]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/udf/super.c
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC 0
68 #define VDS_POS_UNALLOC_SPACE_DESC 1
69 #define VDS_POS_LOGICAL_VOL_DESC 2
70 #define VDS_POS_PARTITION_DESC 3
71 #define VDS_POS_IMP_USE_VOL_DESC 4
72 #define VDS_POS_VOL_DESC_PTR 5
73 #define VDS_POS_TERMINATING_DESC 6
74 #define VDS_POS_LENGTH 7
75
76 #define VSD_FIRST_SECTOR_OFFSET 32768
77 #define VSD_MAX_SECTOR_OFFSET 0x800000
78
79 /*
80 * Maximum number of Terminating Descriptor / Logical Volume Integrity
81 * Descriptor redirections. The chosen numbers are arbitrary - just that we
82 * hopefully don't limit any real use of rewritten inode on write-once media
83 * but avoid looping for too long on corrupted media.
84 */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87
88 enum { UDF_MAX_LINKS = 0xffff };
89
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
97 struct kernel_lb_addr *);
98 static void udf_load_fileset(struct super_block *, struct buffer_head *,
99 struct kernel_lb_addr *);
100 static void udf_open_lvid(struct super_block *);
101 static void udf_close_lvid(struct super_block *);
102 static unsigned int udf_count_free(struct super_block *);
103 static int udf_statfs(struct dentry *, struct kstatfs *);
104 static int udf_show_options(struct seq_file *, struct dentry *);
105
106 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
107 {
108 struct logicalVolIntegrityDesc *lvid;
109 unsigned int partnum;
110 unsigned int offset;
111
112 if (!UDF_SB(sb)->s_lvid_bh)
113 return NULL;
114 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
115 partnum = le32_to_cpu(lvid->numOfPartitions);
116 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
117 offsetof(struct logicalVolIntegrityDesc, impUse)) /
118 (2 * sizeof(uint32_t)) < partnum) {
119 udf_err(sb, "Logical volume integrity descriptor corrupted "
120 "(numOfPartitions = %u)!\n", partnum);
121 return NULL;
122 }
123 /* The offset is to skip freeSpaceTable and sizeTable arrays */
124 offset = partnum * 2 * sizeof(uint32_t);
125 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
126 }
127
128 /* UDF filesystem type */
129 static struct dentry *udf_mount(struct file_system_type *fs_type,
130 int flags, const char *dev_name, void *data)
131 {
132 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
133 }
134
135 static struct file_system_type udf_fstype = {
136 .owner = THIS_MODULE,
137 .name = "udf",
138 .mount = udf_mount,
139 .kill_sb = kill_block_super,
140 .fs_flags = FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("udf");
143
144 static struct kmem_cache *udf_inode_cachep;
145
146 static struct inode *udf_alloc_inode(struct super_block *sb)
147 {
148 struct udf_inode_info *ei;
149 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
150 if (!ei)
151 return NULL;
152
153 ei->i_unique = 0;
154 ei->i_lenExtents = 0;
155 ei->i_next_alloc_block = 0;
156 ei->i_next_alloc_goal = 0;
157 ei->i_strat4096 = 0;
158 init_rwsem(&ei->i_data_sem);
159 ei->cached_extent.lstart = -1;
160 spin_lock_init(&ei->i_extent_cache_lock);
161
162 return &ei->vfs_inode;
163 }
164
165 static void udf_i_callback(struct rcu_head *head)
166 {
167 struct inode *inode = container_of(head, struct inode, i_rcu);
168 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
169 }
170
171 static void udf_destroy_inode(struct inode *inode)
172 {
173 call_rcu(&inode->i_rcu, udf_i_callback);
174 }
175
176 static void init_once(void *foo)
177 {
178 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
179
180 ei->i_ext.i_data = NULL;
181 inode_init_once(&ei->vfs_inode);
182 }
183
184 static int __init init_inodecache(void)
185 {
186 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
187 sizeof(struct udf_inode_info),
188 0, (SLAB_RECLAIM_ACCOUNT |
189 SLAB_MEM_SPREAD |
190 SLAB_ACCOUNT),
191 init_once);
192 if (!udf_inode_cachep)
193 return -ENOMEM;
194 return 0;
195 }
196
197 static void destroy_inodecache(void)
198 {
199 /*
200 * Make sure all delayed rcu free inodes are flushed before we
201 * destroy cache.
202 */
203 rcu_barrier();
204 kmem_cache_destroy(udf_inode_cachep);
205 }
206
207 /* Superblock operations */
208 static const struct super_operations udf_sb_ops = {
209 .alloc_inode = udf_alloc_inode,
210 .destroy_inode = udf_destroy_inode,
211 .write_inode = udf_write_inode,
212 .evict_inode = udf_evict_inode,
213 .put_super = udf_put_super,
214 .sync_fs = udf_sync_fs,
215 .statfs = udf_statfs,
216 .remount_fs = udf_remount_fs,
217 .show_options = udf_show_options,
218 };
219
220 struct udf_options {
221 unsigned char novrs;
222 unsigned int blocksize;
223 unsigned int session;
224 unsigned int lastblock;
225 unsigned int anchor;
226 unsigned int volume;
227 unsigned short partition;
228 unsigned int fileset;
229 unsigned int rootdir;
230 unsigned int flags;
231 umode_t umask;
232 kgid_t gid;
233 kuid_t uid;
234 umode_t fmode;
235 umode_t dmode;
236 struct nls_table *nls_map;
237 };
238
239 static int __init init_udf_fs(void)
240 {
241 int err;
242
243 err = init_inodecache();
244 if (err)
245 goto out1;
246 err = register_filesystem(&udf_fstype);
247 if (err)
248 goto out;
249
250 return 0;
251
252 out:
253 destroy_inodecache();
254
255 out1:
256 return err;
257 }
258
259 static void __exit exit_udf_fs(void)
260 {
261 unregister_filesystem(&udf_fstype);
262 destroy_inodecache();
263 }
264
265 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
266 {
267 struct udf_sb_info *sbi = UDF_SB(sb);
268
269 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
270 if (!sbi->s_partmaps) {
271 sbi->s_partitions = 0;
272 return -ENOMEM;
273 }
274
275 sbi->s_partitions = count;
276 return 0;
277 }
278
279 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
280 {
281 int i;
282 int nr_groups = bitmap->s_nr_groups;
283
284 for (i = 0; i < nr_groups; i++)
285 if (bitmap->s_block_bitmap[i])
286 brelse(bitmap->s_block_bitmap[i]);
287
288 kvfree(bitmap);
289 }
290
291 static void udf_free_partition(struct udf_part_map *map)
292 {
293 int i;
294 struct udf_meta_data *mdata;
295
296 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
297 iput(map->s_uspace.s_table);
298 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
299 iput(map->s_fspace.s_table);
300 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
301 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
302 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
303 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
304 if (map->s_partition_type == UDF_SPARABLE_MAP15)
305 for (i = 0; i < 4; i++)
306 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
307 else if (map->s_partition_type == UDF_METADATA_MAP25) {
308 mdata = &map->s_type_specific.s_metadata;
309 iput(mdata->s_metadata_fe);
310 mdata->s_metadata_fe = NULL;
311
312 iput(mdata->s_mirror_fe);
313 mdata->s_mirror_fe = NULL;
314
315 iput(mdata->s_bitmap_fe);
316 mdata->s_bitmap_fe = NULL;
317 }
318 }
319
320 static void udf_sb_free_partitions(struct super_block *sb)
321 {
322 struct udf_sb_info *sbi = UDF_SB(sb);
323 int i;
324
325 if (!sbi->s_partmaps)
326 return;
327 for (i = 0; i < sbi->s_partitions; i++)
328 udf_free_partition(&sbi->s_partmaps[i]);
329 kfree(sbi->s_partmaps);
330 sbi->s_partmaps = NULL;
331 }
332
333 static int udf_show_options(struct seq_file *seq, struct dentry *root)
334 {
335 struct super_block *sb = root->d_sb;
336 struct udf_sb_info *sbi = UDF_SB(sb);
337
338 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
339 seq_puts(seq, ",nostrict");
340 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
341 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
343 seq_puts(seq, ",unhide");
344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
345 seq_puts(seq, ",undelete");
346 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
347 seq_puts(seq, ",noadinicb");
348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
349 seq_puts(seq, ",shortad");
350 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
351 seq_puts(seq, ",uid=forget");
352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
353 seq_puts(seq, ",uid=ignore");
354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
355 seq_puts(seq, ",gid=forget");
356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
357 seq_puts(seq, ",gid=ignore");
358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
359 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
360 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
361 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
362 if (sbi->s_umask != 0)
363 seq_printf(seq, ",umask=%ho", sbi->s_umask);
364 if (sbi->s_fmode != UDF_INVALID_MODE)
365 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
366 if (sbi->s_dmode != UDF_INVALID_MODE)
367 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
368 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
369 seq_printf(seq, ",session=%d", sbi->s_session);
370 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
371 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
372 if (sbi->s_anchor != 0)
373 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
374 /*
375 * volume, partition, fileset and rootdir seem to be ignored
376 * currently
377 */
378 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
379 seq_puts(seq, ",utf8");
380 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
381 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
382
383 return 0;
384 }
385
386 /*
387 * udf_parse_options
388 *
389 * PURPOSE
390 * Parse mount options.
391 *
392 * DESCRIPTION
393 * The following mount options are supported:
394 *
395 * gid= Set the default group.
396 * umask= Set the default umask.
397 * mode= Set the default file permissions.
398 * dmode= Set the default directory permissions.
399 * uid= Set the default user.
400 * bs= Set the block size.
401 * unhide Show otherwise hidden files.
402 * undelete Show deleted files in lists.
403 * adinicb Embed data in the inode (default)
404 * noadinicb Don't embed data in the inode
405 * shortad Use short ad's
406 * longad Use long ad's (default)
407 * nostrict Unset strict conformance
408 * iocharset= Set the NLS character set
409 *
410 * The remaining are for debugging and disaster recovery:
411 *
412 * novrs Skip volume sequence recognition
413 *
414 * The following expect a offset from 0.
415 *
416 * session= Set the CDROM session (default= last session)
417 * anchor= Override standard anchor location. (default= 256)
418 * volume= Override the VolumeDesc location. (unused)
419 * partition= Override the PartitionDesc location. (unused)
420 * lastblock= Set the last block of the filesystem/
421 *
422 * The following expect a offset from the partition root.
423 *
424 * fileset= Override the fileset block location. (unused)
425 * rootdir= Override the root directory location. (unused)
426 * WARNING: overriding the rootdir to a non-directory may
427 * yield highly unpredictable results.
428 *
429 * PRE-CONDITIONS
430 * options Pointer to mount options string.
431 * uopts Pointer to mount options variable.
432 *
433 * POST-CONDITIONS
434 * <return> 1 Mount options parsed okay.
435 * <return> 0 Error parsing mount options.
436 *
437 * HISTORY
438 * July 1, 1997 - Andrew E. Mileski
439 * Written, tested, and released.
440 */
441
442 enum {
443 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
444 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
445 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
446 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
447 Opt_rootdir, Opt_utf8, Opt_iocharset,
448 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
449 Opt_fmode, Opt_dmode
450 };
451
452 static const match_table_t tokens = {
453 {Opt_novrs, "novrs"},
454 {Opt_nostrict, "nostrict"},
455 {Opt_bs, "bs=%u"},
456 {Opt_unhide, "unhide"},
457 {Opt_undelete, "undelete"},
458 {Opt_noadinicb, "noadinicb"},
459 {Opt_adinicb, "adinicb"},
460 {Opt_shortad, "shortad"},
461 {Opt_longad, "longad"},
462 {Opt_uforget, "uid=forget"},
463 {Opt_uignore, "uid=ignore"},
464 {Opt_gforget, "gid=forget"},
465 {Opt_gignore, "gid=ignore"},
466 {Opt_gid, "gid=%u"},
467 {Opt_uid, "uid=%u"},
468 {Opt_umask, "umask=%o"},
469 {Opt_session, "session=%u"},
470 {Opt_lastblock, "lastblock=%u"},
471 {Opt_anchor, "anchor=%u"},
472 {Opt_volume, "volume=%u"},
473 {Opt_partition, "partition=%u"},
474 {Opt_fileset, "fileset=%u"},
475 {Opt_rootdir, "rootdir=%u"},
476 {Opt_utf8, "utf8"},
477 {Opt_iocharset, "iocharset=%s"},
478 {Opt_fmode, "mode=%o"},
479 {Opt_dmode, "dmode=%o"},
480 {Opt_err, NULL}
481 };
482
483 static int udf_parse_options(char *options, struct udf_options *uopt,
484 bool remount)
485 {
486 char *p;
487 int option;
488
489 uopt->novrs = 0;
490 uopt->partition = 0xFFFF;
491 uopt->session = 0xFFFFFFFF;
492 uopt->lastblock = 0;
493 uopt->anchor = 0;
494 uopt->volume = 0xFFFFFFFF;
495 uopt->rootdir = 0xFFFFFFFF;
496 uopt->fileset = 0xFFFFFFFF;
497 uopt->nls_map = NULL;
498
499 if (!options)
500 return 1;
501
502 while ((p = strsep(&options, ",")) != NULL) {
503 substring_t args[MAX_OPT_ARGS];
504 int token;
505 unsigned n;
506 if (!*p)
507 continue;
508
509 token = match_token(p, tokens, args);
510 switch (token) {
511 case Opt_novrs:
512 uopt->novrs = 1;
513 break;
514 case Opt_bs:
515 if (match_int(&args[0], &option))
516 return 0;
517 n = option;
518 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
519 return 0;
520 uopt->blocksize = n;
521 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
522 break;
523 case Opt_unhide:
524 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
525 break;
526 case Opt_undelete:
527 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
528 break;
529 case Opt_noadinicb:
530 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
531 break;
532 case Opt_adinicb:
533 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
534 break;
535 case Opt_shortad:
536 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
537 break;
538 case Opt_longad:
539 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
540 break;
541 case Opt_gid:
542 if (match_int(args, &option))
543 return 0;
544 uopt->gid = make_kgid(current_user_ns(), option);
545 if (!gid_valid(uopt->gid))
546 return 0;
547 uopt->flags |= (1 << UDF_FLAG_GID_SET);
548 break;
549 case Opt_uid:
550 if (match_int(args, &option))
551 return 0;
552 uopt->uid = make_kuid(current_user_ns(), option);
553 if (!uid_valid(uopt->uid))
554 return 0;
555 uopt->flags |= (1 << UDF_FLAG_UID_SET);
556 break;
557 case Opt_umask:
558 if (match_octal(args, &option))
559 return 0;
560 uopt->umask = option;
561 break;
562 case Opt_nostrict:
563 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
564 break;
565 case Opt_session:
566 if (match_int(args, &option))
567 return 0;
568 uopt->session = option;
569 if (!remount)
570 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
571 break;
572 case Opt_lastblock:
573 if (match_int(args, &option))
574 return 0;
575 uopt->lastblock = option;
576 if (!remount)
577 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
578 break;
579 case Opt_anchor:
580 if (match_int(args, &option))
581 return 0;
582 uopt->anchor = option;
583 break;
584 case Opt_volume:
585 if (match_int(args, &option))
586 return 0;
587 uopt->volume = option;
588 break;
589 case Opt_partition:
590 if (match_int(args, &option))
591 return 0;
592 uopt->partition = option;
593 break;
594 case Opt_fileset:
595 if (match_int(args, &option))
596 return 0;
597 uopt->fileset = option;
598 break;
599 case Opt_rootdir:
600 if (match_int(args, &option))
601 return 0;
602 uopt->rootdir = option;
603 break;
604 case Opt_utf8:
605 uopt->flags |= (1 << UDF_FLAG_UTF8);
606 break;
607 #ifdef CONFIG_UDF_NLS
608 case Opt_iocharset:
609 uopt->nls_map = load_nls(args[0].from);
610 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
611 break;
612 #endif
613 case Opt_uignore:
614 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
615 break;
616 case Opt_uforget:
617 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
618 break;
619 case Opt_gignore:
620 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
621 break;
622 case Opt_gforget:
623 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
624 break;
625 case Opt_fmode:
626 if (match_octal(args, &option))
627 return 0;
628 uopt->fmode = option & 0777;
629 break;
630 case Opt_dmode:
631 if (match_octal(args, &option))
632 return 0;
633 uopt->dmode = option & 0777;
634 break;
635 default:
636 pr_err("bad mount option \"%s\" or missing value\n", p);
637 return 0;
638 }
639 }
640 return 1;
641 }
642
643 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
644 {
645 struct udf_options uopt;
646 struct udf_sb_info *sbi = UDF_SB(sb);
647 int error = 0;
648 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
649
650 sync_filesystem(sb);
651 if (lvidiu) {
652 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
653 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY))
654 return -EACCES;
655 }
656
657 uopt.flags = sbi->s_flags;
658 uopt.uid = sbi->s_uid;
659 uopt.gid = sbi->s_gid;
660 uopt.umask = sbi->s_umask;
661 uopt.fmode = sbi->s_fmode;
662 uopt.dmode = sbi->s_dmode;
663
664 if (!udf_parse_options(options, &uopt, true))
665 return -EINVAL;
666
667 write_lock(&sbi->s_cred_lock);
668 sbi->s_flags = uopt.flags;
669 sbi->s_uid = uopt.uid;
670 sbi->s_gid = uopt.gid;
671 sbi->s_umask = uopt.umask;
672 sbi->s_fmode = uopt.fmode;
673 sbi->s_dmode = uopt.dmode;
674 write_unlock(&sbi->s_cred_lock);
675
676 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
677 goto out_unlock;
678
679 if (*flags & SB_RDONLY)
680 udf_close_lvid(sb);
681 else
682 udf_open_lvid(sb);
683
684 out_unlock:
685 return error;
686 }
687
688 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
689 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
690 static loff_t udf_check_vsd(struct super_block *sb)
691 {
692 struct volStructDesc *vsd = NULL;
693 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
694 int sectorsize;
695 struct buffer_head *bh = NULL;
696 int nsr02 = 0;
697 int nsr03 = 0;
698 struct udf_sb_info *sbi;
699
700 sbi = UDF_SB(sb);
701 if (sb->s_blocksize < sizeof(struct volStructDesc))
702 sectorsize = sizeof(struct volStructDesc);
703 else
704 sectorsize = sb->s_blocksize;
705
706 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
707
708 udf_debug("Starting at sector %u (%lu byte sectors)\n",
709 (unsigned int)(sector >> sb->s_blocksize_bits),
710 sb->s_blocksize);
711 /* Process the sequence (if applicable). The hard limit on the sector
712 * offset is arbitrary, hopefully large enough so that all valid UDF
713 * filesystems will be recognised. There is no mention of an upper
714 * bound to the size of the volume recognition area in the standard.
715 * The limit will prevent the code to read all the sectors of a
716 * specially crafted image (like a bluray disc full of CD001 sectors),
717 * potentially causing minutes or even hours of uninterruptible I/O
718 * activity. This actually happened with uninitialised SSD partitions
719 * (all 0xFF) before the check for the limit and all valid IDs were
720 * added */
721 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
722 sector += sectorsize) {
723 /* Read a block */
724 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
725 if (!bh)
726 break;
727
728 /* Look for ISO descriptors */
729 vsd = (struct volStructDesc *)(bh->b_data +
730 (sector & (sb->s_blocksize - 1)));
731
732 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
733 VSD_STD_ID_LEN)) {
734 switch (vsd->structType) {
735 case 0:
736 udf_debug("ISO9660 Boot Record found\n");
737 break;
738 case 1:
739 udf_debug("ISO9660 Primary Volume Descriptor found\n");
740 break;
741 case 2:
742 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
743 break;
744 case 3:
745 udf_debug("ISO9660 Volume Partition Descriptor found\n");
746 break;
747 case 255:
748 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
749 break;
750 default:
751 udf_debug("ISO9660 VRS (%u) found\n",
752 vsd->structType);
753 break;
754 }
755 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
756 VSD_STD_ID_LEN))
757 ; /* nothing */
758 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
759 VSD_STD_ID_LEN)) {
760 brelse(bh);
761 break;
762 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
763 VSD_STD_ID_LEN))
764 nsr02 = sector;
765 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
766 VSD_STD_ID_LEN))
767 nsr03 = sector;
768 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
769 VSD_STD_ID_LEN))
770 ; /* nothing */
771 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
772 VSD_STD_ID_LEN))
773 ; /* nothing */
774 else {
775 /* invalid id : end of volume recognition area */
776 brelse(bh);
777 break;
778 }
779 brelse(bh);
780 }
781
782 if (nsr03)
783 return nsr03;
784 else if (nsr02)
785 return nsr02;
786 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
787 VSD_FIRST_SECTOR_OFFSET)
788 return -1;
789 else
790 return 0;
791 }
792
793 static int udf_find_fileset(struct super_block *sb,
794 struct kernel_lb_addr *fileset,
795 struct kernel_lb_addr *root)
796 {
797 struct buffer_head *bh = NULL;
798 long lastblock;
799 uint16_t ident;
800 struct udf_sb_info *sbi;
801
802 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
803 fileset->partitionReferenceNum != 0xFFFF) {
804 bh = udf_read_ptagged(sb, fileset, 0, &ident);
805
806 if (!bh) {
807 return 1;
808 } else if (ident != TAG_IDENT_FSD) {
809 brelse(bh);
810 return 1;
811 }
812
813 }
814
815 sbi = UDF_SB(sb);
816 if (!bh) {
817 /* Search backwards through the partitions */
818 struct kernel_lb_addr newfileset;
819
820 /* --> cvg: FIXME - is it reasonable? */
821 return 1;
822
823 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
824 (newfileset.partitionReferenceNum != 0xFFFF &&
825 fileset->logicalBlockNum == 0xFFFFFFFF &&
826 fileset->partitionReferenceNum == 0xFFFF);
827 newfileset.partitionReferenceNum--) {
828 lastblock = sbi->s_partmaps
829 [newfileset.partitionReferenceNum]
830 .s_partition_len;
831 newfileset.logicalBlockNum = 0;
832
833 do {
834 bh = udf_read_ptagged(sb, &newfileset, 0,
835 &ident);
836 if (!bh) {
837 newfileset.logicalBlockNum++;
838 continue;
839 }
840
841 switch (ident) {
842 case TAG_IDENT_SBD:
843 {
844 struct spaceBitmapDesc *sp;
845 sp = (struct spaceBitmapDesc *)
846 bh->b_data;
847 newfileset.logicalBlockNum += 1 +
848 ((le32_to_cpu(sp->numOfBytes) +
849 sizeof(struct spaceBitmapDesc)
850 - 1) >> sb->s_blocksize_bits);
851 brelse(bh);
852 break;
853 }
854 case TAG_IDENT_FSD:
855 *fileset = newfileset;
856 break;
857 default:
858 newfileset.logicalBlockNum++;
859 brelse(bh);
860 bh = NULL;
861 break;
862 }
863 } while (newfileset.logicalBlockNum < lastblock &&
864 fileset->logicalBlockNum == 0xFFFFFFFF &&
865 fileset->partitionReferenceNum == 0xFFFF);
866 }
867 }
868
869 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
870 fileset->partitionReferenceNum != 0xFFFF) && bh) {
871 udf_debug("Fileset at block=%u, partition=%u\n",
872 fileset->logicalBlockNum,
873 fileset->partitionReferenceNum);
874
875 sbi->s_partition = fileset->partitionReferenceNum;
876 udf_load_fileset(sb, bh, root);
877 brelse(bh);
878 return 0;
879 }
880 return 1;
881 }
882
883 /*
884 * Load primary Volume Descriptor Sequence
885 *
886 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
887 * should be tried.
888 */
889 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
890 {
891 struct primaryVolDesc *pvoldesc;
892 uint8_t *outstr;
893 struct buffer_head *bh;
894 uint16_t ident;
895 int ret = -ENOMEM;
896
897 outstr = kmalloc(128, GFP_NOFS);
898 if (!outstr)
899 return -ENOMEM;
900
901 bh = udf_read_tagged(sb, block, block, &ident);
902 if (!bh) {
903 ret = -EAGAIN;
904 goto out2;
905 }
906
907 if (ident != TAG_IDENT_PVD) {
908 ret = -EIO;
909 goto out_bh;
910 }
911
912 pvoldesc = (struct primaryVolDesc *)bh->b_data;
913
914 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
915 pvoldesc->recordingDateAndTime)) {
916 #ifdef UDFFS_DEBUG
917 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
918 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
919 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
920 ts->minute, le16_to_cpu(ts->typeAndTimezone));
921 #endif
922 }
923
924 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
925 if (ret < 0)
926 goto out_bh;
927
928 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
929 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
930
931 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
932 if (ret < 0)
933 goto out_bh;
934
935 outstr[ret] = 0;
936 udf_debug("volSetIdent[] = '%s'\n", outstr);
937
938 ret = 0;
939 out_bh:
940 brelse(bh);
941 out2:
942 kfree(outstr);
943 return ret;
944 }
945
946 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
947 u32 meta_file_loc, u32 partition_ref)
948 {
949 struct kernel_lb_addr addr;
950 struct inode *metadata_fe;
951
952 addr.logicalBlockNum = meta_file_loc;
953 addr.partitionReferenceNum = partition_ref;
954
955 metadata_fe = udf_iget_special(sb, &addr);
956
957 if (IS_ERR(metadata_fe)) {
958 udf_warn(sb, "metadata inode efe not found\n");
959 return metadata_fe;
960 }
961 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
962 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
963 iput(metadata_fe);
964 return ERR_PTR(-EIO);
965 }
966
967 return metadata_fe;
968 }
969
970 static int udf_load_metadata_files(struct super_block *sb, int partition,
971 int type1_index)
972 {
973 struct udf_sb_info *sbi = UDF_SB(sb);
974 struct udf_part_map *map;
975 struct udf_meta_data *mdata;
976 struct kernel_lb_addr addr;
977 struct inode *fe;
978
979 map = &sbi->s_partmaps[partition];
980 mdata = &map->s_type_specific.s_metadata;
981 mdata->s_phys_partition_ref = type1_index;
982
983 /* metadata address */
984 udf_debug("Metadata file location: block = %u part = %u\n",
985 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
986
987 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
988 mdata->s_phys_partition_ref);
989 if (IS_ERR(fe)) {
990 /* mirror file entry */
991 udf_debug("Mirror metadata file location: block = %u part = %u\n",
992 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
993
994 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
995 mdata->s_phys_partition_ref);
996
997 if (IS_ERR(fe)) {
998 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
999 return PTR_ERR(fe);
1000 }
1001 mdata->s_mirror_fe = fe;
1002 } else
1003 mdata->s_metadata_fe = fe;
1004
1005
1006 /*
1007 * bitmap file entry
1008 * Note:
1009 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1010 */
1011 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1012 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1013 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1014
1015 udf_debug("Bitmap file location: block = %u part = %u\n",
1016 addr.logicalBlockNum, addr.partitionReferenceNum);
1017
1018 fe = udf_iget_special(sb, &addr);
1019 if (IS_ERR(fe)) {
1020 if (sb_rdonly(sb))
1021 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1022 else {
1023 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1024 return PTR_ERR(fe);
1025 }
1026 } else
1027 mdata->s_bitmap_fe = fe;
1028 }
1029
1030 udf_debug("udf_load_metadata_files Ok\n");
1031 return 0;
1032 }
1033
1034 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1035 struct kernel_lb_addr *root)
1036 {
1037 struct fileSetDesc *fset;
1038
1039 fset = (struct fileSetDesc *)bh->b_data;
1040
1041 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1042
1043 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1044
1045 udf_debug("Rootdir at block=%u, partition=%u\n",
1046 root->logicalBlockNum, root->partitionReferenceNum);
1047 }
1048
1049 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1050 {
1051 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1052 return DIV_ROUND_UP(map->s_partition_len +
1053 (sizeof(struct spaceBitmapDesc) << 3),
1054 sb->s_blocksize * 8);
1055 }
1056
1057 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1058 {
1059 struct udf_bitmap *bitmap;
1060 int nr_groups;
1061 int size;
1062
1063 nr_groups = udf_compute_nr_groups(sb, index);
1064 size = sizeof(struct udf_bitmap) +
1065 (sizeof(struct buffer_head *) * nr_groups);
1066
1067 if (size <= PAGE_SIZE)
1068 bitmap = kzalloc(size, GFP_KERNEL);
1069 else
1070 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1071
1072 if (!bitmap)
1073 return NULL;
1074
1075 bitmap->s_nr_groups = nr_groups;
1076 return bitmap;
1077 }
1078
1079 static int udf_fill_partdesc_info(struct super_block *sb,
1080 struct partitionDesc *p, int p_index)
1081 {
1082 struct udf_part_map *map;
1083 struct udf_sb_info *sbi = UDF_SB(sb);
1084 struct partitionHeaderDesc *phd;
1085
1086 map = &sbi->s_partmaps[p_index];
1087
1088 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1089 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1090
1091 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1092 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1093 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1094 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1095 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1096 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1097 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1098 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1099
1100 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1101 p_index, map->s_partition_type,
1102 map->s_partition_root, map->s_partition_len);
1103
1104 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1105 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1106 return 0;
1107
1108 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1109 if (phd->unallocSpaceTable.extLength) {
1110 struct kernel_lb_addr loc = {
1111 .logicalBlockNum = le32_to_cpu(
1112 phd->unallocSpaceTable.extPosition),
1113 .partitionReferenceNum = p_index,
1114 };
1115 struct inode *inode;
1116
1117 inode = udf_iget_special(sb, &loc);
1118 if (IS_ERR(inode)) {
1119 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1120 p_index);
1121 return PTR_ERR(inode);
1122 }
1123 map->s_uspace.s_table = inode;
1124 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1125 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1126 p_index, map->s_uspace.s_table->i_ino);
1127 }
1128
1129 if (phd->unallocSpaceBitmap.extLength) {
1130 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1131 if (!bitmap)
1132 return -ENOMEM;
1133 map->s_uspace.s_bitmap = bitmap;
1134 bitmap->s_extPosition = le32_to_cpu(
1135 phd->unallocSpaceBitmap.extPosition);
1136 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1137 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1138 p_index, bitmap->s_extPosition);
1139 }
1140
1141 if (phd->partitionIntegrityTable.extLength)
1142 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1143
1144 if (phd->freedSpaceTable.extLength) {
1145 struct kernel_lb_addr loc = {
1146 .logicalBlockNum = le32_to_cpu(
1147 phd->freedSpaceTable.extPosition),
1148 .partitionReferenceNum = p_index,
1149 };
1150 struct inode *inode;
1151
1152 inode = udf_iget_special(sb, &loc);
1153 if (IS_ERR(inode)) {
1154 udf_debug("cannot load freedSpaceTable (part %d)\n",
1155 p_index);
1156 return PTR_ERR(inode);
1157 }
1158 map->s_fspace.s_table = inode;
1159 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1160 udf_debug("freedSpaceTable (part %d) @ %lu\n",
1161 p_index, map->s_fspace.s_table->i_ino);
1162 }
1163
1164 if (phd->freedSpaceBitmap.extLength) {
1165 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1166 if (!bitmap)
1167 return -ENOMEM;
1168 map->s_fspace.s_bitmap = bitmap;
1169 bitmap->s_extPosition = le32_to_cpu(
1170 phd->freedSpaceBitmap.extPosition);
1171 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1172 udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1173 p_index, bitmap->s_extPosition);
1174 }
1175 return 0;
1176 }
1177
1178 static void udf_find_vat_block(struct super_block *sb, int p_index,
1179 int type1_index, sector_t start_block)
1180 {
1181 struct udf_sb_info *sbi = UDF_SB(sb);
1182 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1183 sector_t vat_block;
1184 struct kernel_lb_addr ino;
1185 struct inode *inode;
1186
1187 /*
1188 * VAT file entry is in the last recorded block. Some broken disks have
1189 * it a few blocks before so try a bit harder...
1190 */
1191 ino.partitionReferenceNum = type1_index;
1192 for (vat_block = start_block;
1193 vat_block >= map->s_partition_root &&
1194 vat_block >= start_block - 3; vat_block--) {
1195 ino.logicalBlockNum = vat_block - map->s_partition_root;
1196 inode = udf_iget_special(sb, &ino);
1197 if (!IS_ERR(inode)) {
1198 sbi->s_vat_inode = inode;
1199 break;
1200 }
1201 }
1202 }
1203
1204 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1205 {
1206 struct udf_sb_info *sbi = UDF_SB(sb);
1207 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1208 struct buffer_head *bh = NULL;
1209 struct udf_inode_info *vati;
1210 uint32_t pos;
1211 struct virtualAllocationTable20 *vat20;
1212 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1213 sb->s_blocksize_bits;
1214
1215 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1216 if (!sbi->s_vat_inode &&
1217 sbi->s_last_block != blocks - 1) {
1218 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1219 (unsigned long)sbi->s_last_block,
1220 (unsigned long)blocks - 1);
1221 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1222 }
1223 if (!sbi->s_vat_inode)
1224 return -EIO;
1225
1226 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1227 map->s_type_specific.s_virtual.s_start_offset = 0;
1228 map->s_type_specific.s_virtual.s_num_entries =
1229 (sbi->s_vat_inode->i_size - 36) >> 2;
1230 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1231 vati = UDF_I(sbi->s_vat_inode);
1232 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1233 pos = udf_block_map(sbi->s_vat_inode, 0);
1234 bh = sb_bread(sb, pos);
1235 if (!bh)
1236 return -EIO;
1237 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1238 } else {
1239 vat20 = (struct virtualAllocationTable20 *)
1240 vati->i_ext.i_data;
1241 }
1242
1243 map->s_type_specific.s_virtual.s_start_offset =
1244 le16_to_cpu(vat20->lengthHeader);
1245 map->s_type_specific.s_virtual.s_num_entries =
1246 (sbi->s_vat_inode->i_size -
1247 map->s_type_specific.s_virtual.
1248 s_start_offset) >> 2;
1249 brelse(bh);
1250 }
1251 return 0;
1252 }
1253
1254 /*
1255 * Load partition descriptor block
1256 *
1257 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1258 * sequence.
1259 */
1260 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1261 {
1262 struct buffer_head *bh;
1263 struct partitionDesc *p;
1264 struct udf_part_map *map;
1265 struct udf_sb_info *sbi = UDF_SB(sb);
1266 int i, type1_idx;
1267 uint16_t partitionNumber;
1268 uint16_t ident;
1269 int ret;
1270
1271 bh = udf_read_tagged(sb, block, block, &ident);
1272 if (!bh)
1273 return -EAGAIN;
1274 if (ident != TAG_IDENT_PD) {
1275 ret = 0;
1276 goto out_bh;
1277 }
1278
1279 p = (struct partitionDesc *)bh->b_data;
1280 partitionNumber = le16_to_cpu(p->partitionNumber);
1281
1282 /* First scan for TYPE1 and SPARABLE partitions */
1283 for (i = 0; i < sbi->s_partitions; i++) {
1284 map = &sbi->s_partmaps[i];
1285 udf_debug("Searching map: (%u == %u)\n",
1286 map->s_partition_num, partitionNumber);
1287 if (map->s_partition_num == partitionNumber &&
1288 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1289 map->s_partition_type == UDF_SPARABLE_MAP15))
1290 break;
1291 }
1292
1293 if (i >= sbi->s_partitions) {
1294 udf_debug("Partition (%u) not found in partition map\n",
1295 partitionNumber);
1296 ret = 0;
1297 goto out_bh;
1298 }
1299
1300 ret = udf_fill_partdesc_info(sb, p, i);
1301 if (ret < 0)
1302 goto out_bh;
1303
1304 /*
1305 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1306 * PHYSICAL partitions are already set up
1307 */
1308 type1_idx = i;
1309 #ifdef UDFFS_DEBUG
1310 map = NULL; /* supress 'maybe used uninitialized' warning */
1311 #endif
1312 for (i = 0; i < sbi->s_partitions; i++) {
1313 map = &sbi->s_partmaps[i];
1314
1315 if (map->s_partition_num == partitionNumber &&
1316 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1317 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1318 map->s_partition_type == UDF_METADATA_MAP25))
1319 break;
1320 }
1321
1322 if (i >= sbi->s_partitions) {
1323 ret = 0;
1324 goto out_bh;
1325 }
1326
1327 ret = udf_fill_partdesc_info(sb, p, i);
1328 if (ret < 0)
1329 goto out_bh;
1330
1331 if (map->s_partition_type == UDF_METADATA_MAP25) {
1332 ret = udf_load_metadata_files(sb, i, type1_idx);
1333 if (ret < 0) {
1334 udf_err(sb, "error loading MetaData partition map %d\n",
1335 i);
1336 goto out_bh;
1337 }
1338 } else {
1339 /*
1340 * If we have a partition with virtual map, we don't handle
1341 * writing to it (we overwrite blocks instead of relocating
1342 * them).
1343 */
1344 if (!sb_rdonly(sb)) {
1345 ret = -EACCES;
1346 goto out_bh;
1347 }
1348 ret = udf_load_vat(sb, i, type1_idx);
1349 if (ret < 0)
1350 goto out_bh;
1351 }
1352 ret = 0;
1353 out_bh:
1354 /* In case loading failed, we handle cleanup in udf_fill_super */
1355 brelse(bh);
1356 return ret;
1357 }
1358
1359 static int udf_load_sparable_map(struct super_block *sb,
1360 struct udf_part_map *map,
1361 struct sparablePartitionMap *spm)
1362 {
1363 uint32_t loc;
1364 uint16_t ident;
1365 struct sparingTable *st;
1366 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1367 int i;
1368 struct buffer_head *bh;
1369
1370 map->s_partition_type = UDF_SPARABLE_MAP15;
1371 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1372 if (!is_power_of_2(sdata->s_packet_len)) {
1373 udf_err(sb, "error loading logical volume descriptor: "
1374 "Invalid packet length %u\n",
1375 (unsigned)sdata->s_packet_len);
1376 return -EIO;
1377 }
1378 if (spm->numSparingTables > 4) {
1379 udf_err(sb, "error loading logical volume descriptor: "
1380 "Too many sparing tables (%d)\n",
1381 (int)spm->numSparingTables);
1382 return -EIO;
1383 }
1384
1385 for (i = 0; i < spm->numSparingTables; i++) {
1386 loc = le32_to_cpu(spm->locSparingTable[i]);
1387 bh = udf_read_tagged(sb, loc, loc, &ident);
1388 if (!bh)
1389 continue;
1390
1391 st = (struct sparingTable *)bh->b_data;
1392 if (ident != 0 ||
1393 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1394 strlen(UDF_ID_SPARING)) ||
1395 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1396 sb->s_blocksize) {
1397 brelse(bh);
1398 continue;
1399 }
1400
1401 sdata->s_spar_map[i] = bh;
1402 }
1403 map->s_partition_func = udf_get_pblock_spar15;
1404 return 0;
1405 }
1406
1407 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1408 struct kernel_lb_addr *fileset)
1409 {
1410 struct logicalVolDesc *lvd;
1411 int i, offset;
1412 uint8_t type;
1413 struct udf_sb_info *sbi = UDF_SB(sb);
1414 struct genericPartitionMap *gpm;
1415 uint16_t ident;
1416 struct buffer_head *bh;
1417 unsigned int table_len;
1418 int ret;
1419
1420 bh = udf_read_tagged(sb, block, block, &ident);
1421 if (!bh)
1422 return -EAGAIN;
1423 BUG_ON(ident != TAG_IDENT_LVD);
1424 lvd = (struct logicalVolDesc *)bh->b_data;
1425 table_len = le32_to_cpu(lvd->mapTableLength);
1426 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1427 udf_err(sb, "error loading logical volume descriptor: "
1428 "Partition table too long (%u > %lu)\n", table_len,
1429 sb->s_blocksize - sizeof(*lvd));
1430 ret = -EIO;
1431 goto out_bh;
1432 }
1433
1434 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1435 if (ret)
1436 goto out_bh;
1437
1438 for (i = 0, offset = 0;
1439 i < sbi->s_partitions && offset < table_len;
1440 i++, offset += gpm->partitionMapLength) {
1441 struct udf_part_map *map = &sbi->s_partmaps[i];
1442 gpm = (struct genericPartitionMap *)
1443 &(lvd->partitionMaps[offset]);
1444 type = gpm->partitionMapType;
1445 if (type == 1) {
1446 struct genericPartitionMap1 *gpm1 =
1447 (struct genericPartitionMap1 *)gpm;
1448 map->s_partition_type = UDF_TYPE1_MAP15;
1449 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1450 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1451 map->s_partition_func = NULL;
1452 } else if (type == 2) {
1453 struct udfPartitionMap2 *upm2 =
1454 (struct udfPartitionMap2 *)gpm;
1455 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1456 strlen(UDF_ID_VIRTUAL))) {
1457 u16 suf =
1458 le16_to_cpu(((__le16 *)upm2->partIdent.
1459 identSuffix)[0]);
1460 if (suf < 0x0200) {
1461 map->s_partition_type =
1462 UDF_VIRTUAL_MAP15;
1463 map->s_partition_func =
1464 udf_get_pblock_virt15;
1465 } else {
1466 map->s_partition_type =
1467 UDF_VIRTUAL_MAP20;
1468 map->s_partition_func =
1469 udf_get_pblock_virt20;
1470 }
1471 } else if (!strncmp(upm2->partIdent.ident,
1472 UDF_ID_SPARABLE,
1473 strlen(UDF_ID_SPARABLE))) {
1474 ret = udf_load_sparable_map(sb, map,
1475 (struct sparablePartitionMap *)gpm);
1476 if (ret < 0)
1477 goto out_bh;
1478 } else if (!strncmp(upm2->partIdent.ident,
1479 UDF_ID_METADATA,
1480 strlen(UDF_ID_METADATA))) {
1481 struct udf_meta_data *mdata =
1482 &map->s_type_specific.s_metadata;
1483 struct metadataPartitionMap *mdm =
1484 (struct metadataPartitionMap *)
1485 &(lvd->partitionMaps[offset]);
1486 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1487 i, type, UDF_ID_METADATA);
1488
1489 map->s_partition_type = UDF_METADATA_MAP25;
1490 map->s_partition_func = udf_get_pblock_meta25;
1491
1492 mdata->s_meta_file_loc =
1493 le32_to_cpu(mdm->metadataFileLoc);
1494 mdata->s_mirror_file_loc =
1495 le32_to_cpu(mdm->metadataMirrorFileLoc);
1496 mdata->s_bitmap_file_loc =
1497 le32_to_cpu(mdm->metadataBitmapFileLoc);
1498 mdata->s_alloc_unit_size =
1499 le32_to_cpu(mdm->allocUnitSize);
1500 mdata->s_align_unit_size =
1501 le16_to_cpu(mdm->alignUnitSize);
1502 if (mdm->flags & 0x01)
1503 mdata->s_flags |= MF_DUPLICATE_MD;
1504
1505 udf_debug("Metadata Ident suffix=0x%x\n",
1506 le16_to_cpu(*(__le16 *)
1507 mdm->partIdent.identSuffix));
1508 udf_debug("Metadata part num=%u\n",
1509 le16_to_cpu(mdm->partitionNum));
1510 udf_debug("Metadata part alloc unit size=%u\n",
1511 le32_to_cpu(mdm->allocUnitSize));
1512 udf_debug("Metadata file loc=%u\n",
1513 le32_to_cpu(mdm->metadataFileLoc));
1514 udf_debug("Mirror file loc=%u\n",
1515 le32_to_cpu(mdm->metadataMirrorFileLoc));
1516 udf_debug("Bitmap file loc=%u\n",
1517 le32_to_cpu(mdm->metadataBitmapFileLoc));
1518 udf_debug("Flags: %d %u\n",
1519 mdata->s_flags, mdm->flags);
1520 } else {
1521 udf_debug("Unknown ident: %s\n",
1522 upm2->partIdent.ident);
1523 continue;
1524 }
1525 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1526 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1527 }
1528 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1529 i, map->s_partition_num, type, map->s_volumeseqnum);
1530 }
1531
1532 if (fileset) {
1533 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1534
1535 *fileset = lelb_to_cpu(la->extLocation);
1536 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1537 fileset->logicalBlockNum,
1538 fileset->partitionReferenceNum);
1539 }
1540 if (lvd->integritySeqExt.extLength)
1541 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1542 ret = 0;
1543 out_bh:
1544 brelse(bh);
1545 return ret;
1546 }
1547
1548 /*
1549 * Find the prevailing Logical Volume Integrity Descriptor.
1550 */
1551 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1552 {
1553 struct buffer_head *bh, *final_bh;
1554 uint16_t ident;
1555 struct udf_sb_info *sbi = UDF_SB(sb);
1556 struct logicalVolIntegrityDesc *lvid;
1557 int indirections = 0;
1558
1559 while (++indirections <= UDF_MAX_LVID_NESTING) {
1560 final_bh = NULL;
1561 while (loc.extLength > 0 &&
1562 (bh = udf_read_tagged(sb, loc.extLocation,
1563 loc.extLocation, &ident))) {
1564 if (ident != TAG_IDENT_LVID) {
1565 brelse(bh);
1566 break;
1567 }
1568
1569 brelse(final_bh);
1570 final_bh = bh;
1571
1572 loc.extLength -= sb->s_blocksize;
1573 loc.extLocation++;
1574 }
1575
1576 if (!final_bh)
1577 return;
1578
1579 brelse(sbi->s_lvid_bh);
1580 sbi->s_lvid_bh = final_bh;
1581
1582 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1583 if (lvid->nextIntegrityExt.extLength == 0)
1584 return;
1585
1586 loc = leea_to_cpu(lvid->nextIntegrityExt);
1587 }
1588
1589 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1590 UDF_MAX_LVID_NESTING);
1591 brelse(sbi->s_lvid_bh);
1592 sbi->s_lvid_bh = NULL;
1593 }
1594
1595
1596 /*
1597 * Process a main/reserve volume descriptor sequence.
1598 * @block First block of first extent of the sequence.
1599 * @lastblock Lastblock of first extent of the sequence.
1600 * @fileset There we store extent containing root fileset
1601 *
1602 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1603 * sequence
1604 */
1605 static noinline int udf_process_sequence(
1606 struct super_block *sb,
1607 sector_t block, sector_t lastblock,
1608 struct kernel_lb_addr *fileset)
1609 {
1610 struct buffer_head *bh = NULL;
1611 struct udf_vds_record vds[VDS_POS_LENGTH];
1612 struct udf_vds_record *curr;
1613 struct generic_desc *gd;
1614 struct volDescPtr *vdp;
1615 bool done = false;
1616 uint32_t vdsn;
1617 uint16_t ident;
1618 long next_s = 0, next_e = 0;
1619 int ret;
1620 unsigned int indirections = 0;
1621
1622 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1623
1624 /*
1625 * Read the main descriptor sequence and find which descriptors
1626 * are in it.
1627 */
1628 for (; (!done && block <= lastblock); block++) {
1629
1630 bh = udf_read_tagged(sb, block, block, &ident);
1631 if (!bh) {
1632 udf_err(sb,
1633 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1634 (unsigned long long)block);
1635 return -EAGAIN;
1636 }
1637
1638 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1639 gd = (struct generic_desc *)bh->b_data;
1640 vdsn = le32_to_cpu(gd->volDescSeqNum);
1641 switch (ident) {
1642 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1643 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1644 if (vdsn >= curr->volDescSeqNum) {
1645 curr->volDescSeqNum = vdsn;
1646 curr->block = block;
1647 }
1648 break;
1649 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1650 curr = &vds[VDS_POS_VOL_DESC_PTR];
1651 if (vdsn >= curr->volDescSeqNum) {
1652 curr->volDescSeqNum = vdsn;
1653 curr->block = block;
1654
1655 vdp = (struct volDescPtr *)bh->b_data;
1656 next_s = le32_to_cpu(
1657 vdp->nextVolDescSeqExt.extLocation);
1658 next_e = le32_to_cpu(
1659 vdp->nextVolDescSeqExt.extLength);
1660 next_e = next_e >> sb->s_blocksize_bits;
1661 next_e += next_s;
1662 }
1663 break;
1664 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1665 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1666 if (vdsn >= curr->volDescSeqNum) {
1667 curr->volDescSeqNum = vdsn;
1668 curr->block = block;
1669 }
1670 break;
1671 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1672 curr = &vds[VDS_POS_PARTITION_DESC];
1673 if (!curr->block)
1674 curr->block = block;
1675 break;
1676 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1677 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1678 if (vdsn >= curr->volDescSeqNum) {
1679 curr->volDescSeqNum = vdsn;
1680 curr->block = block;
1681 }
1682 break;
1683 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1684 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1685 if (vdsn >= curr->volDescSeqNum) {
1686 curr->volDescSeqNum = vdsn;
1687 curr->block = block;
1688 }
1689 break;
1690 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1691 if (++indirections > UDF_MAX_TD_NESTING) {
1692 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1693 brelse(bh);
1694 return -EIO;
1695 }
1696
1697 vds[VDS_POS_TERMINATING_DESC].block = block;
1698 if (next_e) {
1699 block = next_s;
1700 lastblock = next_e;
1701 next_s = next_e = 0;
1702 } else
1703 done = true;
1704 break;
1705 }
1706 brelse(bh);
1707 }
1708 /*
1709 * Now read interesting descriptors again and process them
1710 * in a suitable order
1711 */
1712 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1713 udf_err(sb, "Primary Volume Descriptor not found!\n");
1714 return -EAGAIN;
1715 }
1716 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1717 if (ret < 0)
1718 return ret;
1719
1720 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1721 ret = udf_load_logicalvol(sb,
1722 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1723 fileset);
1724 if (ret < 0)
1725 return ret;
1726 }
1727
1728 if (vds[VDS_POS_PARTITION_DESC].block) {
1729 /*
1730 * We rescan the whole descriptor sequence to find
1731 * partition descriptor blocks and process them.
1732 */
1733 for (block = vds[VDS_POS_PARTITION_DESC].block;
1734 block < vds[VDS_POS_TERMINATING_DESC].block;
1735 block++) {
1736 ret = udf_load_partdesc(sb, block);
1737 if (ret < 0)
1738 return ret;
1739 }
1740 }
1741
1742 return 0;
1743 }
1744
1745 /*
1746 * Load Volume Descriptor Sequence described by anchor in bh
1747 *
1748 * Returns <0 on error, 0 on success
1749 */
1750 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1751 struct kernel_lb_addr *fileset)
1752 {
1753 struct anchorVolDescPtr *anchor;
1754 sector_t main_s, main_e, reserve_s, reserve_e;
1755 int ret;
1756
1757 anchor = (struct anchorVolDescPtr *)bh->b_data;
1758
1759 /* Locate the main sequence */
1760 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1761 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1762 main_e = main_e >> sb->s_blocksize_bits;
1763 main_e += main_s;
1764
1765 /* Locate the reserve sequence */
1766 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1767 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1768 reserve_e = reserve_e >> sb->s_blocksize_bits;
1769 reserve_e += reserve_s;
1770
1771 /* Process the main & reserve sequences */
1772 /* responsible for finding the PartitionDesc(s) */
1773 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1774 if (ret != -EAGAIN)
1775 return ret;
1776 udf_sb_free_partitions(sb);
1777 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1778 if (ret < 0) {
1779 udf_sb_free_partitions(sb);
1780 /* No sequence was OK, return -EIO */
1781 if (ret == -EAGAIN)
1782 ret = -EIO;
1783 }
1784 return ret;
1785 }
1786
1787 /*
1788 * Check whether there is an anchor block in the given block and
1789 * load Volume Descriptor Sequence if so.
1790 *
1791 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1792 * block
1793 */
1794 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1795 struct kernel_lb_addr *fileset)
1796 {
1797 struct buffer_head *bh;
1798 uint16_t ident;
1799 int ret;
1800
1801 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1802 udf_fixed_to_variable(block) >=
1803 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1804 return -EAGAIN;
1805
1806 bh = udf_read_tagged(sb, block, block, &ident);
1807 if (!bh)
1808 return -EAGAIN;
1809 if (ident != TAG_IDENT_AVDP) {
1810 brelse(bh);
1811 return -EAGAIN;
1812 }
1813 ret = udf_load_sequence(sb, bh, fileset);
1814 brelse(bh);
1815 return ret;
1816 }
1817
1818 /*
1819 * Search for an anchor volume descriptor pointer.
1820 *
1821 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1822 * of anchors.
1823 */
1824 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1825 struct kernel_lb_addr *fileset)
1826 {
1827 sector_t last[6];
1828 int i;
1829 struct udf_sb_info *sbi = UDF_SB(sb);
1830 int last_count = 0;
1831 int ret;
1832
1833 /* First try user provided anchor */
1834 if (sbi->s_anchor) {
1835 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1836 if (ret != -EAGAIN)
1837 return ret;
1838 }
1839 /*
1840 * according to spec, anchor is in either:
1841 * block 256
1842 * lastblock-256
1843 * lastblock
1844 * however, if the disc isn't closed, it could be 512.
1845 */
1846 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1847 if (ret != -EAGAIN)
1848 return ret;
1849 /*
1850 * The trouble is which block is the last one. Drives often misreport
1851 * this so we try various possibilities.
1852 */
1853 last[last_count++] = *lastblock;
1854 if (*lastblock >= 1)
1855 last[last_count++] = *lastblock - 1;
1856 last[last_count++] = *lastblock + 1;
1857 if (*lastblock >= 2)
1858 last[last_count++] = *lastblock - 2;
1859 if (*lastblock >= 150)
1860 last[last_count++] = *lastblock - 150;
1861 if (*lastblock >= 152)
1862 last[last_count++] = *lastblock - 152;
1863
1864 for (i = 0; i < last_count; i++) {
1865 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1866 sb->s_blocksize_bits)
1867 continue;
1868 ret = udf_check_anchor_block(sb, last[i], fileset);
1869 if (ret != -EAGAIN) {
1870 if (!ret)
1871 *lastblock = last[i];
1872 return ret;
1873 }
1874 if (last[i] < 256)
1875 continue;
1876 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1877 if (ret != -EAGAIN) {
1878 if (!ret)
1879 *lastblock = last[i];
1880 return ret;
1881 }
1882 }
1883
1884 /* Finally try block 512 in case media is open */
1885 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1886 }
1887
1888 /*
1889 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1890 * area specified by it. The function expects sbi->s_lastblock to be the last
1891 * block on the media.
1892 *
1893 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1894 * was not found.
1895 */
1896 static int udf_find_anchor(struct super_block *sb,
1897 struct kernel_lb_addr *fileset)
1898 {
1899 struct udf_sb_info *sbi = UDF_SB(sb);
1900 sector_t lastblock = sbi->s_last_block;
1901 int ret;
1902
1903 ret = udf_scan_anchors(sb, &lastblock, fileset);
1904 if (ret != -EAGAIN)
1905 goto out;
1906
1907 /* No anchor found? Try VARCONV conversion of block numbers */
1908 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1909 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1910 /* Firstly, we try to not convert number of the last block */
1911 ret = udf_scan_anchors(sb, &lastblock, fileset);
1912 if (ret != -EAGAIN)
1913 goto out;
1914
1915 lastblock = sbi->s_last_block;
1916 /* Secondly, we try with converted number of the last block */
1917 ret = udf_scan_anchors(sb, &lastblock, fileset);
1918 if (ret < 0) {
1919 /* VARCONV didn't help. Clear it. */
1920 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1921 }
1922 out:
1923 if (ret == 0)
1924 sbi->s_last_block = lastblock;
1925 return ret;
1926 }
1927
1928 /*
1929 * Check Volume Structure Descriptor, find Anchor block and load Volume
1930 * Descriptor Sequence.
1931 *
1932 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1933 * block was not found.
1934 */
1935 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1936 int silent, struct kernel_lb_addr *fileset)
1937 {
1938 struct udf_sb_info *sbi = UDF_SB(sb);
1939 loff_t nsr_off;
1940 int ret;
1941
1942 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1943 if (!silent)
1944 udf_warn(sb, "Bad block size\n");
1945 return -EINVAL;
1946 }
1947 sbi->s_last_block = uopt->lastblock;
1948 if (!uopt->novrs) {
1949 /* Check that it is NSR02 compliant */
1950 nsr_off = udf_check_vsd(sb);
1951 if (!nsr_off) {
1952 if (!silent)
1953 udf_warn(sb, "No VRS found\n");
1954 return -EINVAL;
1955 }
1956 if (nsr_off == -1)
1957 udf_debug("Failed to read sector at offset %d. "
1958 "Assuming open disc. Skipping validity "
1959 "check\n", VSD_FIRST_SECTOR_OFFSET);
1960 if (!sbi->s_last_block)
1961 sbi->s_last_block = udf_get_last_block(sb);
1962 } else {
1963 udf_debug("Validity check skipped because of novrs option\n");
1964 }
1965
1966 /* Look for anchor block and load Volume Descriptor Sequence */
1967 sbi->s_anchor = uopt->anchor;
1968 ret = udf_find_anchor(sb, fileset);
1969 if (ret < 0) {
1970 if (!silent && ret == -EAGAIN)
1971 udf_warn(sb, "No anchor found\n");
1972 return ret;
1973 }
1974 return 0;
1975 }
1976
1977 static void udf_open_lvid(struct super_block *sb)
1978 {
1979 struct udf_sb_info *sbi = UDF_SB(sb);
1980 struct buffer_head *bh = sbi->s_lvid_bh;
1981 struct logicalVolIntegrityDesc *lvid;
1982 struct logicalVolIntegrityDescImpUse *lvidiu;
1983 struct timespec ts;
1984
1985 if (!bh)
1986 return;
1987 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1988 lvidiu = udf_sb_lvidiu(sb);
1989 if (!lvidiu)
1990 return;
1991
1992 mutex_lock(&sbi->s_alloc_mutex);
1993 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1994 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1995 ktime_get_real_ts(&ts);
1996 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1997 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1998
1999 lvid->descTag.descCRC = cpu_to_le16(
2000 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2001 le16_to_cpu(lvid->descTag.descCRCLength)));
2002
2003 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2004 mark_buffer_dirty(bh);
2005 sbi->s_lvid_dirty = 0;
2006 mutex_unlock(&sbi->s_alloc_mutex);
2007 /* Make opening of filesystem visible on the media immediately */
2008 sync_dirty_buffer(bh);
2009 }
2010
2011 static void udf_close_lvid(struct super_block *sb)
2012 {
2013 struct udf_sb_info *sbi = UDF_SB(sb);
2014 struct buffer_head *bh = sbi->s_lvid_bh;
2015 struct logicalVolIntegrityDesc *lvid;
2016 struct logicalVolIntegrityDescImpUse *lvidiu;
2017 struct timespec ts;
2018
2019 if (!bh)
2020 return;
2021 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2022 lvidiu = udf_sb_lvidiu(sb);
2023 if (!lvidiu)
2024 return;
2025
2026 mutex_lock(&sbi->s_alloc_mutex);
2027 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2028 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2029 ktime_get_real_ts(&ts);
2030 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2031 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2032 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2033 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2034 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2035 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2036 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2037 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2038
2039 lvid->descTag.descCRC = cpu_to_le16(
2040 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2041 le16_to_cpu(lvid->descTag.descCRCLength)));
2042
2043 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2044 /*
2045 * We set buffer uptodate unconditionally here to avoid spurious
2046 * warnings from mark_buffer_dirty() when previous EIO has marked
2047 * the buffer as !uptodate
2048 */
2049 set_buffer_uptodate(bh);
2050 mark_buffer_dirty(bh);
2051 sbi->s_lvid_dirty = 0;
2052 mutex_unlock(&sbi->s_alloc_mutex);
2053 /* Make closing of filesystem visible on the media immediately */
2054 sync_dirty_buffer(bh);
2055 }
2056
2057 u64 lvid_get_unique_id(struct super_block *sb)
2058 {
2059 struct buffer_head *bh;
2060 struct udf_sb_info *sbi = UDF_SB(sb);
2061 struct logicalVolIntegrityDesc *lvid;
2062 struct logicalVolHeaderDesc *lvhd;
2063 u64 uniqueID;
2064 u64 ret;
2065
2066 bh = sbi->s_lvid_bh;
2067 if (!bh)
2068 return 0;
2069
2070 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2071 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2072
2073 mutex_lock(&sbi->s_alloc_mutex);
2074 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2075 if (!(++uniqueID & 0xFFFFFFFF))
2076 uniqueID += 16;
2077 lvhd->uniqueID = cpu_to_le64(uniqueID);
2078 mutex_unlock(&sbi->s_alloc_mutex);
2079 mark_buffer_dirty(bh);
2080
2081 return ret;
2082 }
2083
2084 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2085 {
2086 int ret = -EINVAL;
2087 struct inode *inode = NULL;
2088 struct udf_options uopt;
2089 struct kernel_lb_addr rootdir, fileset;
2090 struct udf_sb_info *sbi;
2091 bool lvid_open = false;
2092
2093 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2094 uopt.uid = INVALID_UID;
2095 uopt.gid = INVALID_GID;
2096 uopt.umask = 0;
2097 uopt.fmode = UDF_INVALID_MODE;
2098 uopt.dmode = UDF_INVALID_MODE;
2099
2100 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2101 if (!sbi)
2102 return -ENOMEM;
2103
2104 sb->s_fs_info = sbi;
2105
2106 mutex_init(&sbi->s_alloc_mutex);
2107
2108 if (!udf_parse_options((char *)options, &uopt, false))
2109 goto parse_options_failure;
2110
2111 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2112 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2113 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2114 goto parse_options_failure;
2115 }
2116 #ifdef CONFIG_UDF_NLS
2117 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2118 uopt.nls_map = load_nls_default();
2119 if (!uopt.nls_map)
2120 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2121 else
2122 udf_debug("Using default NLS map\n");
2123 }
2124 #endif
2125 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2126 uopt.flags |= (1 << UDF_FLAG_UTF8);
2127
2128 fileset.logicalBlockNum = 0xFFFFFFFF;
2129 fileset.partitionReferenceNum = 0xFFFF;
2130
2131 sbi->s_flags = uopt.flags;
2132 sbi->s_uid = uopt.uid;
2133 sbi->s_gid = uopt.gid;
2134 sbi->s_umask = uopt.umask;
2135 sbi->s_fmode = uopt.fmode;
2136 sbi->s_dmode = uopt.dmode;
2137 sbi->s_nls_map = uopt.nls_map;
2138 rwlock_init(&sbi->s_cred_lock);
2139
2140 if (uopt.session == 0xFFFFFFFF)
2141 sbi->s_session = udf_get_last_session(sb);
2142 else
2143 sbi->s_session = uopt.session;
2144
2145 udf_debug("Multi-session=%d\n", sbi->s_session);
2146
2147 /* Fill in the rest of the superblock */
2148 sb->s_op = &udf_sb_ops;
2149 sb->s_export_op = &udf_export_ops;
2150
2151 sb->s_magic = UDF_SUPER_MAGIC;
2152 sb->s_time_gran = 1000;
2153
2154 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2155 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2156 } else {
2157 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2158 while (uopt.blocksize <= 4096) {
2159 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2160 if (ret < 0) {
2161 if (!silent && ret != -EACCES) {
2162 pr_notice("Scanning with blocksize %u failed\n",
2163 uopt.blocksize);
2164 }
2165 brelse(sbi->s_lvid_bh);
2166 sbi->s_lvid_bh = NULL;
2167 /*
2168 * EACCES is special - we want to propagate to
2169 * upper layers that we cannot handle RW mount.
2170 */
2171 if (ret == -EACCES)
2172 break;
2173 } else
2174 break;
2175
2176 uopt.blocksize <<= 1;
2177 }
2178 }
2179 if (ret < 0) {
2180 if (ret == -EAGAIN) {
2181 udf_warn(sb, "No partition found (1)\n");
2182 ret = -EINVAL;
2183 }
2184 goto error_out;
2185 }
2186
2187 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2188
2189 if (sbi->s_lvid_bh) {
2190 struct logicalVolIntegrityDescImpUse *lvidiu =
2191 udf_sb_lvidiu(sb);
2192 uint16_t minUDFReadRev;
2193 uint16_t minUDFWriteRev;
2194
2195 if (!lvidiu) {
2196 ret = -EINVAL;
2197 goto error_out;
2198 }
2199 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2200 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2201 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2202 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2203 minUDFReadRev,
2204 UDF_MAX_READ_VERSION);
2205 ret = -EINVAL;
2206 goto error_out;
2207 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2208 !sb_rdonly(sb)) {
2209 ret = -EACCES;
2210 goto error_out;
2211 }
2212
2213 sbi->s_udfrev = minUDFWriteRev;
2214
2215 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2216 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2217 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2218 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2219 }
2220
2221 if (!sbi->s_partitions) {
2222 udf_warn(sb, "No partition found (2)\n");
2223 ret = -EINVAL;
2224 goto error_out;
2225 }
2226
2227 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2228 UDF_PART_FLAG_READ_ONLY &&
2229 !sb_rdonly(sb)) {
2230 ret = -EACCES;
2231 goto error_out;
2232 }
2233
2234 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2235 udf_warn(sb, "No fileset found\n");
2236 ret = -EINVAL;
2237 goto error_out;
2238 }
2239
2240 if (!silent) {
2241 struct timestamp ts;
2242 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2243 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2244 sbi->s_volume_ident,
2245 le16_to_cpu(ts.year), ts.month, ts.day,
2246 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2247 }
2248 if (!sb_rdonly(sb)) {
2249 udf_open_lvid(sb);
2250 lvid_open = true;
2251 }
2252
2253 /* Assign the root inode */
2254 /* assign inodes by physical block number */
2255 /* perhaps it's not extensible enough, but for now ... */
2256 inode = udf_iget(sb, &rootdir);
2257 if (IS_ERR(inode)) {
2258 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2259 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2260 ret = PTR_ERR(inode);
2261 goto error_out;
2262 }
2263
2264 /* Allocate a dentry for the root inode */
2265 sb->s_root = d_make_root(inode);
2266 if (!sb->s_root) {
2267 udf_err(sb, "Couldn't allocate root dentry\n");
2268 ret = -ENOMEM;
2269 goto error_out;
2270 }
2271 sb->s_maxbytes = MAX_LFS_FILESIZE;
2272 sb->s_max_links = UDF_MAX_LINKS;
2273 return 0;
2274
2275 error_out:
2276 iput(sbi->s_vat_inode);
2277 parse_options_failure:
2278 #ifdef CONFIG_UDF_NLS
2279 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2280 unload_nls(sbi->s_nls_map);
2281 #endif
2282 if (lvid_open)
2283 udf_close_lvid(sb);
2284 brelse(sbi->s_lvid_bh);
2285 udf_sb_free_partitions(sb);
2286 kfree(sbi);
2287 sb->s_fs_info = NULL;
2288
2289 return ret;
2290 }
2291
2292 void _udf_err(struct super_block *sb, const char *function,
2293 const char *fmt, ...)
2294 {
2295 struct va_format vaf;
2296 va_list args;
2297
2298 va_start(args, fmt);
2299
2300 vaf.fmt = fmt;
2301 vaf.va = &args;
2302
2303 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2304
2305 va_end(args);
2306 }
2307
2308 void _udf_warn(struct super_block *sb, const char *function,
2309 const char *fmt, ...)
2310 {
2311 struct va_format vaf;
2312 va_list args;
2313
2314 va_start(args, fmt);
2315
2316 vaf.fmt = fmt;
2317 vaf.va = &args;
2318
2319 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2320
2321 va_end(args);
2322 }
2323
2324 static void udf_put_super(struct super_block *sb)
2325 {
2326 struct udf_sb_info *sbi;
2327
2328 sbi = UDF_SB(sb);
2329
2330 iput(sbi->s_vat_inode);
2331 #ifdef CONFIG_UDF_NLS
2332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2333 unload_nls(sbi->s_nls_map);
2334 #endif
2335 if (!sb_rdonly(sb))
2336 udf_close_lvid(sb);
2337 brelse(sbi->s_lvid_bh);
2338 udf_sb_free_partitions(sb);
2339 mutex_destroy(&sbi->s_alloc_mutex);
2340 kfree(sb->s_fs_info);
2341 sb->s_fs_info = NULL;
2342 }
2343
2344 static int udf_sync_fs(struct super_block *sb, int wait)
2345 {
2346 struct udf_sb_info *sbi = UDF_SB(sb);
2347
2348 mutex_lock(&sbi->s_alloc_mutex);
2349 if (sbi->s_lvid_dirty) {
2350 /*
2351 * Blockdevice will be synced later so we don't have to submit
2352 * the buffer for IO
2353 */
2354 mark_buffer_dirty(sbi->s_lvid_bh);
2355 sbi->s_lvid_dirty = 0;
2356 }
2357 mutex_unlock(&sbi->s_alloc_mutex);
2358
2359 return 0;
2360 }
2361
2362 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2363 {
2364 struct super_block *sb = dentry->d_sb;
2365 struct udf_sb_info *sbi = UDF_SB(sb);
2366 struct logicalVolIntegrityDescImpUse *lvidiu;
2367 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2368
2369 lvidiu = udf_sb_lvidiu(sb);
2370 buf->f_type = UDF_SUPER_MAGIC;
2371 buf->f_bsize = sb->s_blocksize;
2372 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2373 buf->f_bfree = udf_count_free(sb);
2374 buf->f_bavail = buf->f_bfree;
2375 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2376 le32_to_cpu(lvidiu->numDirs)) : 0)
2377 + buf->f_bfree;
2378 buf->f_ffree = buf->f_bfree;
2379 buf->f_namelen = UDF_NAME_LEN;
2380 buf->f_fsid.val[0] = (u32)id;
2381 buf->f_fsid.val[1] = (u32)(id >> 32);
2382
2383 return 0;
2384 }
2385
2386 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2387 struct udf_bitmap *bitmap)
2388 {
2389 struct buffer_head *bh = NULL;
2390 unsigned int accum = 0;
2391 int index;
2392 udf_pblk_t block = 0, newblock;
2393 struct kernel_lb_addr loc;
2394 uint32_t bytes;
2395 uint8_t *ptr;
2396 uint16_t ident;
2397 struct spaceBitmapDesc *bm;
2398
2399 loc.logicalBlockNum = bitmap->s_extPosition;
2400 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2401 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2402
2403 if (!bh) {
2404 udf_err(sb, "udf_count_free failed\n");
2405 goto out;
2406 } else if (ident != TAG_IDENT_SBD) {
2407 brelse(bh);
2408 udf_err(sb, "udf_count_free failed\n");
2409 goto out;
2410 }
2411
2412 bm = (struct spaceBitmapDesc *)bh->b_data;
2413 bytes = le32_to_cpu(bm->numOfBytes);
2414 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2415 ptr = (uint8_t *)bh->b_data;
2416
2417 while (bytes > 0) {
2418 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2419 accum += bitmap_weight((const unsigned long *)(ptr + index),
2420 cur_bytes * 8);
2421 bytes -= cur_bytes;
2422 if (bytes) {
2423 brelse(bh);
2424 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2425 bh = udf_tread(sb, newblock);
2426 if (!bh) {
2427 udf_debug("read failed\n");
2428 goto out;
2429 }
2430 index = 0;
2431 ptr = (uint8_t *)bh->b_data;
2432 }
2433 }
2434 brelse(bh);
2435 out:
2436 return accum;
2437 }
2438
2439 static unsigned int udf_count_free_table(struct super_block *sb,
2440 struct inode *table)
2441 {
2442 unsigned int accum = 0;
2443 uint32_t elen;
2444 struct kernel_lb_addr eloc;
2445 int8_t etype;
2446 struct extent_position epos;
2447
2448 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2449 epos.block = UDF_I(table)->i_location;
2450 epos.offset = sizeof(struct unallocSpaceEntry);
2451 epos.bh = NULL;
2452
2453 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2454 accum += (elen >> table->i_sb->s_blocksize_bits);
2455
2456 brelse(epos.bh);
2457 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2458
2459 return accum;
2460 }
2461
2462 static unsigned int udf_count_free(struct super_block *sb)
2463 {
2464 unsigned int accum = 0;
2465 struct udf_sb_info *sbi;
2466 struct udf_part_map *map;
2467
2468 sbi = UDF_SB(sb);
2469 if (sbi->s_lvid_bh) {
2470 struct logicalVolIntegrityDesc *lvid =
2471 (struct logicalVolIntegrityDesc *)
2472 sbi->s_lvid_bh->b_data;
2473 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2474 accum = le32_to_cpu(
2475 lvid->freeSpaceTable[sbi->s_partition]);
2476 if (accum == 0xFFFFFFFF)
2477 accum = 0;
2478 }
2479 }
2480
2481 if (accum)
2482 return accum;
2483
2484 map = &sbi->s_partmaps[sbi->s_partition];
2485 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2486 accum += udf_count_free_bitmap(sb,
2487 map->s_uspace.s_bitmap);
2488 }
2489 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2490 accum += udf_count_free_bitmap(sb,
2491 map->s_fspace.s_bitmap);
2492 }
2493 if (accum)
2494 return accum;
2495
2496 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2497 accum += udf_count_free_table(sb,
2498 map->s_uspace.s_table);
2499 }
2500 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2501 accum += udf_count_free_table(sb,
2502 map->s_fspace.s_table);
2503 }
2504
2505 return accum;
2506 }
2507
2508 MODULE_AUTHOR("Ben Fennema");
2509 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2510 MODULE_LICENSE("GPL");
2511 module_init(init_udf_fs)
2512 module_exit(exit_udf_fs)