]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/udf/super.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile
[mirror_ubuntu-bionic-kernel.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC 0
68 #define VDS_POS_UNALLOC_SPACE_DESC 1
69 #define VDS_POS_LOGICAL_VOL_DESC 2
70 #define VDS_POS_PARTITION_DESC 3
71 #define VDS_POS_IMP_USE_VOL_DESC 4
72 #define VDS_POS_VOL_DESC_PTR 5
73 #define VDS_POS_TERMINATING_DESC 6
74 #define VDS_POS_LENGTH 7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 #define VSD_FIRST_SECTOR_OFFSET 32768
79 #define VSD_MAX_SECTOR_OFFSET 0x800000
80
81 enum { UDF_MAX_LINKS = 0xffff };
82
83 /* These are the "meat" - everything else is stuffing */
84 static int udf_fill_super(struct super_block *, void *, int);
85 static void udf_put_super(struct super_block *);
86 static int udf_sync_fs(struct super_block *, int);
87 static int udf_remount_fs(struct super_block *, int *, char *);
88 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
89 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
90 struct kernel_lb_addr *);
91 static void udf_load_fileset(struct super_block *, struct buffer_head *,
92 struct kernel_lb_addr *);
93 static void udf_open_lvid(struct super_block *);
94 static void udf_close_lvid(struct super_block *);
95 static unsigned int udf_count_free(struct super_block *);
96 static int udf_statfs(struct dentry *, struct kstatfs *);
97 static int udf_show_options(struct seq_file *, struct dentry *);
98
99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
100 {
101 struct logicalVolIntegrityDesc *lvid;
102 unsigned int partnum;
103 unsigned int offset;
104
105 if (!UDF_SB(sb)->s_lvid_bh)
106 return NULL;
107 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
108 partnum = le32_to_cpu(lvid->numOfPartitions);
109 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
110 offsetof(struct logicalVolIntegrityDesc, impUse)) /
111 (2 * sizeof(uint32_t)) < partnum) {
112 udf_err(sb, "Logical volume integrity descriptor corrupted "
113 "(numOfPartitions = %u)!\n", partnum);
114 return NULL;
115 }
116 /* The offset is to skip freeSpaceTable and sizeTable arrays */
117 offset = partnum * 2 * sizeof(uint32_t);
118 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
119 }
120
121 /* UDF filesystem type */
122 static struct dentry *udf_mount(struct file_system_type *fs_type,
123 int flags, const char *dev_name, void *data)
124 {
125 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126 }
127
128 static struct file_system_type udf_fstype = {
129 .owner = THIS_MODULE,
130 .name = "udf",
131 .mount = udf_mount,
132 .kill_sb = kill_block_super,
133 .fs_flags = FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("udf");
136
137 static struct kmem_cache *udf_inode_cachep;
138
139 static struct inode *udf_alloc_inode(struct super_block *sb)
140 {
141 struct udf_inode_info *ei;
142 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
143 if (!ei)
144 return NULL;
145
146 ei->i_unique = 0;
147 ei->i_lenExtents = 0;
148 ei->i_next_alloc_block = 0;
149 ei->i_next_alloc_goal = 0;
150 ei->i_strat4096 = 0;
151 init_rwsem(&ei->i_data_sem);
152 ei->cached_extent.lstart = -1;
153 spin_lock_init(&ei->i_extent_cache_lock);
154
155 return &ei->vfs_inode;
156 }
157
158 static void udf_i_callback(struct rcu_head *head)
159 {
160 struct inode *inode = container_of(head, struct inode, i_rcu);
161 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163
164 static void udf_destroy_inode(struct inode *inode)
165 {
166 call_rcu(&inode->i_rcu, udf_i_callback);
167 }
168
169 static void init_once(void *foo)
170 {
171 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
172
173 ei->i_ext.i_data = NULL;
174 inode_init_once(&ei->vfs_inode);
175 }
176
177 static int __init init_inodecache(void)
178 {
179 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
180 sizeof(struct udf_inode_info),
181 0, (SLAB_RECLAIM_ACCOUNT |
182 SLAB_MEM_SPREAD |
183 SLAB_ACCOUNT),
184 init_once);
185 if (!udf_inode_cachep)
186 return -ENOMEM;
187 return 0;
188 }
189
190 static void destroy_inodecache(void)
191 {
192 /*
193 * Make sure all delayed rcu free inodes are flushed before we
194 * destroy cache.
195 */
196 rcu_barrier();
197 kmem_cache_destroy(udf_inode_cachep);
198 }
199
200 /* Superblock operations */
201 static const struct super_operations udf_sb_ops = {
202 .alloc_inode = udf_alloc_inode,
203 .destroy_inode = udf_destroy_inode,
204 .write_inode = udf_write_inode,
205 .evict_inode = udf_evict_inode,
206 .put_super = udf_put_super,
207 .sync_fs = udf_sync_fs,
208 .statfs = udf_statfs,
209 .remount_fs = udf_remount_fs,
210 .show_options = udf_show_options,
211 };
212
213 struct udf_options {
214 unsigned char novrs;
215 unsigned int blocksize;
216 unsigned int session;
217 unsigned int lastblock;
218 unsigned int anchor;
219 unsigned int volume;
220 unsigned short partition;
221 unsigned int fileset;
222 unsigned int rootdir;
223 unsigned int flags;
224 umode_t umask;
225 kgid_t gid;
226 kuid_t uid;
227 umode_t fmode;
228 umode_t dmode;
229 struct nls_table *nls_map;
230 };
231
232 static int __init init_udf_fs(void)
233 {
234 int err;
235
236 err = init_inodecache();
237 if (err)
238 goto out1;
239 err = register_filesystem(&udf_fstype);
240 if (err)
241 goto out;
242
243 return 0;
244
245 out:
246 destroy_inodecache();
247
248 out1:
249 return err;
250 }
251
252 static void __exit exit_udf_fs(void)
253 {
254 unregister_filesystem(&udf_fstype);
255 destroy_inodecache();
256 }
257
258 module_init(init_udf_fs)
259 module_exit(exit_udf_fs)
260
261 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262 {
263 struct udf_sb_info *sbi = UDF_SB(sb);
264
265 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
266 GFP_KERNEL);
267 if (!sbi->s_partmaps) {
268 udf_err(sb, "Unable to allocate space for %d partition maps\n",
269 count);
270 sbi->s_partitions = 0;
271 return -ENOMEM;
272 }
273
274 sbi->s_partitions = count;
275 return 0;
276 }
277
278 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
279 {
280 int i;
281 int nr_groups = bitmap->s_nr_groups;
282 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
283 nr_groups);
284
285 for (i = 0; i < nr_groups; i++)
286 if (bitmap->s_block_bitmap[i])
287 brelse(bitmap->s_block_bitmap[i]);
288
289 if (size <= PAGE_SIZE)
290 kfree(bitmap);
291 else
292 vfree(bitmap);
293 }
294
295 static void udf_free_partition(struct udf_part_map *map)
296 {
297 int i;
298 struct udf_meta_data *mdata;
299
300 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
301 iput(map->s_uspace.s_table);
302 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
303 iput(map->s_fspace.s_table);
304 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
305 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
306 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
307 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
308 if (map->s_partition_type == UDF_SPARABLE_MAP15)
309 for (i = 0; i < 4; i++)
310 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
311 else if (map->s_partition_type == UDF_METADATA_MAP25) {
312 mdata = &map->s_type_specific.s_metadata;
313 iput(mdata->s_metadata_fe);
314 mdata->s_metadata_fe = NULL;
315
316 iput(mdata->s_mirror_fe);
317 mdata->s_mirror_fe = NULL;
318
319 iput(mdata->s_bitmap_fe);
320 mdata->s_bitmap_fe = NULL;
321 }
322 }
323
324 static void udf_sb_free_partitions(struct super_block *sb)
325 {
326 struct udf_sb_info *sbi = UDF_SB(sb);
327 int i;
328 if (sbi->s_partmaps == NULL)
329 return;
330 for (i = 0; i < sbi->s_partitions; i++)
331 udf_free_partition(&sbi->s_partmaps[i]);
332 kfree(sbi->s_partmaps);
333 sbi->s_partmaps = NULL;
334 }
335
336 static int udf_show_options(struct seq_file *seq, struct dentry *root)
337 {
338 struct super_block *sb = root->d_sb;
339 struct udf_sb_info *sbi = UDF_SB(sb);
340
341 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
342 seq_puts(seq, ",nostrict");
343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
344 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
346 seq_puts(seq, ",unhide");
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
348 seq_puts(seq, ",undelete");
349 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
350 seq_puts(seq, ",noadinicb");
351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
352 seq_puts(seq, ",shortad");
353 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
354 seq_puts(seq, ",uid=forget");
355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
356 seq_puts(seq, ",uid=ignore");
357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
358 seq_puts(seq, ",gid=forget");
359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
360 seq_puts(seq, ",gid=ignore");
361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
362 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
364 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
365 if (sbi->s_umask != 0)
366 seq_printf(seq, ",umask=%ho", sbi->s_umask);
367 if (sbi->s_fmode != UDF_INVALID_MODE)
368 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
369 if (sbi->s_dmode != UDF_INVALID_MODE)
370 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
371 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
372 seq_printf(seq, ",session=%u", sbi->s_session);
373 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
374 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
375 if (sbi->s_anchor != 0)
376 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
377 /*
378 * volume, partition, fileset and rootdir seem to be ignored
379 * currently
380 */
381 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
382 seq_puts(seq, ",utf8");
383 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
384 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
385
386 return 0;
387 }
388
389 /*
390 * udf_parse_options
391 *
392 * PURPOSE
393 * Parse mount options.
394 *
395 * DESCRIPTION
396 * The following mount options are supported:
397 *
398 * gid= Set the default group.
399 * umask= Set the default umask.
400 * mode= Set the default file permissions.
401 * dmode= Set the default directory permissions.
402 * uid= Set the default user.
403 * bs= Set the block size.
404 * unhide Show otherwise hidden files.
405 * undelete Show deleted files in lists.
406 * adinicb Embed data in the inode (default)
407 * noadinicb Don't embed data in the inode
408 * shortad Use short ad's
409 * longad Use long ad's (default)
410 * nostrict Unset strict conformance
411 * iocharset= Set the NLS character set
412 *
413 * The remaining are for debugging and disaster recovery:
414 *
415 * novrs Skip volume sequence recognition
416 *
417 * The following expect a offset from 0.
418 *
419 * session= Set the CDROM session (default= last session)
420 * anchor= Override standard anchor location. (default= 256)
421 * volume= Override the VolumeDesc location. (unused)
422 * partition= Override the PartitionDesc location. (unused)
423 * lastblock= Set the last block of the filesystem/
424 *
425 * The following expect a offset from the partition root.
426 *
427 * fileset= Override the fileset block location. (unused)
428 * rootdir= Override the root directory location. (unused)
429 * WARNING: overriding the rootdir to a non-directory may
430 * yield highly unpredictable results.
431 *
432 * PRE-CONDITIONS
433 * options Pointer to mount options string.
434 * uopts Pointer to mount options variable.
435 *
436 * POST-CONDITIONS
437 * <return> 1 Mount options parsed okay.
438 * <return> 0 Error parsing mount options.
439 *
440 * HISTORY
441 * July 1, 1997 - Andrew E. Mileski
442 * Written, tested, and released.
443 */
444
445 enum {
446 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
447 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
448 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
449 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
450 Opt_rootdir, Opt_utf8, Opt_iocharset,
451 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
452 Opt_fmode, Opt_dmode
453 };
454
455 static const match_table_t tokens = {
456 {Opt_novrs, "novrs"},
457 {Opt_nostrict, "nostrict"},
458 {Opt_bs, "bs=%u"},
459 {Opt_unhide, "unhide"},
460 {Opt_undelete, "undelete"},
461 {Opt_noadinicb, "noadinicb"},
462 {Opt_adinicb, "adinicb"},
463 {Opt_shortad, "shortad"},
464 {Opt_longad, "longad"},
465 {Opt_uforget, "uid=forget"},
466 {Opt_uignore, "uid=ignore"},
467 {Opt_gforget, "gid=forget"},
468 {Opt_gignore, "gid=ignore"},
469 {Opt_gid, "gid=%u"},
470 {Opt_uid, "uid=%u"},
471 {Opt_umask, "umask=%o"},
472 {Opt_session, "session=%u"},
473 {Opt_lastblock, "lastblock=%u"},
474 {Opt_anchor, "anchor=%u"},
475 {Opt_volume, "volume=%u"},
476 {Opt_partition, "partition=%u"},
477 {Opt_fileset, "fileset=%u"},
478 {Opt_rootdir, "rootdir=%u"},
479 {Opt_utf8, "utf8"},
480 {Opt_iocharset, "iocharset=%s"},
481 {Opt_fmode, "mode=%o"},
482 {Opt_dmode, "dmode=%o"},
483 {Opt_err, NULL}
484 };
485
486 static int udf_parse_options(char *options, struct udf_options *uopt,
487 bool remount)
488 {
489 char *p;
490 int option;
491
492 uopt->novrs = 0;
493 uopt->partition = 0xFFFF;
494 uopt->session = 0xFFFFFFFF;
495 uopt->lastblock = 0;
496 uopt->anchor = 0;
497 uopt->volume = 0xFFFFFFFF;
498 uopt->rootdir = 0xFFFFFFFF;
499 uopt->fileset = 0xFFFFFFFF;
500 uopt->nls_map = NULL;
501
502 if (!options)
503 return 1;
504
505 while ((p = strsep(&options, ",")) != NULL) {
506 substring_t args[MAX_OPT_ARGS];
507 int token;
508 unsigned n;
509 if (!*p)
510 continue;
511
512 token = match_token(p, tokens, args);
513 switch (token) {
514 case Opt_novrs:
515 uopt->novrs = 1;
516 break;
517 case Opt_bs:
518 if (match_int(&args[0], &option))
519 return 0;
520 n = option;
521 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
522 return 0;
523 uopt->blocksize = n;
524 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
525 break;
526 case Opt_unhide:
527 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
528 break;
529 case Opt_undelete:
530 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
531 break;
532 case Opt_noadinicb:
533 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
534 break;
535 case Opt_adinicb:
536 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
537 break;
538 case Opt_shortad:
539 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
540 break;
541 case Opt_longad:
542 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
543 break;
544 case Opt_gid:
545 if (match_int(args, &option))
546 return 0;
547 uopt->gid = make_kgid(current_user_ns(), option);
548 if (!gid_valid(uopt->gid))
549 return 0;
550 uopt->flags |= (1 << UDF_FLAG_GID_SET);
551 break;
552 case Opt_uid:
553 if (match_int(args, &option))
554 return 0;
555 uopt->uid = make_kuid(current_user_ns(), option);
556 if (!uid_valid(uopt->uid))
557 return 0;
558 uopt->flags |= (1 << UDF_FLAG_UID_SET);
559 break;
560 case Opt_umask:
561 if (match_octal(args, &option))
562 return 0;
563 uopt->umask = option;
564 break;
565 case Opt_nostrict:
566 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
567 break;
568 case Opt_session:
569 if (match_int(args, &option))
570 return 0;
571 uopt->session = option;
572 if (!remount)
573 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
574 break;
575 case Opt_lastblock:
576 if (match_int(args, &option))
577 return 0;
578 uopt->lastblock = option;
579 if (!remount)
580 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
581 break;
582 case Opt_anchor:
583 if (match_int(args, &option))
584 return 0;
585 uopt->anchor = option;
586 break;
587 case Opt_volume:
588 if (match_int(args, &option))
589 return 0;
590 uopt->volume = option;
591 break;
592 case Opt_partition:
593 if (match_int(args, &option))
594 return 0;
595 uopt->partition = option;
596 break;
597 case Opt_fileset:
598 if (match_int(args, &option))
599 return 0;
600 uopt->fileset = option;
601 break;
602 case Opt_rootdir:
603 if (match_int(args, &option))
604 return 0;
605 uopt->rootdir = option;
606 break;
607 case Opt_utf8:
608 uopt->flags |= (1 << UDF_FLAG_UTF8);
609 break;
610 #ifdef CONFIG_UDF_NLS
611 case Opt_iocharset:
612 uopt->nls_map = load_nls(args[0].from);
613 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
614 break;
615 #endif
616 case Opt_uignore:
617 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
618 break;
619 case Opt_uforget:
620 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
621 break;
622 case Opt_gignore:
623 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
624 break;
625 case Opt_gforget:
626 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
627 break;
628 case Opt_fmode:
629 if (match_octal(args, &option))
630 return 0;
631 uopt->fmode = option & 0777;
632 break;
633 case Opt_dmode:
634 if (match_octal(args, &option))
635 return 0;
636 uopt->dmode = option & 0777;
637 break;
638 default:
639 pr_err("bad mount option \"%s\" or missing value\n", p);
640 return 0;
641 }
642 }
643 return 1;
644 }
645
646 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
647 {
648 struct udf_options uopt;
649 struct udf_sb_info *sbi = UDF_SB(sb);
650 int error = 0;
651 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
652
653 sync_filesystem(sb);
654 if (lvidiu) {
655 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
656 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
657 return -EACCES;
658 }
659
660 uopt.flags = sbi->s_flags;
661 uopt.uid = sbi->s_uid;
662 uopt.gid = sbi->s_gid;
663 uopt.umask = sbi->s_umask;
664 uopt.fmode = sbi->s_fmode;
665 uopt.dmode = sbi->s_dmode;
666
667 if (!udf_parse_options(options, &uopt, true))
668 return -EINVAL;
669
670 write_lock(&sbi->s_cred_lock);
671 sbi->s_flags = uopt.flags;
672 sbi->s_uid = uopt.uid;
673 sbi->s_gid = uopt.gid;
674 sbi->s_umask = uopt.umask;
675 sbi->s_fmode = uopt.fmode;
676 sbi->s_dmode = uopt.dmode;
677 write_unlock(&sbi->s_cred_lock);
678
679 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
680 goto out_unlock;
681
682 if (*flags & MS_RDONLY)
683 udf_close_lvid(sb);
684 else
685 udf_open_lvid(sb);
686
687 out_unlock:
688 return error;
689 }
690
691 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
692 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
693 static loff_t udf_check_vsd(struct super_block *sb)
694 {
695 struct volStructDesc *vsd = NULL;
696 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
697 int sectorsize;
698 struct buffer_head *bh = NULL;
699 int nsr02 = 0;
700 int nsr03 = 0;
701 struct udf_sb_info *sbi;
702
703 sbi = UDF_SB(sb);
704 if (sb->s_blocksize < sizeof(struct volStructDesc))
705 sectorsize = sizeof(struct volStructDesc);
706 else
707 sectorsize = sb->s_blocksize;
708
709 sector += (sbi->s_session << sb->s_blocksize_bits);
710
711 udf_debug("Starting at sector %u (%ld byte sectors)\n",
712 (unsigned int)(sector >> sb->s_blocksize_bits),
713 sb->s_blocksize);
714 /* Process the sequence (if applicable). The hard limit on the sector
715 * offset is arbitrary, hopefully large enough so that all valid UDF
716 * filesystems will be recognised. There is no mention of an upper
717 * bound to the size of the volume recognition area in the standard.
718 * The limit will prevent the code to read all the sectors of a
719 * specially crafted image (like a bluray disc full of CD001 sectors),
720 * potentially causing minutes or even hours of uninterruptible I/O
721 * activity. This actually happened with uninitialised SSD partitions
722 * (all 0xFF) before the check for the limit and all valid IDs were
723 * added */
724 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
725 sector += sectorsize) {
726 /* Read a block */
727 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
728 if (!bh)
729 break;
730
731 /* Look for ISO descriptors */
732 vsd = (struct volStructDesc *)(bh->b_data +
733 (sector & (sb->s_blocksize - 1)));
734
735 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
736 VSD_STD_ID_LEN)) {
737 switch (vsd->structType) {
738 case 0:
739 udf_debug("ISO9660 Boot Record found\n");
740 break;
741 case 1:
742 udf_debug("ISO9660 Primary Volume Descriptor found\n");
743 break;
744 case 2:
745 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
746 break;
747 case 3:
748 udf_debug("ISO9660 Volume Partition Descriptor found\n");
749 break;
750 case 255:
751 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
752 break;
753 default:
754 udf_debug("ISO9660 VRS (%u) found\n",
755 vsd->structType);
756 break;
757 }
758 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
759 VSD_STD_ID_LEN))
760 ; /* nothing */
761 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
762 VSD_STD_ID_LEN)) {
763 brelse(bh);
764 break;
765 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
766 VSD_STD_ID_LEN))
767 nsr02 = sector;
768 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
769 VSD_STD_ID_LEN))
770 nsr03 = sector;
771 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
772 VSD_STD_ID_LEN))
773 ; /* nothing */
774 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
775 VSD_STD_ID_LEN))
776 ; /* nothing */
777 else {
778 /* invalid id : end of volume recognition area */
779 brelse(bh);
780 break;
781 }
782 brelse(bh);
783 }
784
785 if (nsr03)
786 return nsr03;
787 else if (nsr02)
788 return nsr02;
789 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
790 VSD_FIRST_SECTOR_OFFSET)
791 return -1;
792 else
793 return 0;
794 }
795
796 static int udf_find_fileset(struct super_block *sb,
797 struct kernel_lb_addr *fileset,
798 struct kernel_lb_addr *root)
799 {
800 struct buffer_head *bh = NULL;
801 long lastblock;
802 uint16_t ident;
803 struct udf_sb_info *sbi;
804
805 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
806 fileset->partitionReferenceNum != 0xFFFF) {
807 bh = udf_read_ptagged(sb, fileset, 0, &ident);
808
809 if (!bh) {
810 return 1;
811 } else if (ident != TAG_IDENT_FSD) {
812 brelse(bh);
813 return 1;
814 }
815
816 }
817
818 sbi = UDF_SB(sb);
819 if (!bh) {
820 /* Search backwards through the partitions */
821 struct kernel_lb_addr newfileset;
822
823 /* --> cvg: FIXME - is it reasonable? */
824 return 1;
825
826 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
827 (newfileset.partitionReferenceNum != 0xFFFF &&
828 fileset->logicalBlockNum == 0xFFFFFFFF &&
829 fileset->partitionReferenceNum == 0xFFFF);
830 newfileset.partitionReferenceNum--) {
831 lastblock = sbi->s_partmaps
832 [newfileset.partitionReferenceNum]
833 .s_partition_len;
834 newfileset.logicalBlockNum = 0;
835
836 do {
837 bh = udf_read_ptagged(sb, &newfileset, 0,
838 &ident);
839 if (!bh) {
840 newfileset.logicalBlockNum++;
841 continue;
842 }
843
844 switch (ident) {
845 case TAG_IDENT_SBD:
846 {
847 struct spaceBitmapDesc *sp;
848 sp = (struct spaceBitmapDesc *)
849 bh->b_data;
850 newfileset.logicalBlockNum += 1 +
851 ((le32_to_cpu(sp->numOfBytes) +
852 sizeof(struct spaceBitmapDesc)
853 - 1) >> sb->s_blocksize_bits);
854 brelse(bh);
855 break;
856 }
857 case TAG_IDENT_FSD:
858 *fileset = newfileset;
859 break;
860 default:
861 newfileset.logicalBlockNum++;
862 brelse(bh);
863 bh = NULL;
864 break;
865 }
866 } while (newfileset.logicalBlockNum < lastblock &&
867 fileset->logicalBlockNum == 0xFFFFFFFF &&
868 fileset->partitionReferenceNum == 0xFFFF);
869 }
870 }
871
872 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
873 fileset->partitionReferenceNum != 0xFFFF) && bh) {
874 udf_debug("Fileset at block=%d, partition=%d\n",
875 fileset->logicalBlockNum,
876 fileset->partitionReferenceNum);
877
878 sbi->s_partition = fileset->partitionReferenceNum;
879 udf_load_fileset(sb, bh, root);
880 brelse(bh);
881 return 0;
882 }
883 return 1;
884 }
885
886 /*
887 * Load primary Volume Descriptor Sequence
888 *
889 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
890 * should be tried.
891 */
892 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
893 {
894 struct primaryVolDesc *pvoldesc;
895 struct ustr *instr, *outstr;
896 struct buffer_head *bh;
897 uint16_t ident;
898 int ret = -ENOMEM;
899
900 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
901 if (!instr)
902 return -ENOMEM;
903
904 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
905 if (!outstr)
906 goto out1;
907
908 bh = udf_read_tagged(sb, block, block, &ident);
909 if (!bh) {
910 ret = -EAGAIN;
911 goto out2;
912 }
913
914 if (ident != TAG_IDENT_PVD) {
915 ret = -EIO;
916 goto out_bh;
917 }
918
919 pvoldesc = (struct primaryVolDesc *)bh->b_data;
920
921 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922 pvoldesc->recordingDateAndTime)) {
923 #ifdef UDFFS_DEBUG
924 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927 ts->minute, le16_to_cpu(ts->typeAndTimezone));
928 #endif
929 }
930
931 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) {
932 ret = udf_CS0toUTF8(outstr, instr);
933 if (ret < 0)
934 goto out_bh;
935
936 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
937 outstr->u_len > 31 ? 31 : outstr->u_len);
938 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
939 }
940
941 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) {
942 ret = udf_CS0toUTF8(outstr, instr);
943 if (ret < 0)
944 goto out_bh;
945
946 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
947 }
948
949 ret = 0;
950 out_bh:
951 brelse(bh);
952 out2:
953 kfree(outstr);
954 out1:
955 kfree(instr);
956 return ret;
957 }
958
959 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
960 u32 meta_file_loc, u32 partition_num)
961 {
962 struct kernel_lb_addr addr;
963 struct inode *metadata_fe;
964
965 addr.logicalBlockNum = meta_file_loc;
966 addr.partitionReferenceNum = partition_num;
967
968 metadata_fe = udf_iget_special(sb, &addr);
969
970 if (IS_ERR(metadata_fe)) {
971 udf_warn(sb, "metadata inode efe not found\n");
972 return metadata_fe;
973 }
974 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
975 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
976 iput(metadata_fe);
977 return ERR_PTR(-EIO);
978 }
979
980 return metadata_fe;
981 }
982
983 static int udf_load_metadata_files(struct super_block *sb, int partition)
984 {
985 struct udf_sb_info *sbi = UDF_SB(sb);
986 struct udf_part_map *map;
987 struct udf_meta_data *mdata;
988 struct kernel_lb_addr addr;
989 struct inode *fe;
990
991 map = &sbi->s_partmaps[partition];
992 mdata = &map->s_type_specific.s_metadata;
993
994 /* metadata address */
995 udf_debug("Metadata file location: block = %d part = %d\n",
996 mdata->s_meta_file_loc, map->s_partition_num);
997
998 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
999 map->s_partition_num);
1000 if (IS_ERR(fe)) {
1001 /* mirror file entry */
1002 udf_debug("Mirror metadata file location: block = %d part = %d\n",
1003 mdata->s_mirror_file_loc, map->s_partition_num);
1004
1005 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1006 map->s_partition_num);
1007
1008 if (IS_ERR(fe)) {
1009 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1010 return PTR_ERR(fe);
1011 }
1012 mdata->s_mirror_fe = fe;
1013 } else
1014 mdata->s_metadata_fe = fe;
1015
1016
1017 /*
1018 * bitmap file entry
1019 * Note:
1020 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1021 */
1022 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1023 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1024 addr.partitionReferenceNum = map->s_partition_num;
1025
1026 udf_debug("Bitmap file location: block = %d part = %d\n",
1027 addr.logicalBlockNum, addr.partitionReferenceNum);
1028
1029 fe = udf_iget_special(sb, &addr);
1030 if (IS_ERR(fe)) {
1031 if (sb->s_flags & MS_RDONLY)
1032 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1033 else {
1034 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1035 return PTR_ERR(fe);
1036 }
1037 } else
1038 mdata->s_bitmap_fe = fe;
1039 }
1040
1041 udf_debug("udf_load_metadata_files Ok\n");
1042 return 0;
1043 }
1044
1045 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1046 struct kernel_lb_addr *root)
1047 {
1048 struct fileSetDesc *fset;
1049
1050 fset = (struct fileSetDesc *)bh->b_data;
1051
1052 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1053
1054 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1055
1056 udf_debug("Rootdir at block=%d, partition=%d\n",
1057 root->logicalBlockNum, root->partitionReferenceNum);
1058 }
1059
1060 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1061 {
1062 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1063 return DIV_ROUND_UP(map->s_partition_len +
1064 (sizeof(struct spaceBitmapDesc) << 3),
1065 sb->s_blocksize * 8);
1066 }
1067
1068 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1069 {
1070 struct udf_bitmap *bitmap;
1071 int nr_groups;
1072 int size;
1073
1074 nr_groups = udf_compute_nr_groups(sb, index);
1075 size = sizeof(struct udf_bitmap) +
1076 (sizeof(struct buffer_head *) * nr_groups);
1077
1078 if (size <= PAGE_SIZE)
1079 bitmap = kzalloc(size, GFP_KERNEL);
1080 else
1081 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1082
1083 if (bitmap == NULL)
1084 return NULL;
1085
1086 bitmap->s_nr_groups = nr_groups;
1087 return bitmap;
1088 }
1089
1090 static int udf_fill_partdesc_info(struct super_block *sb,
1091 struct partitionDesc *p, int p_index)
1092 {
1093 struct udf_part_map *map;
1094 struct udf_sb_info *sbi = UDF_SB(sb);
1095 struct partitionHeaderDesc *phd;
1096
1097 map = &sbi->s_partmaps[p_index];
1098
1099 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1100 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1101
1102 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1103 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1104 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1105 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1106 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1107 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1108 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1109 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1110
1111 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1112 p_index, map->s_partition_type,
1113 map->s_partition_root, map->s_partition_len);
1114
1115 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1116 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1117 return 0;
1118
1119 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1120 if (phd->unallocSpaceTable.extLength) {
1121 struct kernel_lb_addr loc = {
1122 .logicalBlockNum = le32_to_cpu(
1123 phd->unallocSpaceTable.extPosition),
1124 .partitionReferenceNum = p_index,
1125 };
1126 struct inode *inode;
1127
1128 inode = udf_iget_special(sb, &loc);
1129 if (IS_ERR(inode)) {
1130 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1131 p_index);
1132 return PTR_ERR(inode);
1133 }
1134 map->s_uspace.s_table = inode;
1135 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1136 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1137 p_index, map->s_uspace.s_table->i_ino);
1138 }
1139
1140 if (phd->unallocSpaceBitmap.extLength) {
1141 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1142 if (!bitmap)
1143 return -ENOMEM;
1144 map->s_uspace.s_bitmap = bitmap;
1145 bitmap->s_extPosition = le32_to_cpu(
1146 phd->unallocSpaceBitmap.extPosition);
1147 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1148 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1149 p_index, bitmap->s_extPosition);
1150 }
1151
1152 if (phd->partitionIntegrityTable.extLength)
1153 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1154
1155 if (phd->freedSpaceTable.extLength) {
1156 struct kernel_lb_addr loc = {
1157 .logicalBlockNum = le32_to_cpu(
1158 phd->freedSpaceTable.extPosition),
1159 .partitionReferenceNum = p_index,
1160 };
1161 struct inode *inode;
1162
1163 inode = udf_iget_special(sb, &loc);
1164 if (IS_ERR(inode)) {
1165 udf_debug("cannot load freedSpaceTable (part %d)\n",
1166 p_index);
1167 return PTR_ERR(inode);
1168 }
1169 map->s_fspace.s_table = inode;
1170 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1171 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1172 p_index, map->s_fspace.s_table->i_ino);
1173 }
1174
1175 if (phd->freedSpaceBitmap.extLength) {
1176 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1177 if (!bitmap)
1178 return -ENOMEM;
1179 map->s_fspace.s_bitmap = bitmap;
1180 bitmap->s_extPosition = le32_to_cpu(
1181 phd->freedSpaceBitmap.extPosition);
1182 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1183 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1184 p_index, bitmap->s_extPosition);
1185 }
1186 return 0;
1187 }
1188
1189 static void udf_find_vat_block(struct super_block *sb, int p_index,
1190 int type1_index, sector_t start_block)
1191 {
1192 struct udf_sb_info *sbi = UDF_SB(sb);
1193 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1194 sector_t vat_block;
1195 struct kernel_lb_addr ino;
1196 struct inode *inode;
1197
1198 /*
1199 * VAT file entry is in the last recorded block. Some broken disks have
1200 * it a few blocks before so try a bit harder...
1201 */
1202 ino.partitionReferenceNum = type1_index;
1203 for (vat_block = start_block;
1204 vat_block >= map->s_partition_root &&
1205 vat_block >= start_block - 3; vat_block--) {
1206 ino.logicalBlockNum = vat_block - map->s_partition_root;
1207 inode = udf_iget_special(sb, &ino);
1208 if (!IS_ERR(inode)) {
1209 sbi->s_vat_inode = inode;
1210 break;
1211 }
1212 }
1213 }
1214
1215 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1216 {
1217 struct udf_sb_info *sbi = UDF_SB(sb);
1218 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1219 struct buffer_head *bh = NULL;
1220 struct udf_inode_info *vati;
1221 uint32_t pos;
1222 struct virtualAllocationTable20 *vat20;
1223 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1224
1225 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1226 if (!sbi->s_vat_inode &&
1227 sbi->s_last_block != blocks - 1) {
1228 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1229 (unsigned long)sbi->s_last_block,
1230 (unsigned long)blocks - 1);
1231 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1232 }
1233 if (!sbi->s_vat_inode)
1234 return -EIO;
1235
1236 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1237 map->s_type_specific.s_virtual.s_start_offset = 0;
1238 map->s_type_specific.s_virtual.s_num_entries =
1239 (sbi->s_vat_inode->i_size - 36) >> 2;
1240 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1241 vati = UDF_I(sbi->s_vat_inode);
1242 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1243 pos = udf_block_map(sbi->s_vat_inode, 0);
1244 bh = sb_bread(sb, pos);
1245 if (!bh)
1246 return -EIO;
1247 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1248 } else {
1249 vat20 = (struct virtualAllocationTable20 *)
1250 vati->i_ext.i_data;
1251 }
1252
1253 map->s_type_specific.s_virtual.s_start_offset =
1254 le16_to_cpu(vat20->lengthHeader);
1255 map->s_type_specific.s_virtual.s_num_entries =
1256 (sbi->s_vat_inode->i_size -
1257 map->s_type_specific.s_virtual.
1258 s_start_offset) >> 2;
1259 brelse(bh);
1260 }
1261 return 0;
1262 }
1263
1264 /*
1265 * Load partition descriptor block
1266 *
1267 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1268 * sequence.
1269 */
1270 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1271 {
1272 struct buffer_head *bh;
1273 struct partitionDesc *p;
1274 struct udf_part_map *map;
1275 struct udf_sb_info *sbi = UDF_SB(sb);
1276 int i, type1_idx;
1277 uint16_t partitionNumber;
1278 uint16_t ident;
1279 int ret;
1280
1281 bh = udf_read_tagged(sb, block, block, &ident);
1282 if (!bh)
1283 return -EAGAIN;
1284 if (ident != TAG_IDENT_PD) {
1285 ret = 0;
1286 goto out_bh;
1287 }
1288
1289 p = (struct partitionDesc *)bh->b_data;
1290 partitionNumber = le16_to_cpu(p->partitionNumber);
1291
1292 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1293 for (i = 0; i < sbi->s_partitions; i++) {
1294 map = &sbi->s_partmaps[i];
1295 udf_debug("Searching map: (%d == %d)\n",
1296 map->s_partition_num, partitionNumber);
1297 if (map->s_partition_num == partitionNumber &&
1298 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1299 map->s_partition_type == UDF_SPARABLE_MAP15))
1300 break;
1301 }
1302
1303 if (i >= sbi->s_partitions) {
1304 udf_debug("Partition (%d) not found in partition map\n",
1305 partitionNumber);
1306 ret = 0;
1307 goto out_bh;
1308 }
1309
1310 ret = udf_fill_partdesc_info(sb, p, i);
1311 if (ret < 0)
1312 goto out_bh;
1313
1314 /*
1315 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1316 * PHYSICAL partitions are already set up
1317 */
1318 type1_idx = i;
1319 #ifdef UDFFS_DEBUG
1320 map = NULL; /* supress 'maybe used uninitialized' warning */
1321 #endif
1322 for (i = 0; i < sbi->s_partitions; i++) {
1323 map = &sbi->s_partmaps[i];
1324
1325 if (map->s_partition_num == partitionNumber &&
1326 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1327 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1328 map->s_partition_type == UDF_METADATA_MAP25))
1329 break;
1330 }
1331
1332 if (i >= sbi->s_partitions) {
1333 ret = 0;
1334 goto out_bh;
1335 }
1336
1337 ret = udf_fill_partdesc_info(sb, p, i);
1338 if (ret < 0)
1339 goto out_bh;
1340
1341 if (map->s_partition_type == UDF_METADATA_MAP25) {
1342 ret = udf_load_metadata_files(sb, i);
1343 if (ret < 0) {
1344 udf_err(sb, "error loading MetaData partition map %d\n",
1345 i);
1346 goto out_bh;
1347 }
1348 } else {
1349 /*
1350 * If we have a partition with virtual map, we don't handle
1351 * writing to it (we overwrite blocks instead of relocating
1352 * them).
1353 */
1354 if (!(sb->s_flags & MS_RDONLY)) {
1355 ret = -EACCES;
1356 goto out_bh;
1357 }
1358 ret = udf_load_vat(sb, i, type1_idx);
1359 if (ret < 0)
1360 goto out_bh;
1361 }
1362 ret = 0;
1363 out_bh:
1364 /* In case loading failed, we handle cleanup in udf_fill_super */
1365 brelse(bh);
1366 return ret;
1367 }
1368
1369 static int udf_load_sparable_map(struct super_block *sb,
1370 struct udf_part_map *map,
1371 struct sparablePartitionMap *spm)
1372 {
1373 uint32_t loc;
1374 uint16_t ident;
1375 struct sparingTable *st;
1376 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1377 int i;
1378 struct buffer_head *bh;
1379
1380 map->s_partition_type = UDF_SPARABLE_MAP15;
1381 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1382 if (!is_power_of_2(sdata->s_packet_len)) {
1383 udf_err(sb, "error loading logical volume descriptor: "
1384 "Invalid packet length %u\n",
1385 (unsigned)sdata->s_packet_len);
1386 return -EIO;
1387 }
1388 if (spm->numSparingTables > 4) {
1389 udf_err(sb, "error loading logical volume descriptor: "
1390 "Too many sparing tables (%d)\n",
1391 (int)spm->numSparingTables);
1392 return -EIO;
1393 }
1394
1395 for (i = 0; i < spm->numSparingTables; i++) {
1396 loc = le32_to_cpu(spm->locSparingTable[i]);
1397 bh = udf_read_tagged(sb, loc, loc, &ident);
1398 if (!bh)
1399 continue;
1400
1401 st = (struct sparingTable *)bh->b_data;
1402 if (ident != 0 ||
1403 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1404 strlen(UDF_ID_SPARING)) ||
1405 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1406 sb->s_blocksize) {
1407 brelse(bh);
1408 continue;
1409 }
1410
1411 sdata->s_spar_map[i] = bh;
1412 }
1413 map->s_partition_func = udf_get_pblock_spar15;
1414 return 0;
1415 }
1416
1417 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1418 struct kernel_lb_addr *fileset)
1419 {
1420 struct logicalVolDesc *lvd;
1421 int i, offset;
1422 uint8_t type;
1423 struct udf_sb_info *sbi = UDF_SB(sb);
1424 struct genericPartitionMap *gpm;
1425 uint16_t ident;
1426 struct buffer_head *bh;
1427 unsigned int table_len;
1428 int ret;
1429
1430 bh = udf_read_tagged(sb, block, block, &ident);
1431 if (!bh)
1432 return -EAGAIN;
1433 BUG_ON(ident != TAG_IDENT_LVD);
1434 lvd = (struct logicalVolDesc *)bh->b_data;
1435 table_len = le32_to_cpu(lvd->mapTableLength);
1436 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1437 udf_err(sb, "error loading logical volume descriptor: "
1438 "Partition table too long (%u > %lu)\n", table_len,
1439 sb->s_blocksize - sizeof(*lvd));
1440 ret = -EIO;
1441 goto out_bh;
1442 }
1443
1444 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1445 if (ret)
1446 goto out_bh;
1447
1448 for (i = 0, offset = 0;
1449 i < sbi->s_partitions && offset < table_len;
1450 i++, offset += gpm->partitionMapLength) {
1451 struct udf_part_map *map = &sbi->s_partmaps[i];
1452 gpm = (struct genericPartitionMap *)
1453 &(lvd->partitionMaps[offset]);
1454 type = gpm->partitionMapType;
1455 if (type == 1) {
1456 struct genericPartitionMap1 *gpm1 =
1457 (struct genericPartitionMap1 *)gpm;
1458 map->s_partition_type = UDF_TYPE1_MAP15;
1459 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1460 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1461 map->s_partition_func = NULL;
1462 } else if (type == 2) {
1463 struct udfPartitionMap2 *upm2 =
1464 (struct udfPartitionMap2 *)gpm;
1465 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1466 strlen(UDF_ID_VIRTUAL))) {
1467 u16 suf =
1468 le16_to_cpu(((__le16 *)upm2->partIdent.
1469 identSuffix)[0]);
1470 if (suf < 0x0200) {
1471 map->s_partition_type =
1472 UDF_VIRTUAL_MAP15;
1473 map->s_partition_func =
1474 udf_get_pblock_virt15;
1475 } else {
1476 map->s_partition_type =
1477 UDF_VIRTUAL_MAP20;
1478 map->s_partition_func =
1479 udf_get_pblock_virt20;
1480 }
1481 } else if (!strncmp(upm2->partIdent.ident,
1482 UDF_ID_SPARABLE,
1483 strlen(UDF_ID_SPARABLE))) {
1484 ret = udf_load_sparable_map(sb, map,
1485 (struct sparablePartitionMap *)gpm);
1486 if (ret < 0)
1487 goto out_bh;
1488 } else if (!strncmp(upm2->partIdent.ident,
1489 UDF_ID_METADATA,
1490 strlen(UDF_ID_METADATA))) {
1491 struct udf_meta_data *mdata =
1492 &map->s_type_specific.s_metadata;
1493 struct metadataPartitionMap *mdm =
1494 (struct metadataPartitionMap *)
1495 &(lvd->partitionMaps[offset]);
1496 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1497 i, type, UDF_ID_METADATA);
1498
1499 map->s_partition_type = UDF_METADATA_MAP25;
1500 map->s_partition_func = udf_get_pblock_meta25;
1501
1502 mdata->s_meta_file_loc =
1503 le32_to_cpu(mdm->metadataFileLoc);
1504 mdata->s_mirror_file_loc =
1505 le32_to_cpu(mdm->metadataMirrorFileLoc);
1506 mdata->s_bitmap_file_loc =
1507 le32_to_cpu(mdm->metadataBitmapFileLoc);
1508 mdata->s_alloc_unit_size =
1509 le32_to_cpu(mdm->allocUnitSize);
1510 mdata->s_align_unit_size =
1511 le16_to_cpu(mdm->alignUnitSize);
1512 if (mdm->flags & 0x01)
1513 mdata->s_flags |= MF_DUPLICATE_MD;
1514
1515 udf_debug("Metadata Ident suffix=0x%x\n",
1516 le16_to_cpu(*(__le16 *)
1517 mdm->partIdent.identSuffix));
1518 udf_debug("Metadata part num=%d\n",
1519 le16_to_cpu(mdm->partitionNum));
1520 udf_debug("Metadata part alloc unit size=%d\n",
1521 le32_to_cpu(mdm->allocUnitSize));
1522 udf_debug("Metadata file loc=%d\n",
1523 le32_to_cpu(mdm->metadataFileLoc));
1524 udf_debug("Mirror file loc=%d\n",
1525 le32_to_cpu(mdm->metadataMirrorFileLoc));
1526 udf_debug("Bitmap file loc=%d\n",
1527 le32_to_cpu(mdm->metadataBitmapFileLoc));
1528 udf_debug("Flags: %d %d\n",
1529 mdata->s_flags, mdm->flags);
1530 } else {
1531 udf_debug("Unknown ident: %s\n",
1532 upm2->partIdent.ident);
1533 continue;
1534 }
1535 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1536 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1537 }
1538 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1539 i, map->s_partition_num, type, map->s_volumeseqnum);
1540 }
1541
1542 if (fileset) {
1543 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1544
1545 *fileset = lelb_to_cpu(la->extLocation);
1546 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1547 fileset->logicalBlockNum,
1548 fileset->partitionReferenceNum);
1549 }
1550 if (lvd->integritySeqExt.extLength)
1551 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1552 ret = 0;
1553 out_bh:
1554 brelse(bh);
1555 return ret;
1556 }
1557
1558 /*
1559 * udf_load_logicalvolint
1560 *
1561 */
1562 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1563 {
1564 struct buffer_head *bh = NULL;
1565 uint16_t ident;
1566 struct udf_sb_info *sbi = UDF_SB(sb);
1567 struct logicalVolIntegrityDesc *lvid;
1568
1569 while (loc.extLength > 0 &&
1570 (bh = udf_read_tagged(sb, loc.extLocation,
1571 loc.extLocation, &ident)) &&
1572 ident == TAG_IDENT_LVID) {
1573 sbi->s_lvid_bh = bh;
1574 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1575
1576 if (lvid->nextIntegrityExt.extLength)
1577 udf_load_logicalvolint(sb,
1578 leea_to_cpu(lvid->nextIntegrityExt));
1579
1580 if (sbi->s_lvid_bh != bh)
1581 brelse(bh);
1582 loc.extLength -= sb->s_blocksize;
1583 loc.extLocation++;
1584 }
1585 if (sbi->s_lvid_bh != bh)
1586 brelse(bh);
1587 }
1588
1589 /*
1590 * Maximum number of Terminating Descriptor redirections. The chosen number is
1591 * arbitrary - just that we hopefully don't limit any real use of rewritten
1592 * inode on write-once media but avoid looping for too long on corrupted media.
1593 */
1594 #define UDF_MAX_TD_NESTING 64
1595
1596 /*
1597 * Process a main/reserve volume descriptor sequence.
1598 * @block First block of first extent of the sequence.
1599 * @lastblock Lastblock of first extent of the sequence.
1600 * @fileset There we store extent containing root fileset
1601 *
1602 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1603 * sequence
1604 */
1605 static noinline int udf_process_sequence(
1606 struct super_block *sb,
1607 sector_t block, sector_t lastblock,
1608 struct kernel_lb_addr *fileset)
1609 {
1610 struct buffer_head *bh = NULL;
1611 struct udf_vds_record vds[VDS_POS_LENGTH];
1612 struct udf_vds_record *curr;
1613 struct generic_desc *gd;
1614 struct volDescPtr *vdp;
1615 bool done = false;
1616 uint32_t vdsn;
1617 uint16_t ident;
1618 long next_s = 0, next_e = 0;
1619 int ret;
1620 unsigned int indirections = 0;
1621
1622 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1623
1624 /*
1625 * Read the main descriptor sequence and find which descriptors
1626 * are in it.
1627 */
1628 for (; (!done && block <= lastblock); block++) {
1629
1630 bh = udf_read_tagged(sb, block, block, &ident);
1631 if (!bh) {
1632 udf_err(sb,
1633 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1634 (unsigned long long)block);
1635 return -EAGAIN;
1636 }
1637
1638 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1639 gd = (struct generic_desc *)bh->b_data;
1640 vdsn = le32_to_cpu(gd->volDescSeqNum);
1641 switch (ident) {
1642 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1643 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1644 if (vdsn >= curr->volDescSeqNum) {
1645 curr->volDescSeqNum = vdsn;
1646 curr->block = block;
1647 }
1648 break;
1649 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1650 curr = &vds[VDS_POS_VOL_DESC_PTR];
1651 if (vdsn >= curr->volDescSeqNum) {
1652 curr->volDescSeqNum = vdsn;
1653 curr->block = block;
1654
1655 vdp = (struct volDescPtr *)bh->b_data;
1656 next_s = le32_to_cpu(
1657 vdp->nextVolDescSeqExt.extLocation);
1658 next_e = le32_to_cpu(
1659 vdp->nextVolDescSeqExt.extLength);
1660 next_e = next_e >> sb->s_blocksize_bits;
1661 next_e += next_s;
1662 }
1663 break;
1664 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1665 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1666 if (vdsn >= curr->volDescSeqNum) {
1667 curr->volDescSeqNum = vdsn;
1668 curr->block = block;
1669 }
1670 break;
1671 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1672 curr = &vds[VDS_POS_PARTITION_DESC];
1673 if (!curr->block)
1674 curr->block = block;
1675 break;
1676 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1677 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1678 if (vdsn >= curr->volDescSeqNum) {
1679 curr->volDescSeqNum = vdsn;
1680 curr->block = block;
1681 }
1682 break;
1683 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1684 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1685 if (vdsn >= curr->volDescSeqNum) {
1686 curr->volDescSeqNum = vdsn;
1687 curr->block = block;
1688 }
1689 break;
1690 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1691 if (++indirections > UDF_MAX_TD_NESTING) {
1692 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1693 brelse(bh);
1694 return -EIO;
1695 }
1696
1697 vds[VDS_POS_TERMINATING_DESC].block = block;
1698 if (next_e) {
1699 block = next_s;
1700 lastblock = next_e;
1701 next_s = next_e = 0;
1702 } else
1703 done = true;
1704 break;
1705 }
1706 brelse(bh);
1707 }
1708 /*
1709 * Now read interesting descriptors again and process them
1710 * in a suitable order
1711 */
1712 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1713 udf_err(sb, "Primary Volume Descriptor not found!\n");
1714 return -EAGAIN;
1715 }
1716 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1717 if (ret < 0)
1718 return ret;
1719
1720 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1721 ret = udf_load_logicalvol(sb,
1722 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1723 fileset);
1724 if (ret < 0)
1725 return ret;
1726 }
1727
1728 if (vds[VDS_POS_PARTITION_DESC].block) {
1729 /*
1730 * We rescan the whole descriptor sequence to find
1731 * partition descriptor blocks and process them.
1732 */
1733 for (block = vds[VDS_POS_PARTITION_DESC].block;
1734 block < vds[VDS_POS_TERMINATING_DESC].block;
1735 block++) {
1736 ret = udf_load_partdesc(sb, block);
1737 if (ret < 0)
1738 return ret;
1739 }
1740 }
1741
1742 return 0;
1743 }
1744
1745 /*
1746 * Load Volume Descriptor Sequence described by anchor in bh
1747 *
1748 * Returns <0 on error, 0 on success
1749 */
1750 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1751 struct kernel_lb_addr *fileset)
1752 {
1753 struct anchorVolDescPtr *anchor;
1754 sector_t main_s, main_e, reserve_s, reserve_e;
1755 int ret;
1756
1757 anchor = (struct anchorVolDescPtr *)bh->b_data;
1758
1759 /* Locate the main sequence */
1760 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1761 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1762 main_e = main_e >> sb->s_blocksize_bits;
1763 main_e += main_s;
1764
1765 /* Locate the reserve sequence */
1766 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1767 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1768 reserve_e = reserve_e >> sb->s_blocksize_bits;
1769 reserve_e += reserve_s;
1770
1771 /* Process the main & reserve sequences */
1772 /* responsible for finding the PartitionDesc(s) */
1773 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1774 if (ret != -EAGAIN)
1775 return ret;
1776 udf_sb_free_partitions(sb);
1777 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1778 if (ret < 0) {
1779 udf_sb_free_partitions(sb);
1780 /* No sequence was OK, return -EIO */
1781 if (ret == -EAGAIN)
1782 ret = -EIO;
1783 }
1784 return ret;
1785 }
1786
1787 /*
1788 * Check whether there is an anchor block in the given block and
1789 * load Volume Descriptor Sequence if so.
1790 *
1791 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1792 * block
1793 */
1794 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1795 struct kernel_lb_addr *fileset)
1796 {
1797 struct buffer_head *bh;
1798 uint16_t ident;
1799 int ret;
1800
1801 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1802 udf_fixed_to_variable(block) >=
1803 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1804 return -EAGAIN;
1805
1806 bh = udf_read_tagged(sb, block, block, &ident);
1807 if (!bh)
1808 return -EAGAIN;
1809 if (ident != TAG_IDENT_AVDP) {
1810 brelse(bh);
1811 return -EAGAIN;
1812 }
1813 ret = udf_load_sequence(sb, bh, fileset);
1814 brelse(bh);
1815 return ret;
1816 }
1817
1818 /*
1819 * Search for an anchor volume descriptor pointer.
1820 *
1821 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1822 * of anchors.
1823 */
1824 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1825 struct kernel_lb_addr *fileset)
1826 {
1827 sector_t last[6];
1828 int i;
1829 struct udf_sb_info *sbi = UDF_SB(sb);
1830 int last_count = 0;
1831 int ret;
1832
1833 /* First try user provided anchor */
1834 if (sbi->s_anchor) {
1835 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1836 if (ret != -EAGAIN)
1837 return ret;
1838 }
1839 /*
1840 * according to spec, anchor is in either:
1841 * block 256
1842 * lastblock-256
1843 * lastblock
1844 * however, if the disc isn't closed, it could be 512.
1845 */
1846 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1847 if (ret != -EAGAIN)
1848 return ret;
1849 /*
1850 * The trouble is which block is the last one. Drives often misreport
1851 * this so we try various possibilities.
1852 */
1853 last[last_count++] = *lastblock;
1854 if (*lastblock >= 1)
1855 last[last_count++] = *lastblock - 1;
1856 last[last_count++] = *lastblock + 1;
1857 if (*lastblock >= 2)
1858 last[last_count++] = *lastblock - 2;
1859 if (*lastblock >= 150)
1860 last[last_count++] = *lastblock - 150;
1861 if (*lastblock >= 152)
1862 last[last_count++] = *lastblock - 152;
1863
1864 for (i = 0; i < last_count; i++) {
1865 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1866 sb->s_blocksize_bits)
1867 continue;
1868 ret = udf_check_anchor_block(sb, last[i], fileset);
1869 if (ret != -EAGAIN) {
1870 if (!ret)
1871 *lastblock = last[i];
1872 return ret;
1873 }
1874 if (last[i] < 256)
1875 continue;
1876 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1877 if (ret != -EAGAIN) {
1878 if (!ret)
1879 *lastblock = last[i];
1880 return ret;
1881 }
1882 }
1883
1884 /* Finally try block 512 in case media is open */
1885 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1886 }
1887
1888 /*
1889 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1890 * area specified by it. The function expects sbi->s_lastblock to be the last
1891 * block on the media.
1892 *
1893 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1894 * was not found.
1895 */
1896 static int udf_find_anchor(struct super_block *sb,
1897 struct kernel_lb_addr *fileset)
1898 {
1899 struct udf_sb_info *sbi = UDF_SB(sb);
1900 sector_t lastblock = sbi->s_last_block;
1901 int ret;
1902
1903 ret = udf_scan_anchors(sb, &lastblock, fileset);
1904 if (ret != -EAGAIN)
1905 goto out;
1906
1907 /* No anchor found? Try VARCONV conversion of block numbers */
1908 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1909 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1910 /* Firstly, we try to not convert number of the last block */
1911 ret = udf_scan_anchors(sb, &lastblock, fileset);
1912 if (ret != -EAGAIN)
1913 goto out;
1914
1915 lastblock = sbi->s_last_block;
1916 /* Secondly, we try with converted number of the last block */
1917 ret = udf_scan_anchors(sb, &lastblock, fileset);
1918 if (ret < 0) {
1919 /* VARCONV didn't help. Clear it. */
1920 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1921 }
1922 out:
1923 if (ret == 0)
1924 sbi->s_last_block = lastblock;
1925 return ret;
1926 }
1927
1928 /*
1929 * Check Volume Structure Descriptor, find Anchor block and load Volume
1930 * Descriptor Sequence.
1931 *
1932 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1933 * block was not found.
1934 */
1935 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1936 int silent, struct kernel_lb_addr *fileset)
1937 {
1938 struct udf_sb_info *sbi = UDF_SB(sb);
1939 loff_t nsr_off;
1940 int ret;
1941
1942 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1943 if (!silent)
1944 udf_warn(sb, "Bad block size\n");
1945 return -EINVAL;
1946 }
1947 sbi->s_last_block = uopt->lastblock;
1948 if (!uopt->novrs) {
1949 /* Check that it is NSR02 compliant */
1950 nsr_off = udf_check_vsd(sb);
1951 if (!nsr_off) {
1952 if (!silent)
1953 udf_warn(sb, "No VRS found\n");
1954 return 0;
1955 }
1956 if (nsr_off == -1)
1957 udf_debug("Failed to read sector at offset %d. "
1958 "Assuming open disc. Skipping validity "
1959 "check\n", VSD_FIRST_SECTOR_OFFSET);
1960 if (!sbi->s_last_block)
1961 sbi->s_last_block = udf_get_last_block(sb);
1962 } else {
1963 udf_debug("Validity check skipped because of novrs option\n");
1964 }
1965
1966 /* Look for anchor block and load Volume Descriptor Sequence */
1967 sbi->s_anchor = uopt->anchor;
1968 ret = udf_find_anchor(sb, fileset);
1969 if (ret < 0) {
1970 if (!silent && ret == -EAGAIN)
1971 udf_warn(sb, "No anchor found\n");
1972 return ret;
1973 }
1974 return 0;
1975 }
1976
1977 static void udf_open_lvid(struct super_block *sb)
1978 {
1979 struct udf_sb_info *sbi = UDF_SB(sb);
1980 struct buffer_head *bh = sbi->s_lvid_bh;
1981 struct logicalVolIntegrityDesc *lvid;
1982 struct logicalVolIntegrityDescImpUse *lvidiu;
1983
1984 if (!bh)
1985 return;
1986 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1987 lvidiu = udf_sb_lvidiu(sb);
1988 if (!lvidiu)
1989 return;
1990
1991 mutex_lock(&sbi->s_alloc_mutex);
1992 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1993 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1994 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1995 CURRENT_TIME);
1996 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1997
1998 lvid->descTag.descCRC = cpu_to_le16(
1999 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2000 le16_to_cpu(lvid->descTag.descCRCLength)));
2001
2002 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2003 mark_buffer_dirty(bh);
2004 sbi->s_lvid_dirty = 0;
2005 mutex_unlock(&sbi->s_alloc_mutex);
2006 /* Make opening of filesystem visible on the media immediately */
2007 sync_dirty_buffer(bh);
2008 }
2009
2010 static void udf_close_lvid(struct super_block *sb)
2011 {
2012 struct udf_sb_info *sbi = UDF_SB(sb);
2013 struct buffer_head *bh = sbi->s_lvid_bh;
2014 struct logicalVolIntegrityDesc *lvid;
2015 struct logicalVolIntegrityDescImpUse *lvidiu;
2016
2017 if (!bh)
2018 return;
2019 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2020 lvidiu = udf_sb_lvidiu(sb);
2021 if (!lvidiu)
2022 return;
2023
2024 mutex_lock(&sbi->s_alloc_mutex);
2025 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2026 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2027 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2028 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2029 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2030 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2031 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2032 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2033 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2034 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2035
2036 lvid->descTag.descCRC = cpu_to_le16(
2037 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2038 le16_to_cpu(lvid->descTag.descCRCLength)));
2039
2040 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2041 /*
2042 * We set buffer uptodate unconditionally here to avoid spurious
2043 * warnings from mark_buffer_dirty() when previous EIO has marked
2044 * the buffer as !uptodate
2045 */
2046 set_buffer_uptodate(bh);
2047 mark_buffer_dirty(bh);
2048 sbi->s_lvid_dirty = 0;
2049 mutex_unlock(&sbi->s_alloc_mutex);
2050 /* Make closing of filesystem visible on the media immediately */
2051 sync_dirty_buffer(bh);
2052 }
2053
2054 u64 lvid_get_unique_id(struct super_block *sb)
2055 {
2056 struct buffer_head *bh;
2057 struct udf_sb_info *sbi = UDF_SB(sb);
2058 struct logicalVolIntegrityDesc *lvid;
2059 struct logicalVolHeaderDesc *lvhd;
2060 u64 uniqueID;
2061 u64 ret;
2062
2063 bh = sbi->s_lvid_bh;
2064 if (!bh)
2065 return 0;
2066
2067 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2068 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2069
2070 mutex_lock(&sbi->s_alloc_mutex);
2071 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2072 if (!(++uniqueID & 0xFFFFFFFF))
2073 uniqueID += 16;
2074 lvhd->uniqueID = cpu_to_le64(uniqueID);
2075 mutex_unlock(&sbi->s_alloc_mutex);
2076 mark_buffer_dirty(bh);
2077
2078 return ret;
2079 }
2080
2081 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2082 {
2083 int ret = -EINVAL;
2084 struct inode *inode = NULL;
2085 struct udf_options uopt;
2086 struct kernel_lb_addr rootdir, fileset;
2087 struct udf_sb_info *sbi;
2088 bool lvid_open = false;
2089
2090 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2091 uopt.uid = INVALID_UID;
2092 uopt.gid = INVALID_GID;
2093 uopt.umask = 0;
2094 uopt.fmode = UDF_INVALID_MODE;
2095 uopt.dmode = UDF_INVALID_MODE;
2096
2097 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2098 if (!sbi)
2099 return -ENOMEM;
2100
2101 sb->s_fs_info = sbi;
2102
2103 mutex_init(&sbi->s_alloc_mutex);
2104
2105 if (!udf_parse_options((char *)options, &uopt, false))
2106 goto parse_options_failure;
2107
2108 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2109 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2110 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2111 goto parse_options_failure;
2112 }
2113 #ifdef CONFIG_UDF_NLS
2114 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2115 uopt.nls_map = load_nls_default();
2116 if (!uopt.nls_map)
2117 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2118 else
2119 udf_debug("Using default NLS map\n");
2120 }
2121 #endif
2122 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2123 uopt.flags |= (1 << UDF_FLAG_UTF8);
2124
2125 fileset.logicalBlockNum = 0xFFFFFFFF;
2126 fileset.partitionReferenceNum = 0xFFFF;
2127
2128 sbi->s_flags = uopt.flags;
2129 sbi->s_uid = uopt.uid;
2130 sbi->s_gid = uopt.gid;
2131 sbi->s_umask = uopt.umask;
2132 sbi->s_fmode = uopt.fmode;
2133 sbi->s_dmode = uopt.dmode;
2134 sbi->s_nls_map = uopt.nls_map;
2135 rwlock_init(&sbi->s_cred_lock);
2136
2137 if (uopt.session == 0xFFFFFFFF)
2138 sbi->s_session = udf_get_last_session(sb);
2139 else
2140 sbi->s_session = uopt.session;
2141
2142 udf_debug("Multi-session=%d\n", sbi->s_session);
2143
2144 /* Fill in the rest of the superblock */
2145 sb->s_op = &udf_sb_ops;
2146 sb->s_export_op = &udf_export_ops;
2147
2148 sb->s_magic = UDF_SUPER_MAGIC;
2149 sb->s_time_gran = 1000;
2150
2151 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2152 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2153 } else {
2154 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2155 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2156 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2157 if (!silent)
2158 pr_notice("Rescanning with blocksize %d\n",
2159 UDF_DEFAULT_BLOCKSIZE);
2160 brelse(sbi->s_lvid_bh);
2161 sbi->s_lvid_bh = NULL;
2162 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2163 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2164 }
2165 }
2166 if (ret < 0) {
2167 if (ret == -EAGAIN) {
2168 udf_warn(sb, "No partition found (1)\n");
2169 ret = -EINVAL;
2170 }
2171 goto error_out;
2172 }
2173
2174 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2175
2176 if (sbi->s_lvid_bh) {
2177 struct logicalVolIntegrityDescImpUse *lvidiu =
2178 udf_sb_lvidiu(sb);
2179 uint16_t minUDFReadRev;
2180 uint16_t minUDFWriteRev;
2181
2182 if (!lvidiu) {
2183 ret = -EINVAL;
2184 goto error_out;
2185 }
2186 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2187 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2188 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2189 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2190 minUDFReadRev,
2191 UDF_MAX_READ_VERSION);
2192 ret = -EINVAL;
2193 goto error_out;
2194 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2195 !(sb->s_flags & MS_RDONLY)) {
2196 ret = -EACCES;
2197 goto error_out;
2198 }
2199
2200 sbi->s_udfrev = minUDFWriteRev;
2201
2202 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2203 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2204 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2205 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2206 }
2207
2208 if (!sbi->s_partitions) {
2209 udf_warn(sb, "No partition found (2)\n");
2210 ret = -EINVAL;
2211 goto error_out;
2212 }
2213
2214 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2215 UDF_PART_FLAG_READ_ONLY &&
2216 !(sb->s_flags & MS_RDONLY)) {
2217 ret = -EACCES;
2218 goto error_out;
2219 }
2220
2221 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2222 udf_warn(sb, "No fileset found\n");
2223 ret = -EINVAL;
2224 goto error_out;
2225 }
2226
2227 if (!silent) {
2228 struct timestamp ts;
2229 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2230 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2231 sbi->s_volume_ident,
2232 le16_to_cpu(ts.year), ts.month, ts.day,
2233 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2234 }
2235 if (!(sb->s_flags & MS_RDONLY)) {
2236 udf_open_lvid(sb);
2237 lvid_open = true;
2238 }
2239
2240 /* Assign the root inode */
2241 /* assign inodes by physical block number */
2242 /* perhaps it's not extensible enough, but for now ... */
2243 inode = udf_iget(sb, &rootdir);
2244 if (IS_ERR(inode)) {
2245 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2246 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2247 ret = PTR_ERR(inode);
2248 goto error_out;
2249 }
2250
2251 /* Allocate a dentry for the root inode */
2252 sb->s_root = d_make_root(inode);
2253 if (!sb->s_root) {
2254 udf_err(sb, "Couldn't allocate root dentry\n");
2255 ret = -ENOMEM;
2256 goto error_out;
2257 }
2258 sb->s_maxbytes = MAX_LFS_FILESIZE;
2259 sb->s_max_links = UDF_MAX_LINKS;
2260 return 0;
2261
2262 error_out:
2263 iput(sbi->s_vat_inode);
2264 parse_options_failure:
2265 #ifdef CONFIG_UDF_NLS
2266 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2267 unload_nls(sbi->s_nls_map);
2268 #endif
2269 if (lvid_open)
2270 udf_close_lvid(sb);
2271 brelse(sbi->s_lvid_bh);
2272 udf_sb_free_partitions(sb);
2273 kfree(sbi);
2274 sb->s_fs_info = NULL;
2275
2276 return ret;
2277 }
2278
2279 void _udf_err(struct super_block *sb, const char *function,
2280 const char *fmt, ...)
2281 {
2282 struct va_format vaf;
2283 va_list args;
2284
2285 va_start(args, fmt);
2286
2287 vaf.fmt = fmt;
2288 vaf.va = &args;
2289
2290 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2291
2292 va_end(args);
2293 }
2294
2295 void _udf_warn(struct super_block *sb, const char *function,
2296 const char *fmt, ...)
2297 {
2298 struct va_format vaf;
2299 va_list args;
2300
2301 va_start(args, fmt);
2302
2303 vaf.fmt = fmt;
2304 vaf.va = &args;
2305
2306 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2307
2308 va_end(args);
2309 }
2310
2311 static void udf_put_super(struct super_block *sb)
2312 {
2313 struct udf_sb_info *sbi;
2314
2315 sbi = UDF_SB(sb);
2316
2317 iput(sbi->s_vat_inode);
2318 #ifdef CONFIG_UDF_NLS
2319 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2320 unload_nls(sbi->s_nls_map);
2321 #endif
2322 if (!(sb->s_flags & MS_RDONLY))
2323 udf_close_lvid(sb);
2324 brelse(sbi->s_lvid_bh);
2325 udf_sb_free_partitions(sb);
2326 mutex_destroy(&sbi->s_alloc_mutex);
2327 kfree(sb->s_fs_info);
2328 sb->s_fs_info = NULL;
2329 }
2330
2331 static int udf_sync_fs(struct super_block *sb, int wait)
2332 {
2333 struct udf_sb_info *sbi = UDF_SB(sb);
2334
2335 mutex_lock(&sbi->s_alloc_mutex);
2336 if (sbi->s_lvid_dirty) {
2337 /*
2338 * Blockdevice will be synced later so we don't have to submit
2339 * the buffer for IO
2340 */
2341 mark_buffer_dirty(sbi->s_lvid_bh);
2342 sbi->s_lvid_dirty = 0;
2343 }
2344 mutex_unlock(&sbi->s_alloc_mutex);
2345
2346 return 0;
2347 }
2348
2349 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2350 {
2351 struct super_block *sb = dentry->d_sb;
2352 struct udf_sb_info *sbi = UDF_SB(sb);
2353 struct logicalVolIntegrityDescImpUse *lvidiu;
2354 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2355
2356 lvidiu = udf_sb_lvidiu(sb);
2357 buf->f_type = UDF_SUPER_MAGIC;
2358 buf->f_bsize = sb->s_blocksize;
2359 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2360 buf->f_bfree = udf_count_free(sb);
2361 buf->f_bavail = buf->f_bfree;
2362 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2363 le32_to_cpu(lvidiu->numDirs)) : 0)
2364 + buf->f_bfree;
2365 buf->f_ffree = buf->f_bfree;
2366 buf->f_namelen = UDF_NAME_LEN - 2;
2367 buf->f_fsid.val[0] = (u32)id;
2368 buf->f_fsid.val[1] = (u32)(id >> 32);
2369
2370 return 0;
2371 }
2372
2373 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2374 struct udf_bitmap *bitmap)
2375 {
2376 struct buffer_head *bh = NULL;
2377 unsigned int accum = 0;
2378 int index;
2379 int block = 0, newblock;
2380 struct kernel_lb_addr loc;
2381 uint32_t bytes;
2382 uint8_t *ptr;
2383 uint16_t ident;
2384 struct spaceBitmapDesc *bm;
2385
2386 loc.logicalBlockNum = bitmap->s_extPosition;
2387 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2388 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2389
2390 if (!bh) {
2391 udf_err(sb, "udf_count_free failed\n");
2392 goto out;
2393 } else if (ident != TAG_IDENT_SBD) {
2394 brelse(bh);
2395 udf_err(sb, "udf_count_free failed\n");
2396 goto out;
2397 }
2398
2399 bm = (struct spaceBitmapDesc *)bh->b_data;
2400 bytes = le32_to_cpu(bm->numOfBytes);
2401 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2402 ptr = (uint8_t *)bh->b_data;
2403
2404 while (bytes > 0) {
2405 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2406 accum += bitmap_weight((const unsigned long *)(ptr + index),
2407 cur_bytes * 8);
2408 bytes -= cur_bytes;
2409 if (bytes) {
2410 brelse(bh);
2411 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2412 bh = udf_tread(sb, newblock);
2413 if (!bh) {
2414 udf_debug("read failed\n");
2415 goto out;
2416 }
2417 index = 0;
2418 ptr = (uint8_t *)bh->b_data;
2419 }
2420 }
2421 brelse(bh);
2422 out:
2423 return accum;
2424 }
2425
2426 static unsigned int udf_count_free_table(struct super_block *sb,
2427 struct inode *table)
2428 {
2429 unsigned int accum = 0;
2430 uint32_t elen;
2431 struct kernel_lb_addr eloc;
2432 int8_t etype;
2433 struct extent_position epos;
2434
2435 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2436 epos.block = UDF_I(table)->i_location;
2437 epos.offset = sizeof(struct unallocSpaceEntry);
2438 epos.bh = NULL;
2439
2440 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2441 accum += (elen >> table->i_sb->s_blocksize_bits);
2442
2443 brelse(epos.bh);
2444 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2445
2446 return accum;
2447 }
2448
2449 static unsigned int udf_count_free(struct super_block *sb)
2450 {
2451 unsigned int accum = 0;
2452 struct udf_sb_info *sbi;
2453 struct udf_part_map *map;
2454
2455 sbi = UDF_SB(sb);
2456 if (sbi->s_lvid_bh) {
2457 struct logicalVolIntegrityDesc *lvid =
2458 (struct logicalVolIntegrityDesc *)
2459 sbi->s_lvid_bh->b_data;
2460 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2461 accum = le32_to_cpu(
2462 lvid->freeSpaceTable[sbi->s_partition]);
2463 if (accum == 0xFFFFFFFF)
2464 accum = 0;
2465 }
2466 }
2467
2468 if (accum)
2469 return accum;
2470
2471 map = &sbi->s_partmaps[sbi->s_partition];
2472 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2473 accum += udf_count_free_bitmap(sb,
2474 map->s_uspace.s_bitmap);
2475 }
2476 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2477 accum += udf_count_free_bitmap(sb,
2478 map->s_fspace.s_bitmap);
2479 }
2480 if (accum)
2481 return accum;
2482
2483 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2484 accum += udf_count_free_table(sb,
2485 map->s_uspace.s_table);
2486 }
2487 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2488 accum += udf_count_free_table(sb,
2489 map->s_fspace.s_table);
2490 }
2491
2492 return accum;
2493 }