]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/userfaultfd.c
jbd2: fast commit recovery path
[mirror_ubuntu-jammy-kernel.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30
31 int sysctl_unprivileged_userfaultfd __read_mostly = 1;
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38 };
39
40 /*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 *
44 * Locking order:
45 * fd_wqh.lock
46 * fault_pending_wqh.lock
47 * fault_wqh.lock
48 * event_wqh.lock
49 *
50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52 * also taken in IRQ context.
53 */
54 struct userfaultfd_ctx {
55 /* waitqueue head for the pending (i.e. not read) userfaults */
56 wait_queue_head_t fault_pending_wqh;
57 /* waitqueue head for the userfaults */
58 wait_queue_head_t fault_wqh;
59 /* waitqueue head for the pseudo fd to wakeup poll/read */
60 wait_queue_head_t fd_wqh;
61 /* waitqueue head for events */
62 wait_queue_head_t event_wqh;
63 /* a refile sequence protected by fault_pending_wqh lock */
64 seqcount_spinlock_t refile_seq;
65 /* pseudo fd refcounting */
66 refcount_t refcount;
67 /* userfaultfd syscall flags */
68 unsigned int flags;
69 /* features requested from the userspace */
70 unsigned int features;
71 /* state machine */
72 enum userfaultfd_state state;
73 /* released */
74 bool released;
75 /* memory mappings are changing because of non-cooperative event */
76 bool mmap_changing;
77 /* mm with one ore more vmas attached to this userfaultfd_ctx */
78 struct mm_struct *mm;
79 };
80
81 struct userfaultfd_fork_ctx {
82 struct userfaultfd_ctx *orig;
83 struct userfaultfd_ctx *new;
84 struct list_head list;
85 };
86
87 struct userfaultfd_unmap_ctx {
88 struct userfaultfd_ctx *ctx;
89 unsigned long start;
90 unsigned long end;
91 struct list_head list;
92 };
93
94 struct userfaultfd_wait_queue {
95 struct uffd_msg msg;
96 wait_queue_entry_t wq;
97 struct userfaultfd_ctx *ctx;
98 bool waken;
99 };
100
101 struct userfaultfd_wake_range {
102 unsigned long start;
103 unsigned long len;
104 };
105
106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
107 int wake_flags, void *key)
108 {
109 struct userfaultfd_wake_range *range = key;
110 int ret;
111 struct userfaultfd_wait_queue *uwq;
112 unsigned long start, len;
113
114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115 ret = 0;
116 /* len == 0 means wake all */
117 start = range->start;
118 len = range->len;
119 if (len && (start > uwq->msg.arg.pagefault.address ||
120 start + len <= uwq->msg.arg.pagefault.address))
121 goto out;
122 WRITE_ONCE(uwq->waken, true);
123 /*
124 * The Program-Order guarantees provided by the scheduler
125 * ensure uwq->waken is visible before the task is woken.
126 */
127 ret = wake_up_state(wq->private, mode);
128 if (ret) {
129 /*
130 * Wake only once, autoremove behavior.
131 *
132 * After the effect of list_del_init is visible to the other
133 * CPUs, the waitqueue may disappear from under us, see the
134 * !list_empty_careful() in handle_userfault().
135 *
136 * try_to_wake_up() has an implicit smp_mb(), and the
137 * wq->private is read before calling the extern function
138 * "wake_up_state" (which in turns calls try_to_wake_up).
139 */
140 list_del_init(&wq->entry);
141 }
142 out:
143 return ret;
144 }
145
146 /**
147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148 * context.
149 * @ctx: [in] Pointer to the userfaultfd context.
150 */
151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
152 {
153 refcount_inc(&ctx->refcount);
154 }
155
156 /**
157 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
158 * context.
159 * @ctx: [in] Pointer to userfaultfd context.
160 *
161 * The userfaultfd context reference must have been previously acquired either
162 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
163 */
164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
165 {
166 if (refcount_dec_and_test(&ctx->refcount)) {
167 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
168 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
169 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
170 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
171 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
172 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
173 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
174 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
175 mmdrop(ctx->mm);
176 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
177 }
178 }
179
180 static inline void msg_init(struct uffd_msg *msg)
181 {
182 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
183 /*
184 * Must use memset to zero out the paddings or kernel data is
185 * leaked to userland.
186 */
187 memset(msg, 0, sizeof(struct uffd_msg));
188 }
189
190 static inline struct uffd_msg userfault_msg(unsigned long address,
191 unsigned int flags,
192 unsigned long reason,
193 unsigned int features)
194 {
195 struct uffd_msg msg;
196 msg_init(&msg);
197 msg.event = UFFD_EVENT_PAGEFAULT;
198 msg.arg.pagefault.address = address;
199 if (flags & FAULT_FLAG_WRITE)
200 /*
201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204 * was a read fault, otherwise if set it means it's
205 * a write fault.
206 */
207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
208 if (reason & VM_UFFD_WP)
209 /*
210 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213 * a missing fault, otherwise if set it means it's a
214 * write protect fault.
215 */
216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
217 if (features & UFFD_FEATURE_THREAD_ID)
218 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
219 return msg;
220 }
221
222 #ifdef CONFIG_HUGETLB_PAGE
223 /*
224 * Same functionality as userfaultfd_must_wait below with modifications for
225 * hugepmd ranges.
226 */
227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
228 struct vm_area_struct *vma,
229 unsigned long address,
230 unsigned long flags,
231 unsigned long reason)
232 {
233 struct mm_struct *mm = ctx->mm;
234 pte_t *ptep, pte;
235 bool ret = true;
236
237 mmap_assert_locked(mm);
238
239 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
240
241 if (!ptep)
242 goto out;
243
244 ret = false;
245 pte = huge_ptep_get(ptep);
246
247 /*
248 * Lockless access: we're in a wait_event so it's ok if it
249 * changes under us.
250 */
251 if (huge_pte_none(pte))
252 ret = true;
253 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
254 ret = true;
255 out:
256 return ret;
257 }
258 #else
259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
260 struct vm_area_struct *vma,
261 unsigned long address,
262 unsigned long flags,
263 unsigned long reason)
264 {
265 return false; /* should never get here */
266 }
267 #endif /* CONFIG_HUGETLB_PAGE */
268
269 /*
270 * Verify the pagetables are still not ok after having reigstered into
271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272 * userfault that has already been resolved, if userfaultfd_read and
273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274 * threads.
275 */
276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277 unsigned long address,
278 unsigned long flags,
279 unsigned long reason)
280 {
281 struct mm_struct *mm = ctx->mm;
282 pgd_t *pgd;
283 p4d_t *p4d;
284 pud_t *pud;
285 pmd_t *pmd, _pmd;
286 pte_t *pte;
287 bool ret = true;
288
289 mmap_assert_locked(mm);
290
291 pgd = pgd_offset(mm, address);
292 if (!pgd_present(*pgd))
293 goto out;
294 p4d = p4d_offset(pgd, address);
295 if (!p4d_present(*p4d))
296 goto out;
297 pud = pud_offset(p4d, address);
298 if (!pud_present(*pud))
299 goto out;
300 pmd = pmd_offset(pud, address);
301 /*
302 * READ_ONCE must function as a barrier with narrower scope
303 * and it must be equivalent to:
304 * _pmd = *pmd; barrier();
305 *
306 * This is to deal with the instability (as in
307 * pmd_trans_unstable) of the pmd.
308 */
309 _pmd = READ_ONCE(*pmd);
310 if (pmd_none(_pmd))
311 goto out;
312
313 ret = false;
314 if (!pmd_present(_pmd))
315 goto out;
316
317 if (pmd_trans_huge(_pmd)) {
318 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
319 ret = true;
320 goto out;
321 }
322
323 /*
324 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
325 * and use the standard pte_offset_map() instead of parsing _pmd.
326 */
327 pte = pte_offset_map(pmd, address);
328 /*
329 * Lockless access: we're in a wait_event so it's ok if it
330 * changes under us.
331 */
332 if (pte_none(*pte))
333 ret = true;
334 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
335 ret = true;
336 pte_unmap(pte);
337
338 out:
339 return ret;
340 }
341
342 static inline long userfaultfd_get_blocking_state(unsigned int flags)
343 {
344 if (flags & FAULT_FLAG_INTERRUPTIBLE)
345 return TASK_INTERRUPTIBLE;
346
347 if (flags & FAULT_FLAG_KILLABLE)
348 return TASK_KILLABLE;
349
350 return TASK_UNINTERRUPTIBLE;
351 }
352
353 /*
354 * The locking rules involved in returning VM_FAULT_RETRY depending on
355 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
356 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
357 * recommendation in __lock_page_or_retry is not an understatement.
358 *
359 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
360 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
361 * not set.
362 *
363 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
364 * set, VM_FAULT_RETRY can still be returned if and only if there are
365 * fatal_signal_pending()s, and the mmap_lock must be released before
366 * returning it.
367 */
368 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
369 {
370 struct mm_struct *mm = vmf->vma->vm_mm;
371 struct userfaultfd_ctx *ctx;
372 struct userfaultfd_wait_queue uwq;
373 vm_fault_t ret = VM_FAULT_SIGBUS;
374 bool must_wait;
375 long blocking_state;
376
377 /*
378 * We don't do userfault handling for the final child pid update.
379 *
380 * We also don't do userfault handling during
381 * coredumping. hugetlbfs has the special
382 * follow_hugetlb_page() to skip missing pages in the
383 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
384 * the no_page_table() helper in follow_page_mask(), but the
385 * shmem_vm_ops->fault method is invoked even during
386 * coredumping without mmap_lock and it ends up here.
387 */
388 if (current->flags & (PF_EXITING|PF_DUMPCORE))
389 goto out;
390
391 /*
392 * Coredumping runs without mmap_lock so we can only check that
393 * the mmap_lock is held, if PF_DUMPCORE was not set.
394 */
395 mmap_assert_locked(mm);
396
397 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
398 if (!ctx)
399 goto out;
400
401 BUG_ON(ctx->mm != mm);
402
403 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
404 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
405
406 if (ctx->features & UFFD_FEATURE_SIGBUS)
407 goto out;
408
409 /*
410 * If it's already released don't get it. This avoids to loop
411 * in __get_user_pages if userfaultfd_release waits on the
412 * caller of handle_userfault to release the mmap_lock.
413 */
414 if (unlikely(READ_ONCE(ctx->released))) {
415 /*
416 * Don't return VM_FAULT_SIGBUS in this case, so a non
417 * cooperative manager can close the uffd after the
418 * last UFFDIO_COPY, without risking to trigger an
419 * involuntary SIGBUS if the process was starting the
420 * userfaultfd while the userfaultfd was still armed
421 * (but after the last UFFDIO_COPY). If the uffd
422 * wasn't already closed when the userfault reached
423 * this point, that would normally be solved by
424 * userfaultfd_must_wait returning 'false'.
425 *
426 * If we were to return VM_FAULT_SIGBUS here, the non
427 * cooperative manager would be instead forced to
428 * always call UFFDIO_UNREGISTER before it can safely
429 * close the uffd.
430 */
431 ret = VM_FAULT_NOPAGE;
432 goto out;
433 }
434
435 /*
436 * Check that we can return VM_FAULT_RETRY.
437 *
438 * NOTE: it should become possible to return VM_FAULT_RETRY
439 * even if FAULT_FLAG_TRIED is set without leading to gup()
440 * -EBUSY failures, if the userfaultfd is to be extended for
441 * VM_UFFD_WP tracking and we intend to arm the userfault
442 * without first stopping userland access to the memory. For
443 * VM_UFFD_MISSING userfaults this is enough for now.
444 */
445 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
446 /*
447 * Validate the invariant that nowait must allow retry
448 * to be sure not to return SIGBUS erroneously on
449 * nowait invocations.
450 */
451 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
452 #ifdef CONFIG_DEBUG_VM
453 if (printk_ratelimit()) {
454 printk(KERN_WARNING
455 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
456 vmf->flags);
457 dump_stack();
458 }
459 #endif
460 goto out;
461 }
462
463 /*
464 * Handle nowait, not much to do other than tell it to retry
465 * and wait.
466 */
467 ret = VM_FAULT_RETRY;
468 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
469 goto out;
470
471 /* take the reference before dropping the mmap_lock */
472 userfaultfd_ctx_get(ctx);
473
474 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
475 uwq.wq.private = current;
476 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
477 ctx->features);
478 uwq.ctx = ctx;
479 uwq.waken = false;
480
481 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
482
483 spin_lock_irq(&ctx->fault_pending_wqh.lock);
484 /*
485 * After the __add_wait_queue the uwq is visible to userland
486 * through poll/read().
487 */
488 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
489 /*
490 * The smp_mb() after __set_current_state prevents the reads
491 * following the spin_unlock to happen before the list_add in
492 * __add_wait_queue.
493 */
494 set_current_state(blocking_state);
495 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
496
497 if (!is_vm_hugetlb_page(vmf->vma))
498 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
499 reason);
500 else
501 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
502 vmf->address,
503 vmf->flags, reason);
504 mmap_read_unlock(mm);
505
506 if (likely(must_wait && !READ_ONCE(ctx->released))) {
507 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
508 schedule();
509 }
510
511 __set_current_state(TASK_RUNNING);
512
513 /*
514 * Here we race with the list_del; list_add in
515 * userfaultfd_ctx_read(), however because we don't ever run
516 * list_del_init() to refile across the two lists, the prev
517 * and next pointers will never point to self. list_add also
518 * would never let any of the two pointers to point to
519 * self. So list_empty_careful won't risk to see both pointers
520 * pointing to self at any time during the list refile. The
521 * only case where list_del_init() is called is the full
522 * removal in the wake function and there we don't re-list_add
523 * and it's fine not to block on the spinlock. The uwq on this
524 * kernel stack can be released after the list_del_init.
525 */
526 if (!list_empty_careful(&uwq.wq.entry)) {
527 spin_lock_irq(&ctx->fault_pending_wqh.lock);
528 /*
529 * No need of list_del_init(), the uwq on the stack
530 * will be freed shortly anyway.
531 */
532 list_del(&uwq.wq.entry);
533 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
534 }
535
536 /*
537 * ctx may go away after this if the userfault pseudo fd is
538 * already released.
539 */
540 userfaultfd_ctx_put(ctx);
541
542 out:
543 return ret;
544 }
545
546 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
547 struct userfaultfd_wait_queue *ewq)
548 {
549 struct userfaultfd_ctx *release_new_ctx;
550
551 if (WARN_ON_ONCE(current->flags & PF_EXITING))
552 goto out;
553
554 ewq->ctx = ctx;
555 init_waitqueue_entry(&ewq->wq, current);
556 release_new_ctx = NULL;
557
558 spin_lock_irq(&ctx->event_wqh.lock);
559 /*
560 * After the __add_wait_queue the uwq is visible to userland
561 * through poll/read().
562 */
563 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
564 for (;;) {
565 set_current_state(TASK_KILLABLE);
566 if (ewq->msg.event == 0)
567 break;
568 if (READ_ONCE(ctx->released) ||
569 fatal_signal_pending(current)) {
570 /*
571 * &ewq->wq may be queued in fork_event, but
572 * __remove_wait_queue ignores the head
573 * parameter. It would be a problem if it
574 * didn't.
575 */
576 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
577 if (ewq->msg.event == UFFD_EVENT_FORK) {
578 struct userfaultfd_ctx *new;
579
580 new = (struct userfaultfd_ctx *)
581 (unsigned long)
582 ewq->msg.arg.reserved.reserved1;
583 release_new_ctx = new;
584 }
585 break;
586 }
587
588 spin_unlock_irq(&ctx->event_wqh.lock);
589
590 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
591 schedule();
592
593 spin_lock_irq(&ctx->event_wqh.lock);
594 }
595 __set_current_state(TASK_RUNNING);
596 spin_unlock_irq(&ctx->event_wqh.lock);
597
598 if (release_new_ctx) {
599 struct vm_area_struct *vma;
600 struct mm_struct *mm = release_new_ctx->mm;
601
602 /* the various vma->vm_userfaultfd_ctx still points to it */
603 mmap_write_lock(mm);
604 /* no task can run (and in turn coredump) yet */
605 VM_WARN_ON(!mmget_still_valid(mm));
606 for (vma = mm->mmap; vma; vma = vma->vm_next)
607 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
608 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
609 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
610 }
611 mmap_write_unlock(mm);
612
613 userfaultfd_ctx_put(release_new_ctx);
614 }
615
616 /*
617 * ctx may go away after this if the userfault pseudo fd is
618 * already released.
619 */
620 out:
621 WRITE_ONCE(ctx->mmap_changing, false);
622 userfaultfd_ctx_put(ctx);
623 }
624
625 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
626 struct userfaultfd_wait_queue *ewq)
627 {
628 ewq->msg.event = 0;
629 wake_up_locked(&ctx->event_wqh);
630 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
631 }
632
633 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
634 {
635 struct userfaultfd_ctx *ctx = NULL, *octx;
636 struct userfaultfd_fork_ctx *fctx;
637
638 octx = vma->vm_userfaultfd_ctx.ctx;
639 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
640 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
641 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
642 return 0;
643 }
644
645 list_for_each_entry(fctx, fcs, list)
646 if (fctx->orig == octx) {
647 ctx = fctx->new;
648 break;
649 }
650
651 if (!ctx) {
652 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
653 if (!fctx)
654 return -ENOMEM;
655
656 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
657 if (!ctx) {
658 kfree(fctx);
659 return -ENOMEM;
660 }
661
662 refcount_set(&ctx->refcount, 1);
663 ctx->flags = octx->flags;
664 ctx->state = UFFD_STATE_RUNNING;
665 ctx->features = octx->features;
666 ctx->released = false;
667 ctx->mmap_changing = false;
668 ctx->mm = vma->vm_mm;
669 mmgrab(ctx->mm);
670
671 userfaultfd_ctx_get(octx);
672 WRITE_ONCE(octx->mmap_changing, true);
673 fctx->orig = octx;
674 fctx->new = ctx;
675 list_add_tail(&fctx->list, fcs);
676 }
677
678 vma->vm_userfaultfd_ctx.ctx = ctx;
679 return 0;
680 }
681
682 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
683 {
684 struct userfaultfd_ctx *ctx = fctx->orig;
685 struct userfaultfd_wait_queue ewq;
686
687 msg_init(&ewq.msg);
688
689 ewq.msg.event = UFFD_EVENT_FORK;
690 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
691
692 userfaultfd_event_wait_completion(ctx, &ewq);
693 }
694
695 void dup_userfaultfd_complete(struct list_head *fcs)
696 {
697 struct userfaultfd_fork_ctx *fctx, *n;
698
699 list_for_each_entry_safe(fctx, n, fcs, list) {
700 dup_fctx(fctx);
701 list_del(&fctx->list);
702 kfree(fctx);
703 }
704 }
705
706 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
707 struct vm_userfaultfd_ctx *vm_ctx)
708 {
709 struct userfaultfd_ctx *ctx;
710
711 ctx = vma->vm_userfaultfd_ctx.ctx;
712
713 if (!ctx)
714 return;
715
716 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
717 vm_ctx->ctx = ctx;
718 userfaultfd_ctx_get(ctx);
719 WRITE_ONCE(ctx->mmap_changing, true);
720 } else {
721 /* Drop uffd context if remap feature not enabled */
722 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
723 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
724 }
725 }
726
727 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
728 unsigned long from, unsigned long to,
729 unsigned long len)
730 {
731 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
732 struct userfaultfd_wait_queue ewq;
733
734 if (!ctx)
735 return;
736
737 if (to & ~PAGE_MASK) {
738 userfaultfd_ctx_put(ctx);
739 return;
740 }
741
742 msg_init(&ewq.msg);
743
744 ewq.msg.event = UFFD_EVENT_REMAP;
745 ewq.msg.arg.remap.from = from;
746 ewq.msg.arg.remap.to = to;
747 ewq.msg.arg.remap.len = len;
748
749 userfaultfd_event_wait_completion(ctx, &ewq);
750 }
751
752 bool userfaultfd_remove(struct vm_area_struct *vma,
753 unsigned long start, unsigned long end)
754 {
755 struct mm_struct *mm = vma->vm_mm;
756 struct userfaultfd_ctx *ctx;
757 struct userfaultfd_wait_queue ewq;
758
759 ctx = vma->vm_userfaultfd_ctx.ctx;
760 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
761 return true;
762
763 userfaultfd_ctx_get(ctx);
764 WRITE_ONCE(ctx->mmap_changing, true);
765 mmap_read_unlock(mm);
766
767 msg_init(&ewq.msg);
768
769 ewq.msg.event = UFFD_EVENT_REMOVE;
770 ewq.msg.arg.remove.start = start;
771 ewq.msg.arg.remove.end = end;
772
773 userfaultfd_event_wait_completion(ctx, &ewq);
774
775 return false;
776 }
777
778 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
779 unsigned long start, unsigned long end)
780 {
781 struct userfaultfd_unmap_ctx *unmap_ctx;
782
783 list_for_each_entry(unmap_ctx, unmaps, list)
784 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
785 unmap_ctx->end == end)
786 return true;
787
788 return false;
789 }
790
791 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
792 unsigned long start, unsigned long end,
793 struct list_head *unmaps)
794 {
795 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
796 struct userfaultfd_unmap_ctx *unmap_ctx;
797 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
798
799 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
800 has_unmap_ctx(ctx, unmaps, start, end))
801 continue;
802
803 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
804 if (!unmap_ctx)
805 return -ENOMEM;
806
807 userfaultfd_ctx_get(ctx);
808 WRITE_ONCE(ctx->mmap_changing, true);
809 unmap_ctx->ctx = ctx;
810 unmap_ctx->start = start;
811 unmap_ctx->end = end;
812 list_add_tail(&unmap_ctx->list, unmaps);
813 }
814
815 return 0;
816 }
817
818 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
819 {
820 struct userfaultfd_unmap_ctx *ctx, *n;
821 struct userfaultfd_wait_queue ewq;
822
823 list_for_each_entry_safe(ctx, n, uf, list) {
824 msg_init(&ewq.msg);
825
826 ewq.msg.event = UFFD_EVENT_UNMAP;
827 ewq.msg.arg.remove.start = ctx->start;
828 ewq.msg.arg.remove.end = ctx->end;
829
830 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
831
832 list_del(&ctx->list);
833 kfree(ctx);
834 }
835 }
836
837 static int userfaultfd_release(struct inode *inode, struct file *file)
838 {
839 struct userfaultfd_ctx *ctx = file->private_data;
840 struct mm_struct *mm = ctx->mm;
841 struct vm_area_struct *vma, *prev;
842 /* len == 0 means wake all */
843 struct userfaultfd_wake_range range = { .len = 0, };
844 unsigned long new_flags;
845 bool still_valid;
846
847 WRITE_ONCE(ctx->released, true);
848
849 if (!mmget_not_zero(mm))
850 goto wakeup;
851
852 /*
853 * Flush page faults out of all CPUs. NOTE: all page faults
854 * must be retried without returning VM_FAULT_SIGBUS if
855 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
856 * changes while handle_userfault released the mmap_lock. So
857 * it's critical that released is set to true (above), before
858 * taking the mmap_lock for writing.
859 */
860 mmap_write_lock(mm);
861 still_valid = mmget_still_valid(mm);
862 prev = NULL;
863 for (vma = mm->mmap; vma; vma = vma->vm_next) {
864 cond_resched();
865 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
866 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
867 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
868 prev = vma;
869 continue;
870 }
871 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
872 if (still_valid) {
873 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
874 new_flags, vma->anon_vma,
875 vma->vm_file, vma->vm_pgoff,
876 vma_policy(vma),
877 NULL_VM_UFFD_CTX);
878 if (prev)
879 vma = prev;
880 else
881 prev = vma;
882 }
883 vma->vm_flags = new_flags;
884 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
885 }
886 mmap_write_unlock(mm);
887 mmput(mm);
888 wakeup:
889 /*
890 * After no new page faults can wait on this fault_*wqh, flush
891 * the last page faults that may have been already waiting on
892 * the fault_*wqh.
893 */
894 spin_lock_irq(&ctx->fault_pending_wqh.lock);
895 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
896 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
897 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
898
899 /* Flush pending events that may still wait on event_wqh */
900 wake_up_all(&ctx->event_wqh);
901
902 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
903 userfaultfd_ctx_put(ctx);
904 return 0;
905 }
906
907 /* fault_pending_wqh.lock must be hold by the caller */
908 static inline struct userfaultfd_wait_queue *find_userfault_in(
909 wait_queue_head_t *wqh)
910 {
911 wait_queue_entry_t *wq;
912 struct userfaultfd_wait_queue *uwq;
913
914 lockdep_assert_held(&wqh->lock);
915
916 uwq = NULL;
917 if (!waitqueue_active(wqh))
918 goto out;
919 /* walk in reverse to provide FIFO behavior to read userfaults */
920 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
921 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
922 out:
923 return uwq;
924 }
925
926 static inline struct userfaultfd_wait_queue *find_userfault(
927 struct userfaultfd_ctx *ctx)
928 {
929 return find_userfault_in(&ctx->fault_pending_wqh);
930 }
931
932 static inline struct userfaultfd_wait_queue *find_userfault_evt(
933 struct userfaultfd_ctx *ctx)
934 {
935 return find_userfault_in(&ctx->event_wqh);
936 }
937
938 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
939 {
940 struct userfaultfd_ctx *ctx = file->private_data;
941 __poll_t ret;
942
943 poll_wait(file, &ctx->fd_wqh, wait);
944
945 switch (ctx->state) {
946 case UFFD_STATE_WAIT_API:
947 return EPOLLERR;
948 case UFFD_STATE_RUNNING:
949 /*
950 * poll() never guarantees that read won't block.
951 * userfaults can be waken before they're read().
952 */
953 if (unlikely(!(file->f_flags & O_NONBLOCK)))
954 return EPOLLERR;
955 /*
956 * lockless access to see if there are pending faults
957 * __pollwait last action is the add_wait_queue but
958 * the spin_unlock would allow the waitqueue_active to
959 * pass above the actual list_add inside
960 * add_wait_queue critical section. So use a full
961 * memory barrier to serialize the list_add write of
962 * add_wait_queue() with the waitqueue_active read
963 * below.
964 */
965 ret = 0;
966 smp_mb();
967 if (waitqueue_active(&ctx->fault_pending_wqh))
968 ret = EPOLLIN;
969 else if (waitqueue_active(&ctx->event_wqh))
970 ret = EPOLLIN;
971
972 return ret;
973 default:
974 WARN_ON_ONCE(1);
975 return EPOLLERR;
976 }
977 }
978
979 static const struct file_operations userfaultfd_fops;
980
981 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
982 struct userfaultfd_ctx *new,
983 struct uffd_msg *msg)
984 {
985 int fd;
986
987 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
988 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
989 if (fd < 0)
990 return fd;
991
992 msg->arg.reserved.reserved1 = 0;
993 msg->arg.fork.ufd = fd;
994 return 0;
995 }
996
997 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
998 struct uffd_msg *msg)
999 {
1000 ssize_t ret;
1001 DECLARE_WAITQUEUE(wait, current);
1002 struct userfaultfd_wait_queue *uwq;
1003 /*
1004 * Handling fork event requires sleeping operations, so
1005 * we drop the event_wqh lock, then do these ops, then
1006 * lock it back and wake up the waiter. While the lock is
1007 * dropped the ewq may go away so we keep track of it
1008 * carefully.
1009 */
1010 LIST_HEAD(fork_event);
1011 struct userfaultfd_ctx *fork_nctx = NULL;
1012
1013 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1014 spin_lock_irq(&ctx->fd_wqh.lock);
1015 __add_wait_queue(&ctx->fd_wqh, &wait);
1016 for (;;) {
1017 set_current_state(TASK_INTERRUPTIBLE);
1018 spin_lock(&ctx->fault_pending_wqh.lock);
1019 uwq = find_userfault(ctx);
1020 if (uwq) {
1021 /*
1022 * Use a seqcount to repeat the lockless check
1023 * in wake_userfault() to avoid missing
1024 * wakeups because during the refile both
1025 * waitqueue could become empty if this is the
1026 * only userfault.
1027 */
1028 write_seqcount_begin(&ctx->refile_seq);
1029
1030 /*
1031 * The fault_pending_wqh.lock prevents the uwq
1032 * to disappear from under us.
1033 *
1034 * Refile this userfault from
1035 * fault_pending_wqh to fault_wqh, it's not
1036 * pending anymore after we read it.
1037 *
1038 * Use list_del() by hand (as
1039 * userfaultfd_wake_function also uses
1040 * list_del_init() by hand) to be sure nobody
1041 * changes __remove_wait_queue() to use
1042 * list_del_init() in turn breaking the
1043 * !list_empty_careful() check in
1044 * handle_userfault(). The uwq->wq.head list
1045 * must never be empty at any time during the
1046 * refile, or the waitqueue could disappear
1047 * from under us. The "wait_queue_head_t"
1048 * parameter of __remove_wait_queue() is unused
1049 * anyway.
1050 */
1051 list_del(&uwq->wq.entry);
1052 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1053
1054 write_seqcount_end(&ctx->refile_seq);
1055
1056 /* careful to always initialize msg if ret == 0 */
1057 *msg = uwq->msg;
1058 spin_unlock(&ctx->fault_pending_wqh.lock);
1059 ret = 0;
1060 break;
1061 }
1062 spin_unlock(&ctx->fault_pending_wqh.lock);
1063
1064 spin_lock(&ctx->event_wqh.lock);
1065 uwq = find_userfault_evt(ctx);
1066 if (uwq) {
1067 *msg = uwq->msg;
1068
1069 if (uwq->msg.event == UFFD_EVENT_FORK) {
1070 fork_nctx = (struct userfaultfd_ctx *)
1071 (unsigned long)
1072 uwq->msg.arg.reserved.reserved1;
1073 list_move(&uwq->wq.entry, &fork_event);
1074 /*
1075 * fork_nctx can be freed as soon as
1076 * we drop the lock, unless we take a
1077 * reference on it.
1078 */
1079 userfaultfd_ctx_get(fork_nctx);
1080 spin_unlock(&ctx->event_wqh.lock);
1081 ret = 0;
1082 break;
1083 }
1084
1085 userfaultfd_event_complete(ctx, uwq);
1086 spin_unlock(&ctx->event_wqh.lock);
1087 ret = 0;
1088 break;
1089 }
1090 spin_unlock(&ctx->event_wqh.lock);
1091
1092 if (signal_pending(current)) {
1093 ret = -ERESTARTSYS;
1094 break;
1095 }
1096 if (no_wait) {
1097 ret = -EAGAIN;
1098 break;
1099 }
1100 spin_unlock_irq(&ctx->fd_wqh.lock);
1101 schedule();
1102 spin_lock_irq(&ctx->fd_wqh.lock);
1103 }
1104 __remove_wait_queue(&ctx->fd_wqh, &wait);
1105 __set_current_state(TASK_RUNNING);
1106 spin_unlock_irq(&ctx->fd_wqh.lock);
1107
1108 if (!ret && msg->event == UFFD_EVENT_FORK) {
1109 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1110 spin_lock_irq(&ctx->event_wqh.lock);
1111 if (!list_empty(&fork_event)) {
1112 /*
1113 * The fork thread didn't abort, so we can
1114 * drop the temporary refcount.
1115 */
1116 userfaultfd_ctx_put(fork_nctx);
1117
1118 uwq = list_first_entry(&fork_event,
1119 typeof(*uwq),
1120 wq.entry);
1121 /*
1122 * If fork_event list wasn't empty and in turn
1123 * the event wasn't already released by fork
1124 * (the event is allocated on fork kernel
1125 * stack), put the event back to its place in
1126 * the event_wq. fork_event head will be freed
1127 * as soon as we return so the event cannot
1128 * stay queued there no matter the current
1129 * "ret" value.
1130 */
1131 list_del(&uwq->wq.entry);
1132 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1133
1134 /*
1135 * Leave the event in the waitqueue and report
1136 * error to userland if we failed to resolve
1137 * the userfault fork.
1138 */
1139 if (likely(!ret))
1140 userfaultfd_event_complete(ctx, uwq);
1141 } else {
1142 /*
1143 * Here the fork thread aborted and the
1144 * refcount from the fork thread on fork_nctx
1145 * has already been released. We still hold
1146 * the reference we took before releasing the
1147 * lock above. If resolve_userfault_fork
1148 * failed we've to drop it because the
1149 * fork_nctx has to be freed in such case. If
1150 * it succeeded we'll hold it because the new
1151 * uffd references it.
1152 */
1153 if (ret)
1154 userfaultfd_ctx_put(fork_nctx);
1155 }
1156 spin_unlock_irq(&ctx->event_wqh.lock);
1157 }
1158
1159 return ret;
1160 }
1161
1162 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1163 size_t count, loff_t *ppos)
1164 {
1165 struct userfaultfd_ctx *ctx = file->private_data;
1166 ssize_t _ret, ret = 0;
1167 struct uffd_msg msg;
1168 int no_wait = file->f_flags & O_NONBLOCK;
1169
1170 if (ctx->state == UFFD_STATE_WAIT_API)
1171 return -EINVAL;
1172
1173 for (;;) {
1174 if (count < sizeof(msg))
1175 return ret ? ret : -EINVAL;
1176 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1177 if (_ret < 0)
1178 return ret ? ret : _ret;
1179 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1180 return ret ? ret : -EFAULT;
1181 ret += sizeof(msg);
1182 buf += sizeof(msg);
1183 count -= sizeof(msg);
1184 /*
1185 * Allow to read more than one fault at time but only
1186 * block if waiting for the very first one.
1187 */
1188 no_wait = O_NONBLOCK;
1189 }
1190 }
1191
1192 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1193 struct userfaultfd_wake_range *range)
1194 {
1195 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1196 /* wake all in the range and autoremove */
1197 if (waitqueue_active(&ctx->fault_pending_wqh))
1198 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1199 range);
1200 if (waitqueue_active(&ctx->fault_wqh))
1201 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1202 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1203 }
1204
1205 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1206 struct userfaultfd_wake_range *range)
1207 {
1208 unsigned seq;
1209 bool need_wakeup;
1210
1211 /*
1212 * To be sure waitqueue_active() is not reordered by the CPU
1213 * before the pagetable update, use an explicit SMP memory
1214 * barrier here. PT lock release or mmap_read_unlock(mm) still
1215 * have release semantics that can allow the
1216 * waitqueue_active() to be reordered before the pte update.
1217 */
1218 smp_mb();
1219
1220 /*
1221 * Use waitqueue_active because it's very frequent to
1222 * change the address space atomically even if there are no
1223 * userfaults yet. So we take the spinlock only when we're
1224 * sure we've userfaults to wake.
1225 */
1226 do {
1227 seq = read_seqcount_begin(&ctx->refile_seq);
1228 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1229 waitqueue_active(&ctx->fault_wqh);
1230 cond_resched();
1231 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1232 if (need_wakeup)
1233 __wake_userfault(ctx, range);
1234 }
1235
1236 static __always_inline int validate_range(struct mm_struct *mm,
1237 __u64 *start, __u64 len)
1238 {
1239 __u64 task_size = mm->task_size;
1240
1241 *start = untagged_addr(*start);
1242
1243 if (*start & ~PAGE_MASK)
1244 return -EINVAL;
1245 if (len & ~PAGE_MASK)
1246 return -EINVAL;
1247 if (!len)
1248 return -EINVAL;
1249 if (*start < mmap_min_addr)
1250 return -EINVAL;
1251 if (*start >= task_size)
1252 return -EINVAL;
1253 if (len > task_size - *start)
1254 return -EINVAL;
1255 return 0;
1256 }
1257
1258 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1259 unsigned long vm_flags)
1260 {
1261 /* FIXME: add WP support to hugetlbfs and shmem */
1262 return vma_is_anonymous(vma) ||
1263 ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) &&
1264 !(vm_flags & VM_UFFD_WP));
1265 }
1266
1267 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1268 unsigned long arg)
1269 {
1270 struct mm_struct *mm = ctx->mm;
1271 struct vm_area_struct *vma, *prev, *cur;
1272 int ret;
1273 struct uffdio_register uffdio_register;
1274 struct uffdio_register __user *user_uffdio_register;
1275 unsigned long vm_flags, new_flags;
1276 bool found;
1277 bool basic_ioctls;
1278 unsigned long start, end, vma_end;
1279
1280 user_uffdio_register = (struct uffdio_register __user *) arg;
1281
1282 ret = -EFAULT;
1283 if (copy_from_user(&uffdio_register, user_uffdio_register,
1284 sizeof(uffdio_register)-sizeof(__u64)))
1285 goto out;
1286
1287 ret = -EINVAL;
1288 if (!uffdio_register.mode)
1289 goto out;
1290 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1291 UFFDIO_REGISTER_MODE_WP))
1292 goto out;
1293 vm_flags = 0;
1294 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1295 vm_flags |= VM_UFFD_MISSING;
1296 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
1297 vm_flags |= VM_UFFD_WP;
1298
1299 ret = validate_range(mm, &uffdio_register.range.start,
1300 uffdio_register.range.len);
1301 if (ret)
1302 goto out;
1303
1304 start = uffdio_register.range.start;
1305 end = start + uffdio_register.range.len;
1306
1307 ret = -ENOMEM;
1308 if (!mmget_not_zero(mm))
1309 goto out;
1310
1311 mmap_write_lock(mm);
1312 if (!mmget_still_valid(mm))
1313 goto out_unlock;
1314 vma = find_vma_prev(mm, start, &prev);
1315 if (!vma)
1316 goto out_unlock;
1317
1318 /* check that there's at least one vma in the range */
1319 ret = -EINVAL;
1320 if (vma->vm_start >= end)
1321 goto out_unlock;
1322
1323 /*
1324 * If the first vma contains huge pages, make sure start address
1325 * is aligned to huge page size.
1326 */
1327 if (is_vm_hugetlb_page(vma)) {
1328 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1329
1330 if (start & (vma_hpagesize - 1))
1331 goto out_unlock;
1332 }
1333
1334 /*
1335 * Search for not compatible vmas.
1336 */
1337 found = false;
1338 basic_ioctls = false;
1339 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1340 cond_resched();
1341
1342 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1343 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1344
1345 /* check not compatible vmas */
1346 ret = -EINVAL;
1347 if (!vma_can_userfault(cur, vm_flags))
1348 goto out_unlock;
1349
1350 /*
1351 * UFFDIO_COPY will fill file holes even without
1352 * PROT_WRITE. This check enforces that if this is a
1353 * MAP_SHARED, the process has write permission to the backing
1354 * file. If VM_MAYWRITE is set it also enforces that on a
1355 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1356 * F_WRITE_SEAL can be taken until the vma is destroyed.
1357 */
1358 ret = -EPERM;
1359 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1360 goto out_unlock;
1361
1362 /*
1363 * If this vma contains ending address, and huge pages
1364 * check alignment.
1365 */
1366 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1367 end > cur->vm_start) {
1368 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1369
1370 ret = -EINVAL;
1371
1372 if (end & (vma_hpagesize - 1))
1373 goto out_unlock;
1374 }
1375 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1376 goto out_unlock;
1377
1378 /*
1379 * Check that this vma isn't already owned by a
1380 * different userfaultfd. We can't allow more than one
1381 * userfaultfd to own a single vma simultaneously or we
1382 * wouldn't know which one to deliver the userfaults to.
1383 */
1384 ret = -EBUSY;
1385 if (cur->vm_userfaultfd_ctx.ctx &&
1386 cur->vm_userfaultfd_ctx.ctx != ctx)
1387 goto out_unlock;
1388
1389 /*
1390 * Note vmas containing huge pages
1391 */
1392 if (is_vm_hugetlb_page(cur))
1393 basic_ioctls = true;
1394
1395 found = true;
1396 }
1397 BUG_ON(!found);
1398
1399 if (vma->vm_start < start)
1400 prev = vma;
1401
1402 ret = 0;
1403 do {
1404 cond_resched();
1405
1406 BUG_ON(!vma_can_userfault(vma, vm_flags));
1407 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1408 vma->vm_userfaultfd_ctx.ctx != ctx);
1409 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1410
1411 /*
1412 * Nothing to do: this vma is already registered into this
1413 * userfaultfd and with the right tracking mode too.
1414 */
1415 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1416 (vma->vm_flags & vm_flags) == vm_flags)
1417 goto skip;
1418
1419 if (vma->vm_start > start)
1420 start = vma->vm_start;
1421 vma_end = min(end, vma->vm_end);
1422
1423 new_flags = (vma->vm_flags &
1424 ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
1425 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1426 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1427 vma_policy(vma),
1428 ((struct vm_userfaultfd_ctx){ ctx }));
1429 if (prev) {
1430 vma = prev;
1431 goto next;
1432 }
1433 if (vma->vm_start < start) {
1434 ret = split_vma(mm, vma, start, 1);
1435 if (ret)
1436 break;
1437 }
1438 if (vma->vm_end > end) {
1439 ret = split_vma(mm, vma, end, 0);
1440 if (ret)
1441 break;
1442 }
1443 next:
1444 /*
1445 * In the vma_merge() successful mprotect-like case 8:
1446 * the next vma was merged into the current one and
1447 * the current one has not been updated yet.
1448 */
1449 vma->vm_flags = new_flags;
1450 vma->vm_userfaultfd_ctx.ctx = ctx;
1451
1452 skip:
1453 prev = vma;
1454 start = vma->vm_end;
1455 vma = vma->vm_next;
1456 } while (vma && vma->vm_start < end);
1457 out_unlock:
1458 mmap_write_unlock(mm);
1459 mmput(mm);
1460 if (!ret) {
1461 __u64 ioctls_out;
1462
1463 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1464 UFFD_API_RANGE_IOCTLS;
1465
1466 /*
1467 * Declare the WP ioctl only if the WP mode is
1468 * specified and all checks passed with the range
1469 */
1470 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1471 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1472
1473 /*
1474 * Now that we scanned all vmas we can already tell
1475 * userland which ioctls methods are guaranteed to
1476 * succeed on this range.
1477 */
1478 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1479 ret = -EFAULT;
1480 }
1481 out:
1482 return ret;
1483 }
1484
1485 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1486 unsigned long arg)
1487 {
1488 struct mm_struct *mm = ctx->mm;
1489 struct vm_area_struct *vma, *prev, *cur;
1490 int ret;
1491 struct uffdio_range uffdio_unregister;
1492 unsigned long new_flags;
1493 bool found;
1494 unsigned long start, end, vma_end;
1495 const void __user *buf = (void __user *)arg;
1496
1497 ret = -EFAULT;
1498 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1499 goto out;
1500
1501 ret = validate_range(mm, &uffdio_unregister.start,
1502 uffdio_unregister.len);
1503 if (ret)
1504 goto out;
1505
1506 start = uffdio_unregister.start;
1507 end = start + uffdio_unregister.len;
1508
1509 ret = -ENOMEM;
1510 if (!mmget_not_zero(mm))
1511 goto out;
1512
1513 mmap_write_lock(mm);
1514 if (!mmget_still_valid(mm))
1515 goto out_unlock;
1516 vma = find_vma_prev(mm, start, &prev);
1517 if (!vma)
1518 goto out_unlock;
1519
1520 /* check that there's at least one vma in the range */
1521 ret = -EINVAL;
1522 if (vma->vm_start >= end)
1523 goto out_unlock;
1524
1525 /*
1526 * If the first vma contains huge pages, make sure start address
1527 * is aligned to huge page size.
1528 */
1529 if (is_vm_hugetlb_page(vma)) {
1530 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1531
1532 if (start & (vma_hpagesize - 1))
1533 goto out_unlock;
1534 }
1535
1536 /*
1537 * Search for not compatible vmas.
1538 */
1539 found = false;
1540 ret = -EINVAL;
1541 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1542 cond_resched();
1543
1544 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1545 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1546
1547 /*
1548 * Check not compatible vmas, not strictly required
1549 * here as not compatible vmas cannot have an
1550 * userfaultfd_ctx registered on them, but this
1551 * provides for more strict behavior to notice
1552 * unregistration errors.
1553 */
1554 if (!vma_can_userfault(cur, cur->vm_flags))
1555 goto out_unlock;
1556
1557 found = true;
1558 }
1559 BUG_ON(!found);
1560
1561 if (vma->vm_start < start)
1562 prev = vma;
1563
1564 ret = 0;
1565 do {
1566 cond_resched();
1567
1568 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1569
1570 /*
1571 * Nothing to do: this vma is already registered into this
1572 * userfaultfd and with the right tracking mode too.
1573 */
1574 if (!vma->vm_userfaultfd_ctx.ctx)
1575 goto skip;
1576
1577 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1578
1579 if (vma->vm_start > start)
1580 start = vma->vm_start;
1581 vma_end = min(end, vma->vm_end);
1582
1583 if (userfaultfd_missing(vma)) {
1584 /*
1585 * Wake any concurrent pending userfault while
1586 * we unregister, so they will not hang
1587 * permanently and it avoids userland to call
1588 * UFFDIO_WAKE explicitly.
1589 */
1590 struct userfaultfd_wake_range range;
1591 range.start = start;
1592 range.len = vma_end - start;
1593 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1594 }
1595
1596 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1597 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1598 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1599 vma_policy(vma),
1600 NULL_VM_UFFD_CTX);
1601 if (prev) {
1602 vma = prev;
1603 goto next;
1604 }
1605 if (vma->vm_start < start) {
1606 ret = split_vma(mm, vma, start, 1);
1607 if (ret)
1608 break;
1609 }
1610 if (vma->vm_end > end) {
1611 ret = split_vma(mm, vma, end, 0);
1612 if (ret)
1613 break;
1614 }
1615 next:
1616 /*
1617 * In the vma_merge() successful mprotect-like case 8:
1618 * the next vma was merged into the current one and
1619 * the current one has not been updated yet.
1620 */
1621 vma->vm_flags = new_flags;
1622 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1623
1624 skip:
1625 prev = vma;
1626 start = vma->vm_end;
1627 vma = vma->vm_next;
1628 } while (vma && vma->vm_start < end);
1629 out_unlock:
1630 mmap_write_unlock(mm);
1631 mmput(mm);
1632 out:
1633 return ret;
1634 }
1635
1636 /*
1637 * userfaultfd_wake may be used in combination with the
1638 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1639 */
1640 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1641 unsigned long arg)
1642 {
1643 int ret;
1644 struct uffdio_range uffdio_wake;
1645 struct userfaultfd_wake_range range;
1646 const void __user *buf = (void __user *)arg;
1647
1648 ret = -EFAULT;
1649 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1650 goto out;
1651
1652 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
1653 if (ret)
1654 goto out;
1655
1656 range.start = uffdio_wake.start;
1657 range.len = uffdio_wake.len;
1658
1659 /*
1660 * len == 0 means wake all and we don't want to wake all here,
1661 * so check it again to be sure.
1662 */
1663 VM_BUG_ON(!range.len);
1664
1665 wake_userfault(ctx, &range);
1666 ret = 0;
1667
1668 out:
1669 return ret;
1670 }
1671
1672 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1673 unsigned long arg)
1674 {
1675 __s64 ret;
1676 struct uffdio_copy uffdio_copy;
1677 struct uffdio_copy __user *user_uffdio_copy;
1678 struct userfaultfd_wake_range range;
1679
1680 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1681
1682 ret = -EAGAIN;
1683 if (READ_ONCE(ctx->mmap_changing))
1684 goto out;
1685
1686 ret = -EFAULT;
1687 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1688 /* don't copy "copy" last field */
1689 sizeof(uffdio_copy)-sizeof(__s64)))
1690 goto out;
1691
1692 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
1693 if (ret)
1694 goto out;
1695 /*
1696 * double check for wraparound just in case. copy_from_user()
1697 * will later check uffdio_copy.src + uffdio_copy.len to fit
1698 * in the userland range.
1699 */
1700 ret = -EINVAL;
1701 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1702 goto out;
1703 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1704 goto out;
1705 if (mmget_not_zero(ctx->mm)) {
1706 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1707 uffdio_copy.len, &ctx->mmap_changing,
1708 uffdio_copy.mode);
1709 mmput(ctx->mm);
1710 } else {
1711 return -ESRCH;
1712 }
1713 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1714 return -EFAULT;
1715 if (ret < 0)
1716 goto out;
1717 BUG_ON(!ret);
1718 /* len == 0 would wake all */
1719 range.len = ret;
1720 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1721 range.start = uffdio_copy.dst;
1722 wake_userfault(ctx, &range);
1723 }
1724 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1725 out:
1726 return ret;
1727 }
1728
1729 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1730 unsigned long arg)
1731 {
1732 __s64 ret;
1733 struct uffdio_zeropage uffdio_zeropage;
1734 struct uffdio_zeropage __user *user_uffdio_zeropage;
1735 struct userfaultfd_wake_range range;
1736
1737 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1738
1739 ret = -EAGAIN;
1740 if (READ_ONCE(ctx->mmap_changing))
1741 goto out;
1742
1743 ret = -EFAULT;
1744 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1745 /* don't copy "zeropage" last field */
1746 sizeof(uffdio_zeropage)-sizeof(__s64)))
1747 goto out;
1748
1749 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
1750 uffdio_zeropage.range.len);
1751 if (ret)
1752 goto out;
1753 ret = -EINVAL;
1754 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1755 goto out;
1756
1757 if (mmget_not_zero(ctx->mm)) {
1758 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1759 uffdio_zeropage.range.len,
1760 &ctx->mmap_changing);
1761 mmput(ctx->mm);
1762 } else {
1763 return -ESRCH;
1764 }
1765 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1766 return -EFAULT;
1767 if (ret < 0)
1768 goto out;
1769 /* len == 0 would wake all */
1770 BUG_ON(!ret);
1771 range.len = ret;
1772 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1773 range.start = uffdio_zeropage.range.start;
1774 wake_userfault(ctx, &range);
1775 }
1776 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1777 out:
1778 return ret;
1779 }
1780
1781 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1782 unsigned long arg)
1783 {
1784 int ret;
1785 struct uffdio_writeprotect uffdio_wp;
1786 struct uffdio_writeprotect __user *user_uffdio_wp;
1787 struct userfaultfd_wake_range range;
1788 bool mode_wp, mode_dontwake;
1789
1790 if (READ_ONCE(ctx->mmap_changing))
1791 return -EAGAIN;
1792
1793 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1794
1795 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1796 sizeof(struct uffdio_writeprotect)))
1797 return -EFAULT;
1798
1799 ret = validate_range(ctx->mm, &uffdio_wp.range.start,
1800 uffdio_wp.range.len);
1801 if (ret)
1802 return ret;
1803
1804 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1805 UFFDIO_WRITEPROTECT_MODE_WP))
1806 return -EINVAL;
1807
1808 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1809 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1810
1811 if (mode_wp && mode_dontwake)
1812 return -EINVAL;
1813
1814 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1815 uffdio_wp.range.len, mode_wp,
1816 &ctx->mmap_changing);
1817 if (ret)
1818 return ret;
1819
1820 if (!mode_wp && !mode_dontwake) {
1821 range.start = uffdio_wp.range.start;
1822 range.len = uffdio_wp.range.len;
1823 wake_userfault(ctx, &range);
1824 }
1825 return ret;
1826 }
1827
1828 static inline unsigned int uffd_ctx_features(__u64 user_features)
1829 {
1830 /*
1831 * For the current set of features the bits just coincide
1832 */
1833 return (unsigned int)user_features;
1834 }
1835
1836 /*
1837 * userland asks for a certain API version and we return which bits
1838 * and ioctl commands are implemented in this kernel for such API
1839 * version or -EINVAL if unknown.
1840 */
1841 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1842 unsigned long arg)
1843 {
1844 struct uffdio_api uffdio_api;
1845 void __user *buf = (void __user *)arg;
1846 int ret;
1847 __u64 features;
1848
1849 ret = -EINVAL;
1850 if (ctx->state != UFFD_STATE_WAIT_API)
1851 goto out;
1852 ret = -EFAULT;
1853 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1854 goto out;
1855 features = uffdio_api.features;
1856 ret = -EINVAL;
1857 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1858 goto err_out;
1859 ret = -EPERM;
1860 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1861 goto err_out;
1862 /* report all available features and ioctls to userland */
1863 uffdio_api.features = UFFD_API_FEATURES;
1864 uffdio_api.ioctls = UFFD_API_IOCTLS;
1865 ret = -EFAULT;
1866 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1867 goto out;
1868 ctx->state = UFFD_STATE_RUNNING;
1869 /* only enable the requested features for this uffd context */
1870 ctx->features = uffd_ctx_features(features);
1871 ret = 0;
1872 out:
1873 return ret;
1874 err_out:
1875 memset(&uffdio_api, 0, sizeof(uffdio_api));
1876 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1877 ret = -EFAULT;
1878 goto out;
1879 }
1880
1881 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1882 unsigned long arg)
1883 {
1884 int ret = -EINVAL;
1885 struct userfaultfd_ctx *ctx = file->private_data;
1886
1887 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1888 return -EINVAL;
1889
1890 switch(cmd) {
1891 case UFFDIO_API:
1892 ret = userfaultfd_api(ctx, arg);
1893 break;
1894 case UFFDIO_REGISTER:
1895 ret = userfaultfd_register(ctx, arg);
1896 break;
1897 case UFFDIO_UNREGISTER:
1898 ret = userfaultfd_unregister(ctx, arg);
1899 break;
1900 case UFFDIO_WAKE:
1901 ret = userfaultfd_wake(ctx, arg);
1902 break;
1903 case UFFDIO_COPY:
1904 ret = userfaultfd_copy(ctx, arg);
1905 break;
1906 case UFFDIO_ZEROPAGE:
1907 ret = userfaultfd_zeropage(ctx, arg);
1908 break;
1909 case UFFDIO_WRITEPROTECT:
1910 ret = userfaultfd_writeprotect(ctx, arg);
1911 break;
1912 }
1913 return ret;
1914 }
1915
1916 #ifdef CONFIG_PROC_FS
1917 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1918 {
1919 struct userfaultfd_ctx *ctx = f->private_data;
1920 wait_queue_entry_t *wq;
1921 unsigned long pending = 0, total = 0;
1922
1923 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1924 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1925 pending++;
1926 total++;
1927 }
1928 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1929 total++;
1930 }
1931 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1932
1933 /*
1934 * If more protocols will be added, there will be all shown
1935 * separated by a space. Like this:
1936 * protocols: aa:... bb:...
1937 */
1938 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1939 pending, total, UFFD_API, ctx->features,
1940 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1941 }
1942 #endif
1943
1944 static const struct file_operations userfaultfd_fops = {
1945 #ifdef CONFIG_PROC_FS
1946 .show_fdinfo = userfaultfd_show_fdinfo,
1947 #endif
1948 .release = userfaultfd_release,
1949 .poll = userfaultfd_poll,
1950 .read = userfaultfd_read,
1951 .unlocked_ioctl = userfaultfd_ioctl,
1952 .compat_ioctl = compat_ptr_ioctl,
1953 .llseek = noop_llseek,
1954 };
1955
1956 static void init_once_userfaultfd_ctx(void *mem)
1957 {
1958 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1959
1960 init_waitqueue_head(&ctx->fault_pending_wqh);
1961 init_waitqueue_head(&ctx->fault_wqh);
1962 init_waitqueue_head(&ctx->event_wqh);
1963 init_waitqueue_head(&ctx->fd_wqh);
1964 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
1965 }
1966
1967 SYSCALL_DEFINE1(userfaultfd, int, flags)
1968 {
1969 struct userfaultfd_ctx *ctx;
1970 int fd;
1971
1972 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1973 return -EPERM;
1974
1975 BUG_ON(!current->mm);
1976
1977 /* Check the UFFD_* constants for consistency. */
1978 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1979 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1980
1981 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1982 return -EINVAL;
1983
1984 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1985 if (!ctx)
1986 return -ENOMEM;
1987
1988 refcount_set(&ctx->refcount, 1);
1989 ctx->flags = flags;
1990 ctx->features = 0;
1991 ctx->state = UFFD_STATE_WAIT_API;
1992 ctx->released = false;
1993 ctx->mmap_changing = false;
1994 ctx->mm = current->mm;
1995 /* prevent the mm struct to be freed */
1996 mmgrab(ctx->mm);
1997
1998 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1999 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
2000 if (fd < 0) {
2001 mmdrop(ctx->mm);
2002 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2003 }
2004 return fd;
2005 }
2006
2007 static int __init userfaultfd_init(void)
2008 {
2009 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2010 sizeof(struct userfaultfd_ctx),
2011 0,
2012 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2013 init_once_userfaultfd_ctx);
2014 return 0;
2015 }
2016 __initcall(userfaultfd_init);