]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/userfaultfd.c
reset: hisilicon: fix potential NULL pointer dereference
[mirror_ubuntu-bionic-kernel.git] / fs / userfaultfd.c
1 /*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38 };
39
40 /*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
44 struct userfaultfd_ctx {
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
55 /* pseudo fd refcounting */
56 atomic_t refcount;
57 /* userfaultfd syscall flags */
58 unsigned int flags;
59 /* features requested from the userspace */
60 unsigned int features;
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67 };
68
69 struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73 };
74
75 struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80 };
81
82 struct userfaultfd_wait_queue {
83 struct uffd_msg msg;
84 wait_queue_entry_t wq;
85 struct userfaultfd_ctx *ctx;
86 bool waken;
87 };
88
89 struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92 };
93
94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
95 int wake_flags, void *key)
96 {
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
109 goto out;
110 WRITE_ONCE(uwq->waken, true);
111 /*
112 * The Program-Order guarantees provided by the scheduler
113 * ensure uwq->waken is visible before the task is woken.
114 */
115 ret = wake_up_state(wq->private, mode);
116 if (ret) {
117 /*
118 * Wake only once, autoremove behavior.
119 *
120 * After the effect of list_del_init is visible to the other
121 * CPUs, the waitqueue may disappear from under us, see the
122 * !list_empty_careful() in handle_userfault().
123 *
124 * try_to_wake_up() has an implicit smp_mb(), and the
125 * wq->private is read before calling the extern function
126 * "wake_up_state" (which in turns calls try_to_wake_up).
127 */
128 list_del_init(&wq->entry);
129 }
130 out:
131 return ret;
132 }
133
134 /**
135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136 * context.
137 * @ctx: [in] Pointer to the userfaultfd context.
138 */
139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140 {
141 if (!atomic_inc_not_zero(&ctx->refcount))
142 BUG();
143 }
144
145 /**
146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147 * context.
148 * @ctx: [in] Pointer to userfaultfd context.
149 *
150 * The userfaultfd context reference must have been previously acquired either
151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152 */
153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154 {
155 if (atomic_dec_and_test(&ctx->refcount)) {
156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
164 mmdrop(ctx->mm);
165 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
166 }
167 }
168
169 static inline void msg_init(struct uffd_msg *msg)
170 {
171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172 /*
173 * Must use memset to zero out the paddings or kernel data is
174 * leaked to userland.
175 */
176 memset(msg, 0, sizeof(struct uffd_msg));
177 }
178
179 static inline struct uffd_msg userfault_msg(unsigned long address,
180 unsigned int flags,
181 unsigned long reason,
182 unsigned int features)
183 {
184 struct uffd_msg msg;
185 msg_init(&msg);
186 msg.event = UFFD_EVENT_PAGEFAULT;
187 msg.arg.pagefault.address = address;
188 if (flags & FAULT_FLAG_WRITE)
189 /*
190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 * was a read fault, otherwise if set it means it's
194 * a write fault.
195 */
196 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
197 if (reason & VM_UFFD_WP)
198 /*
199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 * a missing fault, otherwise if set it means it's a
203 * write protect fault.
204 */
205 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
206 if (features & UFFD_FEATURE_THREAD_ID)
207 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
208 return msg;
209 }
210
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213 * Same functionality as userfaultfd_must_wait below with modifications for
214 * hugepmd ranges.
215 */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 struct vm_area_struct *vma,
218 unsigned long address,
219 unsigned long flags,
220 unsigned long reason)
221 {
222 struct mm_struct *mm = ctx->mm;
223 pte_t *ptep, pte;
224 bool ret = true;
225
226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227
228 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229
230 if (!ptep)
231 goto out;
232
233 ret = false;
234 pte = huge_ptep_get(ptep);
235
236 /*
237 * Lockless access: we're in a wait_event so it's ok if it
238 * changes under us.
239 */
240 if (huge_pte_none(pte))
241 ret = true;
242 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
243 ret = true;
244 out:
245 return ret;
246 }
247 #else
248 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
249 struct vm_area_struct *vma,
250 unsigned long address,
251 unsigned long flags,
252 unsigned long reason)
253 {
254 return false; /* should never get here */
255 }
256 #endif /* CONFIG_HUGETLB_PAGE */
257
258 /*
259 * Verify the pagetables are still not ok after having reigstered into
260 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
261 * userfault that has already been resolved, if userfaultfd_read and
262 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
263 * threads.
264 */
265 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
266 unsigned long address,
267 unsigned long flags,
268 unsigned long reason)
269 {
270 struct mm_struct *mm = ctx->mm;
271 pgd_t *pgd;
272 p4d_t *p4d;
273 pud_t *pud;
274 pmd_t *pmd, _pmd;
275 pte_t *pte;
276 bool ret = true;
277
278 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
279
280 pgd = pgd_offset(mm, address);
281 if (!pgd_present(*pgd))
282 goto out;
283 p4d = p4d_offset(pgd, address);
284 if (!p4d_present(*p4d))
285 goto out;
286 pud = pud_offset(p4d, address);
287 if (!pud_present(*pud))
288 goto out;
289 pmd = pmd_offset(pud, address);
290 /*
291 * READ_ONCE must function as a barrier with narrower scope
292 * and it must be equivalent to:
293 * _pmd = *pmd; barrier();
294 *
295 * This is to deal with the instability (as in
296 * pmd_trans_unstable) of the pmd.
297 */
298 _pmd = READ_ONCE(*pmd);
299 if (!pmd_present(_pmd))
300 goto out;
301
302 ret = false;
303 if (pmd_trans_huge(_pmd))
304 goto out;
305
306 /*
307 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
308 * and use the standard pte_offset_map() instead of parsing _pmd.
309 */
310 pte = pte_offset_map(pmd, address);
311 /*
312 * Lockless access: we're in a wait_event so it's ok if it
313 * changes under us.
314 */
315 if (pte_none(*pte))
316 ret = true;
317 pte_unmap(pte);
318
319 out:
320 return ret;
321 }
322
323 /*
324 * The locking rules involved in returning VM_FAULT_RETRY depending on
325 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
326 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
327 * recommendation in __lock_page_or_retry is not an understatement.
328 *
329 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
330 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
331 * not set.
332 *
333 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
334 * set, VM_FAULT_RETRY can still be returned if and only if there are
335 * fatal_signal_pending()s, and the mmap_sem must be released before
336 * returning it.
337 */
338 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
339 {
340 struct mm_struct *mm = vmf->vma->vm_mm;
341 struct userfaultfd_ctx *ctx;
342 struct userfaultfd_wait_queue uwq;
343 int ret;
344 bool must_wait, return_to_userland;
345 long blocking_state;
346
347 ret = VM_FAULT_SIGBUS;
348
349 /*
350 * We don't do userfault handling for the final child pid update.
351 *
352 * We also don't do userfault handling during
353 * coredumping. hugetlbfs has the special
354 * follow_hugetlb_page() to skip missing pages in the
355 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
356 * the no_page_table() helper in follow_page_mask(), but the
357 * shmem_vm_ops->fault method is invoked even during
358 * coredumping without mmap_sem and it ends up here.
359 */
360 if (current->flags & (PF_EXITING|PF_DUMPCORE))
361 goto out;
362
363 /*
364 * Coredumping runs without mmap_sem so we can only check that
365 * the mmap_sem is held, if PF_DUMPCORE was not set.
366 */
367 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
368
369 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
370 if (!ctx)
371 goto out;
372
373 BUG_ON(ctx->mm != mm);
374
375 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
376 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
377
378 if (ctx->features & UFFD_FEATURE_SIGBUS)
379 goto out;
380
381 /*
382 * If it's already released don't get it. This avoids to loop
383 * in __get_user_pages if userfaultfd_release waits on the
384 * caller of handle_userfault to release the mmap_sem.
385 */
386 if (unlikely(READ_ONCE(ctx->released))) {
387 /*
388 * Don't return VM_FAULT_SIGBUS in this case, so a non
389 * cooperative manager can close the uffd after the
390 * last UFFDIO_COPY, without risking to trigger an
391 * involuntary SIGBUS if the process was starting the
392 * userfaultfd while the userfaultfd was still armed
393 * (but after the last UFFDIO_COPY). If the uffd
394 * wasn't already closed when the userfault reached
395 * this point, that would normally be solved by
396 * userfaultfd_must_wait returning 'false'.
397 *
398 * If we were to return VM_FAULT_SIGBUS here, the non
399 * cooperative manager would be instead forced to
400 * always call UFFDIO_UNREGISTER before it can safely
401 * close the uffd.
402 */
403 ret = VM_FAULT_NOPAGE;
404 goto out;
405 }
406
407 /*
408 * Check that we can return VM_FAULT_RETRY.
409 *
410 * NOTE: it should become possible to return VM_FAULT_RETRY
411 * even if FAULT_FLAG_TRIED is set without leading to gup()
412 * -EBUSY failures, if the userfaultfd is to be extended for
413 * VM_UFFD_WP tracking and we intend to arm the userfault
414 * without first stopping userland access to the memory. For
415 * VM_UFFD_MISSING userfaults this is enough for now.
416 */
417 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
418 /*
419 * Validate the invariant that nowait must allow retry
420 * to be sure not to return SIGBUS erroneously on
421 * nowait invocations.
422 */
423 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
424 #ifdef CONFIG_DEBUG_VM
425 if (printk_ratelimit()) {
426 printk(KERN_WARNING
427 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
428 vmf->flags);
429 dump_stack();
430 }
431 #endif
432 goto out;
433 }
434
435 /*
436 * Handle nowait, not much to do other than tell it to retry
437 * and wait.
438 */
439 ret = VM_FAULT_RETRY;
440 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
441 goto out;
442
443 /* take the reference before dropping the mmap_sem */
444 userfaultfd_ctx_get(ctx);
445
446 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
447 uwq.wq.private = current;
448 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
449 ctx->features);
450 uwq.ctx = ctx;
451 uwq.waken = false;
452
453 return_to_userland =
454 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
455 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
456 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
457 TASK_KILLABLE;
458
459 spin_lock(&ctx->fault_pending_wqh.lock);
460 /*
461 * After the __add_wait_queue the uwq is visible to userland
462 * through poll/read().
463 */
464 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
465 /*
466 * The smp_mb() after __set_current_state prevents the reads
467 * following the spin_unlock to happen before the list_add in
468 * __add_wait_queue.
469 */
470 set_current_state(blocking_state);
471 spin_unlock(&ctx->fault_pending_wqh.lock);
472
473 if (!is_vm_hugetlb_page(vmf->vma))
474 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
475 reason);
476 else
477 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
478 vmf->address,
479 vmf->flags, reason);
480 up_read(&mm->mmap_sem);
481
482 if (likely(must_wait && !READ_ONCE(ctx->released) &&
483 (return_to_userland ? !signal_pending(current) :
484 !fatal_signal_pending(current)))) {
485 wake_up_poll(&ctx->fd_wqh, POLLIN);
486 schedule();
487 ret |= VM_FAULT_MAJOR;
488
489 /*
490 * False wakeups can orginate even from rwsem before
491 * up_read() however userfaults will wait either for a
492 * targeted wakeup on the specific uwq waitqueue from
493 * wake_userfault() or for signals or for uffd
494 * release.
495 */
496 while (!READ_ONCE(uwq.waken)) {
497 /*
498 * This needs the full smp_store_mb()
499 * guarantee as the state write must be
500 * visible to other CPUs before reading
501 * uwq.waken from other CPUs.
502 */
503 set_current_state(blocking_state);
504 if (READ_ONCE(uwq.waken) ||
505 READ_ONCE(ctx->released) ||
506 (return_to_userland ? signal_pending(current) :
507 fatal_signal_pending(current)))
508 break;
509 schedule();
510 }
511 }
512
513 __set_current_state(TASK_RUNNING);
514
515 if (return_to_userland) {
516 if (signal_pending(current) &&
517 !fatal_signal_pending(current)) {
518 /*
519 * If we got a SIGSTOP or SIGCONT and this is
520 * a normal userland page fault, just let
521 * userland return so the signal will be
522 * handled and gdb debugging works. The page
523 * fault code immediately after we return from
524 * this function is going to release the
525 * mmap_sem and it's not depending on it
526 * (unlike gup would if we were not to return
527 * VM_FAULT_RETRY).
528 *
529 * If a fatal signal is pending we still take
530 * the streamlined VM_FAULT_RETRY failure path
531 * and there's no need to retake the mmap_sem
532 * in such case.
533 */
534 down_read(&mm->mmap_sem);
535 ret = VM_FAULT_NOPAGE;
536 }
537 }
538
539 /*
540 * Here we race with the list_del; list_add in
541 * userfaultfd_ctx_read(), however because we don't ever run
542 * list_del_init() to refile across the two lists, the prev
543 * and next pointers will never point to self. list_add also
544 * would never let any of the two pointers to point to
545 * self. So list_empty_careful won't risk to see both pointers
546 * pointing to self at any time during the list refile. The
547 * only case where list_del_init() is called is the full
548 * removal in the wake function and there we don't re-list_add
549 * and it's fine not to block on the spinlock. The uwq on this
550 * kernel stack can be released after the list_del_init.
551 */
552 if (!list_empty_careful(&uwq.wq.entry)) {
553 spin_lock(&ctx->fault_pending_wqh.lock);
554 /*
555 * No need of list_del_init(), the uwq on the stack
556 * will be freed shortly anyway.
557 */
558 list_del(&uwq.wq.entry);
559 spin_unlock(&ctx->fault_pending_wqh.lock);
560 }
561
562 /*
563 * ctx may go away after this if the userfault pseudo fd is
564 * already released.
565 */
566 userfaultfd_ctx_put(ctx);
567
568 out:
569 return ret;
570 }
571
572 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
573 struct userfaultfd_wait_queue *ewq)
574 {
575 struct userfaultfd_ctx *release_new_ctx;
576
577 if (WARN_ON_ONCE(current->flags & PF_EXITING))
578 goto out;
579
580 ewq->ctx = ctx;
581 init_waitqueue_entry(&ewq->wq, current);
582 release_new_ctx = NULL;
583
584 spin_lock(&ctx->event_wqh.lock);
585 /*
586 * After the __add_wait_queue the uwq is visible to userland
587 * through poll/read().
588 */
589 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
590 for (;;) {
591 set_current_state(TASK_KILLABLE);
592 if (ewq->msg.event == 0)
593 break;
594 if (READ_ONCE(ctx->released) ||
595 fatal_signal_pending(current)) {
596 /*
597 * &ewq->wq may be queued in fork_event, but
598 * __remove_wait_queue ignores the head
599 * parameter. It would be a problem if it
600 * didn't.
601 */
602 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
603 if (ewq->msg.event == UFFD_EVENT_FORK) {
604 struct userfaultfd_ctx *new;
605
606 new = (struct userfaultfd_ctx *)
607 (unsigned long)
608 ewq->msg.arg.reserved.reserved1;
609 release_new_ctx = new;
610 }
611 break;
612 }
613
614 spin_unlock(&ctx->event_wqh.lock);
615
616 wake_up_poll(&ctx->fd_wqh, POLLIN);
617 schedule();
618
619 spin_lock(&ctx->event_wqh.lock);
620 }
621 __set_current_state(TASK_RUNNING);
622 spin_unlock(&ctx->event_wqh.lock);
623
624 if (release_new_ctx) {
625 struct vm_area_struct *vma;
626 struct mm_struct *mm = release_new_ctx->mm;
627
628 /* the various vma->vm_userfaultfd_ctx still points to it */
629 down_write(&mm->mmap_sem);
630 for (vma = mm->mmap; vma; vma = vma->vm_next)
631 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
632 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
633 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
634 }
635 up_write(&mm->mmap_sem);
636
637 userfaultfd_ctx_put(release_new_ctx);
638 }
639
640 /*
641 * ctx may go away after this if the userfault pseudo fd is
642 * already released.
643 */
644 out:
645 userfaultfd_ctx_put(ctx);
646 }
647
648 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
649 struct userfaultfd_wait_queue *ewq)
650 {
651 ewq->msg.event = 0;
652 wake_up_locked(&ctx->event_wqh);
653 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
654 }
655
656 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
657 {
658 struct userfaultfd_ctx *ctx = NULL, *octx;
659 struct userfaultfd_fork_ctx *fctx;
660
661 octx = vma->vm_userfaultfd_ctx.ctx;
662 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
663 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
664 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
665 return 0;
666 }
667
668 list_for_each_entry(fctx, fcs, list)
669 if (fctx->orig == octx) {
670 ctx = fctx->new;
671 break;
672 }
673
674 if (!ctx) {
675 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
676 if (!fctx)
677 return -ENOMEM;
678
679 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
680 if (!ctx) {
681 kfree(fctx);
682 return -ENOMEM;
683 }
684
685 atomic_set(&ctx->refcount, 1);
686 ctx->flags = octx->flags;
687 ctx->state = UFFD_STATE_RUNNING;
688 ctx->features = octx->features;
689 ctx->released = false;
690 ctx->mm = vma->vm_mm;
691 mmgrab(ctx->mm);
692
693 userfaultfd_ctx_get(octx);
694 fctx->orig = octx;
695 fctx->new = ctx;
696 list_add_tail(&fctx->list, fcs);
697 }
698
699 vma->vm_userfaultfd_ctx.ctx = ctx;
700 return 0;
701 }
702
703 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
704 {
705 struct userfaultfd_ctx *ctx = fctx->orig;
706 struct userfaultfd_wait_queue ewq;
707
708 msg_init(&ewq.msg);
709
710 ewq.msg.event = UFFD_EVENT_FORK;
711 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
712
713 userfaultfd_event_wait_completion(ctx, &ewq);
714 }
715
716 void dup_userfaultfd_complete(struct list_head *fcs)
717 {
718 struct userfaultfd_fork_ctx *fctx, *n;
719
720 list_for_each_entry_safe(fctx, n, fcs, list) {
721 dup_fctx(fctx);
722 list_del(&fctx->list);
723 kfree(fctx);
724 }
725 }
726
727 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
728 struct vm_userfaultfd_ctx *vm_ctx)
729 {
730 struct userfaultfd_ctx *ctx;
731
732 ctx = vma->vm_userfaultfd_ctx.ctx;
733 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
734 vm_ctx->ctx = ctx;
735 userfaultfd_ctx_get(ctx);
736 }
737 }
738
739 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
740 unsigned long from, unsigned long to,
741 unsigned long len)
742 {
743 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
744 struct userfaultfd_wait_queue ewq;
745
746 if (!ctx)
747 return;
748
749 if (to & ~PAGE_MASK) {
750 userfaultfd_ctx_put(ctx);
751 return;
752 }
753
754 msg_init(&ewq.msg);
755
756 ewq.msg.event = UFFD_EVENT_REMAP;
757 ewq.msg.arg.remap.from = from;
758 ewq.msg.arg.remap.to = to;
759 ewq.msg.arg.remap.len = len;
760
761 userfaultfd_event_wait_completion(ctx, &ewq);
762 }
763
764 bool userfaultfd_remove(struct vm_area_struct *vma,
765 unsigned long start, unsigned long end)
766 {
767 struct mm_struct *mm = vma->vm_mm;
768 struct userfaultfd_ctx *ctx;
769 struct userfaultfd_wait_queue ewq;
770
771 ctx = vma->vm_userfaultfd_ctx.ctx;
772 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
773 return true;
774
775 userfaultfd_ctx_get(ctx);
776 up_read(&mm->mmap_sem);
777
778 msg_init(&ewq.msg);
779
780 ewq.msg.event = UFFD_EVENT_REMOVE;
781 ewq.msg.arg.remove.start = start;
782 ewq.msg.arg.remove.end = end;
783
784 userfaultfd_event_wait_completion(ctx, &ewq);
785
786 return false;
787 }
788
789 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
790 unsigned long start, unsigned long end)
791 {
792 struct userfaultfd_unmap_ctx *unmap_ctx;
793
794 list_for_each_entry(unmap_ctx, unmaps, list)
795 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
796 unmap_ctx->end == end)
797 return true;
798
799 return false;
800 }
801
802 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
803 unsigned long start, unsigned long end,
804 struct list_head *unmaps)
805 {
806 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
807 struct userfaultfd_unmap_ctx *unmap_ctx;
808 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
809
810 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
811 has_unmap_ctx(ctx, unmaps, start, end))
812 continue;
813
814 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
815 if (!unmap_ctx)
816 return -ENOMEM;
817
818 userfaultfd_ctx_get(ctx);
819 unmap_ctx->ctx = ctx;
820 unmap_ctx->start = start;
821 unmap_ctx->end = end;
822 list_add_tail(&unmap_ctx->list, unmaps);
823 }
824
825 return 0;
826 }
827
828 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
829 {
830 struct userfaultfd_unmap_ctx *ctx, *n;
831 struct userfaultfd_wait_queue ewq;
832
833 list_for_each_entry_safe(ctx, n, uf, list) {
834 msg_init(&ewq.msg);
835
836 ewq.msg.event = UFFD_EVENT_UNMAP;
837 ewq.msg.arg.remove.start = ctx->start;
838 ewq.msg.arg.remove.end = ctx->end;
839
840 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
841
842 list_del(&ctx->list);
843 kfree(ctx);
844 }
845 }
846
847 static int userfaultfd_release(struct inode *inode, struct file *file)
848 {
849 struct userfaultfd_ctx *ctx = file->private_data;
850 struct mm_struct *mm = ctx->mm;
851 struct vm_area_struct *vma, *prev;
852 /* len == 0 means wake all */
853 struct userfaultfd_wake_range range = { .len = 0, };
854 unsigned long new_flags;
855
856 WRITE_ONCE(ctx->released, true);
857
858 if (!mmget_not_zero(mm))
859 goto wakeup;
860
861 /*
862 * Flush page faults out of all CPUs. NOTE: all page faults
863 * must be retried without returning VM_FAULT_SIGBUS if
864 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
865 * changes while handle_userfault released the mmap_sem. So
866 * it's critical that released is set to true (above), before
867 * taking the mmap_sem for writing.
868 */
869 down_write(&mm->mmap_sem);
870 prev = NULL;
871 for (vma = mm->mmap; vma; vma = vma->vm_next) {
872 cond_resched();
873 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
874 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
875 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
876 prev = vma;
877 continue;
878 }
879 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
880 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
881 new_flags, vma->anon_vma,
882 vma->vm_file, vma->vm_pgoff,
883 vma_policy(vma),
884 NULL_VM_UFFD_CTX);
885 if (prev)
886 vma = prev;
887 else
888 prev = vma;
889 vma->vm_flags = new_flags;
890 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
891 }
892 up_write(&mm->mmap_sem);
893 mmput(mm);
894 wakeup:
895 /*
896 * After no new page faults can wait on this fault_*wqh, flush
897 * the last page faults that may have been already waiting on
898 * the fault_*wqh.
899 */
900 spin_lock(&ctx->fault_pending_wqh.lock);
901 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
902 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
903 spin_unlock(&ctx->fault_pending_wqh.lock);
904
905 /* Flush pending events that may still wait on event_wqh */
906 wake_up_all(&ctx->event_wqh);
907
908 wake_up_poll(&ctx->fd_wqh, POLLHUP);
909 userfaultfd_ctx_put(ctx);
910 return 0;
911 }
912
913 /* fault_pending_wqh.lock must be hold by the caller */
914 static inline struct userfaultfd_wait_queue *find_userfault_in(
915 wait_queue_head_t *wqh)
916 {
917 wait_queue_entry_t *wq;
918 struct userfaultfd_wait_queue *uwq;
919
920 VM_BUG_ON(!spin_is_locked(&wqh->lock));
921
922 uwq = NULL;
923 if (!waitqueue_active(wqh))
924 goto out;
925 /* walk in reverse to provide FIFO behavior to read userfaults */
926 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
927 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
928 out:
929 return uwq;
930 }
931
932 static inline struct userfaultfd_wait_queue *find_userfault(
933 struct userfaultfd_ctx *ctx)
934 {
935 return find_userfault_in(&ctx->fault_pending_wqh);
936 }
937
938 static inline struct userfaultfd_wait_queue *find_userfault_evt(
939 struct userfaultfd_ctx *ctx)
940 {
941 return find_userfault_in(&ctx->event_wqh);
942 }
943
944 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
945 {
946 struct userfaultfd_ctx *ctx = file->private_data;
947 unsigned int ret;
948
949 poll_wait(file, &ctx->fd_wqh, wait);
950
951 switch (ctx->state) {
952 case UFFD_STATE_WAIT_API:
953 return POLLERR;
954 case UFFD_STATE_RUNNING:
955 /*
956 * poll() never guarantees that read won't block.
957 * userfaults can be waken before they're read().
958 */
959 if (unlikely(!(file->f_flags & O_NONBLOCK)))
960 return POLLERR;
961 /*
962 * lockless access to see if there are pending faults
963 * __pollwait last action is the add_wait_queue but
964 * the spin_unlock would allow the waitqueue_active to
965 * pass above the actual list_add inside
966 * add_wait_queue critical section. So use a full
967 * memory barrier to serialize the list_add write of
968 * add_wait_queue() with the waitqueue_active read
969 * below.
970 */
971 ret = 0;
972 smp_mb();
973 if (waitqueue_active(&ctx->fault_pending_wqh))
974 ret = POLLIN;
975 else if (waitqueue_active(&ctx->event_wqh))
976 ret = POLLIN;
977
978 return ret;
979 default:
980 WARN_ON_ONCE(1);
981 return POLLERR;
982 }
983 }
984
985 static const struct file_operations userfaultfd_fops;
986
987 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
988 struct userfaultfd_ctx *new,
989 struct uffd_msg *msg)
990 {
991 int fd;
992 struct file *file;
993 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
994
995 fd = get_unused_fd_flags(flags);
996 if (fd < 0)
997 return fd;
998
999 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
1000 O_RDWR | flags);
1001 if (IS_ERR(file)) {
1002 put_unused_fd(fd);
1003 return PTR_ERR(file);
1004 }
1005
1006 fd_install(fd, file);
1007 msg->arg.reserved.reserved1 = 0;
1008 msg->arg.fork.ufd = fd;
1009
1010 return 0;
1011 }
1012
1013 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1014 struct uffd_msg *msg)
1015 {
1016 ssize_t ret;
1017 DECLARE_WAITQUEUE(wait, current);
1018 struct userfaultfd_wait_queue *uwq;
1019 /*
1020 * Handling fork event requires sleeping operations, so
1021 * we drop the event_wqh lock, then do these ops, then
1022 * lock it back and wake up the waiter. While the lock is
1023 * dropped the ewq may go away so we keep track of it
1024 * carefully.
1025 */
1026 LIST_HEAD(fork_event);
1027 struct userfaultfd_ctx *fork_nctx = NULL;
1028
1029 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1030 spin_lock(&ctx->fd_wqh.lock);
1031 __add_wait_queue(&ctx->fd_wqh, &wait);
1032 for (;;) {
1033 set_current_state(TASK_INTERRUPTIBLE);
1034 spin_lock(&ctx->fault_pending_wqh.lock);
1035 uwq = find_userfault(ctx);
1036 if (uwq) {
1037 /*
1038 * Use a seqcount to repeat the lockless check
1039 * in wake_userfault() to avoid missing
1040 * wakeups because during the refile both
1041 * waitqueue could become empty if this is the
1042 * only userfault.
1043 */
1044 write_seqcount_begin(&ctx->refile_seq);
1045
1046 /*
1047 * The fault_pending_wqh.lock prevents the uwq
1048 * to disappear from under us.
1049 *
1050 * Refile this userfault from
1051 * fault_pending_wqh to fault_wqh, it's not
1052 * pending anymore after we read it.
1053 *
1054 * Use list_del() by hand (as
1055 * userfaultfd_wake_function also uses
1056 * list_del_init() by hand) to be sure nobody
1057 * changes __remove_wait_queue() to use
1058 * list_del_init() in turn breaking the
1059 * !list_empty_careful() check in
1060 * handle_userfault(). The uwq->wq.head list
1061 * must never be empty at any time during the
1062 * refile, or the waitqueue could disappear
1063 * from under us. The "wait_queue_head_t"
1064 * parameter of __remove_wait_queue() is unused
1065 * anyway.
1066 */
1067 list_del(&uwq->wq.entry);
1068 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1069
1070 write_seqcount_end(&ctx->refile_seq);
1071
1072 /* careful to always initialize msg if ret == 0 */
1073 *msg = uwq->msg;
1074 spin_unlock(&ctx->fault_pending_wqh.lock);
1075 ret = 0;
1076 break;
1077 }
1078 spin_unlock(&ctx->fault_pending_wqh.lock);
1079
1080 spin_lock(&ctx->event_wqh.lock);
1081 uwq = find_userfault_evt(ctx);
1082 if (uwq) {
1083 *msg = uwq->msg;
1084
1085 if (uwq->msg.event == UFFD_EVENT_FORK) {
1086 fork_nctx = (struct userfaultfd_ctx *)
1087 (unsigned long)
1088 uwq->msg.arg.reserved.reserved1;
1089 list_move(&uwq->wq.entry, &fork_event);
1090 /*
1091 * fork_nctx can be freed as soon as
1092 * we drop the lock, unless we take a
1093 * reference on it.
1094 */
1095 userfaultfd_ctx_get(fork_nctx);
1096 spin_unlock(&ctx->event_wqh.lock);
1097 ret = 0;
1098 break;
1099 }
1100
1101 userfaultfd_event_complete(ctx, uwq);
1102 spin_unlock(&ctx->event_wqh.lock);
1103 ret = 0;
1104 break;
1105 }
1106 spin_unlock(&ctx->event_wqh.lock);
1107
1108 if (signal_pending(current)) {
1109 ret = -ERESTARTSYS;
1110 break;
1111 }
1112 if (no_wait) {
1113 ret = -EAGAIN;
1114 break;
1115 }
1116 spin_unlock(&ctx->fd_wqh.lock);
1117 schedule();
1118 spin_lock(&ctx->fd_wqh.lock);
1119 }
1120 __remove_wait_queue(&ctx->fd_wqh, &wait);
1121 __set_current_state(TASK_RUNNING);
1122 spin_unlock(&ctx->fd_wqh.lock);
1123
1124 if (!ret && msg->event == UFFD_EVENT_FORK) {
1125 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1126 spin_lock(&ctx->event_wqh.lock);
1127 if (!list_empty(&fork_event)) {
1128 /*
1129 * The fork thread didn't abort, so we can
1130 * drop the temporary refcount.
1131 */
1132 userfaultfd_ctx_put(fork_nctx);
1133
1134 uwq = list_first_entry(&fork_event,
1135 typeof(*uwq),
1136 wq.entry);
1137 /*
1138 * If fork_event list wasn't empty and in turn
1139 * the event wasn't already released by fork
1140 * (the event is allocated on fork kernel
1141 * stack), put the event back to its place in
1142 * the event_wq. fork_event head will be freed
1143 * as soon as we return so the event cannot
1144 * stay queued there no matter the current
1145 * "ret" value.
1146 */
1147 list_del(&uwq->wq.entry);
1148 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1149
1150 /*
1151 * Leave the event in the waitqueue and report
1152 * error to userland if we failed to resolve
1153 * the userfault fork.
1154 */
1155 if (likely(!ret))
1156 userfaultfd_event_complete(ctx, uwq);
1157 } else {
1158 /*
1159 * Here the fork thread aborted and the
1160 * refcount from the fork thread on fork_nctx
1161 * has already been released. We still hold
1162 * the reference we took before releasing the
1163 * lock above. If resolve_userfault_fork
1164 * failed we've to drop it because the
1165 * fork_nctx has to be freed in such case. If
1166 * it succeeded we'll hold it because the new
1167 * uffd references it.
1168 */
1169 if (ret)
1170 userfaultfd_ctx_put(fork_nctx);
1171 }
1172 spin_unlock(&ctx->event_wqh.lock);
1173 }
1174
1175 return ret;
1176 }
1177
1178 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1179 size_t count, loff_t *ppos)
1180 {
1181 struct userfaultfd_ctx *ctx = file->private_data;
1182 ssize_t _ret, ret = 0;
1183 struct uffd_msg msg;
1184 int no_wait = file->f_flags & O_NONBLOCK;
1185
1186 if (ctx->state == UFFD_STATE_WAIT_API)
1187 return -EINVAL;
1188
1189 for (;;) {
1190 if (count < sizeof(msg))
1191 return ret ? ret : -EINVAL;
1192 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1193 if (_ret < 0)
1194 return ret ? ret : _ret;
1195 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1196 return ret ? ret : -EFAULT;
1197 ret += sizeof(msg);
1198 buf += sizeof(msg);
1199 count -= sizeof(msg);
1200 /*
1201 * Allow to read more than one fault at time but only
1202 * block if waiting for the very first one.
1203 */
1204 no_wait = O_NONBLOCK;
1205 }
1206 }
1207
1208 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1209 struct userfaultfd_wake_range *range)
1210 {
1211 spin_lock(&ctx->fault_pending_wqh.lock);
1212 /* wake all in the range and autoremove */
1213 if (waitqueue_active(&ctx->fault_pending_wqh))
1214 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1215 range);
1216 if (waitqueue_active(&ctx->fault_wqh))
1217 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1218 spin_unlock(&ctx->fault_pending_wqh.lock);
1219 }
1220
1221 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1222 struct userfaultfd_wake_range *range)
1223 {
1224 unsigned seq;
1225 bool need_wakeup;
1226
1227 /*
1228 * To be sure waitqueue_active() is not reordered by the CPU
1229 * before the pagetable update, use an explicit SMP memory
1230 * barrier here. PT lock release or up_read(mmap_sem) still
1231 * have release semantics that can allow the
1232 * waitqueue_active() to be reordered before the pte update.
1233 */
1234 smp_mb();
1235
1236 /*
1237 * Use waitqueue_active because it's very frequent to
1238 * change the address space atomically even if there are no
1239 * userfaults yet. So we take the spinlock only when we're
1240 * sure we've userfaults to wake.
1241 */
1242 do {
1243 seq = read_seqcount_begin(&ctx->refile_seq);
1244 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1245 waitqueue_active(&ctx->fault_wqh);
1246 cond_resched();
1247 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1248 if (need_wakeup)
1249 __wake_userfault(ctx, range);
1250 }
1251
1252 static __always_inline int validate_range(struct mm_struct *mm,
1253 __u64 start, __u64 len)
1254 {
1255 __u64 task_size = mm->task_size;
1256
1257 if (start & ~PAGE_MASK)
1258 return -EINVAL;
1259 if (len & ~PAGE_MASK)
1260 return -EINVAL;
1261 if (!len)
1262 return -EINVAL;
1263 if (start < mmap_min_addr)
1264 return -EINVAL;
1265 if (start >= task_size)
1266 return -EINVAL;
1267 if (len > task_size - start)
1268 return -EINVAL;
1269 return 0;
1270 }
1271
1272 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1273 {
1274 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1275 vma_is_shmem(vma);
1276 }
1277
1278 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1279 unsigned long arg)
1280 {
1281 struct mm_struct *mm = ctx->mm;
1282 struct vm_area_struct *vma, *prev, *cur;
1283 int ret;
1284 struct uffdio_register uffdio_register;
1285 struct uffdio_register __user *user_uffdio_register;
1286 unsigned long vm_flags, new_flags;
1287 bool found;
1288 bool basic_ioctls;
1289 unsigned long start, end, vma_end;
1290
1291 user_uffdio_register = (struct uffdio_register __user *) arg;
1292
1293 ret = -EFAULT;
1294 if (copy_from_user(&uffdio_register, user_uffdio_register,
1295 sizeof(uffdio_register)-sizeof(__u64)))
1296 goto out;
1297
1298 ret = -EINVAL;
1299 if (!uffdio_register.mode)
1300 goto out;
1301 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1302 UFFDIO_REGISTER_MODE_WP))
1303 goto out;
1304 vm_flags = 0;
1305 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1306 vm_flags |= VM_UFFD_MISSING;
1307 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1308 vm_flags |= VM_UFFD_WP;
1309 /*
1310 * FIXME: remove the below error constraint by
1311 * implementing the wprotect tracking mode.
1312 */
1313 ret = -EINVAL;
1314 goto out;
1315 }
1316
1317 ret = validate_range(mm, uffdio_register.range.start,
1318 uffdio_register.range.len);
1319 if (ret)
1320 goto out;
1321
1322 start = uffdio_register.range.start;
1323 end = start + uffdio_register.range.len;
1324
1325 ret = -ENOMEM;
1326 if (!mmget_not_zero(mm))
1327 goto out;
1328
1329 down_write(&mm->mmap_sem);
1330 vma = find_vma_prev(mm, start, &prev);
1331 if (!vma)
1332 goto out_unlock;
1333
1334 /* check that there's at least one vma in the range */
1335 ret = -EINVAL;
1336 if (vma->vm_start >= end)
1337 goto out_unlock;
1338
1339 /*
1340 * If the first vma contains huge pages, make sure start address
1341 * is aligned to huge page size.
1342 */
1343 if (is_vm_hugetlb_page(vma)) {
1344 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1345
1346 if (start & (vma_hpagesize - 1))
1347 goto out_unlock;
1348 }
1349
1350 /*
1351 * Search for not compatible vmas.
1352 */
1353 found = false;
1354 basic_ioctls = false;
1355 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1356 cond_resched();
1357
1358 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1359 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1360
1361 /* check not compatible vmas */
1362 ret = -EINVAL;
1363 if (!vma_can_userfault(cur))
1364 goto out_unlock;
1365
1366 /*
1367 * UFFDIO_COPY will fill file holes even without
1368 * PROT_WRITE. This check enforces that if this is a
1369 * MAP_SHARED, the process has write permission to the backing
1370 * file. If VM_MAYWRITE is set it also enforces that on a
1371 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1372 * F_WRITE_SEAL can be taken until the vma is destroyed.
1373 */
1374 ret = -EPERM;
1375 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1376 goto out_unlock;
1377
1378 /*
1379 * If this vma contains ending address, and huge pages
1380 * check alignment.
1381 */
1382 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1383 end > cur->vm_start) {
1384 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1385
1386 ret = -EINVAL;
1387
1388 if (end & (vma_hpagesize - 1))
1389 goto out_unlock;
1390 }
1391
1392 /*
1393 * Check that this vma isn't already owned by a
1394 * different userfaultfd. We can't allow more than one
1395 * userfaultfd to own a single vma simultaneously or we
1396 * wouldn't know which one to deliver the userfaults to.
1397 */
1398 ret = -EBUSY;
1399 if (cur->vm_userfaultfd_ctx.ctx &&
1400 cur->vm_userfaultfd_ctx.ctx != ctx)
1401 goto out_unlock;
1402
1403 /*
1404 * Note vmas containing huge pages
1405 */
1406 if (is_vm_hugetlb_page(cur))
1407 basic_ioctls = true;
1408
1409 found = true;
1410 }
1411 BUG_ON(!found);
1412
1413 if (vma->vm_start < start)
1414 prev = vma;
1415
1416 ret = 0;
1417 do {
1418 cond_resched();
1419
1420 BUG_ON(!vma_can_userfault(vma));
1421 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1422 vma->vm_userfaultfd_ctx.ctx != ctx);
1423 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1424
1425 /*
1426 * Nothing to do: this vma is already registered into this
1427 * userfaultfd and with the right tracking mode too.
1428 */
1429 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1430 (vma->vm_flags & vm_flags) == vm_flags)
1431 goto skip;
1432
1433 if (vma->vm_start > start)
1434 start = vma->vm_start;
1435 vma_end = min(end, vma->vm_end);
1436
1437 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1438 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1439 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1440 vma_policy(vma),
1441 ((struct vm_userfaultfd_ctx){ ctx }));
1442 if (prev) {
1443 vma = prev;
1444 goto next;
1445 }
1446 if (vma->vm_start < start) {
1447 ret = split_vma(mm, vma, start, 1);
1448 if (ret)
1449 break;
1450 }
1451 if (vma->vm_end > end) {
1452 ret = split_vma(mm, vma, end, 0);
1453 if (ret)
1454 break;
1455 }
1456 next:
1457 /*
1458 * In the vma_merge() successful mprotect-like case 8:
1459 * the next vma was merged into the current one and
1460 * the current one has not been updated yet.
1461 */
1462 vma->vm_flags = new_flags;
1463 vma->vm_userfaultfd_ctx.ctx = ctx;
1464
1465 skip:
1466 prev = vma;
1467 start = vma->vm_end;
1468 vma = vma->vm_next;
1469 } while (vma && vma->vm_start < end);
1470 out_unlock:
1471 up_write(&mm->mmap_sem);
1472 mmput(mm);
1473 if (!ret) {
1474 /*
1475 * Now that we scanned all vmas we can already tell
1476 * userland which ioctls methods are guaranteed to
1477 * succeed on this range.
1478 */
1479 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1480 UFFD_API_RANGE_IOCTLS,
1481 &user_uffdio_register->ioctls))
1482 ret = -EFAULT;
1483 }
1484 out:
1485 return ret;
1486 }
1487
1488 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1489 unsigned long arg)
1490 {
1491 struct mm_struct *mm = ctx->mm;
1492 struct vm_area_struct *vma, *prev, *cur;
1493 int ret;
1494 struct uffdio_range uffdio_unregister;
1495 unsigned long new_flags;
1496 bool found;
1497 unsigned long start, end, vma_end;
1498 const void __user *buf = (void __user *)arg;
1499
1500 ret = -EFAULT;
1501 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1502 goto out;
1503
1504 ret = validate_range(mm, uffdio_unregister.start,
1505 uffdio_unregister.len);
1506 if (ret)
1507 goto out;
1508
1509 start = uffdio_unregister.start;
1510 end = start + uffdio_unregister.len;
1511
1512 ret = -ENOMEM;
1513 if (!mmget_not_zero(mm))
1514 goto out;
1515
1516 down_write(&mm->mmap_sem);
1517 vma = find_vma_prev(mm, start, &prev);
1518 if (!vma)
1519 goto out_unlock;
1520
1521 /* check that there's at least one vma in the range */
1522 ret = -EINVAL;
1523 if (vma->vm_start >= end)
1524 goto out_unlock;
1525
1526 /*
1527 * If the first vma contains huge pages, make sure start address
1528 * is aligned to huge page size.
1529 */
1530 if (is_vm_hugetlb_page(vma)) {
1531 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1532
1533 if (start & (vma_hpagesize - 1))
1534 goto out_unlock;
1535 }
1536
1537 /*
1538 * Search for not compatible vmas.
1539 */
1540 found = false;
1541 ret = -EINVAL;
1542 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1543 cond_resched();
1544
1545 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1546 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1547
1548 /*
1549 * Check not compatible vmas, not strictly required
1550 * here as not compatible vmas cannot have an
1551 * userfaultfd_ctx registered on them, but this
1552 * provides for more strict behavior to notice
1553 * unregistration errors.
1554 */
1555 if (!vma_can_userfault(cur))
1556 goto out_unlock;
1557
1558 found = true;
1559 }
1560 BUG_ON(!found);
1561
1562 if (vma->vm_start < start)
1563 prev = vma;
1564
1565 ret = 0;
1566 do {
1567 cond_resched();
1568
1569 BUG_ON(!vma_can_userfault(vma));
1570 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1571
1572 /*
1573 * Nothing to do: this vma is already registered into this
1574 * userfaultfd and with the right tracking mode too.
1575 */
1576 if (!vma->vm_userfaultfd_ctx.ctx)
1577 goto skip;
1578
1579 if (vma->vm_start > start)
1580 start = vma->vm_start;
1581 vma_end = min(end, vma->vm_end);
1582
1583 if (userfaultfd_missing(vma)) {
1584 /*
1585 * Wake any concurrent pending userfault while
1586 * we unregister, so they will not hang
1587 * permanently and it avoids userland to call
1588 * UFFDIO_WAKE explicitly.
1589 */
1590 struct userfaultfd_wake_range range;
1591 range.start = start;
1592 range.len = vma_end - start;
1593 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1594 }
1595
1596 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1597 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1598 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1599 vma_policy(vma),
1600 NULL_VM_UFFD_CTX);
1601 if (prev) {
1602 vma = prev;
1603 goto next;
1604 }
1605 if (vma->vm_start < start) {
1606 ret = split_vma(mm, vma, start, 1);
1607 if (ret)
1608 break;
1609 }
1610 if (vma->vm_end > end) {
1611 ret = split_vma(mm, vma, end, 0);
1612 if (ret)
1613 break;
1614 }
1615 next:
1616 /*
1617 * In the vma_merge() successful mprotect-like case 8:
1618 * the next vma was merged into the current one and
1619 * the current one has not been updated yet.
1620 */
1621 vma->vm_flags = new_flags;
1622 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1623
1624 skip:
1625 prev = vma;
1626 start = vma->vm_end;
1627 vma = vma->vm_next;
1628 } while (vma && vma->vm_start < end);
1629 out_unlock:
1630 up_write(&mm->mmap_sem);
1631 mmput(mm);
1632 out:
1633 return ret;
1634 }
1635
1636 /*
1637 * userfaultfd_wake may be used in combination with the
1638 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1639 */
1640 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1641 unsigned long arg)
1642 {
1643 int ret;
1644 struct uffdio_range uffdio_wake;
1645 struct userfaultfd_wake_range range;
1646 const void __user *buf = (void __user *)arg;
1647
1648 ret = -EFAULT;
1649 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1650 goto out;
1651
1652 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1653 if (ret)
1654 goto out;
1655
1656 range.start = uffdio_wake.start;
1657 range.len = uffdio_wake.len;
1658
1659 /*
1660 * len == 0 means wake all and we don't want to wake all here,
1661 * so check it again to be sure.
1662 */
1663 VM_BUG_ON(!range.len);
1664
1665 wake_userfault(ctx, &range);
1666 ret = 0;
1667
1668 out:
1669 return ret;
1670 }
1671
1672 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1673 unsigned long arg)
1674 {
1675 __s64 ret;
1676 struct uffdio_copy uffdio_copy;
1677 struct uffdio_copy __user *user_uffdio_copy;
1678 struct userfaultfd_wake_range range;
1679
1680 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1681
1682 ret = -EFAULT;
1683 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1684 /* don't copy "copy" last field */
1685 sizeof(uffdio_copy)-sizeof(__s64)))
1686 goto out;
1687
1688 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1689 if (ret)
1690 goto out;
1691 /*
1692 * double check for wraparound just in case. copy_from_user()
1693 * will later check uffdio_copy.src + uffdio_copy.len to fit
1694 * in the userland range.
1695 */
1696 ret = -EINVAL;
1697 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1698 goto out;
1699 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1700 goto out;
1701 if (mmget_not_zero(ctx->mm)) {
1702 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1703 uffdio_copy.len);
1704 mmput(ctx->mm);
1705 } else {
1706 return -ESRCH;
1707 }
1708 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1709 return -EFAULT;
1710 if (ret < 0)
1711 goto out;
1712 BUG_ON(!ret);
1713 /* len == 0 would wake all */
1714 range.len = ret;
1715 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1716 range.start = uffdio_copy.dst;
1717 wake_userfault(ctx, &range);
1718 }
1719 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1720 out:
1721 return ret;
1722 }
1723
1724 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1725 unsigned long arg)
1726 {
1727 __s64 ret;
1728 struct uffdio_zeropage uffdio_zeropage;
1729 struct uffdio_zeropage __user *user_uffdio_zeropage;
1730 struct userfaultfd_wake_range range;
1731
1732 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1733
1734 ret = -EFAULT;
1735 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1736 /* don't copy "zeropage" last field */
1737 sizeof(uffdio_zeropage)-sizeof(__s64)))
1738 goto out;
1739
1740 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1741 uffdio_zeropage.range.len);
1742 if (ret)
1743 goto out;
1744 ret = -EINVAL;
1745 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1746 goto out;
1747
1748 if (mmget_not_zero(ctx->mm)) {
1749 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1750 uffdio_zeropage.range.len);
1751 mmput(ctx->mm);
1752 } else {
1753 return -ESRCH;
1754 }
1755 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1756 return -EFAULT;
1757 if (ret < 0)
1758 goto out;
1759 /* len == 0 would wake all */
1760 BUG_ON(!ret);
1761 range.len = ret;
1762 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1763 range.start = uffdio_zeropage.range.start;
1764 wake_userfault(ctx, &range);
1765 }
1766 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1767 out:
1768 return ret;
1769 }
1770
1771 static inline unsigned int uffd_ctx_features(__u64 user_features)
1772 {
1773 /*
1774 * For the current set of features the bits just coincide
1775 */
1776 return (unsigned int)user_features;
1777 }
1778
1779 /*
1780 * userland asks for a certain API version and we return which bits
1781 * and ioctl commands are implemented in this kernel for such API
1782 * version or -EINVAL if unknown.
1783 */
1784 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1785 unsigned long arg)
1786 {
1787 struct uffdio_api uffdio_api;
1788 void __user *buf = (void __user *)arg;
1789 int ret;
1790 __u64 features;
1791
1792 ret = -EINVAL;
1793 if (ctx->state != UFFD_STATE_WAIT_API)
1794 goto out;
1795 ret = -EFAULT;
1796 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1797 goto out;
1798 features = uffdio_api.features;
1799 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1800 memset(&uffdio_api, 0, sizeof(uffdio_api));
1801 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1802 goto out;
1803 ret = -EINVAL;
1804 goto out;
1805 }
1806 /* report all available features and ioctls to userland */
1807 uffdio_api.features = UFFD_API_FEATURES;
1808 uffdio_api.ioctls = UFFD_API_IOCTLS;
1809 ret = -EFAULT;
1810 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1811 goto out;
1812 ctx->state = UFFD_STATE_RUNNING;
1813 /* only enable the requested features for this uffd context */
1814 ctx->features = uffd_ctx_features(features);
1815 ret = 0;
1816 out:
1817 return ret;
1818 }
1819
1820 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1821 unsigned long arg)
1822 {
1823 int ret = -EINVAL;
1824 struct userfaultfd_ctx *ctx = file->private_data;
1825
1826 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1827 return -EINVAL;
1828
1829 switch(cmd) {
1830 case UFFDIO_API:
1831 ret = userfaultfd_api(ctx, arg);
1832 break;
1833 case UFFDIO_REGISTER:
1834 ret = userfaultfd_register(ctx, arg);
1835 break;
1836 case UFFDIO_UNREGISTER:
1837 ret = userfaultfd_unregister(ctx, arg);
1838 break;
1839 case UFFDIO_WAKE:
1840 ret = userfaultfd_wake(ctx, arg);
1841 break;
1842 case UFFDIO_COPY:
1843 ret = userfaultfd_copy(ctx, arg);
1844 break;
1845 case UFFDIO_ZEROPAGE:
1846 ret = userfaultfd_zeropage(ctx, arg);
1847 break;
1848 }
1849 return ret;
1850 }
1851
1852 #ifdef CONFIG_PROC_FS
1853 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1854 {
1855 struct userfaultfd_ctx *ctx = f->private_data;
1856 wait_queue_entry_t *wq;
1857 struct userfaultfd_wait_queue *uwq;
1858 unsigned long pending = 0, total = 0;
1859
1860 spin_lock(&ctx->fault_pending_wqh.lock);
1861 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1862 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1863 pending++;
1864 total++;
1865 }
1866 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1867 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1868 total++;
1869 }
1870 spin_unlock(&ctx->fault_pending_wqh.lock);
1871
1872 /*
1873 * If more protocols will be added, there will be all shown
1874 * separated by a space. Like this:
1875 * protocols: aa:... bb:...
1876 */
1877 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1878 pending, total, UFFD_API, ctx->features,
1879 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1880 }
1881 #endif
1882
1883 static const struct file_operations userfaultfd_fops = {
1884 #ifdef CONFIG_PROC_FS
1885 .show_fdinfo = userfaultfd_show_fdinfo,
1886 #endif
1887 .release = userfaultfd_release,
1888 .poll = userfaultfd_poll,
1889 .read = userfaultfd_read,
1890 .unlocked_ioctl = userfaultfd_ioctl,
1891 .compat_ioctl = userfaultfd_ioctl,
1892 .llseek = noop_llseek,
1893 };
1894
1895 static void init_once_userfaultfd_ctx(void *mem)
1896 {
1897 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1898
1899 init_waitqueue_head(&ctx->fault_pending_wqh);
1900 init_waitqueue_head(&ctx->fault_wqh);
1901 init_waitqueue_head(&ctx->event_wqh);
1902 init_waitqueue_head(&ctx->fd_wqh);
1903 seqcount_init(&ctx->refile_seq);
1904 }
1905
1906 /**
1907 * userfaultfd_file_create - Creates a userfaultfd file pointer.
1908 * @flags: Flags for the userfaultfd file.
1909 *
1910 * This function creates a userfaultfd file pointer, w/out installing
1911 * it into the fd table. This is useful when the userfaultfd file is
1912 * used during the initialization of data structures that require
1913 * extra setup after the userfaultfd creation. So the userfaultfd
1914 * creation is split into the file pointer creation phase, and the
1915 * file descriptor installation phase. In this way races with
1916 * userspace closing the newly installed file descriptor can be
1917 * avoided. Returns a userfaultfd file pointer, or a proper error
1918 * pointer.
1919 */
1920 static struct file *userfaultfd_file_create(int flags)
1921 {
1922 struct file *file;
1923 struct userfaultfd_ctx *ctx;
1924
1925 BUG_ON(!current->mm);
1926
1927 /* Check the UFFD_* constants for consistency. */
1928 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1929 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1930
1931 file = ERR_PTR(-EINVAL);
1932 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1933 goto out;
1934
1935 file = ERR_PTR(-ENOMEM);
1936 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1937 if (!ctx)
1938 goto out;
1939
1940 atomic_set(&ctx->refcount, 1);
1941 ctx->flags = flags;
1942 ctx->features = 0;
1943 ctx->state = UFFD_STATE_WAIT_API;
1944 ctx->released = false;
1945 ctx->mm = current->mm;
1946 /* prevent the mm struct to be freed */
1947 mmgrab(ctx->mm);
1948
1949 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1950 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1951 if (IS_ERR(file)) {
1952 mmdrop(ctx->mm);
1953 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1954 }
1955 out:
1956 return file;
1957 }
1958
1959 SYSCALL_DEFINE1(userfaultfd, int, flags)
1960 {
1961 int fd, error;
1962 struct file *file;
1963
1964 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1965 if (error < 0)
1966 return error;
1967 fd = error;
1968
1969 file = userfaultfd_file_create(flags);
1970 if (IS_ERR(file)) {
1971 error = PTR_ERR(file);
1972 goto err_put_unused_fd;
1973 }
1974 fd_install(fd, file);
1975
1976 return fd;
1977
1978 err_put_unused_fd:
1979 put_unused_fd(fd);
1980
1981 return error;
1982 }
1983
1984 static int __init userfaultfd_init(void)
1985 {
1986 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1987 sizeof(struct userfaultfd_ctx),
1988 0,
1989 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1990 init_once_userfaultfd_ctx);
1991 return 0;
1992 }
1993 __initcall(userfaultfd_init);