]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/userfaultfd.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / fs / userfaultfd.c
1 /*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38 };
39
40 /*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
44 struct userfaultfd_ctx {
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
55 /* pseudo fd refcounting */
56 atomic_t refcount;
57 /* userfaultfd syscall flags */
58 unsigned int flags;
59 /* features requested from the userspace */
60 unsigned int features;
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67 };
68
69 struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73 };
74
75 struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80 };
81
82 struct userfaultfd_wait_queue {
83 struct uffd_msg msg;
84 wait_queue_t wq;
85 struct userfaultfd_ctx *ctx;
86 bool waken;
87 };
88
89 struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92 };
93
94 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
95 int wake_flags, void *key)
96 {
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
109 goto out;
110 WRITE_ONCE(uwq->waken, true);
111 /*
112 * The implicit smp_mb__before_spinlock in try_to_wake_up()
113 * renders uwq->waken visible to other CPUs before the task is
114 * waken.
115 */
116 ret = wake_up_state(wq->private, mode);
117 if (ret)
118 /*
119 * Wake only once, autoremove behavior.
120 *
121 * After the effect of list_del_init is visible to the
122 * other CPUs, the waitqueue may disappear from under
123 * us, see the !list_empty_careful() in
124 * handle_userfault(). try_to_wake_up() has an
125 * implicit smp_mb__before_spinlock, and the
126 * wq->private is read before calling the extern
127 * function "wake_up_state" (which in turns calls
128 * try_to_wake_up). While the spin_lock;spin_unlock;
129 * wouldn't be enough, the smp_mb__before_spinlock is
130 * enough to avoid an explicit smp_mb() here.
131 */
132 list_del_init(&wq->task_list);
133 out:
134 return ret;
135 }
136
137 /**
138 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
139 * context.
140 * @ctx: [in] Pointer to the userfaultfd context.
141 */
142 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
143 {
144 if (!atomic_inc_not_zero(&ctx->refcount))
145 BUG();
146 }
147
148 /**
149 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
150 * context.
151 * @ctx: [in] Pointer to userfaultfd context.
152 *
153 * The userfaultfd context reference must have been previously acquired either
154 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
155 */
156 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
157 {
158 if (atomic_dec_and_test(&ctx->refcount)) {
159 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
160 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
161 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
162 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
163 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
164 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
165 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
166 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
167 mmdrop(ctx->mm);
168 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
169 }
170 }
171
172 static inline void msg_init(struct uffd_msg *msg)
173 {
174 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
175 /*
176 * Must use memset to zero out the paddings or kernel data is
177 * leaked to userland.
178 */
179 memset(msg, 0, sizeof(struct uffd_msg));
180 }
181
182 static inline struct uffd_msg userfault_msg(unsigned long address,
183 unsigned int flags,
184 unsigned long reason)
185 {
186 struct uffd_msg msg;
187 msg_init(&msg);
188 msg.event = UFFD_EVENT_PAGEFAULT;
189 msg.arg.pagefault.address = address;
190 if (flags & FAULT_FLAG_WRITE)
191 /*
192 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
193 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
194 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
195 * was a read fault, otherwise if set it means it's
196 * a write fault.
197 */
198 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
199 if (reason & VM_UFFD_WP)
200 /*
201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
203 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
204 * a missing fault, otherwise if set it means it's a
205 * write protect fault.
206 */
207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
208 return msg;
209 }
210
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213 * Same functionality as userfaultfd_must_wait below with modifications for
214 * hugepmd ranges.
215 */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 unsigned long address,
218 unsigned long flags,
219 unsigned long reason)
220 {
221 struct mm_struct *mm = ctx->mm;
222 pte_t *pte;
223 bool ret = true;
224
225 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
226
227 pte = huge_pte_offset(mm, address);
228 if (!pte)
229 goto out;
230
231 ret = false;
232
233 /*
234 * Lockless access: we're in a wait_event so it's ok if it
235 * changes under us.
236 */
237 if (huge_pte_none(*pte))
238 ret = true;
239 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
240 ret = true;
241 out:
242 return ret;
243 }
244 #else
245 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
246 unsigned long address,
247 unsigned long flags,
248 unsigned long reason)
249 {
250 return false; /* should never get here */
251 }
252 #endif /* CONFIG_HUGETLB_PAGE */
253
254 /*
255 * Verify the pagetables are still not ok after having reigstered into
256 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
257 * userfault that has already been resolved, if userfaultfd_read and
258 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
259 * threads.
260 */
261 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
262 unsigned long address,
263 unsigned long flags,
264 unsigned long reason)
265 {
266 struct mm_struct *mm = ctx->mm;
267 pgd_t *pgd;
268 p4d_t *p4d;
269 pud_t *pud;
270 pmd_t *pmd, _pmd;
271 pte_t *pte;
272 bool ret = true;
273
274 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
275
276 pgd = pgd_offset(mm, address);
277 if (!pgd_present(*pgd))
278 goto out;
279 p4d = p4d_offset(pgd, address);
280 if (!p4d_present(*p4d))
281 goto out;
282 pud = pud_offset(p4d, address);
283 if (!pud_present(*pud))
284 goto out;
285 pmd = pmd_offset(pud, address);
286 /*
287 * READ_ONCE must function as a barrier with narrower scope
288 * and it must be equivalent to:
289 * _pmd = *pmd; barrier();
290 *
291 * This is to deal with the instability (as in
292 * pmd_trans_unstable) of the pmd.
293 */
294 _pmd = READ_ONCE(*pmd);
295 if (!pmd_present(_pmd))
296 goto out;
297
298 ret = false;
299 if (pmd_trans_huge(_pmd))
300 goto out;
301
302 /*
303 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
304 * and use the standard pte_offset_map() instead of parsing _pmd.
305 */
306 pte = pte_offset_map(pmd, address);
307 /*
308 * Lockless access: we're in a wait_event so it's ok if it
309 * changes under us.
310 */
311 if (pte_none(*pte))
312 ret = true;
313 pte_unmap(pte);
314
315 out:
316 return ret;
317 }
318
319 /*
320 * The locking rules involved in returning VM_FAULT_RETRY depending on
321 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
322 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
323 * recommendation in __lock_page_or_retry is not an understatement.
324 *
325 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
326 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
327 * not set.
328 *
329 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
330 * set, VM_FAULT_RETRY can still be returned if and only if there are
331 * fatal_signal_pending()s, and the mmap_sem must be released before
332 * returning it.
333 */
334 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
335 {
336 struct mm_struct *mm = vmf->vma->vm_mm;
337 struct userfaultfd_ctx *ctx;
338 struct userfaultfd_wait_queue uwq;
339 int ret;
340 bool must_wait, return_to_userland;
341 long blocking_state;
342
343 ret = VM_FAULT_SIGBUS;
344
345 /*
346 * We don't do userfault handling for the final child pid update.
347 *
348 * We also don't do userfault handling during
349 * coredumping. hugetlbfs has the special
350 * follow_hugetlb_page() to skip missing pages in the
351 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
352 * the no_page_table() helper in follow_page_mask(), but the
353 * shmem_vm_ops->fault method is invoked even during
354 * coredumping without mmap_sem and it ends up here.
355 */
356 if (current->flags & (PF_EXITING|PF_DUMPCORE))
357 goto out;
358
359 /*
360 * Coredumping runs without mmap_sem so we can only check that
361 * the mmap_sem is held, if PF_DUMPCORE was not set.
362 */
363 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
364
365 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
366 if (!ctx)
367 goto out;
368
369 BUG_ON(ctx->mm != mm);
370
371 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
372 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
373
374 /*
375 * If it's already released don't get it. This avoids to loop
376 * in __get_user_pages if userfaultfd_release waits on the
377 * caller of handle_userfault to release the mmap_sem.
378 */
379 if (unlikely(ACCESS_ONCE(ctx->released)))
380 goto out;
381
382 /*
383 * Check that we can return VM_FAULT_RETRY.
384 *
385 * NOTE: it should become possible to return VM_FAULT_RETRY
386 * even if FAULT_FLAG_TRIED is set without leading to gup()
387 * -EBUSY failures, if the userfaultfd is to be extended for
388 * VM_UFFD_WP tracking and we intend to arm the userfault
389 * without first stopping userland access to the memory. For
390 * VM_UFFD_MISSING userfaults this is enough for now.
391 */
392 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
393 /*
394 * Validate the invariant that nowait must allow retry
395 * to be sure not to return SIGBUS erroneously on
396 * nowait invocations.
397 */
398 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
399 #ifdef CONFIG_DEBUG_VM
400 if (printk_ratelimit()) {
401 printk(KERN_WARNING
402 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
403 vmf->flags);
404 dump_stack();
405 }
406 #endif
407 goto out;
408 }
409
410 /*
411 * Handle nowait, not much to do other than tell it to retry
412 * and wait.
413 */
414 ret = VM_FAULT_RETRY;
415 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
416 goto out;
417
418 /* take the reference before dropping the mmap_sem */
419 userfaultfd_ctx_get(ctx);
420
421 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
422 uwq.wq.private = current;
423 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
424 uwq.ctx = ctx;
425 uwq.waken = false;
426
427 return_to_userland =
428 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
429 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
430 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
431 TASK_KILLABLE;
432
433 spin_lock(&ctx->fault_pending_wqh.lock);
434 /*
435 * After the __add_wait_queue the uwq is visible to userland
436 * through poll/read().
437 */
438 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
439 /*
440 * The smp_mb() after __set_current_state prevents the reads
441 * following the spin_unlock to happen before the list_add in
442 * __add_wait_queue.
443 */
444 set_current_state(blocking_state);
445 spin_unlock(&ctx->fault_pending_wqh.lock);
446
447 if (!is_vm_hugetlb_page(vmf->vma))
448 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
449 reason);
450 else
451 must_wait = userfaultfd_huge_must_wait(ctx, vmf->address,
452 vmf->flags, reason);
453 up_read(&mm->mmap_sem);
454
455 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
456 (return_to_userland ? !signal_pending(current) :
457 !fatal_signal_pending(current)))) {
458 wake_up_poll(&ctx->fd_wqh, POLLIN);
459 schedule();
460 ret |= VM_FAULT_MAJOR;
461
462 /*
463 * False wakeups can orginate even from rwsem before
464 * up_read() however userfaults will wait either for a
465 * targeted wakeup on the specific uwq waitqueue from
466 * wake_userfault() or for signals or for uffd
467 * release.
468 */
469 while (!READ_ONCE(uwq.waken)) {
470 /*
471 * This needs the full smp_store_mb()
472 * guarantee as the state write must be
473 * visible to other CPUs before reading
474 * uwq.waken from other CPUs.
475 */
476 set_current_state(blocking_state);
477 if (READ_ONCE(uwq.waken) ||
478 READ_ONCE(ctx->released) ||
479 (return_to_userland ? signal_pending(current) :
480 fatal_signal_pending(current)))
481 break;
482 schedule();
483 }
484 }
485
486 __set_current_state(TASK_RUNNING);
487
488 if (return_to_userland) {
489 if (signal_pending(current) &&
490 !fatal_signal_pending(current)) {
491 /*
492 * If we got a SIGSTOP or SIGCONT and this is
493 * a normal userland page fault, just let
494 * userland return so the signal will be
495 * handled and gdb debugging works. The page
496 * fault code immediately after we return from
497 * this function is going to release the
498 * mmap_sem and it's not depending on it
499 * (unlike gup would if we were not to return
500 * VM_FAULT_RETRY).
501 *
502 * If a fatal signal is pending we still take
503 * the streamlined VM_FAULT_RETRY failure path
504 * and there's no need to retake the mmap_sem
505 * in such case.
506 */
507 down_read(&mm->mmap_sem);
508 ret = VM_FAULT_NOPAGE;
509 }
510 }
511
512 /*
513 * Here we race with the list_del; list_add in
514 * userfaultfd_ctx_read(), however because we don't ever run
515 * list_del_init() to refile across the two lists, the prev
516 * and next pointers will never point to self. list_add also
517 * would never let any of the two pointers to point to
518 * self. So list_empty_careful won't risk to see both pointers
519 * pointing to self at any time during the list refile. The
520 * only case where list_del_init() is called is the full
521 * removal in the wake function and there we don't re-list_add
522 * and it's fine not to block on the spinlock. The uwq on this
523 * kernel stack can be released after the list_del_init.
524 */
525 if (!list_empty_careful(&uwq.wq.task_list)) {
526 spin_lock(&ctx->fault_pending_wqh.lock);
527 /*
528 * No need of list_del_init(), the uwq on the stack
529 * will be freed shortly anyway.
530 */
531 list_del(&uwq.wq.task_list);
532 spin_unlock(&ctx->fault_pending_wqh.lock);
533 }
534
535 /*
536 * ctx may go away after this if the userfault pseudo fd is
537 * already released.
538 */
539 userfaultfd_ctx_put(ctx);
540
541 out:
542 return ret;
543 }
544
545 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
546 struct userfaultfd_wait_queue *ewq)
547 {
548 if (WARN_ON_ONCE(current->flags & PF_EXITING))
549 goto out;
550
551 ewq->ctx = ctx;
552 init_waitqueue_entry(&ewq->wq, current);
553
554 spin_lock(&ctx->event_wqh.lock);
555 /*
556 * After the __add_wait_queue the uwq is visible to userland
557 * through poll/read().
558 */
559 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
560 for (;;) {
561 set_current_state(TASK_KILLABLE);
562 if (ewq->msg.event == 0)
563 break;
564 if (ACCESS_ONCE(ctx->released) ||
565 fatal_signal_pending(current)) {
566 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
567 if (ewq->msg.event == UFFD_EVENT_FORK) {
568 struct userfaultfd_ctx *new;
569
570 new = (struct userfaultfd_ctx *)
571 (unsigned long)
572 ewq->msg.arg.reserved.reserved1;
573
574 userfaultfd_ctx_put(new);
575 }
576 break;
577 }
578
579 spin_unlock(&ctx->event_wqh.lock);
580
581 wake_up_poll(&ctx->fd_wqh, POLLIN);
582 schedule();
583
584 spin_lock(&ctx->event_wqh.lock);
585 }
586 __set_current_state(TASK_RUNNING);
587 spin_unlock(&ctx->event_wqh.lock);
588
589 /*
590 * ctx may go away after this if the userfault pseudo fd is
591 * already released.
592 */
593 out:
594 userfaultfd_ctx_put(ctx);
595 }
596
597 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
598 struct userfaultfd_wait_queue *ewq)
599 {
600 ewq->msg.event = 0;
601 wake_up_locked(&ctx->event_wqh);
602 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
603 }
604
605 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
606 {
607 struct userfaultfd_ctx *ctx = NULL, *octx;
608 struct userfaultfd_fork_ctx *fctx;
609
610 octx = vma->vm_userfaultfd_ctx.ctx;
611 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
612 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
613 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
614 return 0;
615 }
616
617 list_for_each_entry(fctx, fcs, list)
618 if (fctx->orig == octx) {
619 ctx = fctx->new;
620 break;
621 }
622
623 if (!ctx) {
624 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
625 if (!fctx)
626 return -ENOMEM;
627
628 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
629 if (!ctx) {
630 kfree(fctx);
631 return -ENOMEM;
632 }
633
634 atomic_set(&ctx->refcount, 1);
635 ctx->flags = octx->flags;
636 ctx->state = UFFD_STATE_RUNNING;
637 ctx->features = octx->features;
638 ctx->released = false;
639 ctx->mm = vma->vm_mm;
640 atomic_inc(&ctx->mm->mm_count);
641
642 userfaultfd_ctx_get(octx);
643 fctx->orig = octx;
644 fctx->new = ctx;
645 list_add_tail(&fctx->list, fcs);
646 }
647
648 vma->vm_userfaultfd_ctx.ctx = ctx;
649 return 0;
650 }
651
652 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
653 {
654 struct userfaultfd_ctx *ctx = fctx->orig;
655 struct userfaultfd_wait_queue ewq;
656
657 msg_init(&ewq.msg);
658
659 ewq.msg.event = UFFD_EVENT_FORK;
660 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
661
662 userfaultfd_event_wait_completion(ctx, &ewq);
663 }
664
665 void dup_userfaultfd_complete(struct list_head *fcs)
666 {
667 struct userfaultfd_fork_ctx *fctx, *n;
668
669 list_for_each_entry_safe(fctx, n, fcs, list) {
670 dup_fctx(fctx);
671 list_del(&fctx->list);
672 kfree(fctx);
673 }
674 }
675
676 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
677 struct vm_userfaultfd_ctx *vm_ctx)
678 {
679 struct userfaultfd_ctx *ctx;
680
681 ctx = vma->vm_userfaultfd_ctx.ctx;
682 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
683 vm_ctx->ctx = ctx;
684 userfaultfd_ctx_get(ctx);
685 }
686 }
687
688 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
689 unsigned long from, unsigned long to,
690 unsigned long len)
691 {
692 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
693 struct userfaultfd_wait_queue ewq;
694
695 if (!ctx)
696 return;
697
698 if (to & ~PAGE_MASK) {
699 userfaultfd_ctx_put(ctx);
700 return;
701 }
702
703 msg_init(&ewq.msg);
704
705 ewq.msg.event = UFFD_EVENT_REMAP;
706 ewq.msg.arg.remap.from = from;
707 ewq.msg.arg.remap.to = to;
708 ewq.msg.arg.remap.len = len;
709
710 userfaultfd_event_wait_completion(ctx, &ewq);
711 }
712
713 bool userfaultfd_remove(struct vm_area_struct *vma,
714 unsigned long start, unsigned long end)
715 {
716 struct mm_struct *mm = vma->vm_mm;
717 struct userfaultfd_ctx *ctx;
718 struct userfaultfd_wait_queue ewq;
719
720 ctx = vma->vm_userfaultfd_ctx.ctx;
721 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
722 return true;
723
724 userfaultfd_ctx_get(ctx);
725 up_read(&mm->mmap_sem);
726
727 msg_init(&ewq.msg);
728
729 ewq.msg.event = UFFD_EVENT_REMOVE;
730 ewq.msg.arg.remove.start = start;
731 ewq.msg.arg.remove.end = end;
732
733 userfaultfd_event_wait_completion(ctx, &ewq);
734
735 return false;
736 }
737
738 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
739 unsigned long start, unsigned long end)
740 {
741 struct userfaultfd_unmap_ctx *unmap_ctx;
742
743 list_for_each_entry(unmap_ctx, unmaps, list)
744 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
745 unmap_ctx->end == end)
746 return true;
747
748 return false;
749 }
750
751 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
752 unsigned long start, unsigned long end,
753 struct list_head *unmaps)
754 {
755 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
756 struct userfaultfd_unmap_ctx *unmap_ctx;
757 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
758
759 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
760 has_unmap_ctx(ctx, unmaps, start, end))
761 continue;
762
763 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
764 if (!unmap_ctx)
765 return -ENOMEM;
766
767 userfaultfd_ctx_get(ctx);
768 unmap_ctx->ctx = ctx;
769 unmap_ctx->start = start;
770 unmap_ctx->end = end;
771 list_add_tail(&unmap_ctx->list, unmaps);
772 }
773
774 return 0;
775 }
776
777 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
778 {
779 struct userfaultfd_unmap_ctx *ctx, *n;
780 struct userfaultfd_wait_queue ewq;
781
782 list_for_each_entry_safe(ctx, n, uf, list) {
783 msg_init(&ewq.msg);
784
785 ewq.msg.event = UFFD_EVENT_UNMAP;
786 ewq.msg.arg.remove.start = ctx->start;
787 ewq.msg.arg.remove.end = ctx->end;
788
789 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
790
791 list_del(&ctx->list);
792 kfree(ctx);
793 }
794 }
795
796 static int userfaultfd_release(struct inode *inode, struct file *file)
797 {
798 struct userfaultfd_ctx *ctx = file->private_data;
799 struct mm_struct *mm = ctx->mm;
800 struct vm_area_struct *vma, *prev;
801 /* len == 0 means wake all */
802 struct userfaultfd_wake_range range = { .len = 0, };
803 unsigned long new_flags;
804
805 ACCESS_ONCE(ctx->released) = true;
806
807 if (!mmget_not_zero(mm))
808 goto wakeup;
809
810 /*
811 * Flush page faults out of all CPUs. NOTE: all page faults
812 * must be retried without returning VM_FAULT_SIGBUS if
813 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
814 * changes while handle_userfault released the mmap_sem. So
815 * it's critical that released is set to true (above), before
816 * taking the mmap_sem for writing.
817 */
818 down_write(&mm->mmap_sem);
819 prev = NULL;
820 for (vma = mm->mmap; vma; vma = vma->vm_next) {
821 cond_resched();
822 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
823 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
824 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
825 prev = vma;
826 continue;
827 }
828 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
829 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
830 new_flags, vma->anon_vma,
831 vma->vm_file, vma->vm_pgoff,
832 vma_policy(vma),
833 NULL_VM_UFFD_CTX);
834 if (prev)
835 vma = prev;
836 else
837 prev = vma;
838 vma->vm_flags = new_flags;
839 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
840 }
841 up_write(&mm->mmap_sem);
842 mmput(mm);
843 wakeup:
844 /*
845 * After no new page faults can wait on this fault_*wqh, flush
846 * the last page faults that may have been already waiting on
847 * the fault_*wqh.
848 */
849 spin_lock(&ctx->fault_pending_wqh.lock);
850 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
851 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
852 spin_unlock(&ctx->fault_pending_wqh.lock);
853
854 wake_up_poll(&ctx->fd_wqh, POLLHUP);
855 userfaultfd_ctx_put(ctx);
856 return 0;
857 }
858
859 /* fault_pending_wqh.lock must be hold by the caller */
860 static inline struct userfaultfd_wait_queue *find_userfault_in(
861 wait_queue_head_t *wqh)
862 {
863 wait_queue_t *wq;
864 struct userfaultfd_wait_queue *uwq;
865
866 VM_BUG_ON(!spin_is_locked(&wqh->lock));
867
868 uwq = NULL;
869 if (!waitqueue_active(wqh))
870 goto out;
871 /* walk in reverse to provide FIFO behavior to read userfaults */
872 wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list);
873 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
874 out:
875 return uwq;
876 }
877
878 static inline struct userfaultfd_wait_queue *find_userfault(
879 struct userfaultfd_ctx *ctx)
880 {
881 return find_userfault_in(&ctx->fault_pending_wqh);
882 }
883
884 static inline struct userfaultfd_wait_queue *find_userfault_evt(
885 struct userfaultfd_ctx *ctx)
886 {
887 return find_userfault_in(&ctx->event_wqh);
888 }
889
890 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
891 {
892 struct userfaultfd_ctx *ctx = file->private_data;
893 unsigned int ret;
894
895 poll_wait(file, &ctx->fd_wqh, wait);
896
897 switch (ctx->state) {
898 case UFFD_STATE_WAIT_API:
899 return POLLERR;
900 case UFFD_STATE_RUNNING:
901 /*
902 * poll() never guarantees that read won't block.
903 * userfaults can be waken before they're read().
904 */
905 if (unlikely(!(file->f_flags & O_NONBLOCK)))
906 return POLLERR;
907 /*
908 * lockless access to see if there are pending faults
909 * __pollwait last action is the add_wait_queue but
910 * the spin_unlock would allow the waitqueue_active to
911 * pass above the actual list_add inside
912 * add_wait_queue critical section. So use a full
913 * memory barrier to serialize the list_add write of
914 * add_wait_queue() with the waitqueue_active read
915 * below.
916 */
917 ret = 0;
918 smp_mb();
919 if (waitqueue_active(&ctx->fault_pending_wqh))
920 ret = POLLIN;
921 else if (waitqueue_active(&ctx->event_wqh))
922 ret = POLLIN;
923
924 return ret;
925 default:
926 WARN_ON_ONCE(1);
927 return POLLERR;
928 }
929 }
930
931 static const struct file_operations userfaultfd_fops;
932
933 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
934 struct userfaultfd_ctx *new,
935 struct uffd_msg *msg)
936 {
937 int fd;
938 struct file *file;
939 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
940
941 fd = get_unused_fd_flags(flags);
942 if (fd < 0)
943 return fd;
944
945 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
946 O_RDWR | flags);
947 if (IS_ERR(file)) {
948 put_unused_fd(fd);
949 return PTR_ERR(file);
950 }
951
952 fd_install(fd, file);
953 msg->arg.reserved.reserved1 = 0;
954 msg->arg.fork.ufd = fd;
955
956 return 0;
957 }
958
959 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
960 struct uffd_msg *msg)
961 {
962 ssize_t ret;
963 DECLARE_WAITQUEUE(wait, current);
964 struct userfaultfd_wait_queue *uwq;
965 /*
966 * Handling fork event requires sleeping operations, so
967 * we drop the event_wqh lock, then do these ops, then
968 * lock it back and wake up the waiter. While the lock is
969 * dropped the ewq may go away so we keep track of it
970 * carefully.
971 */
972 LIST_HEAD(fork_event);
973 struct userfaultfd_ctx *fork_nctx = NULL;
974
975 /* always take the fd_wqh lock before the fault_pending_wqh lock */
976 spin_lock(&ctx->fd_wqh.lock);
977 __add_wait_queue(&ctx->fd_wqh, &wait);
978 for (;;) {
979 set_current_state(TASK_INTERRUPTIBLE);
980 spin_lock(&ctx->fault_pending_wqh.lock);
981 uwq = find_userfault(ctx);
982 if (uwq) {
983 /*
984 * Use a seqcount to repeat the lockless check
985 * in wake_userfault() to avoid missing
986 * wakeups because during the refile both
987 * waitqueue could become empty if this is the
988 * only userfault.
989 */
990 write_seqcount_begin(&ctx->refile_seq);
991
992 /*
993 * The fault_pending_wqh.lock prevents the uwq
994 * to disappear from under us.
995 *
996 * Refile this userfault from
997 * fault_pending_wqh to fault_wqh, it's not
998 * pending anymore after we read it.
999 *
1000 * Use list_del() by hand (as
1001 * userfaultfd_wake_function also uses
1002 * list_del_init() by hand) to be sure nobody
1003 * changes __remove_wait_queue() to use
1004 * list_del_init() in turn breaking the
1005 * !list_empty_careful() check in
1006 * handle_userfault(). The uwq->wq.task_list
1007 * must never be empty at any time during the
1008 * refile, or the waitqueue could disappear
1009 * from under us. The "wait_queue_head_t"
1010 * parameter of __remove_wait_queue() is unused
1011 * anyway.
1012 */
1013 list_del(&uwq->wq.task_list);
1014 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1015
1016 write_seqcount_end(&ctx->refile_seq);
1017
1018 /* careful to always initialize msg if ret == 0 */
1019 *msg = uwq->msg;
1020 spin_unlock(&ctx->fault_pending_wqh.lock);
1021 ret = 0;
1022 break;
1023 }
1024 spin_unlock(&ctx->fault_pending_wqh.lock);
1025
1026 spin_lock(&ctx->event_wqh.lock);
1027 uwq = find_userfault_evt(ctx);
1028 if (uwq) {
1029 *msg = uwq->msg;
1030
1031 if (uwq->msg.event == UFFD_EVENT_FORK) {
1032 fork_nctx = (struct userfaultfd_ctx *)
1033 (unsigned long)
1034 uwq->msg.arg.reserved.reserved1;
1035 list_move(&uwq->wq.task_list, &fork_event);
1036 spin_unlock(&ctx->event_wqh.lock);
1037 ret = 0;
1038 break;
1039 }
1040
1041 userfaultfd_event_complete(ctx, uwq);
1042 spin_unlock(&ctx->event_wqh.lock);
1043 ret = 0;
1044 break;
1045 }
1046 spin_unlock(&ctx->event_wqh.lock);
1047
1048 if (signal_pending(current)) {
1049 ret = -ERESTARTSYS;
1050 break;
1051 }
1052 if (no_wait) {
1053 ret = -EAGAIN;
1054 break;
1055 }
1056 spin_unlock(&ctx->fd_wqh.lock);
1057 schedule();
1058 spin_lock(&ctx->fd_wqh.lock);
1059 }
1060 __remove_wait_queue(&ctx->fd_wqh, &wait);
1061 __set_current_state(TASK_RUNNING);
1062 spin_unlock(&ctx->fd_wqh.lock);
1063
1064 if (!ret && msg->event == UFFD_EVENT_FORK) {
1065 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1066
1067 if (!ret) {
1068 spin_lock(&ctx->event_wqh.lock);
1069 if (!list_empty(&fork_event)) {
1070 uwq = list_first_entry(&fork_event,
1071 typeof(*uwq),
1072 wq.task_list);
1073 list_del(&uwq->wq.task_list);
1074 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1075 userfaultfd_event_complete(ctx, uwq);
1076 }
1077 spin_unlock(&ctx->event_wqh.lock);
1078 }
1079 }
1080
1081 return ret;
1082 }
1083
1084 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1085 size_t count, loff_t *ppos)
1086 {
1087 struct userfaultfd_ctx *ctx = file->private_data;
1088 ssize_t _ret, ret = 0;
1089 struct uffd_msg msg;
1090 int no_wait = file->f_flags & O_NONBLOCK;
1091
1092 if (ctx->state == UFFD_STATE_WAIT_API)
1093 return -EINVAL;
1094
1095 for (;;) {
1096 if (count < sizeof(msg))
1097 return ret ? ret : -EINVAL;
1098 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1099 if (_ret < 0)
1100 return ret ? ret : _ret;
1101 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1102 return ret ? ret : -EFAULT;
1103 ret += sizeof(msg);
1104 buf += sizeof(msg);
1105 count -= sizeof(msg);
1106 /*
1107 * Allow to read more than one fault at time but only
1108 * block if waiting for the very first one.
1109 */
1110 no_wait = O_NONBLOCK;
1111 }
1112 }
1113
1114 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1115 struct userfaultfd_wake_range *range)
1116 {
1117 unsigned long start, end;
1118
1119 start = range->start;
1120 end = range->start + range->len;
1121
1122 spin_lock(&ctx->fault_pending_wqh.lock);
1123 /* wake all in the range and autoremove */
1124 if (waitqueue_active(&ctx->fault_pending_wqh))
1125 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1126 range);
1127 if (waitqueue_active(&ctx->fault_wqh))
1128 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1129 spin_unlock(&ctx->fault_pending_wqh.lock);
1130 }
1131
1132 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1133 struct userfaultfd_wake_range *range)
1134 {
1135 unsigned seq;
1136 bool need_wakeup;
1137
1138 /*
1139 * To be sure waitqueue_active() is not reordered by the CPU
1140 * before the pagetable update, use an explicit SMP memory
1141 * barrier here. PT lock release or up_read(mmap_sem) still
1142 * have release semantics that can allow the
1143 * waitqueue_active() to be reordered before the pte update.
1144 */
1145 smp_mb();
1146
1147 /*
1148 * Use waitqueue_active because it's very frequent to
1149 * change the address space atomically even if there are no
1150 * userfaults yet. So we take the spinlock only when we're
1151 * sure we've userfaults to wake.
1152 */
1153 do {
1154 seq = read_seqcount_begin(&ctx->refile_seq);
1155 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1156 waitqueue_active(&ctx->fault_wqh);
1157 cond_resched();
1158 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1159 if (need_wakeup)
1160 __wake_userfault(ctx, range);
1161 }
1162
1163 static __always_inline int validate_range(struct mm_struct *mm,
1164 __u64 start, __u64 len)
1165 {
1166 __u64 task_size = mm->task_size;
1167
1168 if (start & ~PAGE_MASK)
1169 return -EINVAL;
1170 if (len & ~PAGE_MASK)
1171 return -EINVAL;
1172 if (!len)
1173 return -EINVAL;
1174 if (start < mmap_min_addr)
1175 return -EINVAL;
1176 if (start >= task_size)
1177 return -EINVAL;
1178 if (len > task_size - start)
1179 return -EINVAL;
1180 return 0;
1181 }
1182
1183 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1184 {
1185 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1186 vma_is_shmem(vma);
1187 }
1188
1189 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1190 unsigned long arg)
1191 {
1192 struct mm_struct *mm = ctx->mm;
1193 struct vm_area_struct *vma, *prev, *cur;
1194 int ret;
1195 struct uffdio_register uffdio_register;
1196 struct uffdio_register __user *user_uffdio_register;
1197 unsigned long vm_flags, new_flags;
1198 bool found;
1199 bool non_anon_pages;
1200 unsigned long start, end, vma_end;
1201
1202 user_uffdio_register = (struct uffdio_register __user *) arg;
1203
1204 ret = -EFAULT;
1205 if (copy_from_user(&uffdio_register, user_uffdio_register,
1206 sizeof(uffdio_register)-sizeof(__u64)))
1207 goto out;
1208
1209 ret = -EINVAL;
1210 if (!uffdio_register.mode)
1211 goto out;
1212 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1213 UFFDIO_REGISTER_MODE_WP))
1214 goto out;
1215 vm_flags = 0;
1216 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1217 vm_flags |= VM_UFFD_MISSING;
1218 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1219 vm_flags |= VM_UFFD_WP;
1220 /*
1221 * FIXME: remove the below error constraint by
1222 * implementing the wprotect tracking mode.
1223 */
1224 ret = -EINVAL;
1225 goto out;
1226 }
1227
1228 ret = validate_range(mm, uffdio_register.range.start,
1229 uffdio_register.range.len);
1230 if (ret)
1231 goto out;
1232
1233 start = uffdio_register.range.start;
1234 end = start + uffdio_register.range.len;
1235
1236 ret = -ENOMEM;
1237 if (!mmget_not_zero(mm))
1238 goto out;
1239
1240 down_write(&mm->mmap_sem);
1241 vma = find_vma_prev(mm, start, &prev);
1242 if (!vma)
1243 goto out_unlock;
1244
1245 /* check that there's at least one vma in the range */
1246 ret = -EINVAL;
1247 if (vma->vm_start >= end)
1248 goto out_unlock;
1249
1250 /*
1251 * If the first vma contains huge pages, make sure start address
1252 * is aligned to huge page size.
1253 */
1254 if (is_vm_hugetlb_page(vma)) {
1255 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1256
1257 if (start & (vma_hpagesize - 1))
1258 goto out_unlock;
1259 }
1260
1261 /*
1262 * Search for not compatible vmas.
1263 */
1264 found = false;
1265 non_anon_pages = false;
1266 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1267 cond_resched();
1268
1269 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1270 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1271
1272 /* check not compatible vmas */
1273 ret = -EINVAL;
1274 if (!vma_can_userfault(cur))
1275 goto out_unlock;
1276 /*
1277 * If this vma contains ending address, and huge pages
1278 * check alignment.
1279 */
1280 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1281 end > cur->vm_start) {
1282 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1283
1284 ret = -EINVAL;
1285
1286 if (end & (vma_hpagesize - 1))
1287 goto out_unlock;
1288 }
1289
1290 /*
1291 * Check that this vma isn't already owned by a
1292 * different userfaultfd. We can't allow more than one
1293 * userfaultfd to own a single vma simultaneously or we
1294 * wouldn't know which one to deliver the userfaults to.
1295 */
1296 ret = -EBUSY;
1297 if (cur->vm_userfaultfd_ctx.ctx &&
1298 cur->vm_userfaultfd_ctx.ctx != ctx)
1299 goto out_unlock;
1300
1301 /*
1302 * Note vmas containing huge pages
1303 */
1304 if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur))
1305 non_anon_pages = true;
1306
1307 found = true;
1308 }
1309 BUG_ON(!found);
1310
1311 if (vma->vm_start < start)
1312 prev = vma;
1313
1314 ret = 0;
1315 do {
1316 cond_resched();
1317
1318 BUG_ON(!vma_can_userfault(vma));
1319 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1320 vma->vm_userfaultfd_ctx.ctx != ctx);
1321
1322 /*
1323 * Nothing to do: this vma is already registered into this
1324 * userfaultfd and with the right tracking mode too.
1325 */
1326 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1327 (vma->vm_flags & vm_flags) == vm_flags)
1328 goto skip;
1329
1330 if (vma->vm_start > start)
1331 start = vma->vm_start;
1332 vma_end = min(end, vma->vm_end);
1333
1334 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1335 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1336 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1337 vma_policy(vma),
1338 ((struct vm_userfaultfd_ctx){ ctx }));
1339 if (prev) {
1340 vma = prev;
1341 goto next;
1342 }
1343 if (vma->vm_start < start) {
1344 ret = split_vma(mm, vma, start, 1);
1345 if (ret)
1346 break;
1347 }
1348 if (vma->vm_end > end) {
1349 ret = split_vma(mm, vma, end, 0);
1350 if (ret)
1351 break;
1352 }
1353 next:
1354 /*
1355 * In the vma_merge() successful mprotect-like case 8:
1356 * the next vma was merged into the current one and
1357 * the current one has not been updated yet.
1358 */
1359 vma->vm_flags = new_flags;
1360 vma->vm_userfaultfd_ctx.ctx = ctx;
1361
1362 skip:
1363 prev = vma;
1364 start = vma->vm_end;
1365 vma = vma->vm_next;
1366 } while (vma && vma->vm_start < end);
1367 out_unlock:
1368 up_write(&mm->mmap_sem);
1369 mmput(mm);
1370 if (!ret) {
1371 /*
1372 * Now that we scanned all vmas we can already tell
1373 * userland which ioctls methods are guaranteed to
1374 * succeed on this range.
1375 */
1376 if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC :
1377 UFFD_API_RANGE_IOCTLS,
1378 &user_uffdio_register->ioctls))
1379 ret = -EFAULT;
1380 }
1381 out:
1382 return ret;
1383 }
1384
1385 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1386 unsigned long arg)
1387 {
1388 struct mm_struct *mm = ctx->mm;
1389 struct vm_area_struct *vma, *prev, *cur;
1390 int ret;
1391 struct uffdio_range uffdio_unregister;
1392 unsigned long new_flags;
1393 bool found;
1394 unsigned long start, end, vma_end;
1395 const void __user *buf = (void __user *)arg;
1396
1397 ret = -EFAULT;
1398 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1399 goto out;
1400
1401 ret = validate_range(mm, uffdio_unregister.start,
1402 uffdio_unregister.len);
1403 if (ret)
1404 goto out;
1405
1406 start = uffdio_unregister.start;
1407 end = start + uffdio_unregister.len;
1408
1409 ret = -ENOMEM;
1410 if (!mmget_not_zero(mm))
1411 goto out;
1412
1413 down_write(&mm->mmap_sem);
1414 vma = find_vma_prev(mm, start, &prev);
1415 if (!vma)
1416 goto out_unlock;
1417
1418 /* check that there's at least one vma in the range */
1419 ret = -EINVAL;
1420 if (vma->vm_start >= end)
1421 goto out_unlock;
1422
1423 /*
1424 * If the first vma contains huge pages, make sure start address
1425 * is aligned to huge page size.
1426 */
1427 if (is_vm_hugetlb_page(vma)) {
1428 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1429
1430 if (start & (vma_hpagesize - 1))
1431 goto out_unlock;
1432 }
1433
1434 /*
1435 * Search for not compatible vmas.
1436 */
1437 found = false;
1438 ret = -EINVAL;
1439 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1440 cond_resched();
1441
1442 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1443 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1444
1445 /*
1446 * Check not compatible vmas, not strictly required
1447 * here as not compatible vmas cannot have an
1448 * userfaultfd_ctx registered on them, but this
1449 * provides for more strict behavior to notice
1450 * unregistration errors.
1451 */
1452 if (!vma_can_userfault(cur))
1453 goto out_unlock;
1454
1455 found = true;
1456 }
1457 BUG_ON(!found);
1458
1459 if (vma->vm_start < start)
1460 prev = vma;
1461
1462 ret = 0;
1463 do {
1464 cond_resched();
1465
1466 BUG_ON(!vma_can_userfault(vma));
1467
1468 /*
1469 * Nothing to do: this vma is already registered into this
1470 * userfaultfd and with the right tracking mode too.
1471 */
1472 if (!vma->vm_userfaultfd_ctx.ctx)
1473 goto skip;
1474
1475 if (vma->vm_start > start)
1476 start = vma->vm_start;
1477 vma_end = min(end, vma->vm_end);
1478
1479 if (userfaultfd_missing(vma)) {
1480 /*
1481 * Wake any concurrent pending userfault while
1482 * we unregister, so they will not hang
1483 * permanently and it avoids userland to call
1484 * UFFDIO_WAKE explicitly.
1485 */
1486 struct userfaultfd_wake_range range;
1487 range.start = start;
1488 range.len = vma_end - start;
1489 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1490 }
1491
1492 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1493 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1494 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1495 vma_policy(vma),
1496 NULL_VM_UFFD_CTX);
1497 if (prev) {
1498 vma = prev;
1499 goto next;
1500 }
1501 if (vma->vm_start < start) {
1502 ret = split_vma(mm, vma, start, 1);
1503 if (ret)
1504 break;
1505 }
1506 if (vma->vm_end > end) {
1507 ret = split_vma(mm, vma, end, 0);
1508 if (ret)
1509 break;
1510 }
1511 next:
1512 /*
1513 * In the vma_merge() successful mprotect-like case 8:
1514 * the next vma was merged into the current one and
1515 * the current one has not been updated yet.
1516 */
1517 vma->vm_flags = new_flags;
1518 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1519
1520 skip:
1521 prev = vma;
1522 start = vma->vm_end;
1523 vma = vma->vm_next;
1524 } while (vma && vma->vm_start < end);
1525 out_unlock:
1526 up_write(&mm->mmap_sem);
1527 mmput(mm);
1528 out:
1529 return ret;
1530 }
1531
1532 /*
1533 * userfaultfd_wake may be used in combination with the
1534 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1535 */
1536 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1537 unsigned long arg)
1538 {
1539 int ret;
1540 struct uffdio_range uffdio_wake;
1541 struct userfaultfd_wake_range range;
1542 const void __user *buf = (void __user *)arg;
1543
1544 ret = -EFAULT;
1545 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1546 goto out;
1547
1548 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1549 if (ret)
1550 goto out;
1551
1552 range.start = uffdio_wake.start;
1553 range.len = uffdio_wake.len;
1554
1555 /*
1556 * len == 0 means wake all and we don't want to wake all here,
1557 * so check it again to be sure.
1558 */
1559 VM_BUG_ON(!range.len);
1560
1561 wake_userfault(ctx, &range);
1562 ret = 0;
1563
1564 out:
1565 return ret;
1566 }
1567
1568 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1569 unsigned long arg)
1570 {
1571 __s64 ret;
1572 struct uffdio_copy uffdio_copy;
1573 struct uffdio_copy __user *user_uffdio_copy;
1574 struct userfaultfd_wake_range range;
1575
1576 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1577
1578 ret = -EFAULT;
1579 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1580 /* don't copy "copy" last field */
1581 sizeof(uffdio_copy)-sizeof(__s64)))
1582 goto out;
1583
1584 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1585 if (ret)
1586 goto out;
1587 /*
1588 * double check for wraparound just in case. copy_from_user()
1589 * will later check uffdio_copy.src + uffdio_copy.len to fit
1590 * in the userland range.
1591 */
1592 ret = -EINVAL;
1593 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1594 goto out;
1595 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1596 goto out;
1597 if (mmget_not_zero(ctx->mm)) {
1598 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1599 uffdio_copy.len);
1600 mmput(ctx->mm);
1601 } else {
1602 return -ENOSPC;
1603 }
1604 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1605 return -EFAULT;
1606 if (ret < 0)
1607 goto out;
1608 BUG_ON(!ret);
1609 /* len == 0 would wake all */
1610 range.len = ret;
1611 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1612 range.start = uffdio_copy.dst;
1613 wake_userfault(ctx, &range);
1614 }
1615 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1616 out:
1617 return ret;
1618 }
1619
1620 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1621 unsigned long arg)
1622 {
1623 __s64 ret;
1624 struct uffdio_zeropage uffdio_zeropage;
1625 struct uffdio_zeropage __user *user_uffdio_zeropage;
1626 struct userfaultfd_wake_range range;
1627
1628 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1629
1630 ret = -EFAULT;
1631 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1632 /* don't copy "zeropage" last field */
1633 sizeof(uffdio_zeropage)-sizeof(__s64)))
1634 goto out;
1635
1636 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1637 uffdio_zeropage.range.len);
1638 if (ret)
1639 goto out;
1640 ret = -EINVAL;
1641 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1642 goto out;
1643
1644 if (mmget_not_zero(ctx->mm)) {
1645 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1646 uffdio_zeropage.range.len);
1647 mmput(ctx->mm);
1648 }
1649 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1650 return -EFAULT;
1651 if (ret < 0)
1652 goto out;
1653 /* len == 0 would wake all */
1654 BUG_ON(!ret);
1655 range.len = ret;
1656 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1657 range.start = uffdio_zeropage.range.start;
1658 wake_userfault(ctx, &range);
1659 }
1660 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1661 out:
1662 return ret;
1663 }
1664
1665 static inline unsigned int uffd_ctx_features(__u64 user_features)
1666 {
1667 /*
1668 * For the current set of features the bits just coincide
1669 */
1670 return (unsigned int)user_features;
1671 }
1672
1673 /*
1674 * userland asks for a certain API version and we return which bits
1675 * and ioctl commands are implemented in this kernel for such API
1676 * version or -EINVAL if unknown.
1677 */
1678 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1679 unsigned long arg)
1680 {
1681 struct uffdio_api uffdio_api;
1682 void __user *buf = (void __user *)arg;
1683 int ret;
1684 __u64 features;
1685
1686 ret = -EINVAL;
1687 if (ctx->state != UFFD_STATE_WAIT_API)
1688 goto out;
1689 ret = -EFAULT;
1690 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1691 goto out;
1692 features = uffdio_api.features;
1693 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1694 memset(&uffdio_api, 0, sizeof(uffdio_api));
1695 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1696 goto out;
1697 ret = -EINVAL;
1698 goto out;
1699 }
1700 /* report all available features and ioctls to userland */
1701 uffdio_api.features = UFFD_API_FEATURES;
1702 uffdio_api.ioctls = UFFD_API_IOCTLS;
1703 ret = -EFAULT;
1704 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1705 goto out;
1706 ctx->state = UFFD_STATE_RUNNING;
1707 /* only enable the requested features for this uffd context */
1708 ctx->features = uffd_ctx_features(features);
1709 ret = 0;
1710 out:
1711 return ret;
1712 }
1713
1714 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1715 unsigned long arg)
1716 {
1717 int ret = -EINVAL;
1718 struct userfaultfd_ctx *ctx = file->private_data;
1719
1720 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1721 return -EINVAL;
1722
1723 switch(cmd) {
1724 case UFFDIO_API:
1725 ret = userfaultfd_api(ctx, arg);
1726 break;
1727 case UFFDIO_REGISTER:
1728 ret = userfaultfd_register(ctx, arg);
1729 break;
1730 case UFFDIO_UNREGISTER:
1731 ret = userfaultfd_unregister(ctx, arg);
1732 break;
1733 case UFFDIO_WAKE:
1734 ret = userfaultfd_wake(ctx, arg);
1735 break;
1736 case UFFDIO_COPY:
1737 ret = userfaultfd_copy(ctx, arg);
1738 break;
1739 case UFFDIO_ZEROPAGE:
1740 ret = userfaultfd_zeropage(ctx, arg);
1741 break;
1742 }
1743 return ret;
1744 }
1745
1746 #ifdef CONFIG_PROC_FS
1747 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1748 {
1749 struct userfaultfd_ctx *ctx = f->private_data;
1750 wait_queue_t *wq;
1751 struct userfaultfd_wait_queue *uwq;
1752 unsigned long pending = 0, total = 0;
1753
1754 spin_lock(&ctx->fault_pending_wqh.lock);
1755 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1756 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1757 pending++;
1758 total++;
1759 }
1760 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1761 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1762 total++;
1763 }
1764 spin_unlock(&ctx->fault_pending_wqh.lock);
1765
1766 /*
1767 * If more protocols will be added, there will be all shown
1768 * separated by a space. Like this:
1769 * protocols: aa:... bb:...
1770 */
1771 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1772 pending, total, UFFD_API, ctx->features,
1773 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1774 }
1775 #endif
1776
1777 static const struct file_operations userfaultfd_fops = {
1778 #ifdef CONFIG_PROC_FS
1779 .show_fdinfo = userfaultfd_show_fdinfo,
1780 #endif
1781 .release = userfaultfd_release,
1782 .poll = userfaultfd_poll,
1783 .read = userfaultfd_read,
1784 .unlocked_ioctl = userfaultfd_ioctl,
1785 .compat_ioctl = userfaultfd_ioctl,
1786 .llseek = noop_llseek,
1787 };
1788
1789 static void init_once_userfaultfd_ctx(void *mem)
1790 {
1791 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1792
1793 init_waitqueue_head(&ctx->fault_pending_wqh);
1794 init_waitqueue_head(&ctx->fault_wqh);
1795 init_waitqueue_head(&ctx->event_wqh);
1796 init_waitqueue_head(&ctx->fd_wqh);
1797 seqcount_init(&ctx->refile_seq);
1798 }
1799
1800 /**
1801 * userfaultfd_file_create - Creates a userfaultfd file pointer.
1802 * @flags: Flags for the userfaultfd file.
1803 *
1804 * This function creates a userfaultfd file pointer, w/out installing
1805 * it into the fd table. This is useful when the userfaultfd file is
1806 * used during the initialization of data structures that require
1807 * extra setup after the userfaultfd creation. So the userfaultfd
1808 * creation is split into the file pointer creation phase, and the
1809 * file descriptor installation phase. In this way races with
1810 * userspace closing the newly installed file descriptor can be
1811 * avoided. Returns a userfaultfd file pointer, or a proper error
1812 * pointer.
1813 */
1814 static struct file *userfaultfd_file_create(int flags)
1815 {
1816 struct file *file;
1817 struct userfaultfd_ctx *ctx;
1818
1819 BUG_ON(!current->mm);
1820
1821 /* Check the UFFD_* constants for consistency. */
1822 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1823 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1824
1825 file = ERR_PTR(-EINVAL);
1826 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1827 goto out;
1828
1829 file = ERR_PTR(-ENOMEM);
1830 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1831 if (!ctx)
1832 goto out;
1833
1834 atomic_set(&ctx->refcount, 1);
1835 ctx->flags = flags;
1836 ctx->features = 0;
1837 ctx->state = UFFD_STATE_WAIT_API;
1838 ctx->released = false;
1839 ctx->mm = current->mm;
1840 /* prevent the mm struct to be freed */
1841 mmgrab(ctx->mm);
1842
1843 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1844 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1845 if (IS_ERR(file)) {
1846 mmdrop(ctx->mm);
1847 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1848 }
1849 out:
1850 return file;
1851 }
1852
1853 SYSCALL_DEFINE1(userfaultfd, int, flags)
1854 {
1855 int fd, error;
1856 struct file *file;
1857
1858 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1859 if (error < 0)
1860 return error;
1861 fd = error;
1862
1863 file = userfaultfd_file_create(flags);
1864 if (IS_ERR(file)) {
1865 error = PTR_ERR(file);
1866 goto err_put_unused_fd;
1867 }
1868 fd_install(fd, file);
1869
1870 return fd;
1871
1872 err_put_unused_fd:
1873 put_unused_fd(fd);
1874
1875 return error;
1876 }
1877
1878 static int __init userfaultfd_init(void)
1879 {
1880 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1881 sizeof(struct userfaultfd_ctx),
1882 0,
1883 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1884 init_once_userfaultfd_ctx);
1885 return 0;
1886 }
1887 __initcall(userfaultfd_init);