]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/udf/super.c
udf: Allow mounting volumes with incorrect identification strings
[mirror_ubuntu-hirsute-kernel.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68 VDS_POS_PRIMARY_VOL_DESC,
69 VDS_POS_UNALLOC_SPACE_DESC,
70 VDS_POS_LOGICAL_VOL_DESC,
71 VDS_POS_IMP_USE_VOL_DESC,
72 VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET 32768
76 #define VSD_MAX_SECTOR_OFFSET 0x800000
77
78 /*
79 * Maximum number of Terminating Descriptor / Logical Volume Integrity
80 * Descriptor redirections. The chosen numbers are arbitrary - just that we
81 * hopefully don't limit any real use of rewritten inode on write-once media
82 * but avoid looping for too long on corrupted media.
83 */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96 struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98 struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107 struct logicalVolIntegrityDesc *lvid;
108 unsigned int partnum;
109 unsigned int offset;
110
111 if (!UDF_SB(sb)->s_lvid_bh)
112 return NULL;
113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114 partnum = le32_to_cpu(lvid->numOfPartitions);
115 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116 offsetof(struct logicalVolIntegrityDesc, impUse)) /
117 (2 * sizeof(uint32_t)) < partnum) {
118 udf_err(sb, "Logical volume integrity descriptor corrupted "
119 "(numOfPartitions = %u)!\n", partnum);
120 return NULL;
121 }
122 /* The offset is to skip freeSpaceTable and sizeTable arrays */
123 offset = partnum * 2 * sizeof(uint32_t);
124 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125 }
126
127 /* UDF filesystem type */
128 static struct dentry *udf_mount(struct file_system_type *fs_type,
129 int flags, const char *dev_name, void *data)
130 {
131 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132 }
133
134 static struct file_system_type udf_fstype = {
135 .owner = THIS_MODULE,
136 .name = "udf",
137 .mount = udf_mount,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("udf");
142
143 static struct kmem_cache *udf_inode_cachep;
144
145 static struct inode *udf_alloc_inode(struct super_block *sb)
146 {
147 struct udf_inode_info *ei;
148 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149 if (!ei)
150 return NULL;
151
152 ei->i_unique = 0;
153 ei->i_lenExtents = 0;
154 ei->i_next_alloc_block = 0;
155 ei->i_next_alloc_goal = 0;
156 ei->i_strat4096 = 0;
157 init_rwsem(&ei->i_data_sem);
158 ei->cached_extent.lstart = -1;
159 spin_lock_init(&ei->i_extent_cache_lock);
160
161 return &ei->vfs_inode;
162 }
163
164 static void udf_i_callback(struct rcu_head *head)
165 {
166 struct inode *inode = container_of(head, struct inode, i_rcu);
167 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168 }
169
170 static void udf_destroy_inode(struct inode *inode)
171 {
172 call_rcu(&inode->i_rcu, udf_i_callback);
173 }
174
175 static void init_once(void *foo)
176 {
177 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178
179 ei->i_ext.i_data = NULL;
180 inode_init_once(&ei->vfs_inode);
181 }
182
183 static int __init init_inodecache(void)
184 {
185 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186 sizeof(struct udf_inode_info),
187 0, (SLAB_RECLAIM_ACCOUNT |
188 SLAB_MEM_SPREAD |
189 SLAB_ACCOUNT),
190 init_once);
191 if (!udf_inode_cachep)
192 return -ENOMEM;
193 return 0;
194 }
195
196 static void destroy_inodecache(void)
197 {
198 /*
199 * Make sure all delayed rcu free inodes are flushed before we
200 * destroy cache.
201 */
202 rcu_barrier();
203 kmem_cache_destroy(udf_inode_cachep);
204 }
205
206 /* Superblock operations */
207 static const struct super_operations udf_sb_ops = {
208 .alloc_inode = udf_alloc_inode,
209 .destroy_inode = udf_destroy_inode,
210 .write_inode = udf_write_inode,
211 .evict_inode = udf_evict_inode,
212 .put_super = udf_put_super,
213 .sync_fs = udf_sync_fs,
214 .statfs = udf_statfs,
215 .remount_fs = udf_remount_fs,
216 .show_options = udf_show_options,
217 };
218
219 struct udf_options {
220 unsigned char novrs;
221 unsigned int blocksize;
222 unsigned int session;
223 unsigned int lastblock;
224 unsigned int anchor;
225 unsigned int flags;
226 umode_t umask;
227 kgid_t gid;
228 kuid_t uid;
229 umode_t fmode;
230 umode_t dmode;
231 struct nls_table *nls_map;
232 };
233
234 static int __init init_udf_fs(void)
235 {
236 int err;
237
238 err = init_inodecache();
239 if (err)
240 goto out1;
241 err = register_filesystem(&udf_fstype);
242 if (err)
243 goto out;
244
245 return 0;
246
247 out:
248 destroy_inodecache();
249
250 out1:
251 return err;
252 }
253
254 static void __exit exit_udf_fs(void)
255 {
256 unregister_filesystem(&udf_fstype);
257 destroy_inodecache();
258 }
259
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262 struct udf_sb_info *sbi = UDF_SB(sb);
263
264 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265 if (!sbi->s_partmaps) {
266 sbi->s_partitions = 0;
267 return -ENOMEM;
268 }
269
270 sbi->s_partitions = count;
271 return 0;
272 }
273
274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275 {
276 int i;
277 int nr_groups = bitmap->s_nr_groups;
278
279 for (i = 0; i < nr_groups; i++)
280 if (bitmap->s_block_bitmap[i])
281 brelse(bitmap->s_block_bitmap[i]);
282
283 kvfree(bitmap);
284 }
285
286 static void udf_free_partition(struct udf_part_map *map)
287 {
288 int i;
289 struct udf_meta_data *mdata;
290
291 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292 iput(map->s_uspace.s_table);
293 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
294 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
295 if (map->s_partition_type == UDF_SPARABLE_MAP15)
296 for (i = 0; i < 4; i++)
297 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
298 else if (map->s_partition_type == UDF_METADATA_MAP25) {
299 mdata = &map->s_type_specific.s_metadata;
300 iput(mdata->s_metadata_fe);
301 mdata->s_metadata_fe = NULL;
302
303 iput(mdata->s_mirror_fe);
304 mdata->s_mirror_fe = NULL;
305
306 iput(mdata->s_bitmap_fe);
307 mdata->s_bitmap_fe = NULL;
308 }
309 }
310
311 static void udf_sb_free_partitions(struct super_block *sb)
312 {
313 struct udf_sb_info *sbi = UDF_SB(sb);
314 int i;
315
316 if (!sbi->s_partmaps)
317 return;
318 for (i = 0; i < sbi->s_partitions; i++)
319 udf_free_partition(&sbi->s_partmaps[i]);
320 kfree(sbi->s_partmaps);
321 sbi->s_partmaps = NULL;
322 }
323
324 static int udf_show_options(struct seq_file *seq, struct dentry *root)
325 {
326 struct super_block *sb = root->d_sb;
327 struct udf_sb_info *sbi = UDF_SB(sb);
328
329 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
330 seq_puts(seq, ",nostrict");
331 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
332 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
333 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
334 seq_puts(seq, ",unhide");
335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
336 seq_puts(seq, ",undelete");
337 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
338 seq_puts(seq, ",noadinicb");
339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
340 seq_puts(seq, ",shortad");
341 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
342 seq_puts(seq, ",uid=forget");
343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
344 seq_puts(seq, ",gid=forget");
345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
346 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
348 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
349 if (sbi->s_umask != 0)
350 seq_printf(seq, ",umask=%ho", sbi->s_umask);
351 if (sbi->s_fmode != UDF_INVALID_MODE)
352 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
353 if (sbi->s_dmode != UDF_INVALID_MODE)
354 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
356 seq_printf(seq, ",session=%d", sbi->s_session);
357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
358 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
359 if (sbi->s_anchor != 0)
360 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
362 seq_puts(seq, ",utf8");
363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
364 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
365
366 return 0;
367 }
368
369 /*
370 * udf_parse_options
371 *
372 * PURPOSE
373 * Parse mount options.
374 *
375 * DESCRIPTION
376 * The following mount options are supported:
377 *
378 * gid= Set the default group.
379 * umask= Set the default umask.
380 * mode= Set the default file permissions.
381 * dmode= Set the default directory permissions.
382 * uid= Set the default user.
383 * bs= Set the block size.
384 * unhide Show otherwise hidden files.
385 * undelete Show deleted files in lists.
386 * adinicb Embed data in the inode (default)
387 * noadinicb Don't embed data in the inode
388 * shortad Use short ad's
389 * longad Use long ad's (default)
390 * nostrict Unset strict conformance
391 * iocharset= Set the NLS character set
392 *
393 * The remaining are for debugging and disaster recovery:
394 *
395 * novrs Skip volume sequence recognition
396 *
397 * The following expect a offset from 0.
398 *
399 * session= Set the CDROM session (default= last session)
400 * anchor= Override standard anchor location. (default= 256)
401 * volume= Override the VolumeDesc location. (unused)
402 * partition= Override the PartitionDesc location. (unused)
403 * lastblock= Set the last block of the filesystem/
404 *
405 * The following expect a offset from the partition root.
406 *
407 * fileset= Override the fileset block location. (unused)
408 * rootdir= Override the root directory location. (unused)
409 * WARNING: overriding the rootdir to a non-directory may
410 * yield highly unpredictable results.
411 *
412 * PRE-CONDITIONS
413 * options Pointer to mount options string.
414 * uopts Pointer to mount options variable.
415 *
416 * POST-CONDITIONS
417 * <return> 1 Mount options parsed okay.
418 * <return> 0 Error parsing mount options.
419 *
420 * HISTORY
421 * July 1, 1997 - Andrew E. Mileski
422 * Written, tested, and released.
423 */
424
425 enum {
426 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
427 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
428 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
429 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
430 Opt_rootdir, Opt_utf8, Opt_iocharset,
431 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
432 Opt_fmode, Opt_dmode
433 };
434
435 static const match_table_t tokens = {
436 {Opt_novrs, "novrs"},
437 {Opt_nostrict, "nostrict"},
438 {Opt_bs, "bs=%u"},
439 {Opt_unhide, "unhide"},
440 {Opt_undelete, "undelete"},
441 {Opt_noadinicb, "noadinicb"},
442 {Opt_adinicb, "adinicb"},
443 {Opt_shortad, "shortad"},
444 {Opt_longad, "longad"},
445 {Opt_uforget, "uid=forget"},
446 {Opt_uignore, "uid=ignore"},
447 {Opt_gforget, "gid=forget"},
448 {Opt_gignore, "gid=ignore"},
449 {Opt_gid, "gid=%u"},
450 {Opt_uid, "uid=%u"},
451 {Opt_umask, "umask=%o"},
452 {Opt_session, "session=%u"},
453 {Opt_lastblock, "lastblock=%u"},
454 {Opt_anchor, "anchor=%u"},
455 {Opt_volume, "volume=%u"},
456 {Opt_partition, "partition=%u"},
457 {Opt_fileset, "fileset=%u"},
458 {Opt_rootdir, "rootdir=%u"},
459 {Opt_utf8, "utf8"},
460 {Opt_iocharset, "iocharset=%s"},
461 {Opt_fmode, "mode=%o"},
462 {Opt_dmode, "dmode=%o"},
463 {Opt_err, NULL}
464 };
465
466 static int udf_parse_options(char *options, struct udf_options *uopt,
467 bool remount)
468 {
469 char *p;
470 int option;
471
472 uopt->novrs = 0;
473 uopt->session = 0xFFFFFFFF;
474 uopt->lastblock = 0;
475 uopt->anchor = 0;
476
477 if (!options)
478 return 1;
479
480 while ((p = strsep(&options, ",")) != NULL) {
481 substring_t args[MAX_OPT_ARGS];
482 int token;
483 unsigned n;
484 if (!*p)
485 continue;
486
487 token = match_token(p, tokens, args);
488 switch (token) {
489 case Opt_novrs:
490 uopt->novrs = 1;
491 break;
492 case Opt_bs:
493 if (match_int(&args[0], &option))
494 return 0;
495 n = option;
496 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
497 return 0;
498 uopt->blocksize = n;
499 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
500 break;
501 case Opt_unhide:
502 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
503 break;
504 case Opt_undelete:
505 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
506 break;
507 case Opt_noadinicb:
508 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
509 break;
510 case Opt_adinicb:
511 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
512 break;
513 case Opt_shortad:
514 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
515 break;
516 case Opt_longad:
517 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
518 break;
519 case Opt_gid:
520 if (match_int(args, &option))
521 return 0;
522 uopt->gid = make_kgid(current_user_ns(), option);
523 if (!gid_valid(uopt->gid))
524 return 0;
525 uopt->flags |= (1 << UDF_FLAG_GID_SET);
526 break;
527 case Opt_uid:
528 if (match_int(args, &option))
529 return 0;
530 uopt->uid = make_kuid(current_user_ns(), option);
531 if (!uid_valid(uopt->uid))
532 return 0;
533 uopt->flags |= (1 << UDF_FLAG_UID_SET);
534 break;
535 case Opt_umask:
536 if (match_octal(args, &option))
537 return 0;
538 uopt->umask = option;
539 break;
540 case Opt_nostrict:
541 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
542 break;
543 case Opt_session:
544 if (match_int(args, &option))
545 return 0;
546 uopt->session = option;
547 if (!remount)
548 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
549 break;
550 case Opt_lastblock:
551 if (match_int(args, &option))
552 return 0;
553 uopt->lastblock = option;
554 if (!remount)
555 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
556 break;
557 case Opt_anchor:
558 if (match_int(args, &option))
559 return 0;
560 uopt->anchor = option;
561 break;
562 case Opt_volume:
563 case Opt_partition:
564 case Opt_fileset:
565 case Opt_rootdir:
566 /* Ignored (never implemented properly) */
567 break;
568 case Opt_utf8:
569 uopt->flags |= (1 << UDF_FLAG_UTF8);
570 break;
571 case Opt_iocharset:
572 if (!remount) {
573 if (uopt->nls_map)
574 unload_nls(uopt->nls_map);
575 uopt->nls_map = load_nls(args[0].from);
576 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
577 }
578 break;
579 case Opt_uforget:
580 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
581 break;
582 case Opt_uignore:
583 case Opt_gignore:
584 /* These options are superseeded by uid=<number> */
585 break;
586 case Opt_gforget:
587 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
588 break;
589 case Opt_fmode:
590 if (match_octal(args, &option))
591 return 0;
592 uopt->fmode = option & 0777;
593 break;
594 case Opt_dmode:
595 if (match_octal(args, &option))
596 return 0;
597 uopt->dmode = option & 0777;
598 break;
599 default:
600 pr_err("bad mount option \"%s\" or missing value\n", p);
601 return 0;
602 }
603 }
604 return 1;
605 }
606
607 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
608 {
609 struct udf_options uopt;
610 struct udf_sb_info *sbi = UDF_SB(sb);
611 int error = 0;
612
613 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
614 return -EACCES;
615
616 sync_filesystem(sb);
617
618 uopt.flags = sbi->s_flags;
619 uopt.uid = sbi->s_uid;
620 uopt.gid = sbi->s_gid;
621 uopt.umask = sbi->s_umask;
622 uopt.fmode = sbi->s_fmode;
623 uopt.dmode = sbi->s_dmode;
624 uopt.nls_map = NULL;
625
626 if (!udf_parse_options(options, &uopt, true))
627 return -EINVAL;
628
629 write_lock(&sbi->s_cred_lock);
630 sbi->s_flags = uopt.flags;
631 sbi->s_uid = uopt.uid;
632 sbi->s_gid = uopt.gid;
633 sbi->s_umask = uopt.umask;
634 sbi->s_fmode = uopt.fmode;
635 sbi->s_dmode = uopt.dmode;
636 write_unlock(&sbi->s_cred_lock);
637
638 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
639 goto out_unlock;
640
641 if (*flags & SB_RDONLY)
642 udf_close_lvid(sb);
643 else
644 udf_open_lvid(sb);
645
646 out_unlock:
647 return error;
648 }
649
650 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
651 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
652 static loff_t udf_check_vsd(struct super_block *sb)
653 {
654 struct volStructDesc *vsd = NULL;
655 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
656 int sectorsize;
657 struct buffer_head *bh = NULL;
658 int nsr02 = 0;
659 int nsr03 = 0;
660 struct udf_sb_info *sbi;
661
662 sbi = UDF_SB(sb);
663 if (sb->s_blocksize < sizeof(struct volStructDesc))
664 sectorsize = sizeof(struct volStructDesc);
665 else
666 sectorsize = sb->s_blocksize;
667
668 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
669
670 udf_debug("Starting at sector %u (%lu byte sectors)\n",
671 (unsigned int)(sector >> sb->s_blocksize_bits),
672 sb->s_blocksize);
673 /* Process the sequence (if applicable). The hard limit on the sector
674 * offset is arbitrary, hopefully large enough so that all valid UDF
675 * filesystems will be recognised. There is no mention of an upper
676 * bound to the size of the volume recognition area in the standard.
677 * The limit will prevent the code to read all the sectors of a
678 * specially crafted image (like a bluray disc full of CD001 sectors),
679 * potentially causing minutes or even hours of uninterruptible I/O
680 * activity. This actually happened with uninitialised SSD partitions
681 * (all 0xFF) before the check for the limit and all valid IDs were
682 * added */
683 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
684 sector += sectorsize) {
685 /* Read a block */
686 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
687 if (!bh)
688 break;
689
690 /* Look for ISO descriptors */
691 vsd = (struct volStructDesc *)(bh->b_data +
692 (sector & (sb->s_blocksize - 1)));
693
694 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
695 VSD_STD_ID_LEN)) {
696 switch (vsd->structType) {
697 case 0:
698 udf_debug("ISO9660 Boot Record found\n");
699 break;
700 case 1:
701 udf_debug("ISO9660 Primary Volume Descriptor found\n");
702 break;
703 case 2:
704 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
705 break;
706 case 3:
707 udf_debug("ISO9660 Volume Partition Descriptor found\n");
708 break;
709 case 255:
710 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
711 break;
712 default:
713 udf_debug("ISO9660 VRS (%u) found\n",
714 vsd->structType);
715 break;
716 }
717 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
718 VSD_STD_ID_LEN))
719 ; /* nothing */
720 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
721 VSD_STD_ID_LEN)) {
722 brelse(bh);
723 break;
724 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
725 VSD_STD_ID_LEN))
726 nsr02 = sector;
727 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
728 VSD_STD_ID_LEN))
729 nsr03 = sector;
730 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
731 VSD_STD_ID_LEN))
732 ; /* nothing */
733 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
734 VSD_STD_ID_LEN))
735 ; /* nothing */
736 else {
737 /* invalid id : end of volume recognition area */
738 brelse(bh);
739 break;
740 }
741 brelse(bh);
742 }
743
744 if (nsr03)
745 return nsr03;
746 else if (nsr02)
747 return nsr02;
748 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
749 VSD_FIRST_SECTOR_OFFSET)
750 return -1;
751 else
752 return 0;
753 }
754
755 static int udf_find_fileset(struct super_block *sb,
756 struct kernel_lb_addr *fileset,
757 struct kernel_lb_addr *root)
758 {
759 struct buffer_head *bh = NULL;
760 uint16_t ident;
761
762 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
763 fileset->partitionReferenceNum != 0xFFFF) {
764 bh = udf_read_ptagged(sb, fileset, 0, &ident);
765
766 if (!bh) {
767 return 1;
768 } else if (ident != TAG_IDENT_FSD) {
769 brelse(bh);
770 return 1;
771 }
772
773 udf_debug("Fileset at block=%u, partition=%u\n",
774 fileset->logicalBlockNum,
775 fileset->partitionReferenceNum);
776
777 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
778 udf_load_fileset(sb, bh, root);
779 brelse(bh);
780 return 0;
781 }
782 return 1;
783 }
784
785 /*
786 * Load primary Volume Descriptor Sequence
787 *
788 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
789 * should be tried.
790 */
791 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
792 {
793 struct primaryVolDesc *pvoldesc;
794 uint8_t *outstr;
795 struct buffer_head *bh;
796 uint16_t ident;
797 int ret = -ENOMEM;
798 #ifdef UDFFS_DEBUG
799 struct timestamp *ts;
800 #endif
801
802 outstr = kmalloc(128, GFP_NOFS);
803 if (!outstr)
804 return -ENOMEM;
805
806 bh = udf_read_tagged(sb, block, block, &ident);
807 if (!bh) {
808 ret = -EAGAIN;
809 goto out2;
810 }
811
812 if (ident != TAG_IDENT_PVD) {
813 ret = -EIO;
814 goto out_bh;
815 }
816
817 pvoldesc = (struct primaryVolDesc *)bh->b_data;
818
819 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
820 pvoldesc->recordingDateAndTime);
821 #ifdef UDFFS_DEBUG
822 ts = &pvoldesc->recordingDateAndTime;
823 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
824 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
825 ts->minute, le16_to_cpu(ts->typeAndTimezone));
826 #endif
827
828
829 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
830 if (ret < 0) {
831 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
832 pr_warn("incorrect volume identification, setting to "
833 "'InvalidName'\n");
834 } else {
835 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
836 }
837 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
838
839 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
840 if (ret < 0) {
841 ret = 0;
842 goto out_bh;
843 }
844 outstr[ret] = 0;
845 udf_debug("volSetIdent[] = '%s'\n", outstr);
846
847 ret = 0;
848 out_bh:
849 brelse(bh);
850 out2:
851 kfree(outstr);
852 return ret;
853 }
854
855 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
856 u32 meta_file_loc, u32 partition_ref)
857 {
858 struct kernel_lb_addr addr;
859 struct inode *metadata_fe;
860
861 addr.logicalBlockNum = meta_file_loc;
862 addr.partitionReferenceNum = partition_ref;
863
864 metadata_fe = udf_iget_special(sb, &addr);
865
866 if (IS_ERR(metadata_fe)) {
867 udf_warn(sb, "metadata inode efe not found\n");
868 return metadata_fe;
869 }
870 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
871 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
872 iput(metadata_fe);
873 return ERR_PTR(-EIO);
874 }
875
876 return metadata_fe;
877 }
878
879 static int udf_load_metadata_files(struct super_block *sb, int partition,
880 int type1_index)
881 {
882 struct udf_sb_info *sbi = UDF_SB(sb);
883 struct udf_part_map *map;
884 struct udf_meta_data *mdata;
885 struct kernel_lb_addr addr;
886 struct inode *fe;
887
888 map = &sbi->s_partmaps[partition];
889 mdata = &map->s_type_specific.s_metadata;
890 mdata->s_phys_partition_ref = type1_index;
891
892 /* metadata address */
893 udf_debug("Metadata file location: block = %u part = %u\n",
894 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
895
896 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
897 mdata->s_phys_partition_ref);
898 if (IS_ERR(fe)) {
899 /* mirror file entry */
900 udf_debug("Mirror metadata file location: block = %u part = %u\n",
901 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
902
903 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
904 mdata->s_phys_partition_ref);
905
906 if (IS_ERR(fe)) {
907 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
908 return PTR_ERR(fe);
909 }
910 mdata->s_mirror_fe = fe;
911 } else
912 mdata->s_metadata_fe = fe;
913
914
915 /*
916 * bitmap file entry
917 * Note:
918 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
919 */
920 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
921 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
922 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
923
924 udf_debug("Bitmap file location: block = %u part = %u\n",
925 addr.logicalBlockNum, addr.partitionReferenceNum);
926
927 fe = udf_iget_special(sb, &addr);
928 if (IS_ERR(fe)) {
929 if (sb_rdonly(sb))
930 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
931 else {
932 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
933 return PTR_ERR(fe);
934 }
935 } else
936 mdata->s_bitmap_fe = fe;
937 }
938
939 udf_debug("udf_load_metadata_files Ok\n");
940 return 0;
941 }
942
943 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
944 struct kernel_lb_addr *root)
945 {
946 struct fileSetDesc *fset;
947
948 fset = (struct fileSetDesc *)bh->b_data;
949
950 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
951
952 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
953
954 udf_debug("Rootdir at block=%u, partition=%u\n",
955 root->logicalBlockNum, root->partitionReferenceNum);
956 }
957
958 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
959 {
960 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
961 return DIV_ROUND_UP(map->s_partition_len +
962 (sizeof(struct spaceBitmapDesc) << 3),
963 sb->s_blocksize * 8);
964 }
965
966 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
967 {
968 struct udf_bitmap *bitmap;
969 int nr_groups;
970 int size;
971
972 nr_groups = udf_compute_nr_groups(sb, index);
973 size = sizeof(struct udf_bitmap) +
974 (sizeof(struct buffer_head *) * nr_groups);
975
976 if (size <= PAGE_SIZE)
977 bitmap = kzalloc(size, GFP_KERNEL);
978 else
979 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
980
981 if (!bitmap)
982 return NULL;
983
984 bitmap->s_nr_groups = nr_groups;
985 return bitmap;
986 }
987
988 static int check_partition_desc(struct super_block *sb,
989 struct partitionDesc *p,
990 struct udf_part_map *map)
991 {
992 bool umap, utable, fmap, ftable;
993 struct partitionHeaderDesc *phd;
994
995 switch (le32_to_cpu(p->accessType)) {
996 case PD_ACCESS_TYPE_READ_ONLY:
997 case PD_ACCESS_TYPE_WRITE_ONCE:
998 case PD_ACCESS_TYPE_REWRITABLE:
999 case PD_ACCESS_TYPE_NONE:
1000 goto force_ro;
1001 }
1002
1003 /* No Partition Header Descriptor? */
1004 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1005 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1006 goto force_ro;
1007
1008 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1009 utable = phd->unallocSpaceTable.extLength;
1010 umap = phd->unallocSpaceBitmap.extLength;
1011 ftable = phd->freedSpaceTable.extLength;
1012 fmap = phd->freedSpaceBitmap.extLength;
1013
1014 /* No allocation info? */
1015 if (!utable && !umap && !ftable && !fmap)
1016 goto force_ro;
1017
1018 /* We don't support blocks that require erasing before overwrite */
1019 if (ftable || fmap)
1020 goto force_ro;
1021 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1022 if (utable && umap)
1023 goto force_ro;
1024
1025 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1026 map->s_partition_type == UDF_VIRTUAL_MAP20)
1027 goto force_ro;
1028
1029 return 0;
1030 force_ro:
1031 if (!sb_rdonly(sb))
1032 return -EACCES;
1033 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1034 return 0;
1035 }
1036
1037 static int udf_fill_partdesc_info(struct super_block *sb,
1038 struct partitionDesc *p, int p_index)
1039 {
1040 struct udf_part_map *map;
1041 struct udf_sb_info *sbi = UDF_SB(sb);
1042 struct partitionHeaderDesc *phd;
1043 int err;
1044
1045 map = &sbi->s_partmaps[p_index];
1046
1047 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1048 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1049
1050 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1051 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1052 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1053 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1054 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1055 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1056 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1057 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1058
1059 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1060 p_index, map->s_partition_type,
1061 map->s_partition_root, map->s_partition_len);
1062
1063 err = check_partition_desc(sb, p, map);
1064 if (err)
1065 return err;
1066
1067 /*
1068 * Skip loading allocation info it we cannot ever write to the fs.
1069 * This is a correctness thing as we may have decided to force ro mount
1070 * to avoid allocation info we don't support.
1071 */
1072 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1073 return 0;
1074
1075 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1076 if (phd->unallocSpaceTable.extLength) {
1077 struct kernel_lb_addr loc = {
1078 .logicalBlockNum = le32_to_cpu(
1079 phd->unallocSpaceTable.extPosition),
1080 .partitionReferenceNum = p_index,
1081 };
1082 struct inode *inode;
1083
1084 inode = udf_iget_special(sb, &loc);
1085 if (IS_ERR(inode)) {
1086 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1087 p_index);
1088 return PTR_ERR(inode);
1089 }
1090 map->s_uspace.s_table = inode;
1091 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1092 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1093 p_index, map->s_uspace.s_table->i_ino);
1094 }
1095
1096 if (phd->unallocSpaceBitmap.extLength) {
1097 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1098 if (!bitmap)
1099 return -ENOMEM;
1100 map->s_uspace.s_bitmap = bitmap;
1101 bitmap->s_extPosition = le32_to_cpu(
1102 phd->unallocSpaceBitmap.extPosition);
1103 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1104 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1105 p_index, bitmap->s_extPosition);
1106 }
1107
1108 return 0;
1109 }
1110
1111 static void udf_find_vat_block(struct super_block *sb, int p_index,
1112 int type1_index, sector_t start_block)
1113 {
1114 struct udf_sb_info *sbi = UDF_SB(sb);
1115 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1116 sector_t vat_block;
1117 struct kernel_lb_addr ino;
1118 struct inode *inode;
1119
1120 /*
1121 * VAT file entry is in the last recorded block. Some broken disks have
1122 * it a few blocks before so try a bit harder...
1123 */
1124 ino.partitionReferenceNum = type1_index;
1125 for (vat_block = start_block;
1126 vat_block >= map->s_partition_root &&
1127 vat_block >= start_block - 3; vat_block--) {
1128 ino.logicalBlockNum = vat_block - map->s_partition_root;
1129 inode = udf_iget_special(sb, &ino);
1130 if (!IS_ERR(inode)) {
1131 sbi->s_vat_inode = inode;
1132 break;
1133 }
1134 }
1135 }
1136
1137 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1138 {
1139 struct udf_sb_info *sbi = UDF_SB(sb);
1140 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1141 struct buffer_head *bh = NULL;
1142 struct udf_inode_info *vati;
1143 uint32_t pos;
1144 struct virtualAllocationTable20 *vat20;
1145 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1146 sb->s_blocksize_bits;
1147
1148 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1149 if (!sbi->s_vat_inode &&
1150 sbi->s_last_block != blocks - 1) {
1151 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1152 (unsigned long)sbi->s_last_block,
1153 (unsigned long)blocks - 1);
1154 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1155 }
1156 if (!sbi->s_vat_inode)
1157 return -EIO;
1158
1159 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1160 map->s_type_specific.s_virtual.s_start_offset = 0;
1161 map->s_type_specific.s_virtual.s_num_entries =
1162 (sbi->s_vat_inode->i_size - 36) >> 2;
1163 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1164 vati = UDF_I(sbi->s_vat_inode);
1165 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1166 pos = udf_block_map(sbi->s_vat_inode, 0);
1167 bh = sb_bread(sb, pos);
1168 if (!bh)
1169 return -EIO;
1170 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1171 } else {
1172 vat20 = (struct virtualAllocationTable20 *)
1173 vati->i_ext.i_data;
1174 }
1175
1176 map->s_type_specific.s_virtual.s_start_offset =
1177 le16_to_cpu(vat20->lengthHeader);
1178 map->s_type_specific.s_virtual.s_num_entries =
1179 (sbi->s_vat_inode->i_size -
1180 map->s_type_specific.s_virtual.
1181 s_start_offset) >> 2;
1182 brelse(bh);
1183 }
1184 return 0;
1185 }
1186
1187 /*
1188 * Load partition descriptor block
1189 *
1190 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1191 * sequence.
1192 */
1193 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1194 {
1195 struct buffer_head *bh;
1196 struct partitionDesc *p;
1197 struct udf_part_map *map;
1198 struct udf_sb_info *sbi = UDF_SB(sb);
1199 int i, type1_idx;
1200 uint16_t partitionNumber;
1201 uint16_t ident;
1202 int ret;
1203
1204 bh = udf_read_tagged(sb, block, block, &ident);
1205 if (!bh)
1206 return -EAGAIN;
1207 if (ident != TAG_IDENT_PD) {
1208 ret = 0;
1209 goto out_bh;
1210 }
1211
1212 p = (struct partitionDesc *)bh->b_data;
1213 partitionNumber = le16_to_cpu(p->partitionNumber);
1214
1215 /* First scan for TYPE1 and SPARABLE partitions */
1216 for (i = 0; i < sbi->s_partitions; i++) {
1217 map = &sbi->s_partmaps[i];
1218 udf_debug("Searching map: (%u == %u)\n",
1219 map->s_partition_num, partitionNumber);
1220 if (map->s_partition_num == partitionNumber &&
1221 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1222 map->s_partition_type == UDF_SPARABLE_MAP15))
1223 break;
1224 }
1225
1226 if (i >= sbi->s_partitions) {
1227 udf_debug("Partition (%u) not found in partition map\n",
1228 partitionNumber);
1229 ret = 0;
1230 goto out_bh;
1231 }
1232
1233 ret = udf_fill_partdesc_info(sb, p, i);
1234 if (ret < 0)
1235 goto out_bh;
1236
1237 /*
1238 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1239 * PHYSICAL partitions are already set up
1240 */
1241 type1_idx = i;
1242 #ifdef UDFFS_DEBUG
1243 map = NULL; /* supress 'maybe used uninitialized' warning */
1244 #endif
1245 for (i = 0; i < sbi->s_partitions; i++) {
1246 map = &sbi->s_partmaps[i];
1247
1248 if (map->s_partition_num == partitionNumber &&
1249 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1250 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1251 map->s_partition_type == UDF_METADATA_MAP25))
1252 break;
1253 }
1254
1255 if (i >= sbi->s_partitions) {
1256 ret = 0;
1257 goto out_bh;
1258 }
1259
1260 ret = udf_fill_partdesc_info(sb, p, i);
1261 if (ret < 0)
1262 goto out_bh;
1263
1264 if (map->s_partition_type == UDF_METADATA_MAP25) {
1265 ret = udf_load_metadata_files(sb, i, type1_idx);
1266 if (ret < 0) {
1267 udf_err(sb, "error loading MetaData partition map %d\n",
1268 i);
1269 goto out_bh;
1270 }
1271 } else {
1272 /*
1273 * If we have a partition with virtual map, we don't handle
1274 * writing to it (we overwrite blocks instead of relocating
1275 * them).
1276 */
1277 if (!sb_rdonly(sb)) {
1278 ret = -EACCES;
1279 goto out_bh;
1280 }
1281 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1282 ret = udf_load_vat(sb, i, type1_idx);
1283 if (ret < 0)
1284 goto out_bh;
1285 }
1286 ret = 0;
1287 out_bh:
1288 /* In case loading failed, we handle cleanup in udf_fill_super */
1289 brelse(bh);
1290 return ret;
1291 }
1292
1293 static int udf_load_sparable_map(struct super_block *sb,
1294 struct udf_part_map *map,
1295 struct sparablePartitionMap *spm)
1296 {
1297 uint32_t loc;
1298 uint16_t ident;
1299 struct sparingTable *st;
1300 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1301 int i;
1302 struct buffer_head *bh;
1303
1304 map->s_partition_type = UDF_SPARABLE_MAP15;
1305 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1306 if (!is_power_of_2(sdata->s_packet_len)) {
1307 udf_err(sb, "error loading logical volume descriptor: "
1308 "Invalid packet length %u\n",
1309 (unsigned)sdata->s_packet_len);
1310 return -EIO;
1311 }
1312 if (spm->numSparingTables > 4) {
1313 udf_err(sb, "error loading logical volume descriptor: "
1314 "Too many sparing tables (%d)\n",
1315 (int)spm->numSparingTables);
1316 return -EIO;
1317 }
1318
1319 for (i = 0; i < spm->numSparingTables; i++) {
1320 loc = le32_to_cpu(spm->locSparingTable[i]);
1321 bh = udf_read_tagged(sb, loc, loc, &ident);
1322 if (!bh)
1323 continue;
1324
1325 st = (struct sparingTable *)bh->b_data;
1326 if (ident != 0 ||
1327 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1328 strlen(UDF_ID_SPARING)) ||
1329 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1330 sb->s_blocksize) {
1331 brelse(bh);
1332 continue;
1333 }
1334
1335 sdata->s_spar_map[i] = bh;
1336 }
1337 map->s_partition_func = udf_get_pblock_spar15;
1338 return 0;
1339 }
1340
1341 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1342 struct kernel_lb_addr *fileset)
1343 {
1344 struct logicalVolDesc *lvd;
1345 int i, offset;
1346 uint8_t type;
1347 struct udf_sb_info *sbi = UDF_SB(sb);
1348 struct genericPartitionMap *gpm;
1349 uint16_t ident;
1350 struct buffer_head *bh;
1351 unsigned int table_len;
1352 int ret;
1353
1354 bh = udf_read_tagged(sb, block, block, &ident);
1355 if (!bh)
1356 return -EAGAIN;
1357 BUG_ON(ident != TAG_IDENT_LVD);
1358 lvd = (struct logicalVolDesc *)bh->b_data;
1359 table_len = le32_to_cpu(lvd->mapTableLength);
1360 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1361 udf_err(sb, "error loading logical volume descriptor: "
1362 "Partition table too long (%u > %lu)\n", table_len,
1363 sb->s_blocksize - sizeof(*lvd));
1364 ret = -EIO;
1365 goto out_bh;
1366 }
1367
1368 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1369 if (ret)
1370 goto out_bh;
1371
1372 for (i = 0, offset = 0;
1373 i < sbi->s_partitions && offset < table_len;
1374 i++, offset += gpm->partitionMapLength) {
1375 struct udf_part_map *map = &sbi->s_partmaps[i];
1376 gpm = (struct genericPartitionMap *)
1377 &(lvd->partitionMaps[offset]);
1378 type = gpm->partitionMapType;
1379 if (type == 1) {
1380 struct genericPartitionMap1 *gpm1 =
1381 (struct genericPartitionMap1 *)gpm;
1382 map->s_partition_type = UDF_TYPE1_MAP15;
1383 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1384 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1385 map->s_partition_func = NULL;
1386 } else if (type == 2) {
1387 struct udfPartitionMap2 *upm2 =
1388 (struct udfPartitionMap2 *)gpm;
1389 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1390 strlen(UDF_ID_VIRTUAL))) {
1391 u16 suf =
1392 le16_to_cpu(((__le16 *)upm2->partIdent.
1393 identSuffix)[0]);
1394 if (suf < 0x0200) {
1395 map->s_partition_type =
1396 UDF_VIRTUAL_MAP15;
1397 map->s_partition_func =
1398 udf_get_pblock_virt15;
1399 } else {
1400 map->s_partition_type =
1401 UDF_VIRTUAL_MAP20;
1402 map->s_partition_func =
1403 udf_get_pblock_virt20;
1404 }
1405 } else if (!strncmp(upm2->partIdent.ident,
1406 UDF_ID_SPARABLE,
1407 strlen(UDF_ID_SPARABLE))) {
1408 ret = udf_load_sparable_map(sb, map,
1409 (struct sparablePartitionMap *)gpm);
1410 if (ret < 0)
1411 goto out_bh;
1412 } else if (!strncmp(upm2->partIdent.ident,
1413 UDF_ID_METADATA,
1414 strlen(UDF_ID_METADATA))) {
1415 struct udf_meta_data *mdata =
1416 &map->s_type_specific.s_metadata;
1417 struct metadataPartitionMap *mdm =
1418 (struct metadataPartitionMap *)
1419 &(lvd->partitionMaps[offset]);
1420 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1421 i, type, UDF_ID_METADATA);
1422
1423 map->s_partition_type = UDF_METADATA_MAP25;
1424 map->s_partition_func = udf_get_pblock_meta25;
1425
1426 mdata->s_meta_file_loc =
1427 le32_to_cpu(mdm->metadataFileLoc);
1428 mdata->s_mirror_file_loc =
1429 le32_to_cpu(mdm->metadataMirrorFileLoc);
1430 mdata->s_bitmap_file_loc =
1431 le32_to_cpu(mdm->metadataBitmapFileLoc);
1432 mdata->s_alloc_unit_size =
1433 le32_to_cpu(mdm->allocUnitSize);
1434 mdata->s_align_unit_size =
1435 le16_to_cpu(mdm->alignUnitSize);
1436 if (mdm->flags & 0x01)
1437 mdata->s_flags |= MF_DUPLICATE_MD;
1438
1439 udf_debug("Metadata Ident suffix=0x%x\n",
1440 le16_to_cpu(*(__le16 *)
1441 mdm->partIdent.identSuffix));
1442 udf_debug("Metadata part num=%u\n",
1443 le16_to_cpu(mdm->partitionNum));
1444 udf_debug("Metadata part alloc unit size=%u\n",
1445 le32_to_cpu(mdm->allocUnitSize));
1446 udf_debug("Metadata file loc=%u\n",
1447 le32_to_cpu(mdm->metadataFileLoc));
1448 udf_debug("Mirror file loc=%u\n",
1449 le32_to_cpu(mdm->metadataMirrorFileLoc));
1450 udf_debug("Bitmap file loc=%u\n",
1451 le32_to_cpu(mdm->metadataBitmapFileLoc));
1452 udf_debug("Flags: %d %u\n",
1453 mdata->s_flags, mdm->flags);
1454 } else {
1455 udf_debug("Unknown ident: %s\n",
1456 upm2->partIdent.ident);
1457 continue;
1458 }
1459 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1460 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1461 }
1462 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1463 i, map->s_partition_num, type, map->s_volumeseqnum);
1464 }
1465
1466 if (fileset) {
1467 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1468
1469 *fileset = lelb_to_cpu(la->extLocation);
1470 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1471 fileset->logicalBlockNum,
1472 fileset->partitionReferenceNum);
1473 }
1474 if (lvd->integritySeqExt.extLength)
1475 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1476 ret = 0;
1477 out_bh:
1478 brelse(bh);
1479 return ret;
1480 }
1481
1482 /*
1483 * Find the prevailing Logical Volume Integrity Descriptor.
1484 */
1485 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1486 {
1487 struct buffer_head *bh, *final_bh;
1488 uint16_t ident;
1489 struct udf_sb_info *sbi = UDF_SB(sb);
1490 struct logicalVolIntegrityDesc *lvid;
1491 int indirections = 0;
1492
1493 while (++indirections <= UDF_MAX_LVID_NESTING) {
1494 final_bh = NULL;
1495 while (loc.extLength > 0 &&
1496 (bh = udf_read_tagged(sb, loc.extLocation,
1497 loc.extLocation, &ident))) {
1498 if (ident != TAG_IDENT_LVID) {
1499 brelse(bh);
1500 break;
1501 }
1502
1503 brelse(final_bh);
1504 final_bh = bh;
1505
1506 loc.extLength -= sb->s_blocksize;
1507 loc.extLocation++;
1508 }
1509
1510 if (!final_bh)
1511 return;
1512
1513 brelse(sbi->s_lvid_bh);
1514 sbi->s_lvid_bh = final_bh;
1515
1516 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1517 if (lvid->nextIntegrityExt.extLength == 0)
1518 return;
1519
1520 loc = leea_to_cpu(lvid->nextIntegrityExt);
1521 }
1522
1523 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1524 UDF_MAX_LVID_NESTING);
1525 brelse(sbi->s_lvid_bh);
1526 sbi->s_lvid_bh = NULL;
1527 }
1528
1529 /*
1530 * Step for reallocation of table of partition descriptor sequence numbers.
1531 * Must be power of 2.
1532 */
1533 #define PART_DESC_ALLOC_STEP 32
1534
1535 struct part_desc_seq_scan_data {
1536 struct udf_vds_record rec;
1537 u32 partnum;
1538 };
1539
1540 struct desc_seq_scan_data {
1541 struct udf_vds_record vds[VDS_POS_LENGTH];
1542 unsigned int size_part_descs;
1543 unsigned int num_part_descs;
1544 struct part_desc_seq_scan_data *part_descs_loc;
1545 };
1546
1547 static struct udf_vds_record *handle_partition_descriptor(
1548 struct buffer_head *bh,
1549 struct desc_seq_scan_data *data)
1550 {
1551 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1552 int partnum;
1553 int i;
1554
1555 partnum = le16_to_cpu(desc->partitionNumber);
1556 for (i = 0; i < data->num_part_descs; i++)
1557 if (partnum == data->part_descs_loc[i].partnum)
1558 return &(data->part_descs_loc[i].rec);
1559 if (data->num_part_descs >= data->size_part_descs) {
1560 struct part_desc_seq_scan_data *new_loc;
1561 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1562
1563 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1564 if (!new_loc)
1565 return ERR_PTR(-ENOMEM);
1566 memcpy(new_loc, data->part_descs_loc,
1567 data->size_part_descs * sizeof(*new_loc));
1568 kfree(data->part_descs_loc);
1569 data->part_descs_loc = new_loc;
1570 data->size_part_descs = new_size;
1571 }
1572 return &(data->part_descs_loc[data->num_part_descs++].rec);
1573 }
1574
1575
1576 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1577 struct buffer_head *bh, struct desc_seq_scan_data *data)
1578 {
1579 switch (ident) {
1580 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1581 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1582 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1583 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1584 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1585 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1586 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1587 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1588 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1589 return handle_partition_descriptor(bh, data);
1590 }
1591 return NULL;
1592 }
1593
1594 /*
1595 * Process a main/reserve volume descriptor sequence.
1596 * @block First block of first extent of the sequence.
1597 * @lastblock Lastblock of first extent of the sequence.
1598 * @fileset There we store extent containing root fileset
1599 *
1600 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1601 * sequence
1602 */
1603 static noinline int udf_process_sequence(
1604 struct super_block *sb,
1605 sector_t block, sector_t lastblock,
1606 struct kernel_lb_addr *fileset)
1607 {
1608 struct buffer_head *bh = NULL;
1609 struct udf_vds_record *curr;
1610 struct generic_desc *gd;
1611 struct volDescPtr *vdp;
1612 bool done = false;
1613 uint32_t vdsn;
1614 uint16_t ident;
1615 int ret;
1616 unsigned int indirections = 0;
1617 struct desc_seq_scan_data data;
1618 unsigned int i;
1619
1620 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1621 data.size_part_descs = PART_DESC_ALLOC_STEP;
1622 data.num_part_descs = 0;
1623 data.part_descs_loc = kcalloc(data.size_part_descs,
1624 sizeof(*data.part_descs_loc),
1625 GFP_KERNEL);
1626 if (!data.part_descs_loc)
1627 return -ENOMEM;
1628
1629 /*
1630 * Read the main descriptor sequence and find which descriptors
1631 * are in it.
1632 */
1633 for (; (!done && block <= lastblock); block++) {
1634 bh = udf_read_tagged(sb, block, block, &ident);
1635 if (!bh)
1636 break;
1637
1638 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1639 gd = (struct generic_desc *)bh->b_data;
1640 vdsn = le32_to_cpu(gd->volDescSeqNum);
1641 switch (ident) {
1642 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1643 if (++indirections > UDF_MAX_TD_NESTING) {
1644 udf_err(sb, "too many Volume Descriptor "
1645 "Pointers (max %u supported)\n",
1646 UDF_MAX_TD_NESTING);
1647 brelse(bh);
1648 return -EIO;
1649 }
1650
1651 vdp = (struct volDescPtr *)bh->b_data;
1652 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1653 lastblock = le32_to_cpu(
1654 vdp->nextVolDescSeqExt.extLength) >>
1655 sb->s_blocksize_bits;
1656 lastblock += block - 1;
1657 /* For loop is going to increment 'block' again */
1658 block--;
1659 break;
1660 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1661 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1662 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1663 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1664 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1665 curr = get_volume_descriptor_record(ident, bh, &data);
1666 if (IS_ERR(curr)) {
1667 brelse(bh);
1668 return PTR_ERR(curr);
1669 }
1670 /* Descriptor we don't care about? */
1671 if (!curr)
1672 break;
1673 if (vdsn >= curr->volDescSeqNum) {
1674 curr->volDescSeqNum = vdsn;
1675 curr->block = block;
1676 }
1677 break;
1678 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1679 done = true;
1680 break;
1681 }
1682 brelse(bh);
1683 }
1684 /*
1685 * Now read interesting descriptors again and process them
1686 * in a suitable order
1687 */
1688 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1689 udf_err(sb, "Primary Volume Descriptor not found!\n");
1690 return -EAGAIN;
1691 }
1692 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1693 if (ret < 0)
1694 return ret;
1695
1696 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1697 ret = udf_load_logicalvol(sb,
1698 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1699 fileset);
1700 if (ret < 0)
1701 return ret;
1702 }
1703
1704 /* Now handle prevailing Partition Descriptors */
1705 for (i = 0; i < data.num_part_descs; i++) {
1706 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1707 if (ret < 0)
1708 return ret;
1709 }
1710
1711 return 0;
1712 }
1713
1714 /*
1715 * Load Volume Descriptor Sequence described by anchor in bh
1716 *
1717 * Returns <0 on error, 0 on success
1718 */
1719 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1720 struct kernel_lb_addr *fileset)
1721 {
1722 struct anchorVolDescPtr *anchor;
1723 sector_t main_s, main_e, reserve_s, reserve_e;
1724 int ret;
1725
1726 anchor = (struct anchorVolDescPtr *)bh->b_data;
1727
1728 /* Locate the main sequence */
1729 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1730 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1731 main_e = main_e >> sb->s_blocksize_bits;
1732 main_e += main_s - 1;
1733
1734 /* Locate the reserve sequence */
1735 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1736 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1737 reserve_e = reserve_e >> sb->s_blocksize_bits;
1738 reserve_e += reserve_s - 1;
1739
1740 /* Process the main & reserve sequences */
1741 /* responsible for finding the PartitionDesc(s) */
1742 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1743 if (ret != -EAGAIN)
1744 return ret;
1745 udf_sb_free_partitions(sb);
1746 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1747 if (ret < 0) {
1748 udf_sb_free_partitions(sb);
1749 /* No sequence was OK, return -EIO */
1750 if (ret == -EAGAIN)
1751 ret = -EIO;
1752 }
1753 return ret;
1754 }
1755
1756 /*
1757 * Check whether there is an anchor block in the given block and
1758 * load Volume Descriptor Sequence if so.
1759 *
1760 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1761 * block
1762 */
1763 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1764 struct kernel_lb_addr *fileset)
1765 {
1766 struct buffer_head *bh;
1767 uint16_t ident;
1768 int ret;
1769
1770 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1771 udf_fixed_to_variable(block) >=
1772 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1773 return -EAGAIN;
1774
1775 bh = udf_read_tagged(sb, block, block, &ident);
1776 if (!bh)
1777 return -EAGAIN;
1778 if (ident != TAG_IDENT_AVDP) {
1779 brelse(bh);
1780 return -EAGAIN;
1781 }
1782 ret = udf_load_sequence(sb, bh, fileset);
1783 brelse(bh);
1784 return ret;
1785 }
1786
1787 /*
1788 * Search for an anchor volume descriptor pointer.
1789 *
1790 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1791 * of anchors.
1792 */
1793 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1794 struct kernel_lb_addr *fileset)
1795 {
1796 sector_t last[6];
1797 int i;
1798 struct udf_sb_info *sbi = UDF_SB(sb);
1799 int last_count = 0;
1800 int ret;
1801
1802 /* First try user provided anchor */
1803 if (sbi->s_anchor) {
1804 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1805 if (ret != -EAGAIN)
1806 return ret;
1807 }
1808 /*
1809 * according to spec, anchor is in either:
1810 * block 256
1811 * lastblock-256
1812 * lastblock
1813 * however, if the disc isn't closed, it could be 512.
1814 */
1815 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1816 if (ret != -EAGAIN)
1817 return ret;
1818 /*
1819 * The trouble is which block is the last one. Drives often misreport
1820 * this so we try various possibilities.
1821 */
1822 last[last_count++] = *lastblock;
1823 if (*lastblock >= 1)
1824 last[last_count++] = *lastblock - 1;
1825 last[last_count++] = *lastblock + 1;
1826 if (*lastblock >= 2)
1827 last[last_count++] = *lastblock - 2;
1828 if (*lastblock >= 150)
1829 last[last_count++] = *lastblock - 150;
1830 if (*lastblock >= 152)
1831 last[last_count++] = *lastblock - 152;
1832
1833 for (i = 0; i < last_count; i++) {
1834 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1835 sb->s_blocksize_bits)
1836 continue;
1837 ret = udf_check_anchor_block(sb, last[i], fileset);
1838 if (ret != -EAGAIN) {
1839 if (!ret)
1840 *lastblock = last[i];
1841 return ret;
1842 }
1843 if (last[i] < 256)
1844 continue;
1845 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1846 if (ret != -EAGAIN) {
1847 if (!ret)
1848 *lastblock = last[i];
1849 return ret;
1850 }
1851 }
1852
1853 /* Finally try block 512 in case media is open */
1854 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1855 }
1856
1857 /*
1858 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1859 * area specified by it. The function expects sbi->s_lastblock to be the last
1860 * block on the media.
1861 *
1862 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1863 * was not found.
1864 */
1865 static int udf_find_anchor(struct super_block *sb,
1866 struct kernel_lb_addr *fileset)
1867 {
1868 struct udf_sb_info *sbi = UDF_SB(sb);
1869 sector_t lastblock = sbi->s_last_block;
1870 int ret;
1871
1872 ret = udf_scan_anchors(sb, &lastblock, fileset);
1873 if (ret != -EAGAIN)
1874 goto out;
1875
1876 /* No anchor found? Try VARCONV conversion of block numbers */
1877 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1878 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1879 /* Firstly, we try to not convert number of the last block */
1880 ret = udf_scan_anchors(sb, &lastblock, fileset);
1881 if (ret != -EAGAIN)
1882 goto out;
1883
1884 lastblock = sbi->s_last_block;
1885 /* Secondly, we try with converted number of the last block */
1886 ret = udf_scan_anchors(sb, &lastblock, fileset);
1887 if (ret < 0) {
1888 /* VARCONV didn't help. Clear it. */
1889 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1890 }
1891 out:
1892 if (ret == 0)
1893 sbi->s_last_block = lastblock;
1894 return ret;
1895 }
1896
1897 /*
1898 * Check Volume Structure Descriptor, find Anchor block and load Volume
1899 * Descriptor Sequence.
1900 *
1901 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1902 * block was not found.
1903 */
1904 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1905 int silent, struct kernel_lb_addr *fileset)
1906 {
1907 struct udf_sb_info *sbi = UDF_SB(sb);
1908 loff_t nsr_off;
1909 int ret;
1910
1911 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1912 if (!silent)
1913 udf_warn(sb, "Bad block size\n");
1914 return -EINVAL;
1915 }
1916 sbi->s_last_block = uopt->lastblock;
1917 if (!uopt->novrs) {
1918 /* Check that it is NSR02 compliant */
1919 nsr_off = udf_check_vsd(sb);
1920 if (!nsr_off) {
1921 if (!silent)
1922 udf_warn(sb, "No VRS found\n");
1923 return -EINVAL;
1924 }
1925 if (nsr_off == -1)
1926 udf_debug("Failed to read sector at offset %d. "
1927 "Assuming open disc. Skipping validity "
1928 "check\n", VSD_FIRST_SECTOR_OFFSET);
1929 if (!sbi->s_last_block)
1930 sbi->s_last_block = udf_get_last_block(sb);
1931 } else {
1932 udf_debug("Validity check skipped because of novrs option\n");
1933 }
1934
1935 /* Look for anchor block and load Volume Descriptor Sequence */
1936 sbi->s_anchor = uopt->anchor;
1937 ret = udf_find_anchor(sb, fileset);
1938 if (ret < 0) {
1939 if (!silent && ret == -EAGAIN)
1940 udf_warn(sb, "No anchor found\n");
1941 return ret;
1942 }
1943 return 0;
1944 }
1945
1946 static void udf_open_lvid(struct super_block *sb)
1947 {
1948 struct udf_sb_info *sbi = UDF_SB(sb);
1949 struct buffer_head *bh = sbi->s_lvid_bh;
1950 struct logicalVolIntegrityDesc *lvid;
1951 struct logicalVolIntegrityDescImpUse *lvidiu;
1952 struct timespec64 ts;
1953
1954 if (!bh)
1955 return;
1956 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1957 lvidiu = udf_sb_lvidiu(sb);
1958 if (!lvidiu)
1959 return;
1960
1961 mutex_lock(&sbi->s_alloc_mutex);
1962 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1963 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1964 ktime_get_real_ts64(&ts);
1965 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1966 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1967 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1968 else
1969 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
1970
1971 lvid->descTag.descCRC = cpu_to_le16(
1972 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1973 le16_to_cpu(lvid->descTag.descCRCLength)));
1974
1975 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1976 mark_buffer_dirty(bh);
1977 sbi->s_lvid_dirty = 0;
1978 mutex_unlock(&sbi->s_alloc_mutex);
1979 /* Make opening of filesystem visible on the media immediately */
1980 sync_dirty_buffer(bh);
1981 }
1982
1983 static void udf_close_lvid(struct super_block *sb)
1984 {
1985 struct udf_sb_info *sbi = UDF_SB(sb);
1986 struct buffer_head *bh = sbi->s_lvid_bh;
1987 struct logicalVolIntegrityDesc *lvid;
1988 struct logicalVolIntegrityDescImpUse *lvidiu;
1989 struct timespec64 ts;
1990
1991 if (!bh)
1992 return;
1993 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1994 lvidiu = udf_sb_lvidiu(sb);
1995 if (!lvidiu)
1996 return;
1997
1998 mutex_lock(&sbi->s_alloc_mutex);
1999 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2000 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2001 ktime_get_real_ts64(&ts);
2002 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2003 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2004 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2005 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2006 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2007 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2008 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2009 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2010 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2011
2012 lvid->descTag.descCRC = cpu_to_le16(
2013 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2014 le16_to_cpu(lvid->descTag.descCRCLength)));
2015
2016 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2017 /*
2018 * We set buffer uptodate unconditionally here to avoid spurious
2019 * warnings from mark_buffer_dirty() when previous EIO has marked
2020 * the buffer as !uptodate
2021 */
2022 set_buffer_uptodate(bh);
2023 mark_buffer_dirty(bh);
2024 sbi->s_lvid_dirty = 0;
2025 mutex_unlock(&sbi->s_alloc_mutex);
2026 /* Make closing of filesystem visible on the media immediately */
2027 sync_dirty_buffer(bh);
2028 }
2029
2030 u64 lvid_get_unique_id(struct super_block *sb)
2031 {
2032 struct buffer_head *bh;
2033 struct udf_sb_info *sbi = UDF_SB(sb);
2034 struct logicalVolIntegrityDesc *lvid;
2035 struct logicalVolHeaderDesc *lvhd;
2036 u64 uniqueID;
2037 u64 ret;
2038
2039 bh = sbi->s_lvid_bh;
2040 if (!bh)
2041 return 0;
2042
2043 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2044 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2045
2046 mutex_lock(&sbi->s_alloc_mutex);
2047 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2048 if (!(++uniqueID & 0xFFFFFFFF))
2049 uniqueID += 16;
2050 lvhd->uniqueID = cpu_to_le64(uniqueID);
2051 mutex_unlock(&sbi->s_alloc_mutex);
2052 mark_buffer_dirty(bh);
2053
2054 return ret;
2055 }
2056
2057 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2058 {
2059 int ret = -EINVAL;
2060 struct inode *inode = NULL;
2061 struct udf_options uopt;
2062 struct kernel_lb_addr rootdir, fileset;
2063 struct udf_sb_info *sbi;
2064 bool lvid_open = false;
2065
2066 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2067 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2068 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2069 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2070 uopt.umask = 0;
2071 uopt.fmode = UDF_INVALID_MODE;
2072 uopt.dmode = UDF_INVALID_MODE;
2073 uopt.nls_map = NULL;
2074
2075 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2076 if (!sbi)
2077 return -ENOMEM;
2078
2079 sb->s_fs_info = sbi;
2080
2081 mutex_init(&sbi->s_alloc_mutex);
2082
2083 if (!udf_parse_options((char *)options, &uopt, false))
2084 goto parse_options_failure;
2085
2086 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2087 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2088 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2089 goto parse_options_failure;
2090 }
2091 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2092 uopt.nls_map = load_nls_default();
2093 if (!uopt.nls_map)
2094 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2095 else
2096 udf_debug("Using default NLS map\n");
2097 }
2098 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2099 uopt.flags |= (1 << UDF_FLAG_UTF8);
2100
2101 fileset.logicalBlockNum = 0xFFFFFFFF;
2102 fileset.partitionReferenceNum = 0xFFFF;
2103
2104 sbi->s_flags = uopt.flags;
2105 sbi->s_uid = uopt.uid;
2106 sbi->s_gid = uopt.gid;
2107 sbi->s_umask = uopt.umask;
2108 sbi->s_fmode = uopt.fmode;
2109 sbi->s_dmode = uopt.dmode;
2110 sbi->s_nls_map = uopt.nls_map;
2111 rwlock_init(&sbi->s_cred_lock);
2112
2113 if (uopt.session == 0xFFFFFFFF)
2114 sbi->s_session = udf_get_last_session(sb);
2115 else
2116 sbi->s_session = uopt.session;
2117
2118 udf_debug("Multi-session=%d\n", sbi->s_session);
2119
2120 /* Fill in the rest of the superblock */
2121 sb->s_op = &udf_sb_ops;
2122 sb->s_export_op = &udf_export_ops;
2123
2124 sb->s_magic = UDF_SUPER_MAGIC;
2125 sb->s_time_gran = 1000;
2126
2127 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2128 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2129 } else {
2130 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2131 while (uopt.blocksize <= 4096) {
2132 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2133 if (ret < 0) {
2134 if (!silent && ret != -EACCES) {
2135 pr_notice("Scanning with blocksize %u failed\n",
2136 uopt.blocksize);
2137 }
2138 brelse(sbi->s_lvid_bh);
2139 sbi->s_lvid_bh = NULL;
2140 /*
2141 * EACCES is special - we want to propagate to
2142 * upper layers that we cannot handle RW mount.
2143 */
2144 if (ret == -EACCES)
2145 break;
2146 } else
2147 break;
2148
2149 uopt.blocksize <<= 1;
2150 }
2151 }
2152 if (ret < 0) {
2153 if (ret == -EAGAIN) {
2154 udf_warn(sb, "No partition found (1)\n");
2155 ret = -EINVAL;
2156 }
2157 goto error_out;
2158 }
2159
2160 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2161
2162 if (sbi->s_lvid_bh) {
2163 struct logicalVolIntegrityDescImpUse *lvidiu =
2164 udf_sb_lvidiu(sb);
2165 uint16_t minUDFReadRev;
2166 uint16_t minUDFWriteRev;
2167
2168 if (!lvidiu) {
2169 ret = -EINVAL;
2170 goto error_out;
2171 }
2172 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2173 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2174 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2175 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2176 minUDFReadRev,
2177 UDF_MAX_READ_VERSION);
2178 ret = -EINVAL;
2179 goto error_out;
2180 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2181 if (!sb_rdonly(sb)) {
2182 ret = -EACCES;
2183 goto error_out;
2184 }
2185 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2186 }
2187
2188 sbi->s_udfrev = minUDFWriteRev;
2189
2190 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2191 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2192 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2193 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2194 }
2195
2196 if (!sbi->s_partitions) {
2197 udf_warn(sb, "No partition found (2)\n");
2198 ret = -EINVAL;
2199 goto error_out;
2200 }
2201
2202 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2203 UDF_PART_FLAG_READ_ONLY) {
2204 if (!sb_rdonly(sb)) {
2205 ret = -EACCES;
2206 goto error_out;
2207 }
2208 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2209 }
2210
2211 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2212 udf_warn(sb, "No fileset found\n");
2213 ret = -EINVAL;
2214 goto error_out;
2215 }
2216
2217 if (!silent) {
2218 struct timestamp ts;
2219 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2220 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2221 sbi->s_volume_ident,
2222 le16_to_cpu(ts.year), ts.month, ts.day,
2223 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2224 }
2225 if (!sb_rdonly(sb)) {
2226 udf_open_lvid(sb);
2227 lvid_open = true;
2228 }
2229
2230 /* Assign the root inode */
2231 /* assign inodes by physical block number */
2232 /* perhaps it's not extensible enough, but for now ... */
2233 inode = udf_iget(sb, &rootdir);
2234 if (IS_ERR(inode)) {
2235 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2236 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2237 ret = PTR_ERR(inode);
2238 goto error_out;
2239 }
2240
2241 /* Allocate a dentry for the root inode */
2242 sb->s_root = d_make_root(inode);
2243 if (!sb->s_root) {
2244 udf_err(sb, "Couldn't allocate root dentry\n");
2245 ret = -ENOMEM;
2246 goto error_out;
2247 }
2248 sb->s_maxbytes = MAX_LFS_FILESIZE;
2249 sb->s_max_links = UDF_MAX_LINKS;
2250 return 0;
2251
2252 error_out:
2253 iput(sbi->s_vat_inode);
2254 parse_options_failure:
2255 if (uopt.nls_map)
2256 unload_nls(uopt.nls_map);
2257 if (lvid_open)
2258 udf_close_lvid(sb);
2259 brelse(sbi->s_lvid_bh);
2260 udf_sb_free_partitions(sb);
2261 kfree(sbi);
2262 sb->s_fs_info = NULL;
2263
2264 return ret;
2265 }
2266
2267 void _udf_err(struct super_block *sb, const char *function,
2268 const char *fmt, ...)
2269 {
2270 struct va_format vaf;
2271 va_list args;
2272
2273 va_start(args, fmt);
2274
2275 vaf.fmt = fmt;
2276 vaf.va = &args;
2277
2278 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2279
2280 va_end(args);
2281 }
2282
2283 void _udf_warn(struct super_block *sb, const char *function,
2284 const char *fmt, ...)
2285 {
2286 struct va_format vaf;
2287 va_list args;
2288
2289 va_start(args, fmt);
2290
2291 vaf.fmt = fmt;
2292 vaf.va = &args;
2293
2294 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2295
2296 va_end(args);
2297 }
2298
2299 static void udf_put_super(struct super_block *sb)
2300 {
2301 struct udf_sb_info *sbi;
2302
2303 sbi = UDF_SB(sb);
2304
2305 iput(sbi->s_vat_inode);
2306 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2307 unload_nls(sbi->s_nls_map);
2308 if (!sb_rdonly(sb))
2309 udf_close_lvid(sb);
2310 brelse(sbi->s_lvid_bh);
2311 udf_sb_free_partitions(sb);
2312 mutex_destroy(&sbi->s_alloc_mutex);
2313 kfree(sb->s_fs_info);
2314 sb->s_fs_info = NULL;
2315 }
2316
2317 static int udf_sync_fs(struct super_block *sb, int wait)
2318 {
2319 struct udf_sb_info *sbi = UDF_SB(sb);
2320
2321 mutex_lock(&sbi->s_alloc_mutex);
2322 if (sbi->s_lvid_dirty) {
2323 /*
2324 * Blockdevice will be synced later so we don't have to submit
2325 * the buffer for IO
2326 */
2327 mark_buffer_dirty(sbi->s_lvid_bh);
2328 sbi->s_lvid_dirty = 0;
2329 }
2330 mutex_unlock(&sbi->s_alloc_mutex);
2331
2332 return 0;
2333 }
2334
2335 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2336 {
2337 struct super_block *sb = dentry->d_sb;
2338 struct udf_sb_info *sbi = UDF_SB(sb);
2339 struct logicalVolIntegrityDescImpUse *lvidiu;
2340 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2341
2342 lvidiu = udf_sb_lvidiu(sb);
2343 buf->f_type = UDF_SUPER_MAGIC;
2344 buf->f_bsize = sb->s_blocksize;
2345 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2346 buf->f_bfree = udf_count_free(sb);
2347 buf->f_bavail = buf->f_bfree;
2348 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2349 le32_to_cpu(lvidiu->numDirs)) : 0)
2350 + buf->f_bfree;
2351 buf->f_ffree = buf->f_bfree;
2352 buf->f_namelen = UDF_NAME_LEN;
2353 buf->f_fsid.val[0] = (u32)id;
2354 buf->f_fsid.val[1] = (u32)(id >> 32);
2355
2356 return 0;
2357 }
2358
2359 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2360 struct udf_bitmap *bitmap)
2361 {
2362 struct buffer_head *bh = NULL;
2363 unsigned int accum = 0;
2364 int index;
2365 udf_pblk_t block = 0, newblock;
2366 struct kernel_lb_addr loc;
2367 uint32_t bytes;
2368 uint8_t *ptr;
2369 uint16_t ident;
2370 struct spaceBitmapDesc *bm;
2371
2372 loc.logicalBlockNum = bitmap->s_extPosition;
2373 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2374 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2375
2376 if (!bh) {
2377 udf_err(sb, "udf_count_free failed\n");
2378 goto out;
2379 } else if (ident != TAG_IDENT_SBD) {
2380 brelse(bh);
2381 udf_err(sb, "udf_count_free failed\n");
2382 goto out;
2383 }
2384
2385 bm = (struct spaceBitmapDesc *)bh->b_data;
2386 bytes = le32_to_cpu(bm->numOfBytes);
2387 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2388 ptr = (uint8_t *)bh->b_data;
2389
2390 while (bytes > 0) {
2391 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2392 accum += bitmap_weight((const unsigned long *)(ptr + index),
2393 cur_bytes * 8);
2394 bytes -= cur_bytes;
2395 if (bytes) {
2396 brelse(bh);
2397 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2398 bh = udf_tread(sb, newblock);
2399 if (!bh) {
2400 udf_debug("read failed\n");
2401 goto out;
2402 }
2403 index = 0;
2404 ptr = (uint8_t *)bh->b_data;
2405 }
2406 }
2407 brelse(bh);
2408 out:
2409 return accum;
2410 }
2411
2412 static unsigned int udf_count_free_table(struct super_block *sb,
2413 struct inode *table)
2414 {
2415 unsigned int accum = 0;
2416 uint32_t elen;
2417 struct kernel_lb_addr eloc;
2418 int8_t etype;
2419 struct extent_position epos;
2420
2421 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2422 epos.block = UDF_I(table)->i_location;
2423 epos.offset = sizeof(struct unallocSpaceEntry);
2424 epos.bh = NULL;
2425
2426 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2427 accum += (elen >> table->i_sb->s_blocksize_bits);
2428
2429 brelse(epos.bh);
2430 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2431
2432 return accum;
2433 }
2434
2435 static unsigned int udf_count_free(struct super_block *sb)
2436 {
2437 unsigned int accum = 0;
2438 struct udf_sb_info *sbi;
2439 struct udf_part_map *map;
2440
2441 sbi = UDF_SB(sb);
2442 if (sbi->s_lvid_bh) {
2443 struct logicalVolIntegrityDesc *lvid =
2444 (struct logicalVolIntegrityDesc *)
2445 sbi->s_lvid_bh->b_data;
2446 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2447 accum = le32_to_cpu(
2448 lvid->freeSpaceTable[sbi->s_partition]);
2449 if (accum == 0xFFFFFFFF)
2450 accum = 0;
2451 }
2452 }
2453
2454 if (accum)
2455 return accum;
2456
2457 map = &sbi->s_partmaps[sbi->s_partition];
2458 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2459 accum += udf_count_free_bitmap(sb,
2460 map->s_uspace.s_bitmap);
2461 }
2462 if (accum)
2463 return accum;
2464
2465 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2466 accum += udf_count_free_table(sb,
2467 map->s_uspace.s_table);
2468 }
2469 return accum;
2470 }
2471
2472 MODULE_AUTHOR("Ben Fennema");
2473 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2474 MODULE_LICENSE("GPL");
2475 module_init(init_udf_fs)
2476 module_exit(exit_udf_fs)