtual map, we don't handle
1343 * writing to it (we overwrite blocks instead of relocating
1344 * them).
1345 */
1346 if (!(sb->s_flags & MS_RDONLY)) {
1347 ret = -EACCES;
1348 goto out_bh;
1349 }
1350 ret = udf_load_vat(sb, i, type1_idx);
1351 if (ret < 0)
1352 goto out_bh;
1353 }
1354 ret = 0;
1355 out_bh:
1356 /* In case loading failed, we handle cleanup in udf_fill_super */
1357 brelse(bh);
1358 return ret;
1359 }
1360
1361 static int udf_load_sparable_map(struct super_block *sb,
1362 struct udf_part_map *map,
1363 struct sparablePartitionMap *spm)
1364 {
1365 uint32_t loc;
1366 uint16_t ident;
1367 struct sparingTable *st;
1368 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1369 int i;
1370 struct buffer_head *bh;
1371
1372 map->s_partition_type = UDF_SPARABLE_MAP15;
1373 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1374 if (!is_power_of_2(sdata->s_packet_len)) {
1375 udf_err(sb, "error loading logical volume descriptor: "
1376 "Invalid packet length %u\n",
1377 (unsigned)sdata->s_packet_len);
1378 return -EIO;
1379 }
1380 if (spm->numSparingTables > 4) {
1381 udf_err(sb, "error loading logical volume descriptor: "
1382 "Too many sparing tables (%d)\n",
1383 (int)spm->numSparingTables);
1384 return -EIO;
1385 }
1386
1387 for (i = 0; i < spm->numSparingTables; i++) {
1388 loc = le32_to_cpu(spm->locSparingTable[i]);
1389 bh = udf_read_tagged(sb, loc, loc, &ident);
1390 if (!bh)
1391 continue;
1392
1393 st = (struct sparingTable *)bh->b_data;
1394 if (ident != 0 ||
1395 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1396 strlen(UDF_ID_SPARING)) ||
1397 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1398 sb->s_blocksize) {
1399 brelse(bh);
1400 continue;
1401 }
1402
1403 sdata->s_spar_map[i] = bh;
1404 }
1405 map->s_partition_func = udf_get_pblock_spar15;
1406 return 0;
1407 }
1408
1409 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1410 struct kernel_lb_addr *fileset)
1411 {
1412 struct logicalVolDesc *lvd;
1413 int i, offset;
1414 uint8_t type;
1415 struct udf_sb_info *sbi = UDF_SB(sb);
1416 struct genericPartitionMap *gpm;
1417 uint16_t ident;
1418 struct buffer_head *bh;
1419 unsigned int table_len;
1420 int ret;
1421
1422 bh = udf_read_tagged(sb, block, block, &ident);
1423 if (!bh)
1424 return -EAGAIN;
1425 BUG_ON(ident != TAG_IDENT_LVD);
1426 lvd = (struct logicalVolDesc *)bh->b_data;
1427 table_len = le32_to_cpu(lvd->mapTableLength);
1428 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1429 udf_err(sb, "error loading logical volume descriptor: "
1430 "Partition table too long (%u > %lu)\n", table_len,
1431 sb->s_blocksize - sizeof(*lvd));
1432 ret = -EIO;
1433 goto out_bh;
1434 }
1435
1436 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1437 if (ret)
1438 goto out_bh;
1439
1440 for (i = 0, offset = 0;
1441 i < sbi->s_partitions && offset < table_len;
1442 i++, offset += gpm->partitionMapLength) {
1443 struct udf_part_map *map = &sbi->s_partmaps[i];
1444 gpm = (struct genericPartitionMap *)
1445 &(lvd->partitionMaps[offset]);
1446 type = gpm->partitionMapType;
1447 if (type == 1) {
1448 struct genericPartitionMap1 *gpm1 =
1449 (struct genericPartitionMap1 *)gpm;
1450 map->s_partition_type = UDF_TYPE1_MAP15;
1451 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1452 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1453 map->s_partition_func = NULL;
1454 } else if (type == 2) {
1455 struct udfPartitionMap2 *upm2 =
1456 (struct udfPartitionMap2 *)gpm;
1457 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1458 strlen(UDF_ID_VIRTUAL))) {
1459 u16 suf =
1460 le16_to_cpu(((__le16 *)upm2->partIdent.
1461 identSuffix)[0]);
1462 if (suf < 0x0200) {
1463 map->s_partition_type =
1464 UDF_VIRTUAL_MAP15;
1465 map->s_partition_func =
1466 udf_get_pblock_virt15;
1467 } else {
1468 map->s_partition_type =
1469 UDF_VIRTUAL_MAP20;
1470 map->s_partition_func =
1471 udf_get_pblock_virt20;
1472 }
1473 } else if (!strncmp(upm2->partIdent.ident,
1474 UDF_ID_SPARABLE,
1475 strlen(UDF_ID_SPARABLE))) {
1476 ret = udf_load_sparable_map(sb, map,
1477 (struct sparablePartitionMap *)gpm);
1478 if (ret < 0)
1479 goto out_bh;
1480 } else if (!strncmp(upm2->partIdent.ident,
1481 UDF_ID_METADATA,
1482 strlen(UDF_ID_METADATA))) {
1483 struct udf_meta_data *mdata =
1484 &map->s_type_specific.s_metadata;
1485 struct metadataPartitionMap *mdm =
1486 (struct metadataPartitionMap *)
1487 &(lvd->partitionMaps[offset]);
1488 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1489 i, type, UDF_ID_METADATA);
1490
1491 map->s_partition_type = UDF_METADATA_MAP25;
1492 map->s_partition_func = udf_get_pblock_meta25;
1493
1494 mdata->s_meta_file_loc =
1495 le32_to_cpu(mdm->metadataFileLoc);
1496 mdata->s_mirror_file_loc =
1497 le32_to_cpu(mdm->metadataMirrorFileLoc);
1498 mdata->s_bitmap_file_loc =
1499 le32_to_cpu(mdm->metadataBitmapFileLoc);
1500 mdata->s_alloc_unit_size =
1501 le32_to_cpu(mdm->allocUnitSize);
1502 mdata->s_align_unit_size =
1503 le16_to_cpu(mdm->alignUnitSize);
1504 if (mdm->flags & 0x01)
1505 mdata->s_flags |= MF_DUPLICATE_MD;
1506
1507 udf_debug("Metadata Ident suffix=0x%x\n",
1508 le16_to_cpu(*(__le16 *)
1509 mdm->partIdent.identSuffix));
1510 udf_debug("Metadata part num=%d\n",
1511 le16_to_cpu(mdm->partitionNum));
1512 udf_debug("Metadata part alloc unit size=%d\n",
1513 le32_to_cpu(mdm->allocUnitSize));
1514 udf_debug("Metadata file loc=%d\n",
1515 le32_to_cpu(mdm->metadataFileLoc));
1516 udf_debug("Mirror file loc=%d\n",
1517 le32_to_cpu(mdm->metadataMirrorFileLoc));
1518 udf_debug("Bitmap file loc=%d\n",
1519 le32_to_cpu(mdm->metadataBitmapFileLoc));
1520 udf_debug("Flags: %d %d\n",
1521 mdata->s_flags, mdm->flags);
1522 } else {
1523 udf_debug("Unknown ident: %s\n",
1524 upm2->partIdent.ident);
1525 continue;
1526 }
1527 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1528 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1529 }
1530 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1531 i, map->s_partition_num, type, map->s_volumeseqnum);
1532 }
1533
1534 if (fileset) {
1535 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1536
1537 *fileset = lelb_to_cpu(la->extLocation);
1538 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1539 fileset->logicalBlockNum,
1540 fileset->partitionReferenceNum);
1541 }
1542 if (lvd->integritySeqExt.extLength)
1543 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1544 ret = 0;
1545 out_bh:
1546 brelse(bh);
1547 return ret;
1548 }
1549
1550 /*
1551 * Find the prevailing Logical Volume Integrity Descriptor.
1552 */
1553 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1554 {
1555 struct buffer_head *bh, *final_bh;
1556 uint16_t ident;
1557 struct udf_sb_info *sbi = UDF_SB(sb);
1558 struct logicalVolIntegrityDesc *lvid;
1559 int indirections = 0;
1560
1561 while (++indirections <= UDF_MAX_LVID_NESTING) {
1562 final_bh = NULL;
1563 while (loc.extLength > 0 &&
1564 (bh = udf_read_tagged(sb, loc.extLocation,
1565 loc.extLocation, &ident))) {
1566 if (ident != TAG_IDENT_LVID) {
1567 brelse(bh);
1568 break;
1569 }
1570
1571 brelse(final_bh);
1572 final_bh = bh;
1573
1574 loc.extLength -= sb->s_blocksize;
1575 loc.extLocation++;
1576 }
1577
1578 if (!final_bh)
1579 return;
1580
1581 brelse(sbi->s_lvid_bh);
1582 sbi->s_lvid_bh = final_bh;
1583
1584 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1585 if (lvid->nextIntegrityExt.extLength == 0)
1586 return;
1587
1588 loc = leea_to_cpu(lvid->nextIntegrityExt);
1589 }
1590
1591 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1592 UDF_MAX_LVID_NESTING);
1593 brelse(sbi->s_lvid_bh);
1594 sbi->s_lvid_bh = NULL;
1595 }
1596
1597
1598 /*
1599 * Process a main/reserve volume descriptor sequence.
1600 * @block First block of first extent of the sequence.
1601 * @lastblock Lastblock of first extent of the sequence.
1602 * @fileset There we store extent containing root fileset
1603 *
1604 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1605 * sequence
1606 */
1607 static noinline int udf_process_sequence(
1608 struct super_block *sb,
1609 sector_t block, sector_t lastblock,
1610 struct kernel_lb_addr *fileset)
1611 {
1612 struct buffer_head *bh = NULL;
1613 struct udf_vds_record vds[VDS_POS_LENGTH];
1614 struct udf_vds_record *curr;
1615 struct generic_desc *gd;
1616 struct volDescPtr *vdp;
1617 bool done = false;
1618 uint32_t vdsn;
1619 uint16_t ident;
1620 long next_s = 0, next_e = 0;
1621 int ret;
1622 unsigned int indirections = 0;
1623
1624 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1625
1626 /*
1627 * Read the main descriptor sequence and find which descriptors
1628 * are in it.
1629 */
1630 for (; (!done && block <= lastblock); block++) {
1631
1632 bh = udf_read_tagged(sb, block, block, &ident);
1633 if (!bh) {
1634 udf_err(sb,
1635 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1636 (unsigned long long)block);
1637 return -EAGAIN;
1638 }
1639
1640 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1641 gd = (struct generic_desc *)bh->b_data;
1642 vdsn = le32_to_cpu(gd->volDescSeqNum);
1643 switch (ident) {
1644 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1645 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1646 if (vdsn >= curr->volDescSeqNum) {
1647 curr->volDescSeqNum = vdsn;
1648 curr->block = block;
1649 }
1650 break;
1651 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1652 curr = &vds[VDS_POS_VOL_DESC_PTR];
1653 if (vdsn >= curr->volDescSeqNum) {
1654 curr->volDescSeqNum = vdsn;
1655 curr->block = block;
1656
1657 vdp = (struct volDescPtr *)bh->b_data;
1658 next_s = le32_to_cpu(
1659 vdp->nextVolDescSeqExt.extLocation);
1660 next_e = le32_to_cpu(
1661 vdp->nextVolDescSeqExt.extLength);
1662 next_e = next_e >> sb->s_blocksize_bits;
1663 next_e += next_s;
1664 }
1665 break;
1666 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1667 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1668 if (vdsn >= curr->volDescSeqNum) {
1669 curr->volDescSeqNum = vdsn;
1670 curr->block = block;
1671 }
1672 break;
1673 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1674 curr = &vds[VDS_POS_PARTITION_DESC];
1675 if (!curr->block)
1676 curr->block = block;
1677 break;
1678 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1679 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1680 if (vdsn >= curr->volDescSeqNum) {
1681 curr->volDescSeqNum = vdsn;
1682 curr->block = block;
1683 }
1684 break;
1685 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1686 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1687 if (vdsn >= curr->volDescSeqNum) {
1688 curr->volDescSeqNum = vdsn;
1689 curr->block = block;
1690 }
1691 break;
1692 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1693 if (++indirections > UDF_MAX_TD_NESTING) {
1694 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1695 brelse(bh);
1696 return -EIO;
1697 }
1698
1699 vds[VDS_POS_TERMINATING_DESC].block = block;
1700 if (next_e) {
1701 block = next_s;
1702 lastblock = next_e;
1703 next_s = next_e = 0;
1704 } else
1705 done = true;
1706 break;
1707 }
1708 brelse(bh);
1709 }
1710 /*
1711 * Now read interesting descriptors again and process them
1712 * in a suitable order
1713 */
1714 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1715 udf_err(sb, "Primary Volume Descriptor not found!\n");
1716 return -EAGAIN;
1717 }
1718 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1719 if (ret < 0)
1720 return ret;
1721
1722 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1723 ret = udf_load_logicalvol(sb,
1724 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1725 fileset);
1726 if (ret < 0)
1727 return ret;
1728 }
1729
1730 if (vds[VDS_POS_PARTITION_DESC].block) {
1731 /*
1732 * We rescan the whole descriptor sequence to find
1733 * partition descriptor blocks and process them.
1734 */
1735 for (block = vds[VDS_POS_PARTITION_DESC].block;
1736 block < vds[VDS_POS_TERMINATING_DESC].block;
1737 block++) {
1738 ret = udf_load_partdesc(sb, block);
1739 if (ret < 0)
1740 return ret;
1741 }
1742 }
1743
1744 return 0;
1745 }
1746
1747 /*
1748 * Load Volume Descriptor Sequence described by anchor in bh
1749 *
1750 * Returns <0 on error, 0 on success
1751 */
1752 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1753 struct kernel_lb_addr *fileset)
1754 {
1755 struct anchorVolDescPtr *anchor;
1756 sector_t main_s, main_e, reserve_s, reserve_e;
1757 int ret;
1758
1759 anchor = (struct anchorVolDescPtr *)bh->b_data;
1760
1761 /* Locate the main sequence */
1762 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1763 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1764 main_e = main_e >> sb->s_blocksize_bits;
1765 main_e += main_s;
1766
1767 /* Locate the reserve sequence */
1768 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1769 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1770 reserve_e = reserve_e >> sb->s_blocksize_bits;
1771 reserve_e += reserve_s;
1772
1773 /* Process the main & reserve sequences */
1774 /* responsible for finding the PartitionDesc(s) */
1775 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1776 if (ret != -EAGAIN)
1777 return ret;
1778 udf_sb_free_partitions(sb);
1779 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1780 if (ret < 0) {
1781 udf_sb_free_partitions(sb);
1782 /* No sequence was OK, return -EIO */
1783 if (ret == -EAGAIN)
1784 ret = -EIO;
1785 }
1786 return ret;
1787 }
1788
1789 /*
1790 * Check whether there is an anchor block in the given block and
1791 * load Volume Descriptor Sequence if so.
1792 *
1793 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1794 * block
1795 */
1796 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1797 struct kernel_lb_addr *fileset)
1798 {
1799 struct buffer_head *bh;
1800 uint16_t ident;
1801 int ret;
1802
1803 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1804 udf_fixed_to_variable(block) >=
1805 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1806 return -EAGAIN;
1807
1808 bh = udf_read_tagged(sb, block, block, &ident);
1809 if (!bh)
1810 return -EAGAIN;
1811 if (ident != TAG_IDENT_AVDP) {
1812 brelse(bh);
1813 return -EAGAIN;
1814 }
1815 ret = udf_load_sequence(sb, bh, fileset);
1816 brelse(bh);
1817 return ret;
1818 }
1819
1820 /*
1821 * Search for an anchor volume descriptor pointer.
1822 *
1823 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1824 * of anchors.
1825 */
1826 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1827 struct kernel_lb_addr *fileset)
1828 {
1829 sector_t last[6];
1830 int i;
1831 struct udf_sb_info *sbi = UDF_SB(sb);
1832 int last_count = 0;
1833 int ret;
1834
1835 /* First try user provided anchor */
1836 if (sbi->s_anchor) {
1837 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1838 if (ret != -EAGAIN)
1839 return ret;
1840 }
1841 /*
1842 * according to spec, anchor is in either:
1843 * block 256
1844 * lastblock-256
1845 * lastblock
1846 * however, if the disc isn't closed, it could be 512.
1847 */
1848 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1849 if (ret != -EAGAIN)
1850 return ret;
1851 /*
1852 * The trouble is which block is the last one. Drives often misreport
1853 * this so we try various possibilities.
1854 */
1855 last[last_count++] = *lastblock;
1856 if (*lastblock >= 1)
1857 last[last_count++] = *lastblock - 1;
1858 last[last_count++] = *lastblock + 1;
1859 if (*lastblock >= 2)
1860 last[last_count++] = *lastblock - 2;
1861 if (*lastblock >= 150)
1862 last[last_count++] = *lastblock - 150;
1863 if (*lastblock >= 152)
1864 last[last_count++] = *lastblock - 152;
1865
1866 for (i = 0; i < last_count; i++) {
1867 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1868 sb->s_blocksize_bits)
1869 continue;
1870 ret = udf_check_anchor_block(sb, last[i], fileset);
1871 if (ret != -EAGAIN) {
1872 if (!ret)
1873 *lastblock = last[i];
1874 return ret;
1875 }
1876 if (last[i] < 256)
1877 continue;
1878 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1879 if (ret != -EAGAIN) {
1880 if (!ret)
1881 *lastblock = last[i];
1882 return ret;
1883 }
1884 }
1885
1886 /* Finally try block 512 in case media is open */
1887 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1888 }
1889
1890 /*
1891 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1892 * area specified by it. The function expects sbi->s_lastblock to be the last
1893 * block on the media.
1894 *
1895 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1896 * was not found.
1897 */
1898 static int udf_find_anchor(struct super_block *sb,
1899 struct kernel_lb_addr *fileset)
1900 {
1901 struct udf_sb_info *sbi = UDF_SB(sb);
1902 sector_t lastblock = sbi->s_last_block;
1903 int ret;
1904
1905 ret = udf_scan_anchors(sb, &lastblock, fileset);
1906 if (ret != -EAGAIN)
1907 goto out;
1908
1909 /* No anchor found? Try VARCONV conversion of block numbers */
1910 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1911 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1912 /* Firstly, we try to not convert number of the last block */
1913 ret = udf_scan_anchors(sb, &lastblock, fileset);
1914 if (ret != -EAGAIN)
1915 goto out;
1916
1917 lastblock = sbi->s_last_block;
1918 /* Secondly, we try with converted number of the last block */
1919 ret = udf_scan_anchors(sb, &lastblock, fileset);
1920 if (ret < 0) {
1921 /* VARCONV didn't help. Clear it. */
1922 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1923 }
1924 out:
1925 if (ret == 0)
1926 sbi->s_last_block = lastblock;
1927 return ret;
1928 }
1929
1930 /*
1931 * Check Volume Structure Descriptor, find Anchor block and load Volume
1932 * Descriptor Sequence.
1933 *
1934 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1935 * block was not found.
1936 */
1937 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1938 int silent, struct kernel_lb_addr *fileset)
1939 {
1940 struct udf_sb_info *sbi = UDF_SB(sb);
1941 loff_t nsr_off;
1942 int ret;
1943
1944 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1945 if (!silent)
1946 udf_warn(sb, "Bad block size\n");
1947 return -EINVAL;
1948 }
1949 sbi->s_last_block = uopt->lastblock;
1950 if (!uopt->novrs) {
1951 /* Check that it is NSR02 compliant */
1952 nsr_off = udf_check_vsd(sb);
1953 if (!nsr_off) {
1954 if (!silent)
1955 udf_warn(sb, "No VRS found\n");
1956 return -EINVAL;
1957 }
1958 if (nsr_off == -1)
1959 udf_debug("Failed to read sector at offset %d. "
1960 "Assuming open disc. Skipping validity "
1961 "check\n", VSD_FIRST_SECTOR_OFFSET);
1962 if (!sbi->s_last_block)
1963 sbi->s_last_block = udf_get_last_block(sb);
1964 } else {
1965 udf_debug("Validity check skipped because of novrs option\n");
1966 }
1967
1968 /* Look for anchor block and load Volume Descriptor Sequence */
1969 sbi->s_anchor = uopt->anchor;
1970 ret = udf_find_anchor(sb, fileset);
1971 if (ret < 0) {
1972 if (!silent && ret == -EAGAIN)
1973 udf_warn(sb, "No anchor found\n");
1974 return ret;
1975 }
1976 return 0;
1977 }
1978
1979 static void udf_open_lvid(struct super_block *sb)
1980 {
1981 struct udf_sb_info *sbi = UDF_SB(sb);
1982 struct buffer_head *bh = sbi->s_lvid_bh;
1983 struct logicalVolIntegrityDesc *lvid;
1984 struct logicalVolIntegrityDescImpUse *lvidiu;
1985 struct timespec ts;
1986
1987 if (!bh)
1988 return;
1989 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1990 lvidiu = udf_sb_lvidiu(sb);
1991 if (!lvidiu)
1992 return;
1993
1994 mutex_lock(&sbi->s_alloc_mutex);
1995 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1996 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1997 ktime_get_real_ts(&ts);
1998 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1999 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2000
2001 lvid->descTag.descCRC = cpu_to_le16(
2002 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2003 le16_to_cpu(lvid->descTag.descCRCLength)));
2004
2005 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2006 mark_buffer_dirty(bh);
2007 sbi->s_lvid_dirty = 0;
2008 mutex_unlock(&sbi->s_alloc_mutex);
2009 /* Make opening of filesystem visible on the media immediately */
2010 sync_dirty_buffer(bh);
2011 }
2012
2013 static void udf_close_lvid(struct super_block *sb)
2014 {
2015 struct udf_sb_info *sbi = UDF_SB(sb);
2016 struct buffer_head *bh = sbi->s_lvid_bh;
2017 struct logicalVolIntegrityDesc *lvid;
2018 struct logicalVolIntegrityDescImpUse *lvidiu;
2019 struct timespec ts;
2020
2021 if (!bh)
2022 return;
2023 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2024 lvidiu = udf_sb_lvidiu(sb);
2025 if (!lvidiu)
2026 return;
2027
2028 mutex_lock(&sbi->s_alloc_mutex);
2029 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2030 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2031 ktime_get_real_ts(&ts);
2032 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2033 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2034 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2035 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2036 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2037 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2038 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2039 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2040
2041 lvid->descTag.descCRC = cpu_to_le16(
2042 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2043 le16_to_cpu(lvid->descTag.descCRCLength)));
2044
2045 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2046 /*
2047 * We set buffer uptodate unconditionally here to avoid spurious
2048 * warnings from mark_buffer_dirty() when previous EIO has marked
2049 * the buffer as !uptodate
2050 */
2051 set_buffer_uptodate(bh);
2052 mark_buffer_dirty(bh);
2053 sbi->s_lvid_dirty = 0;
2054 mutex_unlock(&sbi->s_alloc_mutex);
2055 /* Make closing of filesystem visible on the media immediately */
2056 sync_dirty_buffer(bh);
2057 }
2058
2059 u64 lvid_get_unique_id(struct super_block *sb)
2060 {
2061 struct buffer_head *bh;
2062 struct udf_sb_info *sbi = UDF_SB(sb);
2063 struct logicalVolIntegrityDesc *lvid;
2064 struct logicalVolHeaderDesc *lvhd;
2065 u64 uniqueID;
2066 u64 ret;
2067
2068 bh = sbi->s_lvid_bh;
2069 if (!bh)
2070 return 0;
2071
2072 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2073 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2074
2075 mutex_lock(&sbi->s_alloc_mutex);
2076 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2077 if (!(++uniqueID & 0xFFFFFFFF))
2078 uniqueID += 16;
2079 lvhd->uniqueID = cpu_to_le64(uniqueID);
2080 mutex_unlock(&sbi->s_alloc_mutex);
2081 mark_buffer_dirty(bh);
2082
2083 return ret;
2084 }
2085
2086 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2087 {
2088 int ret = -EINVAL;
2089 struct inode *inode = NULL;
2090 struct udf_options uopt;
2091 struct kernel_lb_addr rootdir, fileset;
2092 struct udf_sb_info *sbi;
2093 bool lvid_open = false;
2094
2095 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2096 uopt.uid = INVALID_UID;
2097 uopt.gid = INVALID_GID;
2098 uopt.umask = 0;
2099 uopt.fmode = UDF_INVALID_MODE;
2100 uopt.dmode = UDF_INVALID_MODE;
2101
2102 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2103 if (!sbi)
2104 return -ENOMEM;
2105
2106 sb->s_fs_info = sbi;
2107
2108 mutex_init(&sbi->s_alloc_mutex);
2109
2110 if (!udf_parse_options((char *)options, &uopt, false))
2111 goto parse_options_failure;
2112
2113 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2114 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2115 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2116 goto parse_options_failure;
2117 }
2118 #ifdef CONFIG_UDF_NLS
2119 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2120 uopt.nls_map = load_nls_default();
2121 if (!uopt.nls_map)
2122 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2123 else
2124 udf_debug("Using default NLS map\n");
2125 }
2126 #endif
2127 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2128 uopt.flags |= (1 << UDF_FLAG_UTF8);
2129
2130 fileset.logicalBlockNum = 0xFFFFFFFF;
2131 fileset.partitionReferenceNum = 0xFFFF;
2132
2133 sbi->s_flags = uopt.flags;
2134 sbi->s_uid = uopt.uid;
2135 sbi->s_gid = uopt.gid;
2136 sbi->s_umask = uopt.umask;
2137 sbi->s_fmode = uopt.fmode;
2138 sbi->s_dmode = uopt.dmode;
2139 sbi->s_nls_map = uopt.nls_map;
2140 rwlock_init(&sbi->s_cred_lock);
2141
2142 if (uopt.session == 0xFFFFFFFF)
2143 sbi->s_session = udf_get_last_session(sb);
2144 else
2145 sbi->s_session = uopt.session;
2146
2147 udf_debug("Multi-session=%d\n", sbi->s_session);
2148
2149 /* Fill in the rest of the superblock */
2150 sb->s_op = &udf_sb_ops;
2151 sb->s_export_op = &udf_export_ops;
2152
2153 sb->s_magic = UDF_SUPER_MAGIC;
2154 sb->s_time_gran = 1000;
2155
2156 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2157 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2158 } else {
2159 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2160 while (uopt.blocksize <= 4096) {
2161 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2162 if (ret < 0) {
2163 if (!silent && ret != -EACCES) {
2164 pr_notice("Scanning with blocksize %d failed\n",
2165 uopt.blocksize);
2166 }
2167 brelse(sbi->s_lvid_bh);
2168 sbi->s_lvid_bh = NULL;
2169 /*
2170 * EACCES is special - we want to propagate to
2171 * upper layers that we cannot handle RW mount.
2172 */
2173 if (ret == -EACCES)
2174 break;
2175 } else
2176 break;
2177
2178 uopt.blocksize <<= 1;
2179 }
2180 }
2181 if (ret < 0) {
2182 if (ret == -EAGAIN) {
2183 udf_warn(sb, "No partition found (1)\n");
2184 ret = -EINVAL;
2185 }
2186 goto error_out;
2187 }
2188
2189 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2190
2191 if (sbi->s_lvid_bh) {
2192 struct logicalVolIntegrityDescImpUse *lvidiu =
2193 udf_sb_lvidiu(sb);
2194 uint16_t minUDFReadRev;
2195 uint16_t minUDFWriteRev;
2196
2197 if (!lvidiu) {
2198 ret = -EINVAL;
2199 goto error_out;
2200 }
2201 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2202 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2203 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2204 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2205 minUDFReadRev,
2206 UDF_MAX_READ_VERSION);
2207 ret = -EINVAL;
2208 goto error_out;
2209 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2210 !(sb->s_flags & MS_RDONLY)) {
2211 ret = -EACCES;
2212 goto error_out;
2213 }
2214
2215 sbi->s_udfrev = minUDFWriteRev;
2216
2217 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2218 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2219 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2220 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2221 }
2222
2223 if (!sbi->s_partitions) {
2224 udf_warn(sb, "No partition found (2)\n");
2225 ret = -EINVAL;
2226 goto error_out;
2227 }
2228
2229 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2230 UDF_PART_FLAG_READ_ONLY &&
2231 !(sb->s_flags & MS_RDONLY)) {
2232 ret = -EACCES;
2233 goto error_out;
2234 }
2235
2236 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2237 udf_warn(sb, "No fileset found\n");
2238 ret = -EINVAL;
2239 goto error_out;
2240 }
2241
2242 if (!silent) {
2243 struct timestamp ts;
2244 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2245 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2246 sbi->s_volume_ident,
2247 le16_to_cpu(ts.year), ts.month, ts.day,
2248 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2249 }
2250 if (!(sb->s_flags & MS_RDONLY)) {
2251 udf_open_lvid(sb);
2252 lvid_open = true;
2253 }
2254
2255 /* Assign the root inode */
2256 /* assign inodes by physical block number */
2257 /* perhaps it's not extensible enough, but for now ... */
2258 inode = udf_iget(sb, &rootdir);
2259 if (IS_ERR(inode)) {
2260 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2261 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2262 ret = PTR_ERR(inode);
2263 goto error_out;
2264 }
2265
2266 /* Allocate a dentry for the root inode */
2267 sb->s_root = d_make_root(inode);
2268 if (!sb->s_root) {
2269 udf_err(sb, "Couldn't allocate root dentry\n");
2270 ret = -ENOMEM;
2271 goto error_out;
2272 }
2273 sb->s_maxbytes = MAX_LFS_FILESIZE;
2274 sb->s_max_links = UDF_MAX_LINKS;
2275 return 0;
2276
2277 error_out:
2278 iput(sbi->s_vat_inode);
2279 parse_options_failure:
2280 #ifdef CONFIG_UDF_NLS
2281 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2282 unload_nls(sbi->s_nls_map);
2283 #endif
2284 if (lvid_open)
2285 udf_close_lvid(sb);
2286 brelse(sbi->s_lvid_bh);
2287 udf_sb_free_partitions(sb);
2288 kfree(sbi);
2289 sb->s_fs_info = NULL;
2290
2291 return ret;
2292 }
2293
2294 void _udf_err(struct super_block *sb, const char *function,
2295 const char *fmt, ...)
2296 {
2297 struct va_format vaf;
2298 va_list args;
2299
2300 va_start(args, fmt);
2301
2302 vaf.fmt = fmt;
2303 vaf.va = &args;
2304
2305 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2306
2307 va_end(args);
2308 }
2309
2310 void _udf_warn(struct super_block *sb, const char *function,
2311 const char *fmt, ...)
2312 {
2313 struct va_format vaf;
2314 va_list args;
2315
2316 va_start(args, fmt);
2317
2318 vaf.fmt = fmt;
2319 vaf.va = &args;
2320
2321 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2322
2323 va_end(args);
2324 }
2325
2326 static void udf_put_super(struct super_block *sb)
2327 {
2328 struct udf_sb_info *sbi;
2329
2330 sbi = UDF_SB(sb);
2331
2332 iput(sbi->s_vat_inode);
2333 #ifdef CONFIG_UDF_NLS
2334 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2335 unload_nls(sbi->s_nls_map);
2336 #endif
2337 if (!(sb->s_flags & MS_RDONLY))
2338 udf_close_lvid(sb);
2339 brelse(sbi->s_lvid_bh);
2340 udf_sb_free_partitions(sb);
2341 mutex_destroy(&sbi->s_alloc_mutex);
2342 kfree(sb->s_fs_info);
2343 sb->s_fs_info = NULL;
2344 }
2345
2346 static int udf_sync_fs(struct super_block *sb, int wait)
2347 {
2348 struct udf_sb_info *sbi = UDF_SB(sb);
2349
2350 mutex_lock(&sbi->s_alloc_mutex);
2351 if (sbi->s_lvid_dirty) {
2352 /*
2353 * Blockdevice will be synced later so we don't have to submit
2354 * the buffer for IO
2355 */
2356 mark_buffer_dirty(sbi->s_lvid_bh);
2357 sbi->s_lvid_dirty = 0;
2358 }
2359 mutex_unlock(&sbi->s_alloc_mutex);
2360
2361 return 0;
2362 }
2363
2364 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2365 {
2366 struct super_block *sb = dentry->d_sb;
2367 struct udf_sb_info *sbi = UDF_SB(sb);
2368 struct logicalVolIntegrityDescImpUse *lvidiu;
2369 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2370
2371 lvidiu = udf_sb_lvidiu(sb);
2372 buf->f_type = UDF_SUPER_MAGIC;
2373 buf->f_bsize = sb->s_blocksize;
2374 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2375 buf->f_bfree = udf_count_free(sb);
2376 buf->f_bavail = buf->f_bfree;
2377 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2378 le32_to_cpu(lvidiu->numDirs)) : 0)
2379 + buf->f_bfree;
2380 buf->f_ffree = buf->f_bfree;
2381 buf->f_namelen = UDF_NAME_LEN;
2382 buf->f_fsid.val[0] = (u32)id;
2383 buf->f_fsid.val[1] = (u32)(id >> 32);
2384
2385 return 0;
2386 }
2387
2388 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2389 struct udf_bitmap *bitmap)
2390 {
2391 struct buffer_head *bh = NULL;
2392 unsigned int accum = 0;
2393 int index;
2394 int block = 0, newblock;
2395 struct kernel_lb_addr loc;
2396 uint32_t bytes;
2397 uint8_t *ptr;
2398 uint16_t ident;
2399 struct spaceBitmapDesc *bm;
2400
2401 loc.logicalBlockNum = bitmap->s_extPosition;
2402 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2403 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2404
2405 if (!bh) {
2406 udf_err(sb, "udf_count_free failed\n");
2407 goto out;
2408 } else if (ident != TAG_IDENT_SBD) {
2409 brelse(bh);
2410 udf_err(sb, "udf_count_free failed\n");
2411 goto out;
2412 }
2413
2414 bm = (struct spaceBitmapDesc *)bh->b_data;
2415 bytes = le32_to_cpu(bm->numOfBytes);
2416 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2417 ptr = (uint8_t *)bh->b_data;
2418
2419 while (bytes > 0) {
2420 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2421 accum += bitmap_weight((const unsigned long *)(ptr + index),
2422 cur_bytes * 8);
2423 bytes -= cur_bytes;
2424 if (bytes) {
2425 brelse(bh);
2426 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2427 bh = udf_tread(sb, newblock);
2428 if (!bh) {
2429 udf_debug("read failed\n");
2430 goto out;
2431 }
2432 index = 0;
2433 ptr = (uint8_t *)bh->b_data;
2434 }
2435 }
2436 brelse(bh);
2437 out:
2438 return accum;
2439 }
2440
2441 static unsigned int udf_count_free_table(struct super_block *sb,
2442 struct inode *table)
2443 {
2444 unsigned int accum = 0;
2445 uint32_t elen;
2446 struct kernel_lb_addr eloc;
2447 int8_t etype;
2448 struct extent_position epos;
2449
2450 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2451 epos.block = UDF_I(table)->i_location;
2452 epos.offset = sizeof(struct unallocSpaceEntry);
2453 epos.bh = NULL;
2454
2455 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2456 accum += (elen >> table->i_sb->s_blocksize_bits);
2457
2458 brelse(epos.bh);
2459 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2460
2461 return accum;
2462 }
2463
2464 static unsigned int udf_count_free(struct super_block *sb)
2465 {
2466 unsigned int accum = 0;
2467 struct udf_sb_info *sbi;
2468 struct udf_part_map *map;
2469
2470 sbi = UDF_SB(sb);
2471 if (sbi->s_lvid_bh) {
2472 struct logicalVolIntegrityDesc *lvid =
2473 (struct logicalVolIntegrityDesc *)
2474 sbi->s_lvid_bh->b_data;
2475 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2476 accum = le32_to_cpu(
2477 lvid->freeSpaceTable[sbi->s_partition]);
2478 if (accum == 0xFFFFFFFF)
2479 accum = 0;
2480 }
2481 }
2482
2483 if (accum)
2484 return accum;
2485
2486 map = &sbi->s_partmaps[sbi->s_partition];
2487 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2488 accum += udf_count_free_bitmap(sb,
2489 map->s_uspace.s_bitmap);
2490 }
2491 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2492 accum += udf_count_free_bitmap(sb,
2493 map->s_fspace.s_bitmap);
2494 }
2495 if (accum)
2496 return accum;
2497
2498 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2499 accum += udf_count_free_table(sb,
2500 map->s_uspace.s_table);
2501 }
2502 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2503 accum += udf_count_free_table(sb,
2504 map->s_fspace.s_table);
2505 }
2506
2507 return accum;
2508 }
2509
2510 MODULE_AUTHOR("Ben Fennema");
2511 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2512 MODULE_LICENSE("GPL");
2513 module_init(init_udf_fs)
2514 module_exit(exit_udf_fs)