]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/udf/super.c
Merge tag 'mailbox-v5.10' of git://git.linaro.org/landing-teams/working/fujitsu/integ...
[mirror_ubuntu-jammy-kernel.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * https://www.ecma.ch/
15 * https://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68 VDS_POS_PRIMARY_VOL_DESC,
69 VDS_POS_UNALLOC_SPACE_DESC,
70 VDS_POS_LOGICAL_VOL_DESC,
71 VDS_POS_IMP_USE_VOL_DESC,
72 VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET 32768
76 #define VSD_MAX_SECTOR_OFFSET 0x800000
77
78 /*
79 * Maximum number of Terminating Descriptor / Logical Volume Integrity
80 * Descriptor redirections. The chosen numbers are arbitrary - just that we
81 * hopefully don't limit any real use of rewritten inode on write-once media
82 * but avoid looping for too long on corrupted media.
83 */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static void udf_open_lvid(struct super_block *);
96 static void udf_close_lvid(struct super_block *);
97 static unsigned int udf_count_free(struct super_block *);
98 static int udf_statfs(struct dentry *, struct kstatfs *);
99 static int udf_show_options(struct seq_file *, struct dentry *);
100
101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
102 {
103 struct logicalVolIntegrityDesc *lvid;
104 unsigned int partnum;
105 unsigned int offset;
106
107 if (!UDF_SB(sb)->s_lvid_bh)
108 return NULL;
109 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
110 partnum = le32_to_cpu(lvid->numOfPartitions);
111 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
112 offsetof(struct logicalVolIntegrityDesc, impUse)) /
113 (2 * sizeof(uint32_t)) < partnum) {
114 udf_err(sb, "Logical volume integrity descriptor corrupted "
115 "(numOfPartitions = %u)!\n", partnum);
116 return NULL;
117 }
118 /* The offset is to skip freeSpaceTable and sizeTable arrays */
119 offset = partnum * 2 * sizeof(uint32_t);
120 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
121 }
122
123 /* UDF filesystem type */
124 static struct dentry *udf_mount(struct file_system_type *fs_type,
125 int flags, const char *dev_name, void *data)
126 {
127 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
128 }
129
130 static struct file_system_type udf_fstype = {
131 .owner = THIS_MODULE,
132 .name = "udf",
133 .mount = udf_mount,
134 .kill_sb = kill_block_super,
135 .fs_flags = FS_REQUIRES_DEV,
136 };
137 MODULE_ALIAS_FS("udf");
138
139 static struct kmem_cache *udf_inode_cachep;
140
141 static struct inode *udf_alloc_inode(struct super_block *sb)
142 {
143 struct udf_inode_info *ei;
144 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
145 if (!ei)
146 return NULL;
147
148 ei->i_unique = 0;
149 ei->i_lenExtents = 0;
150 ei->i_lenStreams = 0;
151 ei->i_next_alloc_block = 0;
152 ei->i_next_alloc_goal = 0;
153 ei->i_strat4096 = 0;
154 ei->i_streamdir = 0;
155 init_rwsem(&ei->i_data_sem);
156 ei->cached_extent.lstart = -1;
157 spin_lock_init(&ei->i_extent_cache_lock);
158
159 return &ei->vfs_inode;
160 }
161
162 static void udf_free_in_core_inode(struct inode *inode)
163 {
164 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
165 }
166
167 static void init_once(void *foo)
168 {
169 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
170
171 ei->i_data = NULL;
172 inode_init_once(&ei->vfs_inode);
173 }
174
175 static int __init init_inodecache(void)
176 {
177 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
178 sizeof(struct udf_inode_info),
179 0, (SLAB_RECLAIM_ACCOUNT |
180 SLAB_MEM_SPREAD |
181 SLAB_ACCOUNT),
182 init_once);
183 if (!udf_inode_cachep)
184 return -ENOMEM;
185 return 0;
186 }
187
188 static void destroy_inodecache(void)
189 {
190 /*
191 * Make sure all delayed rcu free inodes are flushed before we
192 * destroy cache.
193 */
194 rcu_barrier();
195 kmem_cache_destroy(udf_inode_cachep);
196 }
197
198 /* Superblock operations */
199 static const struct super_operations udf_sb_ops = {
200 .alloc_inode = udf_alloc_inode,
201 .free_inode = udf_free_in_core_inode,
202 .write_inode = udf_write_inode,
203 .evict_inode = udf_evict_inode,
204 .put_super = udf_put_super,
205 .sync_fs = udf_sync_fs,
206 .statfs = udf_statfs,
207 .remount_fs = udf_remount_fs,
208 .show_options = udf_show_options,
209 };
210
211 struct udf_options {
212 unsigned char novrs;
213 unsigned int blocksize;
214 unsigned int session;
215 unsigned int lastblock;
216 unsigned int anchor;
217 unsigned int flags;
218 umode_t umask;
219 kgid_t gid;
220 kuid_t uid;
221 umode_t fmode;
222 umode_t dmode;
223 struct nls_table *nls_map;
224 };
225
226 static int __init init_udf_fs(void)
227 {
228 int err;
229
230 err = init_inodecache();
231 if (err)
232 goto out1;
233 err = register_filesystem(&udf_fstype);
234 if (err)
235 goto out;
236
237 return 0;
238
239 out:
240 destroy_inodecache();
241
242 out1:
243 return err;
244 }
245
246 static void __exit exit_udf_fs(void)
247 {
248 unregister_filesystem(&udf_fstype);
249 destroy_inodecache();
250 }
251
252 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
253 {
254 struct udf_sb_info *sbi = UDF_SB(sb);
255
256 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
257 if (!sbi->s_partmaps) {
258 sbi->s_partitions = 0;
259 return -ENOMEM;
260 }
261
262 sbi->s_partitions = count;
263 return 0;
264 }
265
266 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
267 {
268 int i;
269 int nr_groups = bitmap->s_nr_groups;
270
271 for (i = 0; i < nr_groups; i++)
272 brelse(bitmap->s_block_bitmap[i]);
273
274 kvfree(bitmap);
275 }
276
277 static void udf_free_partition(struct udf_part_map *map)
278 {
279 int i;
280 struct udf_meta_data *mdata;
281
282 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
283 iput(map->s_uspace.s_table);
284 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
285 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
286 if (map->s_partition_type == UDF_SPARABLE_MAP15)
287 for (i = 0; i < 4; i++)
288 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
289 else if (map->s_partition_type == UDF_METADATA_MAP25) {
290 mdata = &map->s_type_specific.s_metadata;
291 iput(mdata->s_metadata_fe);
292 mdata->s_metadata_fe = NULL;
293
294 iput(mdata->s_mirror_fe);
295 mdata->s_mirror_fe = NULL;
296
297 iput(mdata->s_bitmap_fe);
298 mdata->s_bitmap_fe = NULL;
299 }
300 }
301
302 static void udf_sb_free_partitions(struct super_block *sb)
303 {
304 struct udf_sb_info *sbi = UDF_SB(sb);
305 int i;
306
307 if (!sbi->s_partmaps)
308 return;
309 for (i = 0; i < sbi->s_partitions; i++)
310 udf_free_partition(&sbi->s_partmaps[i]);
311 kfree(sbi->s_partmaps);
312 sbi->s_partmaps = NULL;
313 }
314
315 static int udf_show_options(struct seq_file *seq, struct dentry *root)
316 {
317 struct super_block *sb = root->d_sb;
318 struct udf_sb_info *sbi = UDF_SB(sb);
319
320 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
321 seq_puts(seq, ",nostrict");
322 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
323 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
324 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
325 seq_puts(seq, ",unhide");
326 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
327 seq_puts(seq, ",undelete");
328 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
329 seq_puts(seq, ",noadinicb");
330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
331 seq_puts(seq, ",shortad");
332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
333 seq_puts(seq, ",uid=forget");
334 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
335 seq_puts(seq, ",gid=forget");
336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
337 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
338 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
339 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
340 if (sbi->s_umask != 0)
341 seq_printf(seq, ",umask=%ho", sbi->s_umask);
342 if (sbi->s_fmode != UDF_INVALID_MODE)
343 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
344 if (sbi->s_dmode != UDF_INVALID_MODE)
345 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
347 seq_printf(seq, ",session=%d", sbi->s_session);
348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
349 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
350 if (sbi->s_anchor != 0)
351 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
353 seq_puts(seq, ",utf8");
354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
355 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
356
357 return 0;
358 }
359
360 /*
361 * udf_parse_options
362 *
363 * PURPOSE
364 * Parse mount options.
365 *
366 * DESCRIPTION
367 * The following mount options are supported:
368 *
369 * gid= Set the default group.
370 * umask= Set the default umask.
371 * mode= Set the default file permissions.
372 * dmode= Set the default directory permissions.
373 * uid= Set the default user.
374 * bs= Set the block size.
375 * unhide Show otherwise hidden files.
376 * undelete Show deleted files in lists.
377 * adinicb Embed data in the inode (default)
378 * noadinicb Don't embed data in the inode
379 * shortad Use short ad's
380 * longad Use long ad's (default)
381 * nostrict Unset strict conformance
382 * iocharset= Set the NLS character set
383 *
384 * The remaining are for debugging and disaster recovery:
385 *
386 * novrs Skip volume sequence recognition
387 *
388 * The following expect a offset from 0.
389 *
390 * session= Set the CDROM session (default= last session)
391 * anchor= Override standard anchor location. (default= 256)
392 * volume= Override the VolumeDesc location. (unused)
393 * partition= Override the PartitionDesc location. (unused)
394 * lastblock= Set the last block of the filesystem/
395 *
396 * The following expect a offset from the partition root.
397 *
398 * fileset= Override the fileset block location. (unused)
399 * rootdir= Override the root directory location. (unused)
400 * WARNING: overriding the rootdir to a non-directory may
401 * yield highly unpredictable results.
402 *
403 * PRE-CONDITIONS
404 * options Pointer to mount options string.
405 * uopts Pointer to mount options variable.
406 *
407 * POST-CONDITIONS
408 * <return> 1 Mount options parsed okay.
409 * <return> 0 Error parsing mount options.
410 *
411 * HISTORY
412 * July 1, 1997 - Andrew E. Mileski
413 * Written, tested, and released.
414 */
415
416 enum {
417 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
418 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
419 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
420 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
421 Opt_rootdir, Opt_utf8, Opt_iocharset,
422 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
423 Opt_fmode, Opt_dmode
424 };
425
426 static const match_table_t tokens = {
427 {Opt_novrs, "novrs"},
428 {Opt_nostrict, "nostrict"},
429 {Opt_bs, "bs=%u"},
430 {Opt_unhide, "unhide"},
431 {Opt_undelete, "undelete"},
432 {Opt_noadinicb, "noadinicb"},
433 {Opt_adinicb, "adinicb"},
434 {Opt_shortad, "shortad"},
435 {Opt_longad, "longad"},
436 {Opt_uforget, "uid=forget"},
437 {Opt_uignore, "uid=ignore"},
438 {Opt_gforget, "gid=forget"},
439 {Opt_gignore, "gid=ignore"},
440 {Opt_gid, "gid=%u"},
441 {Opt_uid, "uid=%u"},
442 {Opt_umask, "umask=%o"},
443 {Opt_session, "session=%u"},
444 {Opt_lastblock, "lastblock=%u"},
445 {Opt_anchor, "anchor=%u"},
446 {Opt_volume, "volume=%u"},
447 {Opt_partition, "partition=%u"},
448 {Opt_fileset, "fileset=%u"},
449 {Opt_rootdir, "rootdir=%u"},
450 {Opt_utf8, "utf8"},
451 {Opt_iocharset, "iocharset=%s"},
452 {Opt_fmode, "mode=%o"},
453 {Opt_dmode, "dmode=%o"},
454 {Opt_err, NULL}
455 };
456
457 static int udf_parse_options(char *options, struct udf_options *uopt,
458 bool remount)
459 {
460 char *p;
461 int option;
462
463 uopt->novrs = 0;
464 uopt->session = 0xFFFFFFFF;
465 uopt->lastblock = 0;
466 uopt->anchor = 0;
467
468 if (!options)
469 return 1;
470
471 while ((p = strsep(&options, ",")) != NULL) {
472 substring_t args[MAX_OPT_ARGS];
473 int token;
474 unsigned n;
475 if (!*p)
476 continue;
477
478 token = match_token(p, tokens, args);
479 switch (token) {
480 case Opt_novrs:
481 uopt->novrs = 1;
482 break;
483 case Opt_bs:
484 if (match_int(&args[0], &option))
485 return 0;
486 n = option;
487 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
488 return 0;
489 uopt->blocksize = n;
490 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
491 break;
492 case Opt_unhide:
493 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
494 break;
495 case Opt_undelete:
496 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
497 break;
498 case Opt_noadinicb:
499 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
500 break;
501 case Opt_adinicb:
502 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
503 break;
504 case Opt_shortad:
505 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
506 break;
507 case Opt_longad:
508 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
509 break;
510 case Opt_gid:
511 if (match_int(args, &option))
512 return 0;
513 uopt->gid = make_kgid(current_user_ns(), option);
514 if (!gid_valid(uopt->gid))
515 return 0;
516 uopt->flags |= (1 << UDF_FLAG_GID_SET);
517 break;
518 case Opt_uid:
519 if (match_int(args, &option))
520 return 0;
521 uopt->uid = make_kuid(current_user_ns(), option);
522 if (!uid_valid(uopt->uid))
523 return 0;
524 uopt->flags |= (1 << UDF_FLAG_UID_SET);
525 break;
526 case Opt_umask:
527 if (match_octal(args, &option))
528 return 0;
529 uopt->umask = option;
530 break;
531 case Opt_nostrict:
532 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
533 break;
534 case Opt_session:
535 if (match_int(args, &option))
536 return 0;
537 uopt->session = option;
538 if (!remount)
539 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
540 break;
541 case Opt_lastblock:
542 if (match_int(args, &option))
543 return 0;
544 uopt->lastblock = option;
545 if (!remount)
546 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
547 break;
548 case Opt_anchor:
549 if (match_int(args, &option))
550 return 0;
551 uopt->anchor = option;
552 break;
553 case Opt_volume:
554 case Opt_partition:
555 case Opt_fileset:
556 case Opt_rootdir:
557 /* Ignored (never implemented properly) */
558 break;
559 case Opt_utf8:
560 uopt->flags |= (1 << UDF_FLAG_UTF8);
561 break;
562 case Opt_iocharset:
563 if (!remount) {
564 if (uopt->nls_map)
565 unload_nls(uopt->nls_map);
566 /*
567 * load_nls() failure is handled later in
568 * udf_fill_super() after all options are
569 * parsed.
570 */
571 uopt->nls_map = load_nls(args[0].from);
572 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
573 }
574 break;
575 case Opt_uforget:
576 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
577 break;
578 case Opt_uignore:
579 case Opt_gignore:
580 /* These options are superseeded by uid=<number> */
581 break;
582 case Opt_gforget:
583 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
584 break;
585 case Opt_fmode:
586 if (match_octal(args, &option))
587 return 0;
588 uopt->fmode = option & 0777;
589 break;
590 case Opt_dmode:
591 if (match_octal(args, &option))
592 return 0;
593 uopt->dmode = option & 0777;
594 break;
595 default:
596 pr_err("bad mount option \"%s\" or missing value\n", p);
597 return 0;
598 }
599 }
600 return 1;
601 }
602
603 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
604 {
605 struct udf_options uopt;
606 struct udf_sb_info *sbi = UDF_SB(sb);
607 int error = 0;
608
609 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
610 return -EACCES;
611
612 sync_filesystem(sb);
613
614 uopt.flags = sbi->s_flags;
615 uopt.uid = sbi->s_uid;
616 uopt.gid = sbi->s_gid;
617 uopt.umask = sbi->s_umask;
618 uopt.fmode = sbi->s_fmode;
619 uopt.dmode = sbi->s_dmode;
620 uopt.nls_map = NULL;
621
622 if (!udf_parse_options(options, &uopt, true))
623 return -EINVAL;
624
625 write_lock(&sbi->s_cred_lock);
626 sbi->s_flags = uopt.flags;
627 sbi->s_uid = uopt.uid;
628 sbi->s_gid = uopt.gid;
629 sbi->s_umask = uopt.umask;
630 sbi->s_fmode = uopt.fmode;
631 sbi->s_dmode = uopt.dmode;
632 write_unlock(&sbi->s_cred_lock);
633
634 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
635 goto out_unlock;
636
637 if (*flags & SB_RDONLY)
638 udf_close_lvid(sb);
639 else
640 udf_open_lvid(sb);
641
642 out_unlock:
643 return error;
644 }
645
646 /*
647 * Check VSD descriptor. Returns -1 in case we are at the end of volume
648 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
649 * we found one of NSR descriptors we are looking for.
650 */
651 static int identify_vsd(const struct volStructDesc *vsd)
652 {
653 int ret = 0;
654
655 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
656 switch (vsd->structType) {
657 case 0:
658 udf_debug("ISO9660 Boot Record found\n");
659 break;
660 case 1:
661 udf_debug("ISO9660 Primary Volume Descriptor found\n");
662 break;
663 case 2:
664 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
665 break;
666 case 3:
667 udf_debug("ISO9660 Volume Partition Descriptor found\n");
668 break;
669 case 255:
670 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
671 break;
672 default:
673 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
674 break;
675 }
676 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
677 ; /* ret = 0 */
678 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
679 ret = 1;
680 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
681 ret = 1;
682 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
683 ; /* ret = 0 */
684 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
685 ; /* ret = 0 */
686 else {
687 /* TEA01 or invalid id : end of volume recognition area */
688 ret = -1;
689 }
690
691 return ret;
692 }
693
694 /*
695 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
696 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
697 * @return 1 if NSR02 or NSR03 found,
698 * -1 if first sector read error, 0 otherwise
699 */
700 static int udf_check_vsd(struct super_block *sb)
701 {
702 struct volStructDesc *vsd = NULL;
703 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
704 int sectorsize;
705 struct buffer_head *bh = NULL;
706 int nsr = 0;
707 struct udf_sb_info *sbi;
708
709 sbi = UDF_SB(sb);
710 if (sb->s_blocksize < sizeof(struct volStructDesc))
711 sectorsize = sizeof(struct volStructDesc);
712 else
713 sectorsize = sb->s_blocksize;
714
715 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
716
717 udf_debug("Starting at sector %u (%lu byte sectors)\n",
718 (unsigned int)(sector >> sb->s_blocksize_bits),
719 sb->s_blocksize);
720 /* Process the sequence (if applicable). The hard limit on the sector
721 * offset is arbitrary, hopefully large enough so that all valid UDF
722 * filesystems will be recognised. There is no mention of an upper
723 * bound to the size of the volume recognition area in the standard.
724 * The limit will prevent the code to read all the sectors of a
725 * specially crafted image (like a bluray disc full of CD001 sectors),
726 * potentially causing minutes or even hours of uninterruptible I/O
727 * activity. This actually happened with uninitialised SSD partitions
728 * (all 0xFF) before the check for the limit and all valid IDs were
729 * added */
730 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
731 /* Read a block */
732 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
733 if (!bh)
734 break;
735
736 vsd = (struct volStructDesc *)(bh->b_data +
737 (sector & (sb->s_blocksize - 1)));
738 nsr = identify_vsd(vsd);
739 /* Found NSR or end? */
740 if (nsr) {
741 brelse(bh);
742 break;
743 }
744 /*
745 * Special handling for improperly formatted VRS (e.g., Win10)
746 * where components are separated by 2048 bytes even though
747 * sectors are 4K
748 */
749 if (sb->s_blocksize == 4096) {
750 nsr = identify_vsd(vsd + 1);
751 /* Ignore unknown IDs... */
752 if (nsr < 0)
753 nsr = 0;
754 }
755 brelse(bh);
756 }
757
758 if (nsr > 0)
759 return 1;
760 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
761 VSD_FIRST_SECTOR_OFFSET)
762 return -1;
763 else
764 return 0;
765 }
766
767 static int udf_verify_domain_identifier(struct super_block *sb,
768 struct regid *ident, char *dname)
769 {
770 struct domainIdentSuffix *suffix;
771
772 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
773 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
774 goto force_ro;
775 }
776 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
777 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
778 dname);
779 goto force_ro;
780 }
781 suffix = (struct domainIdentSuffix *)ident->identSuffix;
782 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
783 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
784 if (!sb_rdonly(sb)) {
785 udf_warn(sb, "Descriptor for %s marked write protected."
786 " Forcing read only mount.\n", dname);
787 }
788 goto force_ro;
789 }
790 return 0;
791
792 force_ro:
793 if (!sb_rdonly(sb))
794 return -EACCES;
795 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
796 return 0;
797 }
798
799 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
800 struct kernel_lb_addr *root)
801 {
802 int ret;
803
804 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
805 if (ret < 0)
806 return ret;
807
808 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
809 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
810
811 udf_debug("Rootdir at block=%u, partition=%u\n",
812 root->logicalBlockNum, root->partitionReferenceNum);
813 return 0;
814 }
815
816 static int udf_find_fileset(struct super_block *sb,
817 struct kernel_lb_addr *fileset,
818 struct kernel_lb_addr *root)
819 {
820 struct buffer_head *bh = NULL;
821 uint16_t ident;
822 int ret;
823
824 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
825 fileset->partitionReferenceNum == 0xFFFF)
826 return -EINVAL;
827
828 bh = udf_read_ptagged(sb, fileset, 0, &ident);
829 if (!bh)
830 return -EIO;
831 if (ident != TAG_IDENT_FSD) {
832 brelse(bh);
833 return -EINVAL;
834 }
835
836 udf_debug("Fileset at block=%u, partition=%u\n",
837 fileset->logicalBlockNum, fileset->partitionReferenceNum);
838
839 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
840 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
841 brelse(bh);
842 return ret;
843 }
844
845 /*
846 * Load primary Volume Descriptor Sequence
847 *
848 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
849 * should be tried.
850 */
851 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
852 {
853 struct primaryVolDesc *pvoldesc;
854 uint8_t *outstr;
855 struct buffer_head *bh;
856 uint16_t ident;
857 int ret;
858 struct timestamp *ts;
859
860 outstr = kmalloc(128, GFP_NOFS);
861 if (!outstr)
862 return -ENOMEM;
863
864 bh = udf_read_tagged(sb, block, block, &ident);
865 if (!bh) {
866 ret = -EAGAIN;
867 goto out2;
868 }
869
870 if (ident != TAG_IDENT_PVD) {
871 ret = -EIO;
872 goto out_bh;
873 }
874
875 pvoldesc = (struct primaryVolDesc *)bh->b_data;
876
877 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
878 pvoldesc->recordingDateAndTime);
879 ts = &pvoldesc->recordingDateAndTime;
880 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
881 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
882 ts->minute, le16_to_cpu(ts->typeAndTimezone));
883
884 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
885 if (ret < 0) {
886 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
887 pr_warn("incorrect volume identification, setting to "
888 "'InvalidName'\n");
889 } else {
890 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
891 }
892 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
893
894 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
895 if (ret < 0) {
896 ret = 0;
897 goto out_bh;
898 }
899 outstr[ret] = 0;
900 udf_debug("volSetIdent[] = '%s'\n", outstr);
901
902 ret = 0;
903 out_bh:
904 brelse(bh);
905 out2:
906 kfree(outstr);
907 return ret;
908 }
909
910 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
911 u32 meta_file_loc, u32 partition_ref)
912 {
913 struct kernel_lb_addr addr;
914 struct inode *metadata_fe;
915
916 addr.logicalBlockNum = meta_file_loc;
917 addr.partitionReferenceNum = partition_ref;
918
919 metadata_fe = udf_iget_special(sb, &addr);
920
921 if (IS_ERR(metadata_fe)) {
922 udf_warn(sb, "metadata inode efe not found\n");
923 return metadata_fe;
924 }
925 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
926 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
927 iput(metadata_fe);
928 return ERR_PTR(-EIO);
929 }
930
931 return metadata_fe;
932 }
933
934 static int udf_load_metadata_files(struct super_block *sb, int partition,
935 int type1_index)
936 {
937 struct udf_sb_info *sbi = UDF_SB(sb);
938 struct udf_part_map *map;
939 struct udf_meta_data *mdata;
940 struct kernel_lb_addr addr;
941 struct inode *fe;
942
943 map = &sbi->s_partmaps[partition];
944 mdata = &map->s_type_specific.s_metadata;
945 mdata->s_phys_partition_ref = type1_index;
946
947 /* metadata address */
948 udf_debug("Metadata file location: block = %u part = %u\n",
949 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
950
951 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
952 mdata->s_phys_partition_ref);
953 if (IS_ERR(fe)) {
954 /* mirror file entry */
955 udf_debug("Mirror metadata file location: block = %u part = %u\n",
956 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
957
958 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
959 mdata->s_phys_partition_ref);
960
961 if (IS_ERR(fe)) {
962 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
963 return PTR_ERR(fe);
964 }
965 mdata->s_mirror_fe = fe;
966 } else
967 mdata->s_metadata_fe = fe;
968
969
970 /*
971 * bitmap file entry
972 * Note:
973 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
974 */
975 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
976 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
977 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
978
979 udf_debug("Bitmap file location: block = %u part = %u\n",
980 addr.logicalBlockNum, addr.partitionReferenceNum);
981
982 fe = udf_iget_special(sb, &addr);
983 if (IS_ERR(fe)) {
984 if (sb_rdonly(sb))
985 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
986 else {
987 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
988 return PTR_ERR(fe);
989 }
990 } else
991 mdata->s_bitmap_fe = fe;
992 }
993
994 udf_debug("udf_load_metadata_files Ok\n");
995 return 0;
996 }
997
998 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
999 {
1000 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1001 return DIV_ROUND_UP(map->s_partition_len +
1002 (sizeof(struct spaceBitmapDesc) << 3),
1003 sb->s_blocksize * 8);
1004 }
1005
1006 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1007 {
1008 struct udf_bitmap *bitmap;
1009 int nr_groups = udf_compute_nr_groups(sb, index);
1010
1011 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1012 GFP_KERNEL);
1013 if (!bitmap)
1014 return NULL;
1015
1016 bitmap->s_nr_groups = nr_groups;
1017 return bitmap;
1018 }
1019
1020 static int check_partition_desc(struct super_block *sb,
1021 struct partitionDesc *p,
1022 struct udf_part_map *map)
1023 {
1024 bool umap, utable, fmap, ftable;
1025 struct partitionHeaderDesc *phd;
1026
1027 switch (le32_to_cpu(p->accessType)) {
1028 case PD_ACCESS_TYPE_READ_ONLY:
1029 case PD_ACCESS_TYPE_WRITE_ONCE:
1030 case PD_ACCESS_TYPE_NONE:
1031 goto force_ro;
1032 }
1033
1034 /* No Partition Header Descriptor? */
1035 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1036 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1037 goto force_ro;
1038
1039 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1040 utable = phd->unallocSpaceTable.extLength;
1041 umap = phd->unallocSpaceBitmap.extLength;
1042 ftable = phd->freedSpaceTable.extLength;
1043 fmap = phd->freedSpaceBitmap.extLength;
1044
1045 /* No allocation info? */
1046 if (!utable && !umap && !ftable && !fmap)
1047 goto force_ro;
1048
1049 /* We don't support blocks that require erasing before overwrite */
1050 if (ftable || fmap)
1051 goto force_ro;
1052 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1053 if (utable && umap)
1054 goto force_ro;
1055
1056 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1057 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1058 map->s_partition_type == UDF_METADATA_MAP25)
1059 goto force_ro;
1060
1061 return 0;
1062 force_ro:
1063 if (!sb_rdonly(sb))
1064 return -EACCES;
1065 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1066 return 0;
1067 }
1068
1069 static int udf_fill_partdesc_info(struct super_block *sb,
1070 struct partitionDesc *p, int p_index)
1071 {
1072 struct udf_part_map *map;
1073 struct udf_sb_info *sbi = UDF_SB(sb);
1074 struct partitionHeaderDesc *phd;
1075 int err;
1076
1077 map = &sbi->s_partmaps[p_index];
1078
1079 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1080 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1081
1082 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1083 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1084 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1085 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1086 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1087 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1088 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1089 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1090
1091 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1092 p_index, map->s_partition_type,
1093 map->s_partition_root, map->s_partition_len);
1094
1095 err = check_partition_desc(sb, p, map);
1096 if (err)
1097 return err;
1098
1099 /*
1100 * Skip loading allocation info it we cannot ever write to the fs.
1101 * This is a correctness thing as we may have decided to force ro mount
1102 * to avoid allocation info we don't support.
1103 */
1104 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1105 return 0;
1106
1107 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1108 if (phd->unallocSpaceTable.extLength) {
1109 struct kernel_lb_addr loc = {
1110 .logicalBlockNum = le32_to_cpu(
1111 phd->unallocSpaceTable.extPosition),
1112 .partitionReferenceNum = p_index,
1113 };
1114 struct inode *inode;
1115
1116 inode = udf_iget_special(sb, &loc);
1117 if (IS_ERR(inode)) {
1118 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1119 p_index);
1120 return PTR_ERR(inode);
1121 }
1122 map->s_uspace.s_table = inode;
1123 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1124 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1125 p_index, map->s_uspace.s_table->i_ino);
1126 }
1127
1128 if (phd->unallocSpaceBitmap.extLength) {
1129 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1130 if (!bitmap)
1131 return -ENOMEM;
1132 map->s_uspace.s_bitmap = bitmap;
1133 bitmap->s_extPosition = le32_to_cpu(
1134 phd->unallocSpaceBitmap.extPosition);
1135 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1136 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1137 p_index, bitmap->s_extPosition);
1138 }
1139
1140 return 0;
1141 }
1142
1143 static void udf_find_vat_block(struct super_block *sb, int p_index,
1144 int type1_index, sector_t start_block)
1145 {
1146 struct udf_sb_info *sbi = UDF_SB(sb);
1147 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1148 sector_t vat_block;
1149 struct kernel_lb_addr ino;
1150 struct inode *inode;
1151
1152 /*
1153 * VAT file entry is in the last recorded block. Some broken disks have
1154 * it a few blocks before so try a bit harder...
1155 */
1156 ino.partitionReferenceNum = type1_index;
1157 for (vat_block = start_block;
1158 vat_block >= map->s_partition_root &&
1159 vat_block >= start_block - 3; vat_block--) {
1160 ino.logicalBlockNum = vat_block - map->s_partition_root;
1161 inode = udf_iget_special(sb, &ino);
1162 if (!IS_ERR(inode)) {
1163 sbi->s_vat_inode = inode;
1164 break;
1165 }
1166 }
1167 }
1168
1169 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1170 {
1171 struct udf_sb_info *sbi = UDF_SB(sb);
1172 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1173 struct buffer_head *bh = NULL;
1174 struct udf_inode_info *vati;
1175 uint32_t pos;
1176 struct virtualAllocationTable20 *vat20;
1177 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1178 sb->s_blocksize_bits;
1179
1180 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1181 if (!sbi->s_vat_inode &&
1182 sbi->s_last_block != blocks - 1) {
1183 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1184 (unsigned long)sbi->s_last_block,
1185 (unsigned long)blocks - 1);
1186 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1187 }
1188 if (!sbi->s_vat_inode)
1189 return -EIO;
1190
1191 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1192 map->s_type_specific.s_virtual.s_start_offset = 0;
1193 map->s_type_specific.s_virtual.s_num_entries =
1194 (sbi->s_vat_inode->i_size - 36) >> 2;
1195 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1196 vati = UDF_I(sbi->s_vat_inode);
1197 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1198 pos = udf_block_map(sbi->s_vat_inode, 0);
1199 bh = sb_bread(sb, pos);
1200 if (!bh)
1201 return -EIO;
1202 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1203 } else {
1204 vat20 = (struct virtualAllocationTable20 *)
1205 vati->i_data;
1206 }
1207
1208 map->s_type_specific.s_virtual.s_start_offset =
1209 le16_to_cpu(vat20->lengthHeader);
1210 map->s_type_specific.s_virtual.s_num_entries =
1211 (sbi->s_vat_inode->i_size -
1212 map->s_type_specific.s_virtual.
1213 s_start_offset) >> 2;
1214 brelse(bh);
1215 }
1216 return 0;
1217 }
1218
1219 /*
1220 * Load partition descriptor block
1221 *
1222 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1223 * sequence.
1224 */
1225 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1226 {
1227 struct buffer_head *bh;
1228 struct partitionDesc *p;
1229 struct udf_part_map *map;
1230 struct udf_sb_info *sbi = UDF_SB(sb);
1231 int i, type1_idx;
1232 uint16_t partitionNumber;
1233 uint16_t ident;
1234 int ret;
1235
1236 bh = udf_read_tagged(sb, block, block, &ident);
1237 if (!bh)
1238 return -EAGAIN;
1239 if (ident != TAG_IDENT_PD) {
1240 ret = 0;
1241 goto out_bh;
1242 }
1243
1244 p = (struct partitionDesc *)bh->b_data;
1245 partitionNumber = le16_to_cpu(p->partitionNumber);
1246
1247 /* First scan for TYPE1 and SPARABLE partitions */
1248 for (i = 0; i < sbi->s_partitions; i++) {
1249 map = &sbi->s_partmaps[i];
1250 udf_debug("Searching map: (%u == %u)\n",
1251 map->s_partition_num, partitionNumber);
1252 if (map->s_partition_num == partitionNumber &&
1253 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1254 map->s_partition_type == UDF_SPARABLE_MAP15))
1255 break;
1256 }
1257
1258 if (i >= sbi->s_partitions) {
1259 udf_debug("Partition (%u) not found in partition map\n",
1260 partitionNumber);
1261 ret = 0;
1262 goto out_bh;
1263 }
1264
1265 ret = udf_fill_partdesc_info(sb, p, i);
1266 if (ret < 0)
1267 goto out_bh;
1268
1269 /*
1270 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1271 * PHYSICAL partitions are already set up
1272 */
1273 type1_idx = i;
1274 map = NULL; /* supress 'maybe used uninitialized' warning */
1275 for (i = 0; i < sbi->s_partitions; i++) {
1276 map = &sbi->s_partmaps[i];
1277
1278 if (map->s_partition_num == partitionNumber &&
1279 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1280 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1281 map->s_partition_type == UDF_METADATA_MAP25))
1282 break;
1283 }
1284
1285 if (i >= sbi->s_partitions) {
1286 ret = 0;
1287 goto out_bh;
1288 }
1289
1290 ret = udf_fill_partdesc_info(sb, p, i);
1291 if (ret < 0)
1292 goto out_bh;
1293
1294 if (map->s_partition_type == UDF_METADATA_MAP25) {
1295 ret = udf_load_metadata_files(sb, i, type1_idx);
1296 if (ret < 0) {
1297 udf_err(sb, "error loading MetaData partition map %d\n",
1298 i);
1299 goto out_bh;
1300 }
1301 } else {
1302 /*
1303 * If we have a partition with virtual map, we don't handle
1304 * writing to it (we overwrite blocks instead of relocating
1305 * them).
1306 */
1307 if (!sb_rdonly(sb)) {
1308 ret = -EACCES;
1309 goto out_bh;
1310 }
1311 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1312 ret = udf_load_vat(sb, i, type1_idx);
1313 if (ret < 0)
1314 goto out_bh;
1315 }
1316 ret = 0;
1317 out_bh:
1318 /* In case loading failed, we handle cleanup in udf_fill_super */
1319 brelse(bh);
1320 return ret;
1321 }
1322
1323 static int udf_load_sparable_map(struct super_block *sb,
1324 struct udf_part_map *map,
1325 struct sparablePartitionMap *spm)
1326 {
1327 uint32_t loc;
1328 uint16_t ident;
1329 struct sparingTable *st;
1330 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1331 int i;
1332 struct buffer_head *bh;
1333
1334 map->s_partition_type = UDF_SPARABLE_MAP15;
1335 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1336 if (!is_power_of_2(sdata->s_packet_len)) {
1337 udf_err(sb, "error loading logical volume descriptor: "
1338 "Invalid packet length %u\n",
1339 (unsigned)sdata->s_packet_len);
1340 return -EIO;
1341 }
1342 if (spm->numSparingTables > 4) {
1343 udf_err(sb, "error loading logical volume descriptor: "
1344 "Too many sparing tables (%d)\n",
1345 (int)spm->numSparingTables);
1346 return -EIO;
1347 }
1348 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1349 udf_err(sb, "error loading logical volume descriptor: "
1350 "Too big sparing table size (%u)\n",
1351 le32_to_cpu(spm->sizeSparingTable));
1352 return -EIO;
1353 }
1354
1355 for (i = 0; i < spm->numSparingTables; i++) {
1356 loc = le32_to_cpu(spm->locSparingTable[i]);
1357 bh = udf_read_tagged(sb, loc, loc, &ident);
1358 if (!bh)
1359 continue;
1360
1361 st = (struct sparingTable *)bh->b_data;
1362 if (ident != 0 ||
1363 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1364 strlen(UDF_ID_SPARING)) ||
1365 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1366 sb->s_blocksize) {
1367 brelse(bh);
1368 continue;
1369 }
1370
1371 sdata->s_spar_map[i] = bh;
1372 }
1373 map->s_partition_func = udf_get_pblock_spar15;
1374 return 0;
1375 }
1376
1377 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1378 struct kernel_lb_addr *fileset)
1379 {
1380 struct logicalVolDesc *lvd;
1381 int i, offset;
1382 uint8_t type;
1383 struct udf_sb_info *sbi = UDF_SB(sb);
1384 struct genericPartitionMap *gpm;
1385 uint16_t ident;
1386 struct buffer_head *bh;
1387 unsigned int table_len;
1388 int ret;
1389
1390 bh = udf_read_tagged(sb, block, block, &ident);
1391 if (!bh)
1392 return -EAGAIN;
1393 BUG_ON(ident != TAG_IDENT_LVD);
1394 lvd = (struct logicalVolDesc *)bh->b_data;
1395 table_len = le32_to_cpu(lvd->mapTableLength);
1396 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1397 udf_err(sb, "error loading logical volume descriptor: "
1398 "Partition table too long (%u > %lu)\n", table_len,
1399 sb->s_blocksize - sizeof(*lvd));
1400 ret = -EIO;
1401 goto out_bh;
1402 }
1403
1404 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1405 "logical volume");
1406 if (ret)
1407 goto out_bh;
1408 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1409 if (ret)
1410 goto out_bh;
1411
1412 for (i = 0, offset = 0;
1413 i < sbi->s_partitions && offset < table_len;
1414 i++, offset += gpm->partitionMapLength) {
1415 struct udf_part_map *map = &sbi->s_partmaps[i];
1416 gpm = (struct genericPartitionMap *)
1417 &(lvd->partitionMaps[offset]);
1418 type = gpm->partitionMapType;
1419 if (type == 1) {
1420 struct genericPartitionMap1 *gpm1 =
1421 (struct genericPartitionMap1 *)gpm;
1422 map->s_partition_type = UDF_TYPE1_MAP15;
1423 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1424 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1425 map->s_partition_func = NULL;
1426 } else if (type == 2) {
1427 struct udfPartitionMap2 *upm2 =
1428 (struct udfPartitionMap2 *)gpm;
1429 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1430 strlen(UDF_ID_VIRTUAL))) {
1431 u16 suf =
1432 le16_to_cpu(((__le16 *)upm2->partIdent.
1433 identSuffix)[0]);
1434 if (suf < 0x0200) {
1435 map->s_partition_type =
1436 UDF_VIRTUAL_MAP15;
1437 map->s_partition_func =
1438 udf_get_pblock_virt15;
1439 } else {
1440 map->s_partition_type =
1441 UDF_VIRTUAL_MAP20;
1442 map->s_partition_func =
1443 udf_get_pblock_virt20;
1444 }
1445 } else if (!strncmp(upm2->partIdent.ident,
1446 UDF_ID_SPARABLE,
1447 strlen(UDF_ID_SPARABLE))) {
1448 ret = udf_load_sparable_map(sb, map,
1449 (struct sparablePartitionMap *)gpm);
1450 if (ret < 0)
1451 goto out_bh;
1452 } else if (!strncmp(upm2->partIdent.ident,
1453 UDF_ID_METADATA,
1454 strlen(UDF_ID_METADATA))) {
1455 struct udf_meta_data *mdata =
1456 &map->s_type_specific.s_metadata;
1457 struct metadataPartitionMap *mdm =
1458 (struct metadataPartitionMap *)
1459 &(lvd->partitionMaps[offset]);
1460 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1461 i, type, UDF_ID_METADATA);
1462
1463 map->s_partition_type = UDF_METADATA_MAP25;
1464 map->s_partition_func = udf_get_pblock_meta25;
1465
1466 mdata->s_meta_file_loc =
1467 le32_to_cpu(mdm->metadataFileLoc);
1468 mdata->s_mirror_file_loc =
1469 le32_to_cpu(mdm->metadataMirrorFileLoc);
1470 mdata->s_bitmap_file_loc =
1471 le32_to_cpu(mdm->metadataBitmapFileLoc);
1472 mdata->s_alloc_unit_size =
1473 le32_to_cpu(mdm->allocUnitSize);
1474 mdata->s_align_unit_size =
1475 le16_to_cpu(mdm->alignUnitSize);
1476 if (mdm->flags & 0x01)
1477 mdata->s_flags |= MF_DUPLICATE_MD;
1478
1479 udf_debug("Metadata Ident suffix=0x%x\n",
1480 le16_to_cpu(*(__le16 *)
1481 mdm->partIdent.identSuffix));
1482 udf_debug("Metadata part num=%u\n",
1483 le16_to_cpu(mdm->partitionNum));
1484 udf_debug("Metadata part alloc unit size=%u\n",
1485 le32_to_cpu(mdm->allocUnitSize));
1486 udf_debug("Metadata file loc=%u\n",
1487 le32_to_cpu(mdm->metadataFileLoc));
1488 udf_debug("Mirror file loc=%u\n",
1489 le32_to_cpu(mdm->metadataMirrorFileLoc));
1490 udf_debug("Bitmap file loc=%u\n",
1491 le32_to_cpu(mdm->metadataBitmapFileLoc));
1492 udf_debug("Flags: %d %u\n",
1493 mdata->s_flags, mdm->flags);
1494 } else {
1495 udf_debug("Unknown ident: %s\n",
1496 upm2->partIdent.ident);
1497 continue;
1498 }
1499 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1500 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1501 }
1502 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1503 i, map->s_partition_num, type, map->s_volumeseqnum);
1504 }
1505
1506 if (fileset) {
1507 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1508
1509 *fileset = lelb_to_cpu(la->extLocation);
1510 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1511 fileset->logicalBlockNum,
1512 fileset->partitionReferenceNum);
1513 }
1514 if (lvd->integritySeqExt.extLength)
1515 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1516 ret = 0;
1517
1518 if (!sbi->s_lvid_bh) {
1519 /* We can't generate unique IDs without a valid LVID */
1520 if (sb_rdonly(sb)) {
1521 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1522 } else {
1523 udf_warn(sb, "Damaged or missing LVID, forcing "
1524 "readonly mount\n");
1525 ret = -EACCES;
1526 }
1527 }
1528 out_bh:
1529 brelse(bh);
1530 return ret;
1531 }
1532
1533 /*
1534 * Find the prevailing Logical Volume Integrity Descriptor.
1535 */
1536 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1537 {
1538 struct buffer_head *bh, *final_bh;
1539 uint16_t ident;
1540 struct udf_sb_info *sbi = UDF_SB(sb);
1541 struct logicalVolIntegrityDesc *lvid;
1542 int indirections = 0;
1543
1544 while (++indirections <= UDF_MAX_LVID_NESTING) {
1545 final_bh = NULL;
1546 while (loc.extLength > 0 &&
1547 (bh = udf_read_tagged(sb, loc.extLocation,
1548 loc.extLocation, &ident))) {
1549 if (ident != TAG_IDENT_LVID) {
1550 brelse(bh);
1551 break;
1552 }
1553
1554 brelse(final_bh);
1555 final_bh = bh;
1556
1557 loc.extLength -= sb->s_blocksize;
1558 loc.extLocation++;
1559 }
1560
1561 if (!final_bh)
1562 return;
1563
1564 brelse(sbi->s_lvid_bh);
1565 sbi->s_lvid_bh = final_bh;
1566
1567 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1568 if (lvid->nextIntegrityExt.extLength == 0)
1569 return;
1570
1571 loc = leea_to_cpu(lvid->nextIntegrityExt);
1572 }
1573
1574 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1575 UDF_MAX_LVID_NESTING);
1576 brelse(sbi->s_lvid_bh);
1577 sbi->s_lvid_bh = NULL;
1578 }
1579
1580 /*
1581 * Step for reallocation of table of partition descriptor sequence numbers.
1582 * Must be power of 2.
1583 */
1584 #define PART_DESC_ALLOC_STEP 32
1585
1586 struct part_desc_seq_scan_data {
1587 struct udf_vds_record rec;
1588 u32 partnum;
1589 };
1590
1591 struct desc_seq_scan_data {
1592 struct udf_vds_record vds[VDS_POS_LENGTH];
1593 unsigned int size_part_descs;
1594 unsigned int num_part_descs;
1595 struct part_desc_seq_scan_data *part_descs_loc;
1596 };
1597
1598 static struct udf_vds_record *handle_partition_descriptor(
1599 struct buffer_head *bh,
1600 struct desc_seq_scan_data *data)
1601 {
1602 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1603 int partnum;
1604 int i;
1605
1606 partnum = le16_to_cpu(desc->partitionNumber);
1607 for (i = 0; i < data->num_part_descs; i++)
1608 if (partnum == data->part_descs_loc[i].partnum)
1609 return &(data->part_descs_loc[i].rec);
1610 if (data->num_part_descs >= data->size_part_descs) {
1611 struct part_desc_seq_scan_data *new_loc;
1612 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1613
1614 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1615 if (!new_loc)
1616 return ERR_PTR(-ENOMEM);
1617 memcpy(new_loc, data->part_descs_loc,
1618 data->size_part_descs * sizeof(*new_loc));
1619 kfree(data->part_descs_loc);
1620 data->part_descs_loc = new_loc;
1621 data->size_part_descs = new_size;
1622 }
1623 return &(data->part_descs_loc[data->num_part_descs++].rec);
1624 }
1625
1626
1627 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1628 struct buffer_head *bh, struct desc_seq_scan_data *data)
1629 {
1630 switch (ident) {
1631 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1632 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1633 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1634 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1635 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1636 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1637 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1638 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1639 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1640 return handle_partition_descriptor(bh, data);
1641 }
1642 return NULL;
1643 }
1644
1645 /*
1646 * Process a main/reserve volume descriptor sequence.
1647 * @block First block of first extent of the sequence.
1648 * @lastblock Lastblock of first extent of the sequence.
1649 * @fileset There we store extent containing root fileset
1650 *
1651 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1652 * sequence
1653 */
1654 static noinline int udf_process_sequence(
1655 struct super_block *sb,
1656 sector_t block, sector_t lastblock,
1657 struct kernel_lb_addr *fileset)
1658 {
1659 struct buffer_head *bh = NULL;
1660 struct udf_vds_record *curr;
1661 struct generic_desc *gd;
1662 struct volDescPtr *vdp;
1663 bool done = false;
1664 uint32_t vdsn;
1665 uint16_t ident;
1666 int ret;
1667 unsigned int indirections = 0;
1668 struct desc_seq_scan_data data;
1669 unsigned int i;
1670
1671 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1672 data.size_part_descs = PART_DESC_ALLOC_STEP;
1673 data.num_part_descs = 0;
1674 data.part_descs_loc = kcalloc(data.size_part_descs,
1675 sizeof(*data.part_descs_loc),
1676 GFP_KERNEL);
1677 if (!data.part_descs_loc)
1678 return -ENOMEM;
1679
1680 /*
1681 * Read the main descriptor sequence and find which descriptors
1682 * are in it.
1683 */
1684 for (; (!done && block <= lastblock); block++) {
1685 bh = udf_read_tagged(sb, block, block, &ident);
1686 if (!bh)
1687 break;
1688
1689 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1690 gd = (struct generic_desc *)bh->b_data;
1691 vdsn = le32_to_cpu(gd->volDescSeqNum);
1692 switch (ident) {
1693 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1694 if (++indirections > UDF_MAX_TD_NESTING) {
1695 udf_err(sb, "too many Volume Descriptor "
1696 "Pointers (max %u supported)\n",
1697 UDF_MAX_TD_NESTING);
1698 brelse(bh);
1699 ret = -EIO;
1700 goto out;
1701 }
1702
1703 vdp = (struct volDescPtr *)bh->b_data;
1704 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1705 lastblock = le32_to_cpu(
1706 vdp->nextVolDescSeqExt.extLength) >>
1707 sb->s_blocksize_bits;
1708 lastblock += block - 1;
1709 /* For loop is going to increment 'block' again */
1710 block--;
1711 break;
1712 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1713 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1714 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1715 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1716 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1717 curr = get_volume_descriptor_record(ident, bh, &data);
1718 if (IS_ERR(curr)) {
1719 brelse(bh);
1720 ret = PTR_ERR(curr);
1721 goto out;
1722 }
1723 /* Descriptor we don't care about? */
1724 if (!curr)
1725 break;
1726 if (vdsn >= curr->volDescSeqNum) {
1727 curr->volDescSeqNum = vdsn;
1728 curr->block = block;
1729 }
1730 break;
1731 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1732 done = true;
1733 break;
1734 }
1735 brelse(bh);
1736 }
1737 /*
1738 * Now read interesting descriptors again and process them
1739 * in a suitable order
1740 */
1741 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1742 udf_err(sb, "Primary Volume Descriptor not found!\n");
1743 ret = -EAGAIN;
1744 goto out;
1745 }
1746 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1747 if (ret < 0)
1748 goto out;
1749
1750 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1751 ret = udf_load_logicalvol(sb,
1752 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1753 fileset);
1754 if (ret < 0)
1755 goto out;
1756 }
1757
1758 /* Now handle prevailing Partition Descriptors */
1759 for (i = 0; i < data.num_part_descs; i++) {
1760 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1761 if (ret < 0)
1762 goto out;
1763 }
1764 ret = 0;
1765 out:
1766 kfree(data.part_descs_loc);
1767 return ret;
1768 }
1769
1770 /*
1771 * Load Volume Descriptor Sequence described by anchor in bh
1772 *
1773 * Returns <0 on error, 0 on success
1774 */
1775 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1776 struct kernel_lb_addr *fileset)
1777 {
1778 struct anchorVolDescPtr *anchor;
1779 sector_t main_s, main_e, reserve_s, reserve_e;
1780 int ret;
1781
1782 anchor = (struct anchorVolDescPtr *)bh->b_data;
1783
1784 /* Locate the main sequence */
1785 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1786 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1787 main_e = main_e >> sb->s_blocksize_bits;
1788 main_e += main_s - 1;
1789
1790 /* Locate the reserve sequence */
1791 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1792 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1793 reserve_e = reserve_e >> sb->s_blocksize_bits;
1794 reserve_e += reserve_s - 1;
1795
1796 /* Process the main & reserve sequences */
1797 /* responsible for finding the PartitionDesc(s) */
1798 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1799 if (ret != -EAGAIN)
1800 return ret;
1801 udf_sb_free_partitions(sb);
1802 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1803 if (ret < 0) {
1804 udf_sb_free_partitions(sb);
1805 /* No sequence was OK, return -EIO */
1806 if (ret == -EAGAIN)
1807 ret = -EIO;
1808 }
1809 return ret;
1810 }
1811
1812 /*
1813 * Check whether there is an anchor block in the given block and
1814 * load Volume Descriptor Sequence if so.
1815 *
1816 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1817 * block
1818 */
1819 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1820 struct kernel_lb_addr *fileset)
1821 {
1822 struct buffer_head *bh;
1823 uint16_t ident;
1824 int ret;
1825
1826 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1827 udf_fixed_to_variable(block) >=
1828 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1829 return -EAGAIN;
1830
1831 bh = udf_read_tagged(sb, block, block, &ident);
1832 if (!bh)
1833 return -EAGAIN;
1834 if (ident != TAG_IDENT_AVDP) {
1835 brelse(bh);
1836 return -EAGAIN;
1837 }
1838 ret = udf_load_sequence(sb, bh, fileset);
1839 brelse(bh);
1840 return ret;
1841 }
1842
1843 /*
1844 * Search for an anchor volume descriptor pointer.
1845 *
1846 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1847 * of anchors.
1848 */
1849 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1850 struct kernel_lb_addr *fileset)
1851 {
1852 sector_t last[6];
1853 int i;
1854 struct udf_sb_info *sbi = UDF_SB(sb);
1855 int last_count = 0;
1856 int ret;
1857
1858 /* First try user provided anchor */
1859 if (sbi->s_anchor) {
1860 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1861 if (ret != -EAGAIN)
1862 return ret;
1863 }
1864 /*
1865 * according to spec, anchor is in either:
1866 * block 256
1867 * lastblock-256
1868 * lastblock
1869 * however, if the disc isn't closed, it could be 512.
1870 */
1871 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1872 if (ret != -EAGAIN)
1873 return ret;
1874 /*
1875 * The trouble is which block is the last one. Drives often misreport
1876 * this so we try various possibilities.
1877 */
1878 last[last_count++] = *lastblock;
1879 if (*lastblock >= 1)
1880 last[last_count++] = *lastblock - 1;
1881 last[last_count++] = *lastblock + 1;
1882 if (*lastblock >= 2)
1883 last[last_count++] = *lastblock - 2;
1884 if (*lastblock >= 150)
1885 last[last_count++] = *lastblock - 150;
1886 if (*lastblock >= 152)
1887 last[last_count++] = *lastblock - 152;
1888
1889 for (i = 0; i < last_count; i++) {
1890 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1891 sb->s_blocksize_bits)
1892 continue;
1893 ret = udf_check_anchor_block(sb, last[i], fileset);
1894 if (ret != -EAGAIN) {
1895 if (!ret)
1896 *lastblock = last[i];
1897 return ret;
1898 }
1899 if (last[i] < 256)
1900 continue;
1901 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1902 if (ret != -EAGAIN) {
1903 if (!ret)
1904 *lastblock = last[i];
1905 return ret;
1906 }
1907 }
1908
1909 /* Finally try block 512 in case media is open */
1910 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1911 }
1912
1913 /*
1914 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1915 * area specified by it. The function expects sbi->s_lastblock to be the last
1916 * block on the media.
1917 *
1918 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1919 * was not found.
1920 */
1921 static int udf_find_anchor(struct super_block *sb,
1922 struct kernel_lb_addr *fileset)
1923 {
1924 struct udf_sb_info *sbi = UDF_SB(sb);
1925 sector_t lastblock = sbi->s_last_block;
1926 int ret;
1927
1928 ret = udf_scan_anchors(sb, &lastblock, fileset);
1929 if (ret != -EAGAIN)
1930 goto out;
1931
1932 /* No anchor found? Try VARCONV conversion of block numbers */
1933 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1934 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1935 /* Firstly, we try to not convert number of the last block */
1936 ret = udf_scan_anchors(sb, &lastblock, fileset);
1937 if (ret != -EAGAIN)
1938 goto out;
1939
1940 lastblock = sbi->s_last_block;
1941 /* Secondly, we try with converted number of the last block */
1942 ret = udf_scan_anchors(sb, &lastblock, fileset);
1943 if (ret < 0) {
1944 /* VARCONV didn't help. Clear it. */
1945 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1946 }
1947 out:
1948 if (ret == 0)
1949 sbi->s_last_block = lastblock;
1950 return ret;
1951 }
1952
1953 /*
1954 * Check Volume Structure Descriptor, find Anchor block and load Volume
1955 * Descriptor Sequence.
1956 *
1957 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1958 * block was not found.
1959 */
1960 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1961 int silent, struct kernel_lb_addr *fileset)
1962 {
1963 struct udf_sb_info *sbi = UDF_SB(sb);
1964 int nsr = 0;
1965 int ret;
1966
1967 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1968 if (!silent)
1969 udf_warn(sb, "Bad block size\n");
1970 return -EINVAL;
1971 }
1972 sbi->s_last_block = uopt->lastblock;
1973 if (!uopt->novrs) {
1974 /* Check that it is NSR02 compliant */
1975 nsr = udf_check_vsd(sb);
1976 if (!nsr) {
1977 if (!silent)
1978 udf_warn(sb, "No VRS found\n");
1979 return -EINVAL;
1980 }
1981 if (nsr == -1)
1982 udf_debug("Failed to read sector at offset %d. "
1983 "Assuming open disc. Skipping validity "
1984 "check\n", VSD_FIRST_SECTOR_OFFSET);
1985 if (!sbi->s_last_block)
1986 sbi->s_last_block = udf_get_last_block(sb);
1987 } else {
1988 udf_debug("Validity check skipped because of novrs option\n");
1989 }
1990
1991 /* Look for anchor block and load Volume Descriptor Sequence */
1992 sbi->s_anchor = uopt->anchor;
1993 ret = udf_find_anchor(sb, fileset);
1994 if (ret < 0) {
1995 if (!silent && ret == -EAGAIN)
1996 udf_warn(sb, "No anchor found\n");
1997 return ret;
1998 }
1999 return 0;
2000 }
2001
2002 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2003 {
2004 struct timespec64 ts;
2005
2006 ktime_get_real_ts64(&ts);
2007 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2008 lvid->descTag.descCRC = cpu_to_le16(
2009 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2010 le16_to_cpu(lvid->descTag.descCRCLength)));
2011 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2012 }
2013
2014 static void udf_open_lvid(struct super_block *sb)
2015 {
2016 struct udf_sb_info *sbi = UDF_SB(sb);
2017 struct buffer_head *bh = sbi->s_lvid_bh;
2018 struct logicalVolIntegrityDesc *lvid;
2019 struct logicalVolIntegrityDescImpUse *lvidiu;
2020
2021 if (!bh)
2022 return;
2023 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2024 lvidiu = udf_sb_lvidiu(sb);
2025 if (!lvidiu)
2026 return;
2027
2028 mutex_lock(&sbi->s_alloc_mutex);
2029 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2030 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2031 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2032 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2033 else
2034 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2035
2036 udf_finalize_lvid(lvid);
2037 mark_buffer_dirty(bh);
2038 sbi->s_lvid_dirty = 0;
2039 mutex_unlock(&sbi->s_alloc_mutex);
2040 /* Make opening of filesystem visible on the media immediately */
2041 sync_dirty_buffer(bh);
2042 }
2043
2044 static void udf_close_lvid(struct super_block *sb)
2045 {
2046 struct udf_sb_info *sbi = UDF_SB(sb);
2047 struct buffer_head *bh = sbi->s_lvid_bh;
2048 struct logicalVolIntegrityDesc *lvid;
2049 struct logicalVolIntegrityDescImpUse *lvidiu;
2050
2051 if (!bh)
2052 return;
2053 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2054 lvidiu = udf_sb_lvidiu(sb);
2055 if (!lvidiu)
2056 return;
2057
2058 mutex_lock(&sbi->s_alloc_mutex);
2059 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2060 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2061 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2062 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2063 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2064 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2065 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2066 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2067 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2068 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2069
2070 /*
2071 * We set buffer uptodate unconditionally here to avoid spurious
2072 * warnings from mark_buffer_dirty() when previous EIO has marked
2073 * the buffer as !uptodate
2074 */
2075 set_buffer_uptodate(bh);
2076 udf_finalize_lvid(lvid);
2077 mark_buffer_dirty(bh);
2078 sbi->s_lvid_dirty = 0;
2079 mutex_unlock(&sbi->s_alloc_mutex);
2080 /* Make closing of filesystem visible on the media immediately */
2081 sync_dirty_buffer(bh);
2082 }
2083
2084 u64 lvid_get_unique_id(struct super_block *sb)
2085 {
2086 struct buffer_head *bh;
2087 struct udf_sb_info *sbi = UDF_SB(sb);
2088 struct logicalVolIntegrityDesc *lvid;
2089 struct logicalVolHeaderDesc *lvhd;
2090 u64 uniqueID;
2091 u64 ret;
2092
2093 bh = sbi->s_lvid_bh;
2094 if (!bh)
2095 return 0;
2096
2097 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2098 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2099
2100 mutex_lock(&sbi->s_alloc_mutex);
2101 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2102 if (!(++uniqueID & 0xFFFFFFFF))
2103 uniqueID += 16;
2104 lvhd->uniqueID = cpu_to_le64(uniqueID);
2105 udf_updated_lvid(sb);
2106 mutex_unlock(&sbi->s_alloc_mutex);
2107
2108 return ret;
2109 }
2110
2111 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2112 {
2113 int ret = -EINVAL;
2114 struct inode *inode = NULL;
2115 struct udf_options uopt;
2116 struct kernel_lb_addr rootdir, fileset;
2117 struct udf_sb_info *sbi;
2118 bool lvid_open = false;
2119
2120 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2121 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2122 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2123 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2124 uopt.umask = 0;
2125 uopt.fmode = UDF_INVALID_MODE;
2126 uopt.dmode = UDF_INVALID_MODE;
2127 uopt.nls_map = NULL;
2128
2129 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2130 if (!sbi)
2131 return -ENOMEM;
2132
2133 sb->s_fs_info = sbi;
2134
2135 mutex_init(&sbi->s_alloc_mutex);
2136
2137 if (!udf_parse_options((char *)options, &uopt, false))
2138 goto parse_options_failure;
2139
2140 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2141 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2142 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2143 goto parse_options_failure;
2144 }
2145 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2146 uopt.nls_map = load_nls_default();
2147 if (!uopt.nls_map)
2148 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2149 else
2150 udf_debug("Using default NLS map\n");
2151 }
2152 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2153 uopt.flags |= (1 << UDF_FLAG_UTF8);
2154
2155 fileset.logicalBlockNum = 0xFFFFFFFF;
2156 fileset.partitionReferenceNum = 0xFFFF;
2157
2158 sbi->s_flags = uopt.flags;
2159 sbi->s_uid = uopt.uid;
2160 sbi->s_gid = uopt.gid;
2161 sbi->s_umask = uopt.umask;
2162 sbi->s_fmode = uopt.fmode;
2163 sbi->s_dmode = uopt.dmode;
2164 sbi->s_nls_map = uopt.nls_map;
2165 rwlock_init(&sbi->s_cred_lock);
2166
2167 if (uopt.session == 0xFFFFFFFF)
2168 sbi->s_session = udf_get_last_session(sb);
2169 else
2170 sbi->s_session = uopt.session;
2171
2172 udf_debug("Multi-session=%d\n", sbi->s_session);
2173
2174 /* Fill in the rest of the superblock */
2175 sb->s_op = &udf_sb_ops;
2176 sb->s_export_op = &udf_export_ops;
2177
2178 sb->s_magic = UDF_SUPER_MAGIC;
2179 sb->s_time_gran = 1000;
2180
2181 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2182 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2183 } else {
2184 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2185 while (uopt.blocksize <= 4096) {
2186 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2187 if (ret < 0) {
2188 if (!silent && ret != -EACCES) {
2189 pr_notice("Scanning with blocksize %u failed\n",
2190 uopt.blocksize);
2191 }
2192 brelse(sbi->s_lvid_bh);
2193 sbi->s_lvid_bh = NULL;
2194 /*
2195 * EACCES is special - we want to propagate to
2196 * upper layers that we cannot handle RW mount.
2197 */
2198 if (ret == -EACCES)
2199 break;
2200 } else
2201 break;
2202
2203 uopt.blocksize <<= 1;
2204 }
2205 }
2206 if (ret < 0) {
2207 if (ret == -EAGAIN) {
2208 udf_warn(sb, "No partition found (1)\n");
2209 ret = -EINVAL;
2210 }
2211 goto error_out;
2212 }
2213
2214 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2215
2216 if (sbi->s_lvid_bh) {
2217 struct logicalVolIntegrityDescImpUse *lvidiu =
2218 udf_sb_lvidiu(sb);
2219 uint16_t minUDFReadRev;
2220 uint16_t minUDFWriteRev;
2221
2222 if (!lvidiu) {
2223 ret = -EINVAL;
2224 goto error_out;
2225 }
2226 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2227 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2228 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2229 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2230 minUDFReadRev,
2231 UDF_MAX_READ_VERSION);
2232 ret = -EINVAL;
2233 goto error_out;
2234 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2235 if (!sb_rdonly(sb)) {
2236 ret = -EACCES;
2237 goto error_out;
2238 }
2239 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2240 }
2241
2242 sbi->s_udfrev = minUDFWriteRev;
2243
2244 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2245 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2246 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2247 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2248 }
2249
2250 if (!sbi->s_partitions) {
2251 udf_warn(sb, "No partition found (2)\n");
2252 ret = -EINVAL;
2253 goto error_out;
2254 }
2255
2256 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2257 UDF_PART_FLAG_READ_ONLY) {
2258 if (!sb_rdonly(sb)) {
2259 ret = -EACCES;
2260 goto error_out;
2261 }
2262 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2263 }
2264
2265 ret = udf_find_fileset(sb, &fileset, &rootdir);
2266 if (ret < 0) {
2267 udf_warn(sb, "No fileset found\n");
2268 goto error_out;
2269 }
2270
2271 if (!silent) {
2272 struct timestamp ts;
2273 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2274 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2275 sbi->s_volume_ident,
2276 le16_to_cpu(ts.year), ts.month, ts.day,
2277 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2278 }
2279 if (!sb_rdonly(sb)) {
2280 udf_open_lvid(sb);
2281 lvid_open = true;
2282 }
2283
2284 /* Assign the root inode */
2285 /* assign inodes by physical block number */
2286 /* perhaps it's not extensible enough, but for now ... */
2287 inode = udf_iget(sb, &rootdir);
2288 if (IS_ERR(inode)) {
2289 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2290 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2291 ret = PTR_ERR(inode);
2292 goto error_out;
2293 }
2294
2295 /* Allocate a dentry for the root inode */
2296 sb->s_root = d_make_root(inode);
2297 if (!sb->s_root) {
2298 udf_err(sb, "Couldn't allocate root dentry\n");
2299 ret = -ENOMEM;
2300 goto error_out;
2301 }
2302 sb->s_maxbytes = MAX_LFS_FILESIZE;
2303 sb->s_max_links = UDF_MAX_LINKS;
2304 return 0;
2305
2306 error_out:
2307 iput(sbi->s_vat_inode);
2308 parse_options_failure:
2309 if (uopt.nls_map)
2310 unload_nls(uopt.nls_map);
2311 if (lvid_open)
2312 udf_close_lvid(sb);
2313 brelse(sbi->s_lvid_bh);
2314 udf_sb_free_partitions(sb);
2315 kfree(sbi);
2316 sb->s_fs_info = NULL;
2317
2318 return ret;
2319 }
2320
2321 void _udf_err(struct super_block *sb, const char *function,
2322 const char *fmt, ...)
2323 {
2324 struct va_format vaf;
2325 va_list args;
2326
2327 va_start(args, fmt);
2328
2329 vaf.fmt = fmt;
2330 vaf.va = &args;
2331
2332 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2333
2334 va_end(args);
2335 }
2336
2337 void _udf_warn(struct super_block *sb, const char *function,
2338 const char *fmt, ...)
2339 {
2340 struct va_format vaf;
2341 va_list args;
2342
2343 va_start(args, fmt);
2344
2345 vaf.fmt = fmt;
2346 vaf.va = &args;
2347
2348 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2349
2350 va_end(args);
2351 }
2352
2353 static void udf_put_super(struct super_block *sb)
2354 {
2355 struct udf_sb_info *sbi;
2356
2357 sbi = UDF_SB(sb);
2358
2359 iput(sbi->s_vat_inode);
2360 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2361 unload_nls(sbi->s_nls_map);
2362 if (!sb_rdonly(sb))
2363 udf_close_lvid(sb);
2364 brelse(sbi->s_lvid_bh);
2365 udf_sb_free_partitions(sb);
2366 mutex_destroy(&sbi->s_alloc_mutex);
2367 kfree(sb->s_fs_info);
2368 sb->s_fs_info = NULL;
2369 }
2370
2371 static int udf_sync_fs(struct super_block *sb, int wait)
2372 {
2373 struct udf_sb_info *sbi = UDF_SB(sb);
2374
2375 mutex_lock(&sbi->s_alloc_mutex);
2376 if (sbi->s_lvid_dirty) {
2377 struct buffer_head *bh = sbi->s_lvid_bh;
2378 struct logicalVolIntegrityDesc *lvid;
2379
2380 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2381 udf_finalize_lvid(lvid);
2382
2383 /*
2384 * Blockdevice will be synced later so we don't have to submit
2385 * the buffer for IO
2386 */
2387 mark_buffer_dirty(bh);
2388 sbi->s_lvid_dirty = 0;
2389 }
2390 mutex_unlock(&sbi->s_alloc_mutex);
2391
2392 return 0;
2393 }
2394
2395 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2396 {
2397 struct super_block *sb = dentry->d_sb;
2398 struct udf_sb_info *sbi = UDF_SB(sb);
2399 struct logicalVolIntegrityDescImpUse *lvidiu;
2400 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2401
2402 lvidiu = udf_sb_lvidiu(sb);
2403 buf->f_type = UDF_SUPER_MAGIC;
2404 buf->f_bsize = sb->s_blocksize;
2405 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2406 buf->f_bfree = udf_count_free(sb);
2407 buf->f_bavail = buf->f_bfree;
2408 /*
2409 * Let's pretend each free block is also a free 'inode' since UDF does
2410 * not have separate preallocated table of inodes.
2411 */
2412 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2413 le32_to_cpu(lvidiu->numDirs)) : 0)
2414 + buf->f_bfree;
2415 buf->f_ffree = buf->f_bfree;
2416 buf->f_namelen = UDF_NAME_LEN;
2417 buf->f_fsid.val[0] = (u32)id;
2418 buf->f_fsid.val[1] = (u32)(id >> 32);
2419
2420 return 0;
2421 }
2422
2423 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2424 struct udf_bitmap *bitmap)
2425 {
2426 struct buffer_head *bh = NULL;
2427 unsigned int accum = 0;
2428 int index;
2429 udf_pblk_t block = 0, newblock;
2430 struct kernel_lb_addr loc;
2431 uint32_t bytes;
2432 uint8_t *ptr;
2433 uint16_t ident;
2434 struct spaceBitmapDesc *bm;
2435
2436 loc.logicalBlockNum = bitmap->s_extPosition;
2437 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2438 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2439
2440 if (!bh) {
2441 udf_err(sb, "udf_count_free failed\n");
2442 goto out;
2443 } else if (ident != TAG_IDENT_SBD) {
2444 brelse(bh);
2445 udf_err(sb, "udf_count_free failed\n");
2446 goto out;
2447 }
2448
2449 bm = (struct spaceBitmapDesc *)bh->b_data;
2450 bytes = le32_to_cpu(bm->numOfBytes);
2451 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2452 ptr = (uint8_t *)bh->b_data;
2453
2454 while (bytes > 0) {
2455 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2456 accum += bitmap_weight((const unsigned long *)(ptr + index),
2457 cur_bytes * 8);
2458 bytes -= cur_bytes;
2459 if (bytes) {
2460 brelse(bh);
2461 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2462 bh = udf_tread(sb, newblock);
2463 if (!bh) {
2464 udf_debug("read failed\n");
2465 goto out;
2466 }
2467 index = 0;
2468 ptr = (uint8_t *)bh->b_data;
2469 }
2470 }
2471 brelse(bh);
2472 out:
2473 return accum;
2474 }
2475
2476 static unsigned int udf_count_free_table(struct super_block *sb,
2477 struct inode *table)
2478 {
2479 unsigned int accum = 0;
2480 uint32_t elen;
2481 struct kernel_lb_addr eloc;
2482 int8_t etype;
2483 struct extent_position epos;
2484
2485 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2486 epos.block = UDF_I(table)->i_location;
2487 epos.offset = sizeof(struct unallocSpaceEntry);
2488 epos.bh = NULL;
2489
2490 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2491 accum += (elen >> table->i_sb->s_blocksize_bits);
2492
2493 brelse(epos.bh);
2494 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2495
2496 return accum;
2497 }
2498
2499 static unsigned int udf_count_free(struct super_block *sb)
2500 {
2501 unsigned int accum = 0;
2502 struct udf_sb_info *sbi = UDF_SB(sb);
2503 struct udf_part_map *map;
2504 unsigned int part = sbi->s_partition;
2505 int ptype = sbi->s_partmaps[part].s_partition_type;
2506
2507 if (ptype == UDF_METADATA_MAP25) {
2508 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2509 s_phys_partition_ref;
2510 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2511 /*
2512 * Filesystems with VAT are append-only and we cannot write to
2513 * them. Let's just report 0 here.
2514 */
2515 return 0;
2516 }
2517
2518 if (sbi->s_lvid_bh) {
2519 struct logicalVolIntegrityDesc *lvid =
2520 (struct logicalVolIntegrityDesc *)
2521 sbi->s_lvid_bh->b_data;
2522 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2523 accum = le32_to_cpu(
2524 lvid->freeSpaceTable[part]);
2525 if (accum == 0xFFFFFFFF)
2526 accum = 0;
2527 }
2528 }
2529
2530 if (accum)
2531 return accum;
2532
2533 map = &sbi->s_partmaps[part];
2534 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2535 accum += udf_count_free_bitmap(sb,
2536 map->s_uspace.s_bitmap);
2537 }
2538 if (accum)
2539 return accum;
2540
2541 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2542 accum += udf_count_free_table(sb,
2543 map->s_uspace.s_table);
2544 }
2545 return accum;
2546 }
2547
2548 MODULE_AUTHOR("Ben Fennema");
2549 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2550 MODULE_LICENSE("GPL");
2551 module_init(init_udf_fs)
2552 module_exit(exit_udf_fs)