]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/udf/super.c
udf: Allow mounting volumes with incorrect identification strings
[mirror_ubuntu-bionic-kernel.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC 0
68 #define VDS_POS_UNALLOC_SPACE_DESC 1
69 #define VDS_POS_LOGICAL_VOL_DESC 2
70 #define VDS_POS_PARTITION_DESC 3
71 #define VDS_POS_IMP_USE_VOL_DESC 4
72 #define VDS_POS_VOL_DESC_PTR 5
73 #define VDS_POS_TERMINATING_DESC 6
74 #define VDS_POS_LENGTH 7
75
76 #define VSD_FIRST_SECTOR_OFFSET 32768
77 #define VSD_MAX_SECTOR_OFFSET 0x800000
78
79 /*
80 * Maximum number of Terminating Descriptor / Logical Volume Integrity
81 * Descriptor redirections. The chosen numbers are arbitrary - just that we
82 * hopefully don't limit any real use of rewritten inode on write-once media
83 * but avoid looping for too long on corrupted media.
84 */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87
88 enum { UDF_MAX_LINKS = 0xffff };
89
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
97 struct kernel_lb_addr *);
98 static void udf_load_fileset(struct super_block *, struct buffer_head *,
99 struct kernel_lb_addr *);
100 static void udf_open_lvid(struct super_block *);
101 static void udf_close_lvid(struct super_block *);
102 static unsigned int udf_count_free(struct super_block *);
103 static int udf_statfs(struct dentry *, struct kstatfs *);
104 static int udf_show_options(struct seq_file *, struct dentry *);
105
106 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
107 {
108 struct logicalVolIntegrityDesc *lvid;
109 unsigned int partnum;
110 unsigned int offset;
111
112 if (!UDF_SB(sb)->s_lvid_bh)
113 return NULL;
114 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
115 partnum = le32_to_cpu(lvid->numOfPartitions);
116 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
117 offsetof(struct logicalVolIntegrityDesc, impUse)) /
118 (2 * sizeof(uint32_t)) < partnum) {
119 udf_err(sb, "Logical volume integrity descriptor corrupted "
120 "(numOfPartitions = %u)!\n", partnum);
121 return NULL;
122 }
123 /* The offset is to skip freeSpaceTable and sizeTable arrays */
124 offset = partnum * 2 * sizeof(uint32_t);
125 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
126 }
127
128 /* UDF filesystem type */
129 static struct dentry *udf_mount(struct file_system_type *fs_type,
130 int flags, const char *dev_name, void *data)
131 {
132 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
133 }
134
135 static struct file_system_type udf_fstype = {
136 .owner = THIS_MODULE,
137 .name = "udf",
138 .mount = udf_mount,
139 .kill_sb = kill_block_super,
140 .fs_flags = FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("udf");
143
144 static struct kmem_cache *udf_inode_cachep;
145
146 static struct inode *udf_alloc_inode(struct super_block *sb)
147 {
148 struct udf_inode_info *ei;
149 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
150 if (!ei)
151 return NULL;
152
153 ei->i_unique = 0;
154 ei->i_lenExtents = 0;
155 ei->i_next_alloc_block = 0;
156 ei->i_next_alloc_goal = 0;
157 ei->i_strat4096 = 0;
158 init_rwsem(&ei->i_data_sem);
159 ei->cached_extent.lstart = -1;
160 spin_lock_init(&ei->i_extent_cache_lock);
161
162 return &ei->vfs_inode;
163 }
164
165 static void udf_i_callback(struct rcu_head *head)
166 {
167 struct inode *inode = container_of(head, struct inode, i_rcu);
168 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
169 }
170
171 static void udf_destroy_inode(struct inode *inode)
172 {
173 call_rcu(&inode->i_rcu, udf_i_callback);
174 }
175
176 static void init_once(void *foo)
177 {
178 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
179
180 ei->i_ext.i_data = NULL;
181 inode_init_once(&ei->vfs_inode);
182 }
183
184 static int __init init_inodecache(void)
185 {
186 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
187 sizeof(struct udf_inode_info),
188 0, (SLAB_RECLAIM_ACCOUNT |
189 SLAB_MEM_SPREAD |
190 SLAB_ACCOUNT),
191 init_once);
192 if (!udf_inode_cachep)
193 return -ENOMEM;
194 return 0;
195 }
196
197 static void destroy_inodecache(void)
198 {
199 /*
200 * Make sure all delayed rcu free inodes are flushed before we
201 * destroy cache.
202 */
203 rcu_barrier();
204 kmem_cache_destroy(udf_inode_cachep);
205 }
206
207 /* Superblock operations */
208 static const struct super_operations udf_sb_ops = {
209 .alloc_inode = udf_alloc_inode,
210 .destroy_inode = udf_destroy_inode,
211 .write_inode = udf_write_inode,
212 .evict_inode = udf_evict_inode,
213 .put_super = udf_put_super,
214 .sync_fs = udf_sync_fs,
215 .statfs = udf_statfs,
216 .remount_fs = udf_remount_fs,
217 .show_options = udf_show_options,
218 };
219
220 struct udf_options {
221 unsigned char novrs;
222 unsigned int blocksize;
223 unsigned int session;
224 unsigned int lastblock;
225 unsigned int anchor;
226 unsigned int volume;
227 unsigned short partition;
228 unsigned int fileset;
229 unsigned int rootdir;
230 unsigned int flags;
231 umode_t umask;
232 kgid_t gid;
233 kuid_t uid;
234 umode_t fmode;
235 umode_t dmode;
236 struct nls_table *nls_map;
237 };
238
239 static int __init init_udf_fs(void)
240 {
241 int err;
242
243 err = init_inodecache();
244 if (err)
245 goto out1;
246 err = register_filesystem(&udf_fstype);
247 if (err)
248 goto out;
249
250 return 0;
251
252 out:
253 destroy_inodecache();
254
255 out1:
256 return err;
257 }
258
259 static void __exit exit_udf_fs(void)
260 {
261 unregister_filesystem(&udf_fstype);
262 destroy_inodecache();
263 }
264
265 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
266 {
267 struct udf_sb_info *sbi = UDF_SB(sb);
268
269 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
270 if (!sbi->s_partmaps) {
271 sbi->s_partitions = 0;
272 return -ENOMEM;
273 }
274
275 sbi->s_partitions = count;
276 return 0;
277 }
278
279 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
280 {
281 int i;
282 int nr_groups = bitmap->s_nr_groups;
283
284 for (i = 0; i < nr_groups; i++)
285 if (bitmap->s_block_bitmap[i])
286 brelse(bitmap->s_block_bitmap[i]);
287
288 kvfree(bitmap);
289 }
290
291 static void udf_free_partition(struct udf_part_map *map)
292 {
293 int i;
294 struct udf_meta_data *mdata;
295
296 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
297 iput(map->s_uspace.s_table);
298 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
299 iput(map->s_fspace.s_table);
300 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
301 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
302 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
303 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
304 if (map->s_partition_type == UDF_SPARABLE_MAP15)
305 for (i = 0; i < 4; i++)
306 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
307 else if (map->s_partition_type == UDF_METADATA_MAP25) {
308 mdata = &map->s_type_specific.s_metadata;
309 iput(mdata->s_metadata_fe);
310 mdata->s_metadata_fe = NULL;
311
312 iput(mdata->s_mirror_fe);
313 mdata->s_mirror_fe = NULL;
314
315 iput(mdata->s_bitmap_fe);
316 mdata->s_bitmap_fe = NULL;
317 }
318 }
319
320 static void udf_sb_free_partitions(struct super_block *sb)
321 {
322 struct udf_sb_info *sbi = UDF_SB(sb);
323 int i;
324
325 if (!sbi->s_partmaps)
326 return;
327 for (i = 0; i < sbi->s_partitions; i++)
328 udf_free_partition(&sbi->s_partmaps[i]);
329 kfree(sbi->s_partmaps);
330 sbi->s_partmaps = NULL;
331 }
332
333 static int udf_show_options(struct seq_file *seq, struct dentry *root)
334 {
335 struct super_block *sb = root->d_sb;
336 struct udf_sb_info *sbi = UDF_SB(sb);
337
338 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
339 seq_puts(seq, ",nostrict");
340 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
341 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
343 seq_puts(seq, ",unhide");
344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
345 seq_puts(seq, ",undelete");
346 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
347 seq_puts(seq, ",noadinicb");
348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
349 seq_puts(seq, ",shortad");
350 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
351 seq_puts(seq, ",uid=forget");
352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
353 seq_puts(seq, ",uid=ignore");
354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
355 seq_puts(seq, ",gid=forget");
356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
357 seq_puts(seq, ",gid=ignore");
358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
359 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
360 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
361 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
362 if (sbi->s_umask != 0)
363 seq_printf(seq, ",umask=%ho", sbi->s_umask);
364 if (sbi->s_fmode != UDF_INVALID_MODE)
365 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
366 if (sbi->s_dmode != UDF_INVALID_MODE)
367 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
368 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
369 seq_printf(seq, ",session=%d", sbi->s_session);
370 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
371 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
372 if (sbi->s_anchor != 0)
373 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
374 /*
375 * volume, partition, fileset and rootdir seem to be ignored
376 * currently
377 */
378 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
379 seq_puts(seq, ",utf8");
380 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
381 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
382
383 return 0;
384 }
385
386 /*
387 * udf_parse_options
388 *
389 * PURPOSE
390 * Parse mount options.
391 *
392 * DESCRIPTION
393 * The following mount options are supported:
394 *
395 * gid= Set the default group.
396 * umask= Set the default umask.
397 * mode= Set the default file permissions.
398 * dmode= Set the default directory permissions.
399 * uid= Set the default user.
400 * bs= Set the block size.
401 * unhide Show otherwise hidden files.
402 * undelete Show deleted files in lists.
403 * adinicb Embed data in the inode (default)
404 * noadinicb Don't embed data in the inode
405 * shortad Use short ad's
406 * longad Use long ad's (default)
407 * nostrict Unset strict conformance
408 * iocharset= Set the NLS character set
409 *
410 * The remaining are for debugging and disaster recovery:
411 *
412 * novrs Skip volume sequence recognition
413 *
414 * The following expect a offset from 0.
415 *
416 * session= Set the CDROM session (default= last session)
417 * anchor= Override standard anchor location. (default= 256)
418 * volume= Override the VolumeDesc location. (unused)
419 * partition= Override the PartitionDesc location. (unused)
420 * lastblock= Set the last block of the filesystem/
421 *
422 * The following expect a offset from the partition root.
423 *
424 * fileset= Override the fileset block location. (unused)
425 * rootdir= Override the root directory location. (unused)
426 * WARNING: overriding the rootdir to a non-directory may
427 * yield highly unpredictable results.
428 *
429 * PRE-CONDITIONS
430 * options Pointer to mount options string.
431 * uopts Pointer to mount options variable.
432 *
433 * POST-CONDITIONS
434 * <return> 1 Mount options parsed okay.
435 * <return> 0 Error parsing mount options.
436 *
437 * HISTORY
438 * July 1, 1997 - Andrew E. Mileski
439 * Written, tested, and released.
440 */
441
442 enum {
443 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
444 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
445 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
446 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
447 Opt_rootdir, Opt_utf8, Opt_iocharset,
448 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
449 Opt_fmode, Opt_dmode
450 };
451
452 static const match_table_t tokens = {
453 {Opt_novrs, "novrs"},
454 {Opt_nostrict, "nostrict"},
455 {Opt_bs, "bs=%u"},
456 {Opt_unhide, "unhide"},
457 {Opt_undelete, "undelete"},
458 {Opt_noadinicb, "noadinicb"},
459 {Opt_adinicb, "adinicb"},
460 {Opt_shortad, "shortad"},
461 {Opt_longad, "longad"},
462 {Opt_uforget, "uid=forget"},
463 {Opt_uignore, "uid=ignore"},
464 {Opt_gforget, "gid=forget"},
465 {Opt_gignore, "gid=ignore"},
466 {Opt_gid, "gid=%u"},
467 {Opt_uid, "uid=%u"},
468 {Opt_umask, "umask=%o"},
469 {Opt_session, "session=%u"},
470 {Opt_lastblock, "lastblock=%u"},
471 {Opt_anchor, "anchor=%u"},
472 {Opt_volume, "volume=%u"},
473 {Opt_partition, "partition=%u"},
474 {Opt_fileset, "fileset=%u"},
475 {Opt_rootdir, "rootdir=%u"},
476 {Opt_utf8, "utf8"},
477 {Opt_iocharset, "iocharset=%s"},
478 {Opt_fmode, "mode=%o"},
479 {Opt_dmode, "dmode=%o"},
480 {Opt_err, NULL}
481 };
482
483 static int udf_parse_options(char *options, struct udf_options *uopt,
484 bool remount)
485 {
486 char *p;
487 int option;
488
489 uopt->novrs = 0;
490 uopt->partition = 0xFFFF;
491 uopt->session = 0xFFFFFFFF;
492 uopt->lastblock = 0;
493 uopt->anchor = 0;
494 uopt->volume = 0xFFFFFFFF;
495 uopt->rootdir = 0xFFFFFFFF;
496 uopt->fileset = 0xFFFFFFFF;
497 uopt->nls_map = NULL;
498
499 if (!options)
500 return 1;
501
502 while ((p = strsep(&options, ",")) != NULL) {
503 substring_t args[MAX_OPT_ARGS];
504 int token;
505 unsigned n;
506 if (!*p)
507 continue;
508
509 token = match_token(p, tokens, args);
510 switch (token) {
511 case Opt_novrs:
512 uopt->novrs = 1;
513 break;
514 case Opt_bs:
515 if (match_int(&args[0], &option))
516 return 0;
517 n = option;
518 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
519 return 0;
520 uopt->blocksize = n;
521 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
522 break;
523 case Opt_unhide:
524 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
525 break;
526 case Opt_undelete:
527 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
528 break;
529 case Opt_noadinicb:
530 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
531 break;
532 case Opt_adinicb:
533 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
534 break;
535 case Opt_shortad:
536 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
537 break;
538 case Opt_longad:
539 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
540 break;
541 case Opt_gid:
542 if (match_int(args, &option))
543 return 0;
544 uopt->gid = make_kgid(current_user_ns(), option);
545 if (!gid_valid(uopt->gid))
546 return 0;
547 uopt->flags |= (1 << UDF_FLAG_GID_SET);
548 break;
549 case Opt_uid:
550 if (match_int(args, &option))
551 return 0;
552 uopt->uid = make_kuid(current_user_ns(), option);
553 if (!uid_valid(uopt->uid))
554 return 0;
555 uopt->flags |= (1 << UDF_FLAG_UID_SET);
556 break;
557 case Opt_umask:
558 if (match_octal(args, &option))
559 return 0;
560 uopt->umask = option;
561 break;
562 case Opt_nostrict:
563 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
564 break;
565 case Opt_session:
566 if (match_int(args, &option))
567 return 0;
568 uopt->session = option;
569 if (!remount)
570 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
571 break;
572 case Opt_lastblock:
573 if (match_int(args, &option))
574 return 0;
575 uopt->lastblock = option;
576 if (!remount)
577 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
578 break;
579 case Opt_anchor:
580 if (match_int(args, &option))
581 return 0;
582 uopt->anchor = option;
583 break;
584 case Opt_volume:
585 if (match_int(args, &option))
586 return 0;
587 uopt->volume = option;
588 break;
589 case Opt_partition:
590 if (match_int(args, &option))
591 return 0;
592 uopt->partition = option;
593 break;
594 case Opt_fileset:
595 if (match_int(args, &option))
596 return 0;
597 uopt->fileset = option;
598 break;
599 case Opt_rootdir:
600 if (match_int(args, &option))
601 return 0;
602 uopt->rootdir = option;
603 break;
604 case Opt_utf8:
605 uopt->flags |= (1 << UDF_FLAG_UTF8);
606 break;
607 #ifdef CONFIG_UDF_NLS
608 case Opt_iocharset:
609 uopt->nls_map = load_nls(args[0].from);
610 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
611 break;
612 #endif
613 case Opt_uignore:
614 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
615 break;
616 case Opt_uforget:
617 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
618 break;
619 case Opt_gignore:
620 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
621 break;
622 case Opt_gforget:
623 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
624 break;
625 case Opt_fmode:
626 if (match_octal(args, &option))
627 return 0;
628 uopt->fmode = option & 0777;
629 break;
630 case Opt_dmode:
631 if (match_octal(args, &option))
632 return 0;
633 uopt->dmode = option & 0777;
634 break;
635 default:
636 pr_err("bad mount option \"%s\" or missing value\n", p);
637 return 0;
638 }
639 }
640 return 1;
641 }
642
643 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
644 {
645 struct udf_options uopt;
646 struct udf_sb_info *sbi = UDF_SB(sb);
647 int error = 0;
648
649 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
650 return -EACCES;
651
652 sync_filesystem(sb);
653
654 uopt.flags = sbi->s_flags;
655 uopt.uid = sbi->s_uid;
656 uopt.gid = sbi->s_gid;
657 uopt.umask = sbi->s_umask;
658 uopt.fmode = sbi->s_fmode;
659 uopt.dmode = sbi->s_dmode;
660
661 if (!udf_parse_options(options, &uopt, true))
662 return -EINVAL;
663
664 write_lock(&sbi->s_cred_lock);
665 sbi->s_flags = uopt.flags;
666 sbi->s_uid = uopt.uid;
667 sbi->s_gid = uopt.gid;
668 sbi->s_umask = uopt.umask;
669 sbi->s_fmode = uopt.fmode;
670 sbi->s_dmode = uopt.dmode;
671 write_unlock(&sbi->s_cred_lock);
672
673 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
674 goto out_unlock;
675
676 if (*flags & SB_RDONLY)
677 udf_close_lvid(sb);
678 else
679 udf_open_lvid(sb);
680
681 out_unlock:
682 return error;
683 }
684
685 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
686 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
687 static loff_t udf_check_vsd(struct super_block *sb)
688 {
689 struct volStructDesc *vsd = NULL;
690 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
691 int sectorsize;
692 struct buffer_head *bh = NULL;
693 int nsr02 = 0;
694 int nsr03 = 0;
695 struct udf_sb_info *sbi;
696
697 sbi = UDF_SB(sb);
698 if (sb->s_blocksize < sizeof(struct volStructDesc))
699 sectorsize = sizeof(struct volStructDesc);
700 else
701 sectorsize = sb->s_blocksize;
702
703 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
704
705 udf_debug("Starting at sector %u (%lu byte sectors)\n",
706 (unsigned int)(sector >> sb->s_blocksize_bits),
707 sb->s_blocksize);
708 /* Process the sequence (if applicable). The hard limit on the sector
709 * offset is arbitrary, hopefully large enough so that all valid UDF
710 * filesystems will be recognised. There is no mention of an upper
711 * bound to the size of the volume recognition area in the standard.
712 * The limit will prevent the code to read all the sectors of a
713 * specially crafted image (like a bluray disc full of CD001 sectors),
714 * potentially causing minutes or even hours of uninterruptible I/O
715 * activity. This actually happened with uninitialised SSD partitions
716 * (all 0xFF) before the check for the limit and all valid IDs were
717 * added */
718 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
719 sector += sectorsize) {
720 /* Read a block */
721 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
722 if (!bh)
723 break;
724
725 /* Look for ISO descriptors */
726 vsd = (struct volStructDesc *)(bh->b_data +
727 (sector & (sb->s_blocksize - 1)));
728
729 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
730 VSD_STD_ID_LEN)) {
731 switch (vsd->structType) {
732 case 0:
733 udf_debug("ISO9660 Boot Record found\n");
734 break;
735 case 1:
736 udf_debug("ISO9660 Primary Volume Descriptor found\n");
737 break;
738 case 2:
739 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
740 break;
741 case 3:
742 udf_debug("ISO9660 Volume Partition Descriptor found\n");
743 break;
744 case 255:
745 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
746 break;
747 default:
748 udf_debug("ISO9660 VRS (%u) found\n",
749 vsd->structType);
750 break;
751 }
752 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
753 VSD_STD_ID_LEN))
754 ; /* nothing */
755 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
756 VSD_STD_ID_LEN)) {
757 brelse(bh);
758 break;
759 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
760 VSD_STD_ID_LEN))
761 nsr02 = sector;
762 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
763 VSD_STD_ID_LEN))
764 nsr03 = sector;
765 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
766 VSD_STD_ID_LEN))
767 ; /* nothing */
768 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
769 VSD_STD_ID_LEN))
770 ; /* nothing */
771 else {
772 /* invalid id : end of volume recognition area */
773 brelse(bh);
774 break;
775 }
776 brelse(bh);
777 }
778
779 if (nsr03)
780 return nsr03;
781 else if (nsr02)
782 return nsr02;
783 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
784 VSD_FIRST_SECTOR_OFFSET)
785 return -1;
786 else
787 return 0;
788 }
789
790 static int udf_find_fileset(struct super_block *sb,
791 struct kernel_lb_addr *fileset,
792 struct kernel_lb_addr *root)
793 {
794 struct buffer_head *bh = NULL;
795 long lastblock;
796 uint16_t ident;
797 struct udf_sb_info *sbi;
798
799 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
800 fileset->partitionReferenceNum != 0xFFFF) {
801 bh = udf_read_ptagged(sb, fileset, 0, &ident);
802
803 if (!bh) {
804 return 1;
805 } else if (ident != TAG_IDENT_FSD) {
806 brelse(bh);
807 return 1;
808 }
809
810 }
811
812 sbi = UDF_SB(sb);
813 if (!bh) {
814 /* Search backwards through the partitions */
815 struct kernel_lb_addr newfileset;
816
817 /* --> cvg: FIXME - is it reasonable? */
818 return 1;
819
820 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
821 (newfileset.partitionReferenceNum != 0xFFFF &&
822 fileset->logicalBlockNum == 0xFFFFFFFF &&
823 fileset->partitionReferenceNum == 0xFFFF);
824 newfileset.partitionReferenceNum--) {
825 lastblock = sbi->s_partmaps
826 [newfileset.partitionReferenceNum]
827 .s_partition_len;
828 newfileset.logicalBlockNum = 0;
829
830 do {
831 bh = udf_read_ptagged(sb, &newfileset, 0,
832 &ident);
833 if (!bh) {
834 newfileset.logicalBlockNum++;
835 continue;
836 }
837
838 switch (ident) {
839 case TAG_IDENT_SBD:
840 {
841 struct spaceBitmapDesc *sp;
842 sp = (struct spaceBitmapDesc *)
843 bh->b_data;
844 newfileset.logicalBlockNum += 1 +
845 ((le32_to_cpu(sp->numOfBytes) +
846 sizeof(struct spaceBitmapDesc)
847 - 1) >> sb->s_blocksize_bits);
848 brelse(bh);
849 break;
850 }
851 case TAG_IDENT_FSD:
852 *fileset = newfileset;
853 break;
854 default:
855 newfileset.logicalBlockNum++;
856 brelse(bh);
857 bh = NULL;
858 break;
859 }
860 } while (newfileset.logicalBlockNum < lastblock &&
861 fileset->logicalBlockNum == 0xFFFFFFFF &&
862 fileset->partitionReferenceNum == 0xFFFF);
863 }
864 }
865
866 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
867 fileset->partitionReferenceNum != 0xFFFF) && bh) {
868 udf_debug("Fileset at block=%u, partition=%u\n",
869 fileset->logicalBlockNum,
870 fileset->partitionReferenceNum);
871
872 sbi->s_partition = fileset->partitionReferenceNum;
873 udf_load_fileset(sb, bh, root);
874 brelse(bh);
875 return 0;
876 }
877 return 1;
878 }
879
880 /*
881 * Load primary Volume Descriptor Sequence
882 *
883 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
884 * should be tried.
885 */
886 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
887 {
888 struct primaryVolDesc *pvoldesc;
889 uint8_t *outstr;
890 struct buffer_head *bh;
891 uint16_t ident;
892 int ret = -ENOMEM;
893
894 outstr = kmalloc(128, GFP_NOFS);
895 if (!outstr)
896 return -ENOMEM;
897
898 bh = udf_read_tagged(sb, block, block, &ident);
899 if (!bh) {
900 ret = -EAGAIN;
901 goto out2;
902 }
903
904 if (ident != TAG_IDENT_PVD) {
905 ret = -EIO;
906 goto out_bh;
907 }
908
909 pvoldesc = (struct primaryVolDesc *)bh->b_data;
910
911 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
912 pvoldesc->recordingDateAndTime)) {
913 #ifdef UDFFS_DEBUG
914 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
915 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
916 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
917 ts->minute, le16_to_cpu(ts->typeAndTimezone));
918 #endif
919 }
920
921 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
922 if (ret < 0) {
923 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
924 pr_warn("incorrect volume identification, setting to "
925 "'InvalidName'\n");
926 } else {
927 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
928 }
929 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
930
931 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
932 if (ret < 0) {
933 ret = 0;
934 goto out_bh;
935 }
936 outstr[ret] = 0;
937 udf_debug("volSetIdent[] = '%s'\n", outstr);
938
939 ret = 0;
940 out_bh:
941 brelse(bh);
942 out2:
943 kfree(outstr);
944 return ret;
945 }
946
947 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
948 u32 meta_file_loc, u32 partition_ref)
949 {
950 struct kernel_lb_addr addr;
951 struct inode *metadata_fe;
952
953 addr.logicalBlockNum = meta_file_loc;
954 addr.partitionReferenceNum = partition_ref;
955
956 metadata_fe = udf_iget_special(sb, &addr);
957
958 if (IS_ERR(metadata_fe)) {
959 udf_warn(sb, "metadata inode efe not found\n");
960 return metadata_fe;
961 }
962 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
963 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
964 iput(metadata_fe);
965 return ERR_PTR(-EIO);
966 }
967
968 return metadata_fe;
969 }
970
971 static int udf_load_metadata_files(struct super_block *sb, int partition,
972 int type1_index)
973 {
974 struct udf_sb_info *sbi = UDF_SB(sb);
975 struct udf_part_map *map;
976 struct udf_meta_data *mdata;
977 struct kernel_lb_addr addr;
978 struct inode *fe;
979
980 map = &sbi->s_partmaps[partition];
981 mdata = &map->s_type_specific.s_metadata;
982 mdata->s_phys_partition_ref = type1_index;
983
984 /* metadata address */
985 udf_debug("Metadata file location: block = %u part = %u\n",
986 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
987
988 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
989 mdata->s_phys_partition_ref);
990 if (IS_ERR(fe)) {
991 /* mirror file entry */
992 udf_debug("Mirror metadata file location: block = %u part = %u\n",
993 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
994
995 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
996 mdata->s_phys_partition_ref);
997
998 if (IS_ERR(fe)) {
999 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1000 return PTR_ERR(fe);
1001 }
1002 mdata->s_mirror_fe = fe;
1003 } else
1004 mdata->s_metadata_fe = fe;
1005
1006
1007 /*
1008 * bitmap file entry
1009 * Note:
1010 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1011 */
1012 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1013 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1014 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1015
1016 udf_debug("Bitmap file location: block = %u part = %u\n",
1017 addr.logicalBlockNum, addr.partitionReferenceNum);
1018
1019 fe = udf_iget_special(sb, &addr);
1020 if (IS_ERR(fe)) {
1021 if (sb_rdonly(sb))
1022 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1023 else {
1024 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1025 return PTR_ERR(fe);
1026 }
1027 } else
1028 mdata->s_bitmap_fe = fe;
1029 }
1030
1031 udf_debug("udf_load_metadata_files Ok\n");
1032 return 0;
1033 }
1034
1035 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1036 struct kernel_lb_addr *root)
1037 {
1038 struct fileSetDesc *fset;
1039
1040 fset = (struct fileSetDesc *)bh->b_data;
1041
1042 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1043
1044 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1045
1046 udf_debug("Rootdir at block=%u, partition=%u\n",
1047 root->logicalBlockNum, root->partitionReferenceNum);
1048 }
1049
1050 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1051 {
1052 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1053 return DIV_ROUND_UP(map->s_partition_len +
1054 (sizeof(struct spaceBitmapDesc) << 3),
1055 sb->s_blocksize * 8);
1056 }
1057
1058 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1059 {
1060 struct udf_bitmap *bitmap;
1061 int nr_groups;
1062 int size;
1063
1064 nr_groups = udf_compute_nr_groups(sb, index);
1065 size = sizeof(struct udf_bitmap) +
1066 (sizeof(struct buffer_head *) * nr_groups);
1067
1068 if (size <= PAGE_SIZE)
1069 bitmap = kzalloc(size, GFP_KERNEL);
1070 else
1071 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1072
1073 if (!bitmap)
1074 return NULL;
1075
1076 bitmap->s_nr_groups = nr_groups;
1077 return bitmap;
1078 }
1079
1080 static int udf_fill_partdesc_info(struct super_block *sb,
1081 struct partitionDesc *p, int p_index)
1082 {
1083 struct udf_part_map *map;
1084 struct udf_sb_info *sbi = UDF_SB(sb);
1085 struct partitionHeaderDesc *phd;
1086
1087 map = &sbi->s_partmaps[p_index];
1088
1089 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1090 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1091
1092 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1093 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1094 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1095 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1096 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1097 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1098 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1099 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1100
1101 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1102 p_index, map->s_partition_type,
1103 map->s_partition_root, map->s_partition_len);
1104
1105 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1106 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1107 return 0;
1108
1109 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1110 if (phd->unallocSpaceTable.extLength) {
1111 struct kernel_lb_addr loc = {
1112 .logicalBlockNum = le32_to_cpu(
1113 phd->unallocSpaceTable.extPosition),
1114 .partitionReferenceNum = p_index,
1115 };
1116 struct inode *inode;
1117
1118 inode = udf_iget_special(sb, &loc);
1119 if (IS_ERR(inode)) {
1120 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1121 p_index);
1122 return PTR_ERR(inode);
1123 }
1124 map->s_uspace.s_table = inode;
1125 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1126 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1127 p_index, map->s_uspace.s_table->i_ino);
1128 }
1129
1130 if (phd->unallocSpaceBitmap.extLength) {
1131 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1132 if (!bitmap)
1133 return -ENOMEM;
1134 map->s_uspace.s_bitmap = bitmap;
1135 bitmap->s_extPosition = le32_to_cpu(
1136 phd->unallocSpaceBitmap.extPosition);
1137 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1138 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1139 p_index, bitmap->s_extPosition);
1140 }
1141
1142 if (phd->partitionIntegrityTable.extLength)
1143 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1144
1145 if (phd->freedSpaceTable.extLength) {
1146 struct kernel_lb_addr loc = {
1147 .logicalBlockNum = le32_to_cpu(
1148 phd->freedSpaceTable.extPosition),
1149 .partitionReferenceNum = p_index,
1150 };
1151 struct inode *inode;
1152
1153 inode = udf_iget_special(sb, &loc);
1154 if (IS_ERR(inode)) {
1155 udf_debug("cannot load freedSpaceTable (part %d)\n",
1156 p_index);
1157 return PTR_ERR(inode);
1158 }
1159 map->s_fspace.s_table = inode;
1160 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1161 udf_debug("freedSpaceTable (part %d) @ %lu\n",
1162 p_index, map->s_fspace.s_table->i_ino);
1163 }
1164
1165 if (phd->freedSpaceBitmap.extLength) {
1166 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1167 if (!bitmap)
1168 return -ENOMEM;
1169 map->s_fspace.s_bitmap = bitmap;
1170 bitmap->s_extPosition = le32_to_cpu(
1171 phd->freedSpaceBitmap.extPosition);
1172 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1173 udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1174 p_index, bitmap->s_extPosition);
1175 }
1176 return 0;
1177 }
1178
1179 static void udf_find_vat_block(struct super_block *sb, int p_index,
1180 int type1_index, sector_t start_block)
1181 {
1182 struct udf_sb_info *sbi = UDF_SB(sb);
1183 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1184 sector_t vat_block;
1185 struct kernel_lb_addr ino;
1186 struct inode *inode;
1187
1188 /*
1189 * VAT file entry is in the last recorded block. Some broken disks have
1190 * it a few blocks before so try a bit harder...
1191 */
1192 ino.partitionReferenceNum = type1_index;
1193 for (vat_block = start_block;
1194 vat_block >= map->s_partition_root &&
1195 vat_block >= start_block - 3; vat_block--) {
1196 ino.logicalBlockNum = vat_block - map->s_partition_root;
1197 inode = udf_iget_special(sb, &ino);
1198 if (!IS_ERR(inode)) {
1199 sbi->s_vat_inode = inode;
1200 break;
1201 }
1202 }
1203 }
1204
1205 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1206 {
1207 struct udf_sb_info *sbi = UDF_SB(sb);
1208 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1209 struct buffer_head *bh = NULL;
1210 struct udf_inode_info *vati;
1211 uint32_t pos;
1212 struct virtualAllocationTable20 *vat20;
1213 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1214 sb->s_blocksize_bits;
1215
1216 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1217 if (!sbi->s_vat_inode &&
1218 sbi->s_last_block != blocks - 1) {
1219 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1220 (unsigned long)sbi->s_last_block,
1221 (unsigned long)blocks - 1);
1222 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1223 }
1224 if (!sbi->s_vat_inode)
1225 return -EIO;
1226
1227 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1228 map->s_type_specific.s_virtual.s_start_offset = 0;
1229 map->s_type_specific.s_virtual.s_num_entries =
1230 (sbi->s_vat_inode->i_size - 36) >> 2;
1231 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1232 vati = UDF_I(sbi->s_vat_inode);
1233 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1234 pos = udf_block_map(sbi->s_vat_inode, 0);
1235 bh = sb_bread(sb, pos);
1236 if (!bh)
1237 return -EIO;
1238 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1239 } else {
1240 vat20 = (struct virtualAllocationTable20 *)
1241 vati->i_ext.i_data;
1242 }
1243
1244 map->s_type_specific.s_virtual.s_start_offset =
1245 le16_to_cpu(vat20->lengthHeader);
1246 map->s_type_specific.s_virtual.s_num_entries =
1247 (sbi->s_vat_inode->i_size -
1248 map->s_type_specific.s_virtual.
1249 s_start_offset) >> 2;
1250 brelse(bh);
1251 }
1252 return 0;
1253 }
1254
1255 /*
1256 * Load partition descriptor block
1257 *
1258 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1259 * sequence.
1260 */
1261 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1262 {
1263 struct buffer_head *bh;
1264 struct partitionDesc *p;
1265 struct udf_part_map *map;
1266 struct udf_sb_info *sbi = UDF_SB(sb);
1267 int i, type1_idx;
1268 uint16_t partitionNumber;
1269 uint16_t ident;
1270 int ret;
1271
1272 bh = udf_read_tagged(sb, block, block, &ident);
1273 if (!bh)
1274 return -EAGAIN;
1275 if (ident != TAG_IDENT_PD) {
1276 ret = 0;
1277 goto out_bh;
1278 }
1279
1280 p = (struct partitionDesc *)bh->b_data;
1281 partitionNumber = le16_to_cpu(p->partitionNumber);
1282
1283 /* First scan for TYPE1 and SPARABLE partitions */
1284 for (i = 0; i < sbi->s_partitions; i++) {
1285 map = &sbi->s_partmaps[i];
1286 udf_debug("Searching map: (%u == %u)\n",
1287 map->s_partition_num, partitionNumber);
1288 if (map->s_partition_num == partitionNumber &&
1289 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1290 map->s_partition_type == UDF_SPARABLE_MAP15))
1291 break;
1292 }
1293
1294 if (i >= sbi->s_partitions) {
1295 udf_debug("Partition (%u) not found in partition map\n",
1296 partitionNumber);
1297 ret = 0;
1298 goto out_bh;
1299 }
1300
1301 ret = udf_fill_partdesc_info(sb, p, i);
1302 if (ret < 0)
1303 goto out_bh;
1304
1305 /*
1306 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1307 * PHYSICAL partitions are already set up
1308 */
1309 type1_idx = i;
1310 #ifdef UDFFS_DEBUG
1311 map = NULL; /* supress 'maybe used uninitialized' warning */
1312 #endif
1313 for (i = 0; i < sbi->s_partitions; i++) {
1314 map = &sbi->s_partmaps[i];
1315
1316 if (map->s_partition_num == partitionNumber &&
1317 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1318 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1319 map->s_partition_type == UDF_METADATA_MAP25))
1320 break;
1321 }
1322
1323 if (i >= sbi->s_partitions) {
1324 ret = 0;
1325 goto out_bh;
1326 }
1327
1328 ret = udf_fill_partdesc_info(sb, p, i);
1329 if (ret < 0)
1330 goto out_bh;
1331
1332 if (map->s_partition_type == UDF_METADATA_MAP25) {
1333 ret = udf_load_metadata_files(sb, i, type1_idx);
1334 if (ret < 0) {
1335 udf_err(sb, "error loading MetaData partition map %d\n",
1336 i);
1337 goto out_bh;
1338 }
1339 } else {
1340 /*
1341 * If we have a partition with virtual map, we don't handle
1342 * writing to it (we overwrite blocks instead of relocating
1343 * them).
1344 */
1345 if (!sb_rdonly(sb)) {
1346 ret = -EACCES;
1347 goto out_bh;
1348 }
1349 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1350 ret = udf_load_vat(sb, i, type1_idx);
1351 if (ret < 0)
1352 goto out_bh;
1353 }
1354 ret = 0;
1355 out_bh:
1356 /* In case loading failed, we handle cleanup in udf_fill_super */
1357 brelse(bh);
1358 return ret;
1359 }
1360
1361 static int udf_load_sparable_map(struct super_block *sb,
1362 struct udf_part_map *map,
1363 struct sparablePartitionMap *spm)
1364 {
1365 uint32_t loc;
1366 uint16_t ident;
1367 struct sparingTable *st;
1368 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1369 int i;
1370 struct buffer_head *bh;
1371
1372 map->s_partition_type = UDF_SPARABLE_MAP15;
1373 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1374 if (!is_power_of_2(sdata->s_packet_len)) {
1375 udf_err(sb, "error loading logical volume descriptor: "
1376 "Invalid packet length %u\n",
1377 (unsigned)sdata->s_packet_len);
1378 return -EIO;
1379 }
1380 if (spm->numSparingTables > 4) {
1381 udf_err(sb, "error loading logical volume descriptor: "
1382 "Too many sparing tables (%d)\n",
1383 (int)spm->numSparingTables);
1384 return -EIO;
1385 }
1386
1387 for (i = 0; i < spm->numSparingTables; i++) {
1388 loc = le32_to_cpu(spm->locSparingTable[i]);
1389 bh = udf_read_tagged(sb, loc, loc, &ident);
1390 if (!bh)
1391 continue;
1392
1393 st = (struct sparingTable *)bh->b_data;
1394 if (ident != 0 ||
1395 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1396 strlen(UDF_ID_SPARING)) ||
1397 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1398 sb->s_blocksize) {
1399 brelse(bh);
1400 continue;
1401 }
1402
1403 sdata->s_spar_map[i] = bh;
1404 }
1405 map->s_partition_func = udf_get_pblock_spar15;
1406 return 0;
1407 }
1408
1409 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1410 struct kernel_lb_addr *fileset)
1411 {
1412 struct logicalVolDesc *lvd;
1413 int i, offset;
1414 uint8_t type;
1415 struct udf_sb_info *sbi = UDF_SB(sb);
1416 struct genericPartitionMap *gpm;
1417 uint16_t ident;
1418 struct buffer_head *bh;
1419 unsigned int table_len;
1420 int ret;
1421
1422 bh = udf_read_tagged(sb, block, block, &ident);
1423 if (!bh)
1424 return -EAGAIN;
1425 BUG_ON(ident != TAG_IDENT_LVD);
1426 lvd = (struct logicalVolDesc *)bh->b_data;
1427 table_len = le32_to_cpu(lvd->mapTableLength);
1428 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1429 udf_err(sb, "error loading logical volume descriptor: "
1430 "Partition table too long (%u > %lu)\n", table_len,
1431 sb->s_blocksize - sizeof(*lvd));
1432 ret = -EIO;
1433 goto out_bh;
1434 }
1435
1436 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1437 if (ret)
1438 goto out_bh;
1439
1440 for (i = 0, offset = 0;
1441 i < sbi->s_partitions && offset < table_len;
1442 i++, offset += gpm->partitionMapLength) {
1443 struct udf_part_map *map = &sbi->s_partmaps[i];
1444 gpm = (struct genericPartitionMap *)
1445 &(lvd->partitionMaps[offset]);
1446 type = gpm->partitionMapType;
1447 if (type == 1) {
1448 struct genericPartitionMap1 *gpm1 =
1449 (struct genericPartitionMap1 *)gpm;
1450 map->s_partition_type = UDF_TYPE1_MAP15;
1451 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1452 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1453 map->s_partition_func = NULL;
1454 } else if (type == 2) {
1455 struct udfPartitionMap2 *upm2 =
1456 (struct udfPartitionMap2 *)gpm;
1457 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1458 strlen(UDF_ID_VIRTUAL))) {
1459 u16 suf =
1460 le16_to_cpu(((__le16 *)upm2->partIdent.
1461 identSuffix)[0]);
1462 if (suf < 0x0200) {
1463 map->s_partition_type =
1464 UDF_VIRTUAL_MAP15;
1465 map->s_partition_func =
1466 udf_get_pblock_virt15;
1467 } else {
1468 map->s_partition_type =
1469 UDF_VIRTUAL_MAP20;
1470 map->s_partition_func =
1471 udf_get_pblock_virt20;
1472 }
1473 } else if (!strncmp(upm2->partIdent.ident,
1474 UDF_ID_SPARABLE,
1475 strlen(UDF_ID_SPARABLE))) {
1476 ret = udf_load_sparable_map(sb, map,
1477 (struct sparablePartitionMap *)gpm);
1478 if (ret < 0)
1479 goto out_bh;
1480 } else if (!strncmp(upm2->partIdent.ident,
1481 UDF_ID_METADATA,
1482 strlen(UDF_ID_METADATA))) {
1483 struct udf_meta_data *mdata =
1484 &map->s_type_specific.s_metadata;
1485 struct metadataPartitionMap *mdm =
1486 (struct metadataPartitionMap *)
1487 &(lvd->partitionMaps[offset]);
1488 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1489 i, type, UDF_ID_METADATA);
1490
1491 map->s_partition_type = UDF_METADATA_MAP25;
1492 map->s_partition_func = udf_get_pblock_meta25;
1493
1494 mdata->s_meta_file_loc =
1495 le32_to_cpu(mdm->metadataFileLoc);
1496 mdata->s_mirror_file_loc =
1497 le32_to_cpu(mdm->metadataMirrorFileLoc);
1498 mdata->s_bitmap_file_loc =
1499 le32_to_cpu(mdm->metadataBitmapFileLoc);
1500 mdata->s_alloc_unit_size =
1501 le32_to_cpu(mdm->allocUnitSize);
1502 mdata->s_align_unit_size =
1503 le16_to_cpu(mdm->alignUnitSize);
1504 if (mdm->flags & 0x01)
1505 mdata->s_flags |= MF_DUPLICATE_MD;
1506
1507 udf_debug("Metadata Ident suffix=0x%x\n",
1508 le16_to_cpu(*(__le16 *)
1509 mdm->partIdent.identSuffix));
1510 udf_debug("Metadata part num=%u\n",
1511 le16_to_cpu(mdm->partitionNum));
1512 udf_debug("Metadata part alloc unit size=%u\n",
1513 le32_to_cpu(mdm->allocUnitSize));
1514 udf_debug("Metadata file loc=%u\n",
1515 le32_to_cpu(mdm->metadataFileLoc));
1516 udf_debug("Mirror file loc=%u\n",
1517 le32_to_cpu(mdm->metadataMirrorFileLoc));
1518 udf_debug("Bitmap file loc=%u\n",
1519 le32_to_cpu(mdm->metadataBitmapFileLoc));
1520 udf_debug("Flags: %d %u\n",
1521 mdata->s_flags, mdm->flags);
1522 } else {
1523 udf_debug("Unknown ident: %s\n",
1524 upm2->partIdent.ident);
1525 continue;
1526 }
1527 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1528 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1529 }
1530 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1531 i, map->s_partition_num, type, map->s_volumeseqnum);
1532 }
1533
1534 if (fileset) {
1535 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1536
1537 *fileset = lelb_to_cpu(la->extLocation);
1538 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1539 fileset->logicalBlockNum,
1540 fileset->partitionReferenceNum);
1541 }
1542 if (lvd->integritySeqExt.extLength)
1543 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1544 ret = 0;
1545 out_bh:
1546 brelse(bh);
1547 return ret;
1548 }
1549
1550 /*
1551 * Find the prevailing Logical Volume Integrity Descriptor.
1552 */
1553 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1554 {
1555 struct buffer_head *bh, *final_bh;
1556 uint16_t ident;
1557 struct udf_sb_info *sbi = UDF_SB(sb);
1558 struct logicalVolIntegrityDesc *lvid;
1559 int indirections = 0;
1560
1561 while (++indirections <= UDF_MAX_LVID_NESTING) {
1562 final_bh = NULL;
1563 while (loc.extLength > 0 &&
1564 (bh = udf_read_tagged(sb, loc.extLocation,
1565 loc.extLocation, &ident))) {
1566 if (ident != TAG_IDENT_LVID) {
1567 brelse(bh);
1568 break;
1569 }
1570
1571 brelse(final_bh);
1572 final_bh = bh;
1573
1574 loc.extLength -= sb->s_blocksize;
1575 loc.extLocation++;
1576 }
1577
1578 if (!final_bh)
1579 return;
1580
1581 brelse(sbi->s_lvid_bh);
1582 sbi->s_lvid_bh = final_bh;
1583
1584 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1585 if (lvid->nextIntegrityExt.extLength == 0)
1586 return;
1587
1588 loc = leea_to_cpu(lvid->nextIntegrityExt);
1589 }
1590
1591 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1592 UDF_MAX_LVID_NESTING);
1593 brelse(sbi->s_lvid_bh);
1594 sbi->s_lvid_bh = NULL;
1595 }
1596
1597
1598 /*
1599 * Process a main/reserve volume descriptor sequence.
1600 * @block First block of first extent of the sequence.
1601 * @lastblock Lastblock of first extent of the sequence.
1602 * @fileset There we store extent containing root fileset
1603 *
1604 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1605 * sequence
1606 */
1607 static noinline int udf_process_sequence(
1608 struct super_block *sb,
1609 sector_t block, sector_t lastblock,
1610 struct kernel_lb_addr *fileset)
1611 {
1612 struct buffer_head *bh = NULL;
1613 struct udf_vds_record vds[VDS_POS_LENGTH];
1614 struct udf_vds_record *curr;
1615 struct generic_desc *gd;
1616 struct volDescPtr *vdp;
1617 bool done = false;
1618 uint32_t vdsn;
1619 uint16_t ident;
1620 long next_s = 0, next_e = 0;
1621 int ret;
1622 unsigned int indirections = 0;
1623
1624 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1625
1626 /*
1627 * Read the main descriptor sequence and find which descriptors
1628 * are in it.
1629 */
1630 for (; (!done && block <= lastblock); block++) {
1631
1632 bh = udf_read_tagged(sb, block, block, &ident);
1633 if (!bh) {
1634 udf_err(sb,
1635 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1636 (unsigned long long)block);
1637 return -EAGAIN;
1638 }
1639
1640 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1641 gd = (struct generic_desc *)bh->b_data;
1642 vdsn = le32_to_cpu(gd->volDescSeqNum);
1643 switch (ident) {
1644 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1645 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1646 if (vdsn >= curr->volDescSeqNum) {
1647 curr->volDescSeqNum = vdsn;
1648 curr->block = block;
1649 }
1650 break;
1651 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1652 curr = &vds[VDS_POS_VOL_DESC_PTR];
1653 if (vdsn >= curr->volDescSeqNum) {
1654 curr->volDescSeqNum = vdsn;
1655 curr->block = block;
1656
1657 vdp = (struct volDescPtr *)bh->b_data;
1658 next_s = le32_to_cpu(
1659 vdp->nextVolDescSeqExt.extLocation);
1660 next_e = le32_to_cpu(
1661 vdp->nextVolDescSeqExt.extLength);
1662 next_e = next_e >> sb->s_blocksize_bits;
1663 next_e += next_s;
1664 }
1665 break;
1666 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1667 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1668 if (vdsn >= curr->volDescSeqNum) {
1669 curr->volDescSeqNum = vdsn;
1670 curr->block = block;
1671 }
1672 break;
1673 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1674 curr = &vds[VDS_POS_PARTITION_DESC];
1675 if (!curr->block)
1676 curr->block = block;
1677 break;
1678 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1679 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1680 if (vdsn >= curr->volDescSeqNum) {
1681 curr->volDescSeqNum = vdsn;
1682 curr->block = block;
1683 }
1684 break;
1685 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1686 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1687 if (vdsn >= curr->volDescSeqNum) {
1688 curr->volDescSeqNum = vdsn;
1689 curr->block = block;
1690 }
1691 break;
1692 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1693 if (++indirections > UDF_MAX_TD_NESTING) {
1694 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1695 brelse(bh);
1696 return -EIO;
1697 }
1698
1699 vds[VDS_POS_TERMINATING_DESC].block = block;
1700 if (next_e) {
1701 block = next_s;
1702 lastblock = next_e;
1703 next_s = next_e = 0;
1704 } else
1705 done = true;
1706 break;
1707 }
1708 brelse(bh);
1709 }
1710 /*
1711 * Now read interesting descriptors again and process them
1712 * in a suitable order
1713 */
1714 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1715 udf_err(sb, "Primary Volume Descriptor not found!\n");
1716 return -EAGAIN;
1717 }
1718 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1719 if (ret < 0)
1720 return ret;
1721
1722 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1723 ret = udf_load_logicalvol(sb,
1724 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1725 fileset);
1726 if (ret < 0)
1727 return ret;
1728 }
1729
1730 if (vds[VDS_POS_PARTITION_DESC].block) {
1731 /*
1732 * We rescan the whole descriptor sequence to find
1733 * partition descriptor blocks and process them.
1734 */
1735 for (block = vds[VDS_POS_PARTITION_DESC].block;
1736 block < vds[VDS_POS_TERMINATING_DESC].block;
1737 block++) {
1738 ret = udf_load_partdesc(sb, block);
1739 if (ret < 0)
1740 return ret;
1741 }
1742 }
1743
1744 return 0;
1745 }
1746
1747 /*
1748 * Load Volume Descriptor Sequence described by anchor in bh
1749 *
1750 * Returns <0 on error, 0 on success
1751 */
1752 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1753 struct kernel_lb_addr *fileset)
1754 {
1755 struct anchorVolDescPtr *anchor;
1756 sector_t main_s, main_e, reserve_s, reserve_e;
1757 int ret;
1758
1759 anchor = (struct anchorVolDescPtr *)bh->b_data;
1760
1761 /* Locate the main sequence */
1762 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1763 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1764 main_e = main_e >> sb->s_blocksize_bits;
1765 main_e += main_s;
1766
1767 /* Locate the reserve sequence */
1768 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1769 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1770 reserve_e = reserve_e >> sb->s_blocksize_bits;
1771 reserve_e += reserve_s;
1772
1773 /* Process the main & reserve sequences */
1774 /* responsible for finding the PartitionDesc(s) */
1775 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1776 if (ret != -EAGAIN)
1777 return ret;
1778 udf_sb_free_partitions(sb);
1779 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1780 if (ret < 0) {
1781 udf_sb_free_partitions(sb);
1782 /* No sequence was OK, return -EIO */
1783 if (ret == -EAGAIN)
1784 ret = -EIO;
1785 }
1786 return ret;
1787 }
1788
1789 /*
1790 * Check whether there is an anchor block in the given block and
1791 * load Volume Descriptor Sequence if so.
1792 *
1793 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1794 * block
1795 */
1796 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1797 struct kernel_lb_addr *fileset)
1798 {
1799 struct buffer_head *bh;
1800 uint16_t ident;
1801 int ret;
1802
1803 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1804 udf_fixed_to_variable(block) >=
1805 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1806 return -EAGAIN;
1807
1808 bh = udf_read_tagged(sb, block, block, &ident);
1809 if (!bh)
1810 return -EAGAIN;
1811 if (ident != TAG_IDENT_AVDP) {
1812 brelse(bh);
1813 return -EAGAIN;
1814 }
1815 ret = udf_load_sequence(sb, bh, fileset);
1816 brelse(bh);
1817 return ret;
1818 }
1819
1820 /*
1821 * Search for an anchor volume descriptor pointer.
1822 *
1823 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1824 * of anchors.
1825 */
1826 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1827 struct kernel_lb_addr *fileset)
1828 {
1829 sector_t last[6];
1830 int i;
1831 struct udf_sb_info *sbi = UDF_SB(sb);
1832 int last_count = 0;
1833 int ret;
1834
1835 /* First try user provided anchor */
1836 if (sbi->s_anchor) {
1837 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1838 if (ret != -EAGAIN)
1839 return ret;
1840 }
1841 /*
1842 * according to spec, anchor is in either:
1843 * block 256
1844 * lastblock-256
1845 * lastblock
1846 * however, if the disc isn't closed, it could be 512.
1847 */
1848 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1849 if (ret != -EAGAIN)
1850 return ret;
1851 /*
1852 * The trouble is which block is the last one. Drives often misreport
1853 * this so we try various possibilities.
1854 */
1855 last[last_count++] = *lastblock;
1856 if (*lastblock >= 1)
1857 last[last_count++] = *lastblock - 1;
1858 last[last_count++] = *lastblock + 1;
1859 if (*lastblock >= 2)
1860 last[last_count++] = *lastblock - 2;
1861 if (*lastblock >= 150)
1862 last[last_count++] = *lastblock - 150;
1863 if (*lastblock >= 152)
1864 last[last_count++] = *lastblock - 152;
1865
1866 for (i = 0; i < last_count; i++) {
1867 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1868 sb->s_blocksize_bits)
1869 continue;
1870 ret = udf_check_anchor_block(sb, last[i], fileset);
1871 if (ret != -EAGAIN) {
1872 if (!ret)
1873 *lastblock = last[i];
1874 return ret;
1875 }
1876 if (last[i] < 256)
1877 continue;
1878 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1879 if (ret != -EAGAIN) {
1880 if (!ret)
1881 *lastblock = last[i];
1882 return ret;
1883 }
1884 }
1885
1886 /* Finally try block 512 in case media is open */
1887 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1888 }
1889
1890 /*
1891 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1892 * area specified by it. The function expects sbi->s_lastblock to be the last
1893 * block on the media.
1894 *
1895 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1896 * was not found.
1897 */
1898 static int udf_find_anchor(struct super_block *sb,
1899 struct kernel_lb_addr *fileset)
1900 {
1901 struct udf_sb_info *sbi = UDF_SB(sb);
1902 sector_t lastblock = sbi->s_last_block;
1903 int ret;
1904
1905 ret = udf_scan_anchors(sb, &lastblock, fileset);
1906 if (ret != -EAGAIN)
1907 goto out;
1908
1909 /* No anchor found? Try VARCONV conversion of block numbers */
1910 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1911 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1912 /* Firstly, we try to not convert number of the last block */
1913 ret = udf_scan_anchors(sb, &lastblock, fileset);
1914 if (ret != -EAGAIN)
1915 goto out;
1916
1917 lastblock = sbi->s_last_block;
1918 /* Secondly, we try with converted number of the last block */
1919 ret = udf_scan_anchors(sb, &lastblock, fileset);
1920 if (ret < 0) {
1921 /* VARCONV didn't help. Clear it. */
1922 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1923 }
1924 out:
1925 if (ret == 0)
1926 sbi->s_last_block = lastblock;
1927 return ret;
1928 }
1929
1930 /*
1931 * Check Volume Structure Descriptor, find Anchor block and load Volume
1932 * Descriptor Sequence.
1933 *
1934 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1935 * block was not found.
1936 */
1937 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1938 int silent, struct kernel_lb_addr *fileset)
1939 {
1940 struct udf_sb_info *sbi = UDF_SB(sb);
1941 loff_t nsr_off;
1942 int ret;
1943
1944 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1945 if (!silent)
1946 udf_warn(sb, "Bad block size\n");
1947 return -EINVAL;
1948 }
1949 sbi->s_last_block = uopt->lastblock;
1950 if (!uopt->novrs) {
1951 /* Check that it is NSR02 compliant */
1952 nsr_off = udf_check_vsd(sb);
1953 if (!nsr_off) {
1954 if (!silent)
1955 udf_warn(sb, "No VRS found\n");
1956 return -EINVAL;
1957 }
1958 if (nsr_off == -1)
1959 udf_debug("Failed to read sector at offset %d. "
1960 "Assuming open disc. Skipping validity "
1961 "check\n", VSD_FIRST_SECTOR_OFFSET);
1962 if (!sbi->s_last_block)
1963 sbi->s_last_block = udf_get_last_block(sb);
1964 } else {
1965 udf_debug("Validity check skipped because of novrs option\n");
1966 }
1967
1968 /* Look for anchor block and load Volume Descriptor Sequence */
1969 sbi->s_anchor = uopt->anchor;
1970 ret = udf_find_anchor(sb, fileset);
1971 if (ret < 0) {
1972 if (!silent && ret == -EAGAIN)
1973 udf_warn(sb, "No anchor found\n");
1974 return ret;
1975 }
1976 return 0;
1977 }
1978
1979 static void udf_open_lvid(struct super_block *sb)
1980 {
1981 struct udf_sb_info *sbi = UDF_SB(sb);
1982 struct buffer_head *bh = sbi->s_lvid_bh;
1983 struct logicalVolIntegrityDesc *lvid;
1984 struct logicalVolIntegrityDescImpUse *lvidiu;
1985 struct timespec ts;
1986
1987 if (!bh)
1988 return;
1989 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1990 lvidiu = udf_sb_lvidiu(sb);
1991 if (!lvidiu)
1992 return;
1993
1994 mutex_lock(&sbi->s_alloc_mutex);
1995 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1996 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1997 ktime_get_real_ts(&ts);
1998 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1999 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2000
2001 lvid->descTag.descCRC = cpu_to_le16(
2002 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2003 le16_to_cpu(lvid->descTag.descCRCLength)));
2004
2005 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2006 mark_buffer_dirty(bh);
2007 sbi->s_lvid_dirty = 0;
2008 mutex_unlock(&sbi->s_alloc_mutex);
2009 /* Make opening of filesystem visible on the media immediately */
2010 sync_dirty_buffer(bh);
2011 }
2012
2013 static void udf_close_lvid(struct super_block *sb)
2014 {
2015 struct udf_sb_info *sbi = UDF_SB(sb);
2016 struct buffer_head *bh = sbi->s_lvid_bh;
2017 struct logicalVolIntegrityDesc *lvid;
2018 struct logicalVolIntegrityDescImpUse *lvidiu;
2019 struct timespec ts;
2020
2021 if (!bh)
2022 return;
2023 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2024 lvidiu = udf_sb_lvidiu(sb);
2025 if (!lvidiu)
2026 return;
2027
2028 mutex_lock(&sbi->s_alloc_mutex);
2029 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2030 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2031 ktime_get_real_ts(&ts);
2032 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2033 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2034 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2035 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2036 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2037 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2038 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2039 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2040
2041 lvid->descTag.descCRC = cpu_to_le16(
2042 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2043 le16_to_cpu(lvid->descTag.descCRCLength)));
2044
2045 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2046 /*
2047 * We set buffer uptodate unconditionally here to avoid spurious
2048 * warnings from mark_buffer_dirty() when previous EIO has marked
2049 * the buffer as !uptodate
2050 */
2051 set_buffer_uptodate(bh);
2052 mark_buffer_dirty(bh);
2053 sbi->s_lvid_dirty = 0;
2054 mutex_unlock(&sbi->s_alloc_mutex);
2055 /* Make closing of filesystem visible on the media immediately */
2056 sync_dirty_buffer(bh);
2057 }
2058
2059 u64 lvid_get_unique_id(struct super_block *sb)
2060 {
2061 struct buffer_head *bh;
2062 struct udf_sb_info *sbi = UDF_SB(sb);
2063 struct logicalVolIntegrityDesc *lvid;
2064 struct logicalVolHeaderDesc *lvhd;
2065 u64 uniqueID;
2066 u64 ret;
2067
2068 bh = sbi->s_lvid_bh;
2069 if (!bh)
2070 return 0;
2071
2072 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2073 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2074
2075 mutex_lock(&sbi->s_alloc_mutex);
2076 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2077 if (!(++uniqueID & 0xFFFFFFFF))
2078 uniqueID += 16;
2079 lvhd->uniqueID = cpu_to_le64(uniqueID);
2080 mutex_unlock(&sbi->s_alloc_mutex);
2081 mark_buffer_dirty(bh);
2082
2083 return ret;
2084 }
2085
2086 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2087 {
2088 int ret = -EINVAL;
2089 struct inode *inode = NULL;
2090 struct udf_options uopt;
2091 struct kernel_lb_addr rootdir, fileset;
2092 struct udf_sb_info *sbi;
2093 bool lvid_open = false;
2094
2095 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2096 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2097 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2098 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2099 uopt.umask = 0;
2100 uopt.fmode = UDF_INVALID_MODE;
2101 uopt.dmode = UDF_INVALID_MODE;
2102
2103 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2104 if (!sbi)
2105 return -ENOMEM;
2106
2107 sb->s_fs_info = sbi;
2108
2109 mutex_init(&sbi->s_alloc_mutex);
2110
2111 if (!udf_parse_options((char *)options, &uopt, false))
2112 goto parse_options_failure;
2113
2114 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2115 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2116 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2117 goto parse_options_failure;
2118 }
2119 #ifdef CONFIG_UDF_NLS
2120 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2121 uopt.nls_map = load_nls_default();
2122 if (!uopt.nls_map)
2123 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2124 else
2125 udf_debug("Using default NLS map\n");
2126 }
2127 #endif
2128 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2129 uopt.flags |= (1 << UDF_FLAG_UTF8);
2130
2131 fileset.logicalBlockNum = 0xFFFFFFFF;
2132 fileset.partitionReferenceNum = 0xFFFF;
2133
2134 sbi->s_flags = uopt.flags;
2135 sbi->s_uid = uopt.uid;
2136 sbi->s_gid = uopt.gid;
2137 sbi->s_umask = uopt.umask;
2138 sbi->s_fmode = uopt.fmode;
2139 sbi->s_dmode = uopt.dmode;
2140 sbi->s_nls_map = uopt.nls_map;
2141 rwlock_init(&sbi->s_cred_lock);
2142
2143 if (uopt.session == 0xFFFFFFFF)
2144 sbi->s_session = udf_get_last_session(sb);
2145 else
2146 sbi->s_session = uopt.session;
2147
2148 udf_debug("Multi-session=%d\n", sbi->s_session);
2149
2150 /* Fill in the rest of the superblock */
2151 sb->s_op = &udf_sb_ops;
2152 sb->s_export_op = &udf_export_ops;
2153
2154 sb->s_magic = UDF_SUPER_MAGIC;
2155 sb->s_time_gran = 1000;
2156
2157 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2158 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2159 } else {
2160 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2161 while (uopt.blocksize <= 4096) {
2162 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2163 if (ret < 0) {
2164 if (!silent && ret != -EACCES) {
2165 pr_notice("Scanning with blocksize %u failed\n",
2166 uopt.blocksize);
2167 }
2168 brelse(sbi->s_lvid_bh);
2169 sbi->s_lvid_bh = NULL;
2170 /*
2171 * EACCES is special - we want to propagate to
2172 * upper layers that we cannot handle RW mount.
2173 */
2174 if (ret == -EACCES)
2175 break;
2176 } else
2177 break;
2178
2179 uopt.blocksize <<= 1;
2180 }
2181 }
2182 if (ret < 0) {
2183 if (ret == -EAGAIN) {
2184 udf_warn(sb, "No partition found (1)\n");
2185 ret = -EINVAL;
2186 }
2187 goto error_out;
2188 }
2189
2190 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2191
2192 if (sbi->s_lvid_bh) {
2193 struct logicalVolIntegrityDescImpUse *lvidiu =
2194 udf_sb_lvidiu(sb);
2195 uint16_t minUDFReadRev;
2196 uint16_t minUDFWriteRev;
2197
2198 if (!lvidiu) {
2199 ret = -EINVAL;
2200 goto error_out;
2201 }
2202 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2203 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2204 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2205 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2206 minUDFReadRev,
2207 UDF_MAX_READ_VERSION);
2208 ret = -EINVAL;
2209 goto error_out;
2210 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2211 if (!sb_rdonly(sb)) {
2212 ret = -EACCES;
2213 goto error_out;
2214 }
2215 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2216 }
2217
2218 sbi->s_udfrev = minUDFWriteRev;
2219
2220 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2221 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2222 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2223 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2224 }
2225
2226 if (!sbi->s_partitions) {
2227 udf_warn(sb, "No partition found (2)\n");
2228 ret = -EINVAL;
2229 goto error_out;
2230 }
2231
2232 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2233 UDF_PART_FLAG_READ_ONLY) {
2234 if (!sb_rdonly(sb)) {
2235 ret = -EACCES;
2236 goto error_out;
2237 }
2238 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2239 }
2240
2241 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2242 udf_warn(sb, "No fileset found\n");
2243 ret = -EINVAL;
2244 goto error_out;
2245 }
2246
2247 if (!silent) {
2248 struct timestamp ts;
2249 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2250 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2251 sbi->s_volume_ident,
2252 le16_to_cpu(ts.year), ts.month, ts.day,
2253 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2254 }
2255 if (!sb_rdonly(sb)) {
2256 udf_open_lvid(sb);
2257 lvid_open = true;
2258 }
2259
2260 /* Assign the root inode */
2261 /* assign inodes by physical block number */
2262 /* perhaps it's not extensible enough, but for now ... */
2263 inode = udf_iget(sb, &rootdir);
2264 if (IS_ERR(inode)) {
2265 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2266 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2267 ret = PTR_ERR(inode);
2268 goto error_out;
2269 }
2270
2271 /* Allocate a dentry for the root inode */
2272 sb->s_root = d_make_root(inode);
2273 if (!sb->s_root) {
2274 udf_err(sb, "Couldn't allocate root dentry\n");
2275 ret = -ENOMEM;
2276 goto error_out;
2277 }
2278 sb->s_maxbytes = MAX_LFS_FILESIZE;
2279 sb->s_max_links = UDF_MAX_LINKS;
2280 return 0;
2281
2282 error_out:
2283 iput(sbi->s_vat_inode);
2284 parse_options_failure:
2285 #ifdef CONFIG_UDF_NLS
2286 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2287 unload_nls(sbi->s_nls_map);
2288 #endif
2289 if (lvid_open)
2290 udf_close_lvid(sb);
2291 brelse(sbi->s_lvid_bh);
2292 udf_sb_free_partitions(sb);
2293 kfree(sbi);
2294 sb->s_fs_info = NULL;
2295
2296 return ret;
2297 }
2298
2299 void _udf_err(struct super_block *sb, const char *function,
2300 const char *fmt, ...)
2301 {
2302 struct va_format vaf;
2303 va_list args;
2304
2305 va_start(args, fmt);
2306
2307 vaf.fmt = fmt;
2308 vaf.va = &args;
2309
2310 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2311
2312 va_end(args);
2313 }
2314
2315 void _udf_warn(struct super_block *sb, const char *function,
2316 const char *fmt, ...)
2317 {
2318 struct va_format vaf;
2319 va_list args;
2320
2321 va_start(args, fmt);
2322
2323 vaf.fmt = fmt;
2324 vaf.va = &args;
2325
2326 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2327
2328 va_end(args);
2329 }
2330
2331 static void udf_put_super(struct super_block *sb)
2332 {
2333 struct udf_sb_info *sbi;
2334
2335 sbi = UDF_SB(sb);
2336
2337 iput(sbi->s_vat_inode);
2338 #ifdef CONFIG_UDF_NLS
2339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2340 unload_nls(sbi->s_nls_map);
2341 #endif
2342 if (!sb_rdonly(sb))
2343 udf_close_lvid(sb);
2344 brelse(sbi->s_lvid_bh);
2345 udf_sb_free_partitions(sb);
2346 mutex_destroy(&sbi->s_alloc_mutex);
2347 kfree(sb->s_fs_info);
2348 sb->s_fs_info = NULL;
2349 }
2350
2351 static int udf_sync_fs(struct super_block *sb, int wait)
2352 {
2353 struct udf_sb_info *sbi = UDF_SB(sb);
2354
2355 mutex_lock(&sbi->s_alloc_mutex);
2356 if (sbi->s_lvid_dirty) {
2357 /*
2358 * Blockdevice will be synced later so we don't have to submit
2359 * the buffer for IO
2360 */
2361 mark_buffer_dirty(sbi->s_lvid_bh);
2362 sbi->s_lvid_dirty = 0;
2363 }
2364 mutex_unlock(&sbi->s_alloc_mutex);
2365
2366 return 0;
2367 }
2368
2369 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2370 {
2371 struct super_block *sb = dentry->d_sb;
2372 struct udf_sb_info *sbi = UDF_SB(sb);
2373 struct logicalVolIntegrityDescImpUse *lvidiu;
2374 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2375
2376 lvidiu = udf_sb_lvidiu(sb);
2377 buf->f_type = UDF_SUPER_MAGIC;
2378 buf->f_bsize = sb->s_blocksize;
2379 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2380 buf->f_bfree = udf_count_free(sb);
2381 buf->f_bavail = buf->f_bfree;
2382 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2383 le32_to_cpu(lvidiu->numDirs)) : 0)
2384 + buf->f_bfree;
2385 buf->f_ffree = buf->f_bfree;
2386 buf->f_namelen = UDF_NAME_LEN;
2387 buf->f_fsid.val[0] = (u32)id;
2388 buf->f_fsid.val[1] = (u32)(id >> 32);
2389
2390 return 0;
2391 }
2392
2393 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2394 struct udf_bitmap *bitmap)
2395 {
2396 struct buffer_head *bh = NULL;
2397 unsigned int accum = 0;
2398 int index;
2399 udf_pblk_t block = 0, newblock;
2400 struct kernel_lb_addr loc;
2401 uint32_t bytes;
2402 uint8_t *ptr;
2403 uint16_t ident;
2404 struct spaceBitmapDesc *bm;
2405
2406 loc.logicalBlockNum = bitmap->s_extPosition;
2407 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2408 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2409
2410 if (!bh) {
2411 udf_err(sb, "udf_count_free failed\n");
2412 goto out;
2413 } else if (ident != TAG_IDENT_SBD) {
2414 brelse(bh);
2415 udf_err(sb, "udf_count_free failed\n");
2416 goto out;
2417 }
2418
2419 bm = (struct spaceBitmapDesc *)bh->b_data;
2420 bytes = le32_to_cpu(bm->numOfBytes);
2421 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2422 ptr = (uint8_t *)bh->b_data;
2423
2424 while (bytes > 0) {
2425 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2426 accum += bitmap_weight((const unsigned long *)(ptr + index),
2427 cur_bytes * 8);
2428 bytes -= cur_bytes;
2429 if (bytes) {
2430 brelse(bh);
2431 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2432 bh = udf_tread(sb, newblock);
2433 if (!bh) {
2434 udf_debug("read failed\n");
2435 goto out;
2436 }
2437 index = 0;
2438 ptr = (uint8_t *)bh->b_data;
2439 }
2440 }
2441 brelse(bh);
2442 out:
2443 return accum;
2444 }
2445
2446 static unsigned int udf_count_free_table(struct super_block *sb,
2447 struct inode *table)
2448 {
2449 unsigned int accum = 0;
2450 uint32_t elen;
2451 struct kernel_lb_addr eloc;
2452 int8_t etype;
2453 struct extent_position epos;
2454
2455 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2456 epos.block = UDF_I(table)->i_location;
2457 epos.offset = sizeof(struct unallocSpaceEntry);
2458 epos.bh = NULL;
2459
2460 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2461 accum += (elen >> table->i_sb->s_blocksize_bits);
2462
2463 brelse(epos.bh);
2464 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2465
2466 return accum;
2467 }
2468
2469 static unsigned int udf_count_free(struct super_block *sb)
2470 {
2471 unsigned int accum = 0;
2472 struct udf_sb_info *sbi;
2473 struct udf_part_map *map;
2474
2475 sbi = UDF_SB(sb);
2476 if (sbi->s_lvid_bh) {
2477 struct logicalVolIntegrityDesc *lvid =
2478 (struct logicalVolIntegrityDesc *)
2479 sbi->s_lvid_bh->b_data;
2480 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2481 accum = le32_to_cpu(
2482 lvid->freeSpaceTable[sbi->s_partition]);
2483 if (accum == 0xFFFFFFFF)
2484 accum = 0;
2485 }
2486 }
2487
2488 if (accum)
2489 return accum;
2490
2491 map = &sbi->s_partmaps[sbi->s_partition];
2492 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2493 accum += udf_count_free_bitmap(sb,
2494 map->s_uspace.s_bitmap);
2495 }
2496 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2497 accum += udf_count_free_bitmap(sb,
2498 map->s_fspace.s_bitmap);
2499 }
2500 if (accum)
2501 return accum;
2502
2503 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2504 accum += udf_count_free_table(sb,
2505 map->s_uspace.s_table);
2506 }
2507 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2508 accum += udf_count_free_table(sb,
2509 map->s_fspace.s_table);
2510 }
2511
2512 return accum;
2513 }
2514
2515 MODULE_AUTHOR("Ben Fennema");
2516 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2517 MODULE_LICENSE("GPL");
2518 module_init(init_udf_fs)
2519 module_exit(exit_udf_fs)