]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/userfaultfd.c
ceph: use attach/detach_page_private for tracking snap context
[mirror_ubuntu-jammy-kernel.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30
31 int sysctl_unprivileged_userfaultfd __read_mostly;
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38 };
39
40 /*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 *
44 * Locking order:
45 * fd_wqh.lock
46 * fault_pending_wqh.lock
47 * fault_wqh.lock
48 * event_wqh.lock
49 *
50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52 * also taken in IRQ context.
53 */
54 struct userfaultfd_ctx {
55 /* waitqueue head for the pending (i.e. not read) userfaults */
56 wait_queue_head_t fault_pending_wqh;
57 /* waitqueue head for the userfaults */
58 wait_queue_head_t fault_wqh;
59 /* waitqueue head for the pseudo fd to wakeup poll/read */
60 wait_queue_head_t fd_wqh;
61 /* waitqueue head for events */
62 wait_queue_head_t event_wqh;
63 /* a refile sequence protected by fault_pending_wqh lock */
64 seqcount_spinlock_t refile_seq;
65 /* pseudo fd refcounting */
66 refcount_t refcount;
67 /* userfaultfd syscall flags */
68 unsigned int flags;
69 /* features requested from the userspace */
70 unsigned int features;
71 /* state machine */
72 enum userfaultfd_state state;
73 /* released */
74 bool released;
75 /* memory mappings are changing because of non-cooperative event */
76 bool mmap_changing;
77 /* mm with one ore more vmas attached to this userfaultfd_ctx */
78 struct mm_struct *mm;
79 };
80
81 struct userfaultfd_fork_ctx {
82 struct userfaultfd_ctx *orig;
83 struct userfaultfd_ctx *new;
84 struct list_head list;
85 };
86
87 struct userfaultfd_unmap_ctx {
88 struct userfaultfd_ctx *ctx;
89 unsigned long start;
90 unsigned long end;
91 struct list_head list;
92 };
93
94 struct userfaultfd_wait_queue {
95 struct uffd_msg msg;
96 wait_queue_entry_t wq;
97 struct userfaultfd_ctx *ctx;
98 bool waken;
99 };
100
101 struct userfaultfd_wake_range {
102 unsigned long start;
103 unsigned long len;
104 };
105
106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
107 int wake_flags, void *key)
108 {
109 struct userfaultfd_wake_range *range = key;
110 int ret;
111 struct userfaultfd_wait_queue *uwq;
112 unsigned long start, len;
113
114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115 ret = 0;
116 /* len == 0 means wake all */
117 start = range->start;
118 len = range->len;
119 if (len && (start > uwq->msg.arg.pagefault.address ||
120 start + len <= uwq->msg.arg.pagefault.address))
121 goto out;
122 WRITE_ONCE(uwq->waken, true);
123 /*
124 * The Program-Order guarantees provided by the scheduler
125 * ensure uwq->waken is visible before the task is woken.
126 */
127 ret = wake_up_state(wq->private, mode);
128 if (ret) {
129 /*
130 * Wake only once, autoremove behavior.
131 *
132 * After the effect of list_del_init is visible to the other
133 * CPUs, the waitqueue may disappear from under us, see the
134 * !list_empty_careful() in handle_userfault().
135 *
136 * try_to_wake_up() has an implicit smp_mb(), and the
137 * wq->private is read before calling the extern function
138 * "wake_up_state" (which in turns calls try_to_wake_up).
139 */
140 list_del_init(&wq->entry);
141 }
142 out:
143 return ret;
144 }
145
146 /**
147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148 * context.
149 * @ctx: [in] Pointer to the userfaultfd context.
150 */
151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
152 {
153 refcount_inc(&ctx->refcount);
154 }
155
156 /**
157 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
158 * context.
159 * @ctx: [in] Pointer to userfaultfd context.
160 *
161 * The userfaultfd context reference must have been previously acquired either
162 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
163 */
164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
165 {
166 if (refcount_dec_and_test(&ctx->refcount)) {
167 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
168 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
169 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
170 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
171 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
172 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
173 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
174 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
175 mmdrop(ctx->mm);
176 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
177 }
178 }
179
180 static inline void msg_init(struct uffd_msg *msg)
181 {
182 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
183 /*
184 * Must use memset to zero out the paddings or kernel data is
185 * leaked to userland.
186 */
187 memset(msg, 0, sizeof(struct uffd_msg));
188 }
189
190 static inline struct uffd_msg userfault_msg(unsigned long address,
191 unsigned int flags,
192 unsigned long reason,
193 unsigned int features)
194 {
195 struct uffd_msg msg;
196 msg_init(&msg);
197 msg.event = UFFD_EVENT_PAGEFAULT;
198 msg.arg.pagefault.address = address;
199 if (flags & FAULT_FLAG_WRITE)
200 /*
201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204 * was a read fault, otherwise if set it means it's
205 * a write fault.
206 */
207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
208 if (reason & VM_UFFD_WP)
209 /*
210 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213 * a missing fault, otherwise if set it means it's a
214 * write protect fault.
215 */
216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
217 if (features & UFFD_FEATURE_THREAD_ID)
218 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
219 return msg;
220 }
221
222 #ifdef CONFIG_HUGETLB_PAGE
223 /*
224 * Same functionality as userfaultfd_must_wait below with modifications for
225 * hugepmd ranges.
226 */
227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
228 struct vm_area_struct *vma,
229 unsigned long address,
230 unsigned long flags,
231 unsigned long reason)
232 {
233 struct mm_struct *mm = ctx->mm;
234 pte_t *ptep, pte;
235 bool ret = true;
236
237 mmap_assert_locked(mm);
238
239 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
240
241 if (!ptep)
242 goto out;
243
244 ret = false;
245 pte = huge_ptep_get(ptep);
246
247 /*
248 * Lockless access: we're in a wait_event so it's ok if it
249 * changes under us.
250 */
251 if (huge_pte_none(pte))
252 ret = true;
253 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
254 ret = true;
255 out:
256 return ret;
257 }
258 #else
259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
260 struct vm_area_struct *vma,
261 unsigned long address,
262 unsigned long flags,
263 unsigned long reason)
264 {
265 return false; /* should never get here */
266 }
267 #endif /* CONFIG_HUGETLB_PAGE */
268
269 /*
270 * Verify the pagetables are still not ok after having reigstered into
271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272 * userfault that has already been resolved, if userfaultfd_read and
273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274 * threads.
275 */
276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277 unsigned long address,
278 unsigned long flags,
279 unsigned long reason)
280 {
281 struct mm_struct *mm = ctx->mm;
282 pgd_t *pgd;
283 p4d_t *p4d;
284 pud_t *pud;
285 pmd_t *pmd, _pmd;
286 pte_t *pte;
287 bool ret = true;
288
289 mmap_assert_locked(mm);
290
291 pgd = pgd_offset(mm, address);
292 if (!pgd_present(*pgd))
293 goto out;
294 p4d = p4d_offset(pgd, address);
295 if (!p4d_present(*p4d))
296 goto out;
297 pud = pud_offset(p4d, address);
298 if (!pud_present(*pud))
299 goto out;
300 pmd = pmd_offset(pud, address);
301 /*
302 * READ_ONCE must function as a barrier with narrower scope
303 * and it must be equivalent to:
304 * _pmd = *pmd; barrier();
305 *
306 * This is to deal with the instability (as in
307 * pmd_trans_unstable) of the pmd.
308 */
309 _pmd = READ_ONCE(*pmd);
310 if (pmd_none(_pmd))
311 goto out;
312
313 ret = false;
314 if (!pmd_present(_pmd))
315 goto out;
316
317 if (pmd_trans_huge(_pmd)) {
318 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
319 ret = true;
320 goto out;
321 }
322
323 /*
324 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
325 * and use the standard pte_offset_map() instead of parsing _pmd.
326 */
327 pte = pte_offset_map(pmd, address);
328 /*
329 * Lockless access: we're in a wait_event so it's ok if it
330 * changes under us.
331 */
332 if (pte_none(*pte))
333 ret = true;
334 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
335 ret = true;
336 pte_unmap(pte);
337
338 out:
339 return ret;
340 }
341
342 static inline long userfaultfd_get_blocking_state(unsigned int flags)
343 {
344 if (flags & FAULT_FLAG_INTERRUPTIBLE)
345 return TASK_INTERRUPTIBLE;
346
347 if (flags & FAULT_FLAG_KILLABLE)
348 return TASK_KILLABLE;
349
350 return TASK_UNINTERRUPTIBLE;
351 }
352
353 /*
354 * The locking rules involved in returning VM_FAULT_RETRY depending on
355 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
356 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
357 * recommendation in __lock_page_or_retry is not an understatement.
358 *
359 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
360 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
361 * not set.
362 *
363 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
364 * set, VM_FAULT_RETRY can still be returned if and only if there are
365 * fatal_signal_pending()s, and the mmap_lock must be released before
366 * returning it.
367 */
368 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
369 {
370 struct mm_struct *mm = vmf->vma->vm_mm;
371 struct userfaultfd_ctx *ctx;
372 struct userfaultfd_wait_queue uwq;
373 vm_fault_t ret = VM_FAULT_SIGBUS;
374 bool must_wait;
375 long blocking_state;
376
377 /*
378 * We don't do userfault handling for the final child pid update.
379 *
380 * We also don't do userfault handling during
381 * coredumping. hugetlbfs has the special
382 * follow_hugetlb_page() to skip missing pages in the
383 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
384 * the no_page_table() helper in follow_page_mask(), but the
385 * shmem_vm_ops->fault method is invoked even during
386 * coredumping without mmap_lock and it ends up here.
387 */
388 if (current->flags & (PF_EXITING|PF_DUMPCORE))
389 goto out;
390
391 /*
392 * Coredumping runs without mmap_lock so we can only check that
393 * the mmap_lock is held, if PF_DUMPCORE was not set.
394 */
395 mmap_assert_locked(mm);
396
397 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
398 if (!ctx)
399 goto out;
400
401 BUG_ON(ctx->mm != mm);
402
403 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
404 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
405
406 if (ctx->features & UFFD_FEATURE_SIGBUS)
407 goto out;
408 if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
409 ctx->flags & UFFD_USER_MODE_ONLY) {
410 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
411 "sysctl knob to 1 if kernel faults must be handled "
412 "without obtaining CAP_SYS_PTRACE capability\n");
413 goto out;
414 }
415
416 /*
417 * If it's already released don't get it. This avoids to loop
418 * in __get_user_pages if userfaultfd_release waits on the
419 * caller of handle_userfault to release the mmap_lock.
420 */
421 if (unlikely(READ_ONCE(ctx->released))) {
422 /*
423 * Don't return VM_FAULT_SIGBUS in this case, so a non
424 * cooperative manager can close the uffd after the
425 * last UFFDIO_COPY, without risking to trigger an
426 * involuntary SIGBUS if the process was starting the
427 * userfaultfd while the userfaultfd was still armed
428 * (but after the last UFFDIO_COPY). If the uffd
429 * wasn't already closed when the userfault reached
430 * this point, that would normally be solved by
431 * userfaultfd_must_wait returning 'false'.
432 *
433 * If we were to return VM_FAULT_SIGBUS here, the non
434 * cooperative manager would be instead forced to
435 * always call UFFDIO_UNREGISTER before it can safely
436 * close the uffd.
437 */
438 ret = VM_FAULT_NOPAGE;
439 goto out;
440 }
441
442 /*
443 * Check that we can return VM_FAULT_RETRY.
444 *
445 * NOTE: it should become possible to return VM_FAULT_RETRY
446 * even if FAULT_FLAG_TRIED is set without leading to gup()
447 * -EBUSY failures, if the userfaultfd is to be extended for
448 * VM_UFFD_WP tracking and we intend to arm the userfault
449 * without first stopping userland access to the memory. For
450 * VM_UFFD_MISSING userfaults this is enough for now.
451 */
452 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
453 /*
454 * Validate the invariant that nowait must allow retry
455 * to be sure not to return SIGBUS erroneously on
456 * nowait invocations.
457 */
458 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
459 #ifdef CONFIG_DEBUG_VM
460 if (printk_ratelimit()) {
461 printk(KERN_WARNING
462 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
463 vmf->flags);
464 dump_stack();
465 }
466 #endif
467 goto out;
468 }
469
470 /*
471 * Handle nowait, not much to do other than tell it to retry
472 * and wait.
473 */
474 ret = VM_FAULT_RETRY;
475 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
476 goto out;
477
478 /* take the reference before dropping the mmap_lock */
479 userfaultfd_ctx_get(ctx);
480
481 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
482 uwq.wq.private = current;
483 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
484 ctx->features);
485 uwq.ctx = ctx;
486 uwq.waken = false;
487
488 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
489
490 spin_lock_irq(&ctx->fault_pending_wqh.lock);
491 /*
492 * After the __add_wait_queue the uwq is visible to userland
493 * through poll/read().
494 */
495 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
496 /*
497 * The smp_mb() after __set_current_state prevents the reads
498 * following the spin_unlock to happen before the list_add in
499 * __add_wait_queue.
500 */
501 set_current_state(blocking_state);
502 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
503
504 if (!is_vm_hugetlb_page(vmf->vma))
505 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
506 reason);
507 else
508 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
509 vmf->address,
510 vmf->flags, reason);
511 mmap_read_unlock(mm);
512
513 if (likely(must_wait && !READ_ONCE(ctx->released))) {
514 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
515 schedule();
516 }
517
518 __set_current_state(TASK_RUNNING);
519
520 /*
521 * Here we race with the list_del; list_add in
522 * userfaultfd_ctx_read(), however because we don't ever run
523 * list_del_init() to refile across the two lists, the prev
524 * and next pointers will never point to self. list_add also
525 * would never let any of the two pointers to point to
526 * self. So list_empty_careful won't risk to see both pointers
527 * pointing to self at any time during the list refile. The
528 * only case where list_del_init() is called is the full
529 * removal in the wake function and there we don't re-list_add
530 * and it's fine not to block on the spinlock. The uwq on this
531 * kernel stack can be released after the list_del_init.
532 */
533 if (!list_empty_careful(&uwq.wq.entry)) {
534 spin_lock_irq(&ctx->fault_pending_wqh.lock);
535 /*
536 * No need of list_del_init(), the uwq on the stack
537 * will be freed shortly anyway.
538 */
539 list_del(&uwq.wq.entry);
540 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
541 }
542
543 /*
544 * ctx may go away after this if the userfault pseudo fd is
545 * already released.
546 */
547 userfaultfd_ctx_put(ctx);
548
549 out:
550 return ret;
551 }
552
553 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
554 struct userfaultfd_wait_queue *ewq)
555 {
556 struct userfaultfd_ctx *release_new_ctx;
557
558 if (WARN_ON_ONCE(current->flags & PF_EXITING))
559 goto out;
560
561 ewq->ctx = ctx;
562 init_waitqueue_entry(&ewq->wq, current);
563 release_new_ctx = NULL;
564
565 spin_lock_irq(&ctx->event_wqh.lock);
566 /*
567 * After the __add_wait_queue the uwq is visible to userland
568 * through poll/read().
569 */
570 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
571 for (;;) {
572 set_current_state(TASK_KILLABLE);
573 if (ewq->msg.event == 0)
574 break;
575 if (READ_ONCE(ctx->released) ||
576 fatal_signal_pending(current)) {
577 /*
578 * &ewq->wq may be queued in fork_event, but
579 * __remove_wait_queue ignores the head
580 * parameter. It would be a problem if it
581 * didn't.
582 */
583 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
584 if (ewq->msg.event == UFFD_EVENT_FORK) {
585 struct userfaultfd_ctx *new;
586
587 new = (struct userfaultfd_ctx *)
588 (unsigned long)
589 ewq->msg.arg.reserved.reserved1;
590 release_new_ctx = new;
591 }
592 break;
593 }
594
595 spin_unlock_irq(&ctx->event_wqh.lock);
596
597 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
598 schedule();
599
600 spin_lock_irq(&ctx->event_wqh.lock);
601 }
602 __set_current_state(TASK_RUNNING);
603 spin_unlock_irq(&ctx->event_wqh.lock);
604
605 if (release_new_ctx) {
606 struct vm_area_struct *vma;
607 struct mm_struct *mm = release_new_ctx->mm;
608
609 /* the various vma->vm_userfaultfd_ctx still points to it */
610 mmap_write_lock(mm);
611 for (vma = mm->mmap; vma; vma = vma->vm_next)
612 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
613 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
614 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
615 }
616 mmap_write_unlock(mm);
617
618 userfaultfd_ctx_put(release_new_ctx);
619 }
620
621 /*
622 * ctx may go away after this if the userfault pseudo fd is
623 * already released.
624 */
625 out:
626 WRITE_ONCE(ctx->mmap_changing, false);
627 userfaultfd_ctx_put(ctx);
628 }
629
630 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
631 struct userfaultfd_wait_queue *ewq)
632 {
633 ewq->msg.event = 0;
634 wake_up_locked(&ctx->event_wqh);
635 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
636 }
637
638 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
639 {
640 struct userfaultfd_ctx *ctx = NULL, *octx;
641 struct userfaultfd_fork_ctx *fctx;
642
643 octx = vma->vm_userfaultfd_ctx.ctx;
644 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
645 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
646 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
647 return 0;
648 }
649
650 list_for_each_entry(fctx, fcs, list)
651 if (fctx->orig == octx) {
652 ctx = fctx->new;
653 break;
654 }
655
656 if (!ctx) {
657 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
658 if (!fctx)
659 return -ENOMEM;
660
661 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
662 if (!ctx) {
663 kfree(fctx);
664 return -ENOMEM;
665 }
666
667 refcount_set(&ctx->refcount, 1);
668 ctx->flags = octx->flags;
669 ctx->state = UFFD_STATE_RUNNING;
670 ctx->features = octx->features;
671 ctx->released = false;
672 ctx->mmap_changing = false;
673 ctx->mm = vma->vm_mm;
674 mmgrab(ctx->mm);
675
676 userfaultfd_ctx_get(octx);
677 WRITE_ONCE(octx->mmap_changing, true);
678 fctx->orig = octx;
679 fctx->new = ctx;
680 list_add_tail(&fctx->list, fcs);
681 }
682
683 vma->vm_userfaultfd_ctx.ctx = ctx;
684 return 0;
685 }
686
687 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
688 {
689 struct userfaultfd_ctx *ctx = fctx->orig;
690 struct userfaultfd_wait_queue ewq;
691
692 msg_init(&ewq.msg);
693
694 ewq.msg.event = UFFD_EVENT_FORK;
695 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
696
697 userfaultfd_event_wait_completion(ctx, &ewq);
698 }
699
700 void dup_userfaultfd_complete(struct list_head *fcs)
701 {
702 struct userfaultfd_fork_ctx *fctx, *n;
703
704 list_for_each_entry_safe(fctx, n, fcs, list) {
705 dup_fctx(fctx);
706 list_del(&fctx->list);
707 kfree(fctx);
708 }
709 }
710
711 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
712 struct vm_userfaultfd_ctx *vm_ctx)
713 {
714 struct userfaultfd_ctx *ctx;
715
716 ctx = vma->vm_userfaultfd_ctx.ctx;
717
718 if (!ctx)
719 return;
720
721 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
722 vm_ctx->ctx = ctx;
723 userfaultfd_ctx_get(ctx);
724 WRITE_ONCE(ctx->mmap_changing, true);
725 } else {
726 /* Drop uffd context if remap feature not enabled */
727 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
728 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
729 }
730 }
731
732 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
733 unsigned long from, unsigned long to,
734 unsigned long len)
735 {
736 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
737 struct userfaultfd_wait_queue ewq;
738
739 if (!ctx)
740 return;
741
742 if (to & ~PAGE_MASK) {
743 userfaultfd_ctx_put(ctx);
744 return;
745 }
746
747 msg_init(&ewq.msg);
748
749 ewq.msg.event = UFFD_EVENT_REMAP;
750 ewq.msg.arg.remap.from = from;
751 ewq.msg.arg.remap.to = to;
752 ewq.msg.arg.remap.len = len;
753
754 userfaultfd_event_wait_completion(ctx, &ewq);
755 }
756
757 bool userfaultfd_remove(struct vm_area_struct *vma,
758 unsigned long start, unsigned long end)
759 {
760 struct mm_struct *mm = vma->vm_mm;
761 struct userfaultfd_ctx *ctx;
762 struct userfaultfd_wait_queue ewq;
763
764 ctx = vma->vm_userfaultfd_ctx.ctx;
765 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
766 return true;
767
768 userfaultfd_ctx_get(ctx);
769 WRITE_ONCE(ctx->mmap_changing, true);
770 mmap_read_unlock(mm);
771
772 msg_init(&ewq.msg);
773
774 ewq.msg.event = UFFD_EVENT_REMOVE;
775 ewq.msg.arg.remove.start = start;
776 ewq.msg.arg.remove.end = end;
777
778 userfaultfd_event_wait_completion(ctx, &ewq);
779
780 return false;
781 }
782
783 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
784 unsigned long start, unsigned long end)
785 {
786 struct userfaultfd_unmap_ctx *unmap_ctx;
787
788 list_for_each_entry(unmap_ctx, unmaps, list)
789 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
790 unmap_ctx->end == end)
791 return true;
792
793 return false;
794 }
795
796 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
797 unsigned long start, unsigned long end,
798 struct list_head *unmaps)
799 {
800 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
801 struct userfaultfd_unmap_ctx *unmap_ctx;
802 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
803
804 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
805 has_unmap_ctx(ctx, unmaps, start, end))
806 continue;
807
808 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
809 if (!unmap_ctx)
810 return -ENOMEM;
811
812 userfaultfd_ctx_get(ctx);
813 WRITE_ONCE(ctx->mmap_changing, true);
814 unmap_ctx->ctx = ctx;
815 unmap_ctx->start = start;
816 unmap_ctx->end = end;
817 list_add_tail(&unmap_ctx->list, unmaps);
818 }
819
820 return 0;
821 }
822
823 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
824 {
825 struct userfaultfd_unmap_ctx *ctx, *n;
826 struct userfaultfd_wait_queue ewq;
827
828 list_for_each_entry_safe(ctx, n, uf, list) {
829 msg_init(&ewq.msg);
830
831 ewq.msg.event = UFFD_EVENT_UNMAP;
832 ewq.msg.arg.remove.start = ctx->start;
833 ewq.msg.arg.remove.end = ctx->end;
834
835 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
836
837 list_del(&ctx->list);
838 kfree(ctx);
839 }
840 }
841
842 static int userfaultfd_release(struct inode *inode, struct file *file)
843 {
844 struct userfaultfd_ctx *ctx = file->private_data;
845 struct mm_struct *mm = ctx->mm;
846 struct vm_area_struct *vma, *prev;
847 /* len == 0 means wake all */
848 struct userfaultfd_wake_range range = { .len = 0, };
849 unsigned long new_flags;
850
851 WRITE_ONCE(ctx->released, true);
852
853 if (!mmget_not_zero(mm))
854 goto wakeup;
855
856 /*
857 * Flush page faults out of all CPUs. NOTE: all page faults
858 * must be retried without returning VM_FAULT_SIGBUS if
859 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
860 * changes while handle_userfault released the mmap_lock. So
861 * it's critical that released is set to true (above), before
862 * taking the mmap_lock for writing.
863 */
864 mmap_write_lock(mm);
865 prev = NULL;
866 for (vma = mm->mmap; vma; vma = vma->vm_next) {
867 cond_resched();
868 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
869 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
870 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
871 prev = vma;
872 continue;
873 }
874 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
875 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
876 new_flags, vma->anon_vma,
877 vma->vm_file, vma->vm_pgoff,
878 vma_policy(vma),
879 NULL_VM_UFFD_CTX);
880 if (prev)
881 vma = prev;
882 else
883 prev = vma;
884 vma->vm_flags = new_flags;
885 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
886 }
887 mmap_write_unlock(mm);
888 mmput(mm);
889 wakeup:
890 /*
891 * After no new page faults can wait on this fault_*wqh, flush
892 * the last page faults that may have been already waiting on
893 * the fault_*wqh.
894 */
895 spin_lock_irq(&ctx->fault_pending_wqh.lock);
896 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
897 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
898 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
899
900 /* Flush pending events that may still wait on event_wqh */
901 wake_up_all(&ctx->event_wqh);
902
903 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
904 userfaultfd_ctx_put(ctx);
905 return 0;
906 }
907
908 /* fault_pending_wqh.lock must be hold by the caller */
909 static inline struct userfaultfd_wait_queue *find_userfault_in(
910 wait_queue_head_t *wqh)
911 {
912 wait_queue_entry_t *wq;
913 struct userfaultfd_wait_queue *uwq;
914
915 lockdep_assert_held(&wqh->lock);
916
917 uwq = NULL;
918 if (!waitqueue_active(wqh))
919 goto out;
920 /* walk in reverse to provide FIFO behavior to read userfaults */
921 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
922 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
923 out:
924 return uwq;
925 }
926
927 static inline struct userfaultfd_wait_queue *find_userfault(
928 struct userfaultfd_ctx *ctx)
929 {
930 return find_userfault_in(&ctx->fault_pending_wqh);
931 }
932
933 static inline struct userfaultfd_wait_queue *find_userfault_evt(
934 struct userfaultfd_ctx *ctx)
935 {
936 return find_userfault_in(&ctx->event_wqh);
937 }
938
939 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
940 {
941 struct userfaultfd_ctx *ctx = file->private_data;
942 __poll_t ret;
943
944 poll_wait(file, &ctx->fd_wqh, wait);
945
946 switch (ctx->state) {
947 case UFFD_STATE_WAIT_API:
948 return EPOLLERR;
949 case UFFD_STATE_RUNNING:
950 /*
951 * poll() never guarantees that read won't block.
952 * userfaults can be waken before they're read().
953 */
954 if (unlikely(!(file->f_flags & O_NONBLOCK)))
955 return EPOLLERR;
956 /*
957 * lockless access to see if there are pending faults
958 * __pollwait last action is the add_wait_queue but
959 * the spin_unlock would allow the waitqueue_active to
960 * pass above the actual list_add inside
961 * add_wait_queue critical section. So use a full
962 * memory barrier to serialize the list_add write of
963 * add_wait_queue() with the waitqueue_active read
964 * below.
965 */
966 ret = 0;
967 smp_mb();
968 if (waitqueue_active(&ctx->fault_pending_wqh))
969 ret = EPOLLIN;
970 else if (waitqueue_active(&ctx->event_wqh))
971 ret = EPOLLIN;
972
973 return ret;
974 default:
975 WARN_ON_ONCE(1);
976 return EPOLLERR;
977 }
978 }
979
980 static const struct file_operations userfaultfd_fops;
981
982 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
983 struct inode *inode,
984 struct uffd_msg *msg)
985 {
986 int fd;
987
988 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
989 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
990 if (fd < 0)
991 return fd;
992
993 msg->arg.reserved.reserved1 = 0;
994 msg->arg.fork.ufd = fd;
995 return 0;
996 }
997
998 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
999 struct uffd_msg *msg, struct inode *inode)
1000 {
1001 ssize_t ret;
1002 DECLARE_WAITQUEUE(wait, current);
1003 struct userfaultfd_wait_queue *uwq;
1004 /*
1005 * Handling fork event requires sleeping operations, so
1006 * we drop the event_wqh lock, then do these ops, then
1007 * lock it back and wake up the waiter. While the lock is
1008 * dropped the ewq may go away so we keep track of it
1009 * carefully.
1010 */
1011 LIST_HEAD(fork_event);
1012 struct userfaultfd_ctx *fork_nctx = NULL;
1013
1014 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1015 spin_lock_irq(&ctx->fd_wqh.lock);
1016 __add_wait_queue(&ctx->fd_wqh, &wait);
1017 for (;;) {
1018 set_current_state(TASK_INTERRUPTIBLE);
1019 spin_lock(&ctx->fault_pending_wqh.lock);
1020 uwq = find_userfault(ctx);
1021 if (uwq) {
1022 /*
1023 * Use a seqcount to repeat the lockless check
1024 * in wake_userfault() to avoid missing
1025 * wakeups because during the refile both
1026 * waitqueue could become empty if this is the
1027 * only userfault.
1028 */
1029 write_seqcount_begin(&ctx->refile_seq);
1030
1031 /*
1032 * The fault_pending_wqh.lock prevents the uwq
1033 * to disappear from under us.
1034 *
1035 * Refile this userfault from
1036 * fault_pending_wqh to fault_wqh, it's not
1037 * pending anymore after we read it.
1038 *
1039 * Use list_del() by hand (as
1040 * userfaultfd_wake_function also uses
1041 * list_del_init() by hand) to be sure nobody
1042 * changes __remove_wait_queue() to use
1043 * list_del_init() in turn breaking the
1044 * !list_empty_careful() check in
1045 * handle_userfault(). The uwq->wq.head list
1046 * must never be empty at any time during the
1047 * refile, or the waitqueue could disappear
1048 * from under us. The "wait_queue_head_t"
1049 * parameter of __remove_wait_queue() is unused
1050 * anyway.
1051 */
1052 list_del(&uwq->wq.entry);
1053 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1054
1055 write_seqcount_end(&ctx->refile_seq);
1056
1057 /* careful to always initialize msg if ret == 0 */
1058 *msg = uwq->msg;
1059 spin_unlock(&ctx->fault_pending_wqh.lock);
1060 ret = 0;
1061 break;
1062 }
1063 spin_unlock(&ctx->fault_pending_wqh.lock);
1064
1065 spin_lock(&ctx->event_wqh.lock);
1066 uwq = find_userfault_evt(ctx);
1067 if (uwq) {
1068 *msg = uwq->msg;
1069
1070 if (uwq->msg.event == UFFD_EVENT_FORK) {
1071 fork_nctx = (struct userfaultfd_ctx *)
1072 (unsigned long)
1073 uwq->msg.arg.reserved.reserved1;
1074 list_move(&uwq->wq.entry, &fork_event);
1075 /*
1076 * fork_nctx can be freed as soon as
1077 * we drop the lock, unless we take a
1078 * reference on it.
1079 */
1080 userfaultfd_ctx_get(fork_nctx);
1081 spin_unlock(&ctx->event_wqh.lock);
1082 ret = 0;
1083 break;
1084 }
1085
1086 userfaultfd_event_complete(ctx, uwq);
1087 spin_unlock(&ctx->event_wqh.lock);
1088 ret = 0;
1089 break;
1090 }
1091 spin_unlock(&ctx->event_wqh.lock);
1092
1093 if (signal_pending(current)) {
1094 ret = -ERESTARTSYS;
1095 break;
1096 }
1097 if (no_wait) {
1098 ret = -EAGAIN;
1099 break;
1100 }
1101 spin_unlock_irq(&ctx->fd_wqh.lock);
1102 schedule();
1103 spin_lock_irq(&ctx->fd_wqh.lock);
1104 }
1105 __remove_wait_queue(&ctx->fd_wqh, &wait);
1106 __set_current_state(TASK_RUNNING);
1107 spin_unlock_irq(&ctx->fd_wqh.lock);
1108
1109 if (!ret && msg->event == UFFD_EVENT_FORK) {
1110 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1111 spin_lock_irq(&ctx->event_wqh.lock);
1112 if (!list_empty(&fork_event)) {
1113 /*
1114 * The fork thread didn't abort, so we can
1115 * drop the temporary refcount.
1116 */
1117 userfaultfd_ctx_put(fork_nctx);
1118
1119 uwq = list_first_entry(&fork_event,
1120 typeof(*uwq),
1121 wq.entry);
1122 /*
1123 * If fork_event list wasn't empty and in turn
1124 * the event wasn't already released by fork
1125 * (the event is allocated on fork kernel
1126 * stack), put the event back to its place in
1127 * the event_wq. fork_event head will be freed
1128 * as soon as we return so the event cannot
1129 * stay queued there no matter the current
1130 * "ret" value.
1131 */
1132 list_del(&uwq->wq.entry);
1133 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1134
1135 /*
1136 * Leave the event in the waitqueue and report
1137 * error to userland if we failed to resolve
1138 * the userfault fork.
1139 */
1140 if (likely(!ret))
1141 userfaultfd_event_complete(ctx, uwq);
1142 } else {
1143 /*
1144 * Here the fork thread aborted and the
1145 * refcount from the fork thread on fork_nctx
1146 * has already been released. We still hold
1147 * the reference we took before releasing the
1148 * lock above. If resolve_userfault_fork
1149 * failed we've to drop it because the
1150 * fork_nctx has to be freed in such case. If
1151 * it succeeded we'll hold it because the new
1152 * uffd references it.
1153 */
1154 if (ret)
1155 userfaultfd_ctx_put(fork_nctx);
1156 }
1157 spin_unlock_irq(&ctx->event_wqh.lock);
1158 }
1159
1160 return ret;
1161 }
1162
1163 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1164 size_t count, loff_t *ppos)
1165 {
1166 struct userfaultfd_ctx *ctx = file->private_data;
1167 ssize_t _ret, ret = 0;
1168 struct uffd_msg msg;
1169 int no_wait = file->f_flags & O_NONBLOCK;
1170 struct inode *inode = file_inode(file);
1171
1172 if (ctx->state == UFFD_STATE_WAIT_API)
1173 return -EINVAL;
1174
1175 for (;;) {
1176 if (count < sizeof(msg))
1177 return ret ? ret : -EINVAL;
1178 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1179 if (_ret < 0)
1180 return ret ? ret : _ret;
1181 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1182 return ret ? ret : -EFAULT;
1183 ret += sizeof(msg);
1184 buf += sizeof(msg);
1185 count -= sizeof(msg);
1186 /*
1187 * Allow to read more than one fault at time but only
1188 * block if waiting for the very first one.
1189 */
1190 no_wait = O_NONBLOCK;
1191 }
1192 }
1193
1194 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1195 struct userfaultfd_wake_range *range)
1196 {
1197 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1198 /* wake all in the range and autoremove */
1199 if (waitqueue_active(&ctx->fault_pending_wqh))
1200 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1201 range);
1202 if (waitqueue_active(&ctx->fault_wqh))
1203 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1204 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1205 }
1206
1207 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1208 struct userfaultfd_wake_range *range)
1209 {
1210 unsigned seq;
1211 bool need_wakeup;
1212
1213 /*
1214 * To be sure waitqueue_active() is not reordered by the CPU
1215 * before the pagetable update, use an explicit SMP memory
1216 * barrier here. PT lock release or mmap_read_unlock(mm) still
1217 * have release semantics that can allow the
1218 * waitqueue_active() to be reordered before the pte update.
1219 */
1220 smp_mb();
1221
1222 /*
1223 * Use waitqueue_active because it's very frequent to
1224 * change the address space atomically even if there are no
1225 * userfaults yet. So we take the spinlock only when we're
1226 * sure we've userfaults to wake.
1227 */
1228 do {
1229 seq = read_seqcount_begin(&ctx->refile_seq);
1230 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1231 waitqueue_active(&ctx->fault_wqh);
1232 cond_resched();
1233 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1234 if (need_wakeup)
1235 __wake_userfault(ctx, range);
1236 }
1237
1238 static __always_inline int validate_range(struct mm_struct *mm,
1239 __u64 *start, __u64 len)
1240 {
1241 __u64 task_size = mm->task_size;
1242
1243 *start = untagged_addr(*start);
1244
1245 if (*start & ~PAGE_MASK)
1246 return -EINVAL;
1247 if (len & ~PAGE_MASK)
1248 return -EINVAL;
1249 if (!len)
1250 return -EINVAL;
1251 if (*start < mmap_min_addr)
1252 return -EINVAL;
1253 if (*start >= task_size)
1254 return -EINVAL;
1255 if (len > task_size - *start)
1256 return -EINVAL;
1257 return 0;
1258 }
1259
1260 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1261 unsigned long vm_flags)
1262 {
1263 /* FIXME: add WP support to hugetlbfs and shmem */
1264 return vma_is_anonymous(vma) ||
1265 ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) &&
1266 !(vm_flags & VM_UFFD_WP));
1267 }
1268
1269 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1270 unsigned long arg)
1271 {
1272 struct mm_struct *mm = ctx->mm;
1273 struct vm_area_struct *vma, *prev, *cur;
1274 int ret;
1275 struct uffdio_register uffdio_register;
1276 struct uffdio_register __user *user_uffdio_register;
1277 unsigned long vm_flags, new_flags;
1278 bool found;
1279 bool basic_ioctls;
1280 unsigned long start, end, vma_end;
1281
1282 user_uffdio_register = (struct uffdio_register __user *) arg;
1283
1284 ret = -EFAULT;
1285 if (copy_from_user(&uffdio_register, user_uffdio_register,
1286 sizeof(uffdio_register)-sizeof(__u64)))
1287 goto out;
1288
1289 ret = -EINVAL;
1290 if (!uffdio_register.mode)
1291 goto out;
1292 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1293 UFFDIO_REGISTER_MODE_WP))
1294 goto out;
1295 vm_flags = 0;
1296 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1297 vm_flags |= VM_UFFD_MISSING;
1298 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
1299 vm_flags |= VM_UFFD_WP;
1300
1301 ret = validate_range(mm, &uffdio_register.range.start,
1302 uffdio_register.range.len);
1303 if (ret)
1304 goto out;
1305
1306 start = uffdio_register.range.start;
1307 end = start + uffdio_register.range.len;
1308
1309 ret = -ENOMEM;
1310 if (!mmget_not_zero(mm))
1311 goto out;
1312
1313 mmap_write_lock(mm);
1314 vma = find_vma_prev(mm, start, &prev);
1315 if (!vma)
1316 goto out_unlock;
1317
1318 /* check that there's at least one vma in the range */
1319 ret = -EINVAL;
1320 if (vma->vm_start >= end)
1321 goto out_unlock;
1322
1323 /*
1324 * If the first vma contains huge pages, make sure start address
1325 * is aligned to huge page size.
1326 */
1327 if (is_vm_hugetlb_page(vma)) {
1328 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1329
1330 if (start & (vma_hpagesize - 1))
1331 goto out_unlock;
1332 }
1333
1334 /*
1335 * Search for not compatible vmas.
1336 */
1337 found = false;
1338 basic_ioctls = false;
1339 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1340 cond_resched();
1341
1342 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1343 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1344
1345 /* check not compatible vmas */
1346 ret = -EINVAL;
1347 if (!vma_can_userfault(cur, vm_flags))
1348 goto out_unlock;
1349
1350 /*
1351 * UFFDIO_COPY will fill file holes even without
1352 * PROT_WRITE. This check enforces that if this is a
1353 * MAP_SHARED, the process has write permission to the backing
1354 * file. If VM_MAYWRITE is set it also enforces that on a
1355 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1356 * F_WRITE_SEAL can be taken until the vma is destroyed.
1357 */
1358 ret = -EPERM;
1359 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1360 goto out_unlock;
1361
1362 /*
1363 * If this vma contains ending address, and huge pages
1364 * check alignment.
1365 */
1366 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1367 end > cur->vm_start) {
1368 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1369
1370 ret = -EINVAL;
1371
1372 if (end & (vma_hpagesize - 1))
1373 goto out_unlock;
1374 }
1375 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1376 goto out_unlock;
1377
1378 /*
1379 * Check that this vma isn't already owned by a
1380 * different userfaultfd. We can't allow more than one
1381 * userfaultfd to own a single vma simultaneously or we
1382 * wouldn't know which one to deliver the userfaults to.
1383 */
1384 ret = -EBUSY;
1385 if (cur->vm_userfaultfd_ctx.ctx &&
1386 cur->vm_userfaultfd_ctx.ctx != ctx)
1387 goto out_unlock;
1388
1389 /*
1390 * Note vmas containing huge pages
1391 */
1392 if (is_vm_hugetlb_page(cur))
1393 basic_ioctls = true;
1394
1395 found = true;
1396 }
1397 BUG_ON(!found);
1398
1399 if (vma->vm_start < start)
1400 prev = vma;
1401
1402 ret = 0;
1403 do {
1404 cond_resched();
1405
1406 BUG_ON(!vma_can_userfault(vma, vm_flags));
1407 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1408 vma->vm_userfaultfd_ctx.ctx != ctx);
1409 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1410
1411 /*
1412 * Nothing to do: this vma is already registered into this
1413 * userfaultfd and with the right tracking mode too.
1414 */
1415 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1416 (vma->vm_flags & vm_flags) == vm_flags)
1417 goto skip;
1418
1419 if (vma->vm_start > start)
1420 start = vma->vm_start;
1421 vma_end = min(end, vma->vm_end);
1422
1423 new_flags = (vma->vm_flags &
1424 ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
1425 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1426 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1427 vma_policy(vma),
1428 ((struct vm_userfaultfd_ctx){ ctx }));
1429 if (prev) {
1430 vma = prev;
1431 goto next;
1432 }
1433 if (vma->vm_start < start) {
1434 ret = split_vma(mm, vma, start, 1);
1435 if (ret)
1436 break;
1437 }
1438 if (vma->vm_end > end) {
1439 ret = split_vma(mm, vma, end, 0);
1440 if (ret)
1441 break;
1442 }
1443 next:
1444 /*
1445 * In the vma_merge() successful mprotect-like case 8:
1446 * the next vma was merged into the current one and
1447 * the current one has not been updated yet.
1448 */
1449 vma->vm_flags = new_flags;
1450 vma->vm_userfaultfd_ctx.ctx = ctx;
1451
1452 skip:
1453 prev = vma;
1454 start = vma->vm_end;
1455 vma = vma->vm_next;
1456 } while (vma && vma->vm_start < end);
1457 out_unlock:
1458 mmap_write_unlock(mm);
1459 mmput(mm);
1460 if (!ret) {
1461 __u64 ioctls_out;
1462
1463 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1464 UFFD_API_RANGE_IOCTLS;
1465
1466 /*
1467 * Declare the WP ioctl only if the WP mode is
1468 * specified and all checks passed with the range
1469 */
1470 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1471 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1472
1473 /*
1474 * Now that we scanned all vmas we can already tell
1475 * userland which ioctls methods are guaranteed to
1476 * succeed on this range.
1477 */
1478 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1479 ret = -EFAULT;
1480 }
1481 out:
1482 return ret;
1483 }
1484
1485 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1486 unsigned long arg)
1487 {
1488 struct mm_struct *mm = ctx->mm;
1489 struct vm_area_struct *vma, *prev, *cur;
1490 int ret;
1491 struct uffdio_range uffdio_unregister;
1492 unsigned long new_flags;
1493 bool found;
1494 unsigned long start, end, vma_end;
1495 const void __user *buf = (void __user *)arg;
1496
1497 ret = -EFAULT;
1498 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1499 goto out;
1500
1501 ret = validate_range(mm, &uffdio_unregister.start,
1502 uffdio_unregister.len);
1503 if (ret)
1504 goto out;
1505
1506 start = uffdio_unregister.start;
1507 end = start + uffdio_unregister.len;
1508
1509 ret = -ENOMEM;
1510 if (!mmget_not_zero(mm))
1511 goto out;
1512
1513 mmap_write_lock(mm);
1514 vma = find_vma_prev(mm, start, &prev);
1515 if (!vma)
1516 goto out_unlock;
1517
1518 /* check that there's at least one vma in the range */
1519 ret = -EINVAL;
1520 if (vma->vm_start >= end)
1521 goto out_unlock;
1522
1523 /*
1524 * If the first vma contains huge pages, make sure start address
1525 * is aligned to huge page size.
1526 */
1527 if (is_vm_hugetlb_page(vma)) {
1528 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1529
1530 if (start & (vma_hpagesize - 1))
1531 goto out_unlock;
1532 }
1533
1534 /*
1535 * Search for not compatible vmas.
1536 */
1537 found = false;
1538 ret = -EINVAL;
1539 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1540 cond_resched();
1541
1542 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1543 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1544
1545 /*
1546 * Check not compatible vmas, not strictly required
1547 * here as not compatible vmas cannot have an
1548 * userfaultfd_ctx registered on them, but this
1549 * provides for more strict behavior to notice
1550 * unregistration errors.
1551 */
1552 if (!vma_can_userfault(cur, cur->vm_flags))
1553 goto out_unlock;
1554
1555 found = true;
1556 }
1557 BUG_ON(!found);
1558
1559 if (vma->vm_start < start)
1560 prev = vma;
1561
1562 ret = 0;
1563 do {
1564 cond_resched();
1565
1566 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1567
1568 /*
1569 * Nothing to do: this vma is already registered into this
1570 * userfaultfd and with the right tracking mode too.
1571 */
1572 if (!vma->vm_userfaultfd_ctx.ctx)
1573 goto skip;
1574
1575 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1576
1577 if (vma->vm_start > start)
1578 start = vma->vm_start;
1579 vma_end = min(end, vma->vm_end);
1580
1581 if (userfaultfd_missing(vma)) {
1582 /*
1583 * Wake any concurrent pending userfault while
1584 * we unregister, so they will not hang
1585 * permanently and it avoids userland to call
1586 * UFFDIO_WAKE explicitly.
1587 */
1588 struct userfaultfd_wake_range range;
1589 range.start = start;
1590 range.len = vma_end - start;
1591 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1592 }
1593
1594 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1595 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1596 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1597 vma_policy(vma),
1598 NULL_VM_UFFD_CTX);
1599 if (prev) {
1600 vma = prev;
1601 goto next;
1602 }
1603 if (vma->vm_start < start) {
1604 ret = split_vma(mm, vma, start, 1);
1605 if (ret)
1606 break;
1607 }
1608 if (vma->vm_end > end) {
1609 ret = split_vma(mm, vma, end, 0);
1610 if (ret)
1611 break;
1612 }
1613 next:
1614 /*
1615 * In the vma_merge() successful mprotect-like case 8:
1616 * the next vma was merged into the current one and
1617 * the current one has not been updated yet.
1618 */
1619 vma->vm_flags = new_flags;
1620 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1621
1622 skip:
1623 prev = vma;
1624 start = vma->vm_end;
1625 vma = vma->vm_next;
1626 } while (vma && vma->vm_start < end);
1627 out_unlock:
1628 mmap_write_unlock(mm);
1629 mmput(mm);
1630 out:
1631 return ret;
1632 }
1633
1634 /*
1635 * userfaultfd_wake may be used in combination with the
1636 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1637 */
1638 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1639 unsigned long arg)
1640 {
1641 int ret;
1642 struct uffdio_range uffdio_wake;
1643 struct userfaultfd_wake_range range;
1644 const void __user *buf = (void __user *)arg;
1645
1646 ret = -EFAULT;
1647 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1648 goto out;
1649
1650 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
1651 if (ret)
1652 goto out;
1653
1654 range.start = uffdio_wake.start;
1655 range.len = uffdio_wake.len;
1656
1657 /*
1658 * len == 0 means wake all and we don't want to wake all here,
1659 * so check it again to be sure.
1660 */
1661 VM_BUG_ON(!range.len);
1662
1663 wake_userfault(ctx, &range);
1664 ret = 0;
1665
1666 out:
1667 return ret;
1668 }
1669
1670 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1671 unsigned long arg)
1672 {
1673 __s64 ret;
1674 struct uffdio_copy uffdio_copy;
1675 struct uffdio_copy __user *user_uffdio_copy;
1676 struct userfaultfd_wake_range range;
1677
1678 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1679
1680 ret = -EAGAIN;
1681 if (READ_ONCE(ctx->mmap_changing))
1682 goto out;
1683
1684 ret = -EFAULT;
1685 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1686 /* don't copy "copy" last field */
1687 sizeof(uffdio_copy)-sizeof(__s64)))
1688 goto out;
1689
1690 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
1691 if (ret)
1692 goto out;
1693 /*
1694 * double check for wraparound just in case. copy_from_user()
1695 * will later check uffdio_copy.src + uffdio_copy.len to fit
1696 * in the userland range.
1697 */
1698 ret = -EINVAL;
1699 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1700 goto out;
1701 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1702 goto out;
1703 if (mmget_not_zero(ctx->mm)) {
1704 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1705 uffdio_copy.len, &ctx->mmap_changing,
1706 uffdio_copy.mode);
1707 mmput(ctx->mm);
1708 } else {
1709 return -ESRCH;
1710 }
1711 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1712 return -EFAULT;
1713 if (ret < 0)
1714 goto out;
1715 BUG_ON(!ret);
1716 /* len == 0 would wake all */
1717 range.len = ret;
1718 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1719 range.start = uffdio_copy.dst;
1720 wake_userfault(ctx, &range);
1721 }
1722 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1723 out:
1724 return ret;
1725 }
1726
1727 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1728 unsigned long arg)
1729 {
1730 __s64 ret;
1731 struct uffdio_zeropage uffdio_zeropage;
1732 struct uffdio_zeropage __user *user_uffdio_zeropage;
1733 struct userfaultfd_wake_range range;
1734
1735 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1736
1737 ret = -EAGAIN;
1738 if (READ_ONCE(ctx->mmap_changing))
1739 goto out;
1740
1741 ret = -EFAULT;
1742 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1743 /* don't copy "zeropage" last field */
1744 sizeof(uffdio_zeropage)-sizeof(__s64)))
1745 goto out;
1746
1747 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
1748 uffdio_zeropage.range.len);
1749 if (ret)
1750 goto out;
1751 ret = -EINVAL;
1752 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1753 goto out;
1754
1755 if (mmget_not_zero(ctx->mm)) {
1756 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1757 uffdio_zeropage.range.len,
1758 &ctx->mmap_changing);
1759 mmput(ctx->mm);
1760 } else {
1761 return -ESRCH;
1762 }
1763 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1764 return -EFAULT;
1765 if (ret < 0)
1766 goto out;
1767 /* len == 0 would wake all */
1768 BUG_ON(!ret);
1769 range.len = ret;
1770 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1771 range.start = uffdio_zeropage.range.start;
1772 wake_userfault(ctx, &range);
1773 }
1774 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1775 out:
1776 return ret;
1777 }
1778
1779 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1780 unsigned long arg)
1781 {
1782 int ret;
1783 struct uffdio_writeprotect uffdio_wp;
1784 struct uffdio_writeprotect __user *user_uffdio_wp;
1785 struct userfaultfd_wake_range range;
1786 bool mode_wp, mode_dontwake;
1787
1788 if (READ_ONCE(ctx->mmap_changing))
1789 return -EAGAIN;
1790
1791 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1792
1793 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1794 sizeof(struct uffdio_writeprotect)))
1795 return -EFAULT;
1796
1797 ret = validate_range(ctx->mm, &uffdio_wp.range.start,
1798 uffdio_wp.range.len);
1799 if (ret)
1800 return ret;
1801
1802 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1803 UFFDIO_WRITEPROTECT_MODE_WP))
1804 return -EINVAL;
1805
1806 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1807 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1808
1809 if (mode_wp && mode_dontwake)
1810 return -EINVAL;
1811
1812 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1813 uffdio_wp.range.len, mode_wp,
1814 &ctx->mmap_changing);
1815 if (ret)
1816 return ret;
1817
1818 if (!mode_wp && !mode_dontwake) {
1819 range.start = uffdio_wp.range.start;
1820 range.len = uffdio_wp.range.len;
1821 wake_userfault(ctx, &range);
1822 }
1823 return ret;
1824 }
1825
1826 static inline unsigned int uffd_ctx_features(__u64 user_features)
1827 {
1828 /*
1829 * For the current set of features the bits just coincide
1830 */
1831 return (unsigned int)user_features;
1832 }
1833
1834 /*
1835 * userland asks for a certain API version and we return which bits
1836 * and ioctl commands are implemented in this kernel for such API
1837 * version or -EINVAL if unknown.
1838 */
1839 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1840 unsigned long arg)
1841 {
1842 struct uffdio_api uffdio_api;
1843 void __user *buf = (void __user *)arg;
1844 int ret;
1845 __u64 features;
1846
1847 ret = -EINVAL;
1848 if (ctx->state != UFFD_STATE_WAIT_API)
1849 goto out;
1850 ret = -EFAULT;
1851 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1852 goto out;
1853 features = uffdio_api.features;
1854 ret = -EINVAL;
1855 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1856 goto err_out;
1857 ret = -EPERM;
1858 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1859 goto err_out;
1860 /* report all available features and ioctls to userland */
1861 uffdio_api.features = UFFD_API_FEATURES;
1862 uffdio_api.ioctls = UFFD_API_IOCTLS;
1863 ret = -EFAULT;
1864 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1865 goto out;
1866 ctx->state = UFFD_STATE_RUNNING;
1867 /* only enable the requested features for this uffd context */
1868 ctx->features = uffd_ctx_features(features);
1869 ret = 0;
1870 out:
1871 return ret;
1872 err_out:
1873 memset(&uffdio_api, 0, sizeof(uffdio_api));
1874 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1875 ret = -EFAULT;
1876 goto out;
1877 }
1878
1879 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1880 unsigned long arg)
1881 {
1882 int ret = -EINVAL;
1883 struct userfaultfd_ctx *ctx = file->private_data;
1884
1885 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1886 return -EINVAL;
1887
1888 switch(cmd) {
1889 case UFFDIO_API:
1890 ret = userfaultfd_api(ctx, arg);
1891 break;
1892 case UFFDIO_REGISTER:
1893 ret = userfaultfd_register(ctx, arg);
1894 break;
1895 case UFFDIO_UNREGISTER:
1896 ret = userfaultfd_unregister(ctx, arg);
1897 break;
1898 case UFFDIO_WAKE:
1899 ret = userfaultfd_wake(ctx, arg);
1900 break;
1901 case UFFDIO_COPY:
1902 ret = userfaultfd_copy(ctx, arg);
1903 break;
1904 case UFFDIO_ZEROPAGE:
1905 ret = userfaultfd_zeropage(ctx, arg);
1906 break;
1907 case UFFDIO_WRITEPROTECT:
1908 ret = userfaultfd_writeprotect(ctx, arg);
1909 break;
1910 }
1911 return ret;
1912 }
1913
1914 #ifdef CONFIG_PROC_FS
1915 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1916 {
1917 struct userfaultfd_ctx *ctx = f->private_data;
1918 wait_queue_entry_t *wq;
1919 unsigned long pending = 0, total = 0;
1920
1921 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1922 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1923 pending++;
1924 total++;
1925 }
1926 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1927 total++;
1928 }
1929 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1930
1931 /*
1932 * If more protocols will be added, there will be all shown
1933 * separated by a space. Like this:
1934 * protocols: aa:... bb:...
1935 */
1936 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1937 pending, total, UFFD_API, ctx->features,
1938 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1939 }
1940 #endif
1941
1942 static const struct file_operations userfaultfd_fops = {
1943 #ifdef CONFIG_PROC_FS
1944 .show_fdinfo = userfaultfd_show_fdinfo,
1945 #endif
1946 .release = userfaultfd_release,
1947 .poll = userfaultfd_poll,
1948 .read = userfaultfd_read,
1949 .unlocked_ioctl = userfaultfd_ioctl,
1950 .compat_ioctl = compat_ptr_ioctl,
1951 .llseek = noop_llseek,
1952 };
1953
1954 static void init_once_userfaultfd_ctx(void *mem)
1955 {
1956 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1957
1958 init_waitqueue_head(&ctx->fault_pending_wqh);
1959 init_waitqueue_head(&ctx->fault_wqh);
1960 init_waitqueue_head(&ctx->event_wqh);
1961 init_waitqueue_head(&ctx->fd_wqh);
1962 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
1963 }
1964
1965 SYSCALL_DEFINE1(userfaultfd, int, flags)
1966 {
1967 struct userfaultfd_ctx *ctx;
1968 int fd;
1969
1970 if (!sysctl_unprivileged_userfaultfd &&
1971 (flags & UFFD_USER_MODE_ONLY) == 0 &&
1972 !capable(CAP_SYS_PTRACE)) {
1973 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
1974 "sysctl knob to 1 if kernel faults must be handled "
1975 "without obtaining CAP_SYS_PTRACE capability\n");
1976 return -EPERM;
1977 }
1978
1979 BUG_ON(!current->mm);
1980
1981 /* Check the UFFD_* constants for consistency. */
1982 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
1983 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1984 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1985
1986 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
1987 return -EINVAL;
1988
1989 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1990 if (!ctx)
1991 return -ENOMEM;
1992
1993 refcount_set(&ctx->refcount, 1);
1994 ctx->flags = flags;
1995 ctx->features = 0;
1996 ctx->state = UFFD_STATE_WAIT_API;
1997 ctx->released = false;
1998 ctx->mmap_changing = false;
1999 ctx->mm = current->mm;
2000 /* prevent the mm struct to be freed */
2001 mmgrab(ctx->mm);
2002
2003 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2004 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2005 if (fd < 0) {
2006 mmdrop(ctx->mm);
2007 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2008 }
2009 return fd;
2010 }
2011
2012 static int __init userfaultfd_init(void)
2013 {
2014 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2015 sizeof(struct userfaultfd_ctx),
2016 0,
2017 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2018 init_once_userfaultfd_ctx);
2019 return 0;
2020 }
2021 __initcall(userfaultfd_init);