]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/userfaultfd.c
UBUNTU: Ubuntu-4.15.0-39.42
[mirror_ubuntu-bionic-kernel.git] / fs / userfaultfd.c
1 /*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38 };
39
40 /*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
44 struct userfaultfd_ctx {
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
55 /* pseudo fd refcounting */
56 atomic_t refcount;
57 /* userfaultfd syscall flags */
58 unsigned int flags;
59 /* features requested from the userspace */
60 unsigned int features;
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67 };
68
69 struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73 };
74
75 struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80 };
81
82 struct userfaultfd_wait_queue {
83 struct uffd_msg msg;
84 wait_queue_entry_t wq;
85 struct userfaultfd_ctx *ctx;
86 bool waken;
87 };
88
89 struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92 };
93
94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
95 int wake_flags, void *key)
96 {
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
109 goto out;
110 WRITE_ONCE(uwq->waken, true);
111 /*
112 * The Program-Order guarantees provided by the scheduler
113 * ensure uwq->waken is visible before the task is woken.
114 */
115 ret = wake_up_state(wq->private, mode);
116 if (ret) {
117 /*
118 * Wake only once, autoremove behavior.
119 *
120 * After the effect of list_del_init is visible to the other
121 * CPUs, the waitqueue may disappear from under us, see the
122 * !list_empty_careful() in handle_userfault().
123 *
124 * try_to_wake_up() has an implicit smp_mb(), and the
125 * wq->private is read before calling the extern function
126 * "wake_up_state" (which in turns calls try_to_wake_up).
127 */
128 list_del_init(&wq->entry);
129 }
130 out:
131 return ret;
132 }
133
134 /**
135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136 * context.
137 * @ctx: [in] Pointer to the userfaultfd context.
138 */
139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140 {
141 if (!atomic_inc_not_zero(&ctx->refcount))
142 BUG();
143 }
144
145 /**
146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147 * context.
148 * @ctx: [in] Pointer to userfaultfd context.
149 *
150 * The userfaultfd context reference must have been previously acquired either
151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152 */
153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154 {
155 if (atomic_dec_and_test(&ctx->refcount)) {
156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
164 mmdrop(ctx->mm);
165 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
166 }
167 }
168
169 static inline void msg_init(struct uffd_msg *msg)
170 {
171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172 /*
173 * Must use memset to zero out the paddings or kernel data is
174 * leaked to userland.
175 */
176 memset(msg, 0, sizeof(struct uffd_msg));
177 }
178
179 static inline struct uffd_msg userfault_msg(unsigned long address,
180 unsigned int flags,
181 unsigned long reason,
182 unsigned int features)
183 {
184 struct uffd_msg msg;
185 msg_init(&msg);
186 msg.event = UFFD_EVENT_PAGEFAULT;
187 msg.arg.pagefault.address = address;
188 if (flags & FAULT_FLAG_WRITE)
189 /*
190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 * was a read fault, otherwise if set it means it's
194 * a write fault.
195 */
196 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
197 if (reason & VM_UFFD_WP)
198 /*
199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 * a missing fault, otherwise if set it means it's a
203 * write protect fault.
204 */
205 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
206 if (features & UFFD_FEATURE_THREAD_ID)
207 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
208 return msg;
209 }
210
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213 * Same functionality as userfaultfd_must_wait below with modifications for
214 * hugepmd ranges.
215 */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 struct vm_area_struct *vma,
218 unsigned long address,
219 unsigned long flags,
220 unsigned long reason)
221 {
222 struct mm_struct *mm = ctx->mm;
223 pte_t *pte;
224 bool ret = true;
225
226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227
228 pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229 if (!pte)
230 goto out;
231
232 ret = false;
233
234 /*
235 * Lockless access: we're in a wait_event so it's ok if it
236 * changes under us.
237 */
238 if (huge_pte_none(*pte))
239 ret = true;
240 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
241 ret = true;
242 out:
243 return ret;
244 }
245 #else
246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
247 struct vm_area_struct *vma,
248 unsigned long address,
249 unsigned long flags,
250 unsigned long reason)
251 {
252 return false; /* should never get here */
253 }
254 #endif /* CONFIG_HUGETLB_PAGE */
255
256 /*
257 * Verify the pagetables are still not ok after having reigstered into
258 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259 * userfault that has already been resolved, if userfaultfd_read and
260 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
261 * threads.
262 */
263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
264 unsigned long address,
265 unsigned long flags,
266 unsigned long reason)
267 {
268 struct mm_struct *mm = ctx->mm;
269 pgd_t *pgd;
270 p4d_t *p4d;
271 pud_t *pud;
272 pmd_t *pmd, _pmd;
273 pte_t *pte;
274 bool ret = true;
275
276 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
277
278 pgd = pgd_offset(mm, address);
279 if (!pgd_present(*pgd))
280 goto out;
281 p4d = p4d_offset(pgd, address);
282 if (!p4d_present(*p4d))
283 goto out;
284 pud = pud_offset(p4d, address);
285 if (!pud_present(*pud))
286 goto out;
287 pmd = pmd_offset(pud, address);
288 /*
289 * READ_ONCE must function as a barrier with narrower scope
290 * and it must be equivalent to:
291 * _pmd = *pmd; barrier();
292 *
293 * This is to deal with the instability (as in
294 * pmd_trans_unstable) of the pmd.
295 */
296 _pmd = READ_ONCE(*pmd);
297 if (!pmd_present(_pmd))
298 goto out;
299
300 ret = false;
301 if (pmd_trans_huge(_pmd))
302 goto out;
303
304 /*
305 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
306 * and use the standard pte_offset_map() instead of parsing _pmd.
307 */
308 pte = pte_offset_map(pmd, address);
309 /*
310 * Lockless access: we're in a wait_event so it's ok if it
311 * changes under us.
312 */
313 if (pte_none(*pte))
314 ret = true;
315 pte_unmap(pte);
316
317 out:
318 return ret;
319 }
320
321 /*
322 * The locking rules involved in returning VM_FAULT_RETRY depending on
323 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
324 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
325 * recommendation in __lock_page_or_retry is not an understatement.
326 *
327 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
328 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
329 * not set.
330 *
331 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
332 * set, VM_FAULT_RETRY can still be returned if and only if there are
333 * fatal_signal_pending()s, and the mmap_sem must be released before
334 * returning it.
335 */
336 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
337 {
338 struct mm_struct *mm = vmf->vma->vm_mm;
339 struct userfaultfd_ctx *ctx;
340 struct userfaultfd_wait_queue uwq;
341 int ret;
342 bool must_wait, return_to_userland;
343 long blocking_state;
344
345 ret = VM_FAULT_SIGBUS;
346
347 /*
348 * We don't do userfault handling for the final child pid update.
349 *
350 * We also don't do userfault handling during
351 * coredumping. hugetlbfs has the special
352 * follow_hugetlb_page() to skip missing pages in the
353 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
354 * the no_page_table() helper in follow_page_mask(), but the
355 * shmem_vm_ops->fault method is invoked even during
356 * coredumping without mmap_sem and it ends up here.
357 */
358 if (current->flags & (PF_EXITING|PF_DUMPCORE))
359 goto out;
360
361 /*
362 * Coredumping runs without mmap_sem so we can only check that
363 * the mmap_sem is held, if PF_DUMPCORE was not set.
364 */
365 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
366
367 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
368 if (!ctx)
369 goto out;
370
371 BUG_ON(ctx->mm != mm);
372
373 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
374 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
375
376 if (ctx->features & UFFD_FEATURE_SIGBUS)
377 goto out;
378
379 /*
380 * If it's already released don't get it. This avoids to loop
381 * in __get_user_pages if userfaultfd_release waits on the
382 * caller of handle_userfault to release the mmap_sem.
383 */
384 if (unlikely(READ_ONCE(ctx->released))) {
385 /*
386 * Don't return VM_FAULT_SIGBUS in this case, so a non
387 * cooperative manager can close the uffd after the
388 * last UFFDIO_COPY, without risking to trigger an
389 * involuntary SIGBUS if the process was starting the
390 * userfaultfd while the userfaultfd was still armed
391 * (but after the last UFFDIO_COPY). If the uffd
392 * wasn't already closed when the userfault reached
393 * this point, that would normally be solved by
394 * userfaultfd_must_wait returning 'false'.
395 *
396 * If we were to return VM_FAULT_SIGBUS here, the non
397 * cooperative manager would be instead forced to
398 * always call UFFDIO_UNREGISTER before it can safely
399 * close the uffd.
400 */
401 ret = VM_FAULT_NOPAGE;
402 goto out;
403 }
404
405 /*
406 * Check that we can return VM_FAULT_RETRY.
407 *
408 * NOTE: it should become possible to return VM_FAULT_RETRY
409 * even if FAULT_FLAG_TRIED is set without leading to gup()
410 * -EBUSY failures, if the userfaultfd is to be extended for
411 * VM_UFFD_WP tracking and we intend to arm the userfault
412 * without first stopping userland access to the memory. For
413 * VM_UFFD_MISSING userfaults this is enough for now.
414 */
415 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
416 /*
417 * Validate the invariant that nowait must allow retry
418 * to be sure not to return SIGBUS erroneously on
419 * nowait invocations.
420 */
421 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
422 #ifdef CONFIG_DEBUG_VM
423 if (printk_ratelimit()) {
424 printk(KERN_WARNING
425 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
426 vmf->flags);
427 dump_stack();
428 }
429 #endif
430 goto out;
431 }
432
433 /*
434 * Handle nowait, not much to do other than tell it to retry
435 * and wait.
436 */
437 ret = VM_FAULT_RETRY;
438 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
439 goto out;
440
441 /* take the reference before dropping the mmap_sem */
442 userfaultfd_ctx_get(ctx);
443
444 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
445 uwq.wq.private = current;
446 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
447 ctx->features);
448 uwq.ctx = ctx;
449 uwq.waken = false;
450
451 return_to_userland =
452 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
453 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
454 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
455 TASK_KILLABLE;
456
457 spin_lock(&ctx->fault_pending_wqh.lock);
458 /*
459 * After the __add_wait_queue the uwq is visible to userland
460 * through poll/read().
461 */
462 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
463 /*
464 * The smp_mb() after __set_current_state prevents the reads
465 * following the spin_unlock to happen before the list_add in
466 * __add_wait_queue.
467 */
468 set_current_state(blocking_state);
469 spin_unlock(&ctx->fault_pending_wqh.lock);
470
471 if (!is_vm_hugetlb_page(vmf->vma))
472 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
473 reason);
474 else
475 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
476 vmf->address,
477 vmf->flags, reason);
478 up_read(&mm->mmap_sem);
479
480 if (likely(must_wait && !READ_ONCE(ctx->released) &&
481 (return_to_userland ? !signal_pending(current) :
482 !fatal_signal_pending(current)))) {
483 wake_up_poll(&ctx->fd_wqh, POLLIN);
484 schedule();
485 ret |= VM_FAULT_MAJOR;
486
487 /*
488 * False wakeups can orginate even from rwsem before
489 * up_read() however userfaults will wait either for a
490 * targeted wakeup on the specific uwq waitqueue from
491 * wake_userfault() or for signals or for uffd
492 * release.
493 */
494 while (!READ_ONCE(uwq.waken)) {
495 /*
496 * This needs the full smp_store_mb()
497 * guarantee as the state write must be
498 * visible to other CPUs before reading
499 * uwq.waken from other CPUs.
500 */
501 set_current_state(blocking_state);
502 if (READ_ONCE(uwq.waken) ||
503 READ_ONCE(ctx->released) ||
504 (return_to_userland ? signal_pending(current) :
505 fatal_signal_pending(current)))
506 break;
507 schedule();
508 }
509 }
510
511 __set_current_state(TASK_RUNNING);
512
513 if (return_to_userland) {
514 if (signal_pending(current) &&
515 !fatal_signal_pending(current)) {
516 /*
517 * If we got a SIGSTOP or SIGCONT and this is
518 * a normal userland page fault, just let
519 * userland return so the signal will be
520 * handled and gdb debugging works. The page
521 * fault code immediately after we return from
522 * this function is going to release the
523 * mmap_sem and it's not depending on it
524 * (unlike gup would if we were not to return
525 * VM_FAULT_RETRY).
526 *
527 * If a fatal signal is pending we still take
528 * the streamlined VM_FAULT_RETRY failure path
529 * and there's no need to retake the mmap_sem
530 * in such case.
531 */
532 down_read(&mm->mmap_sem);
533 ret = VM_FAULT_NOPAGE;
534 }
535 }
536
537 /*
538 * Here we race with the list_del; list_add in
539 * userfaultfd_ctx_read(), however because we don't ever run
540 * list_del_init() to refile across the two lists, the prev
541 * and next pointers will never point to self. list_add also
542 * would never let any of the two pointers to point to
543 * self. So list_empty_careful won't risk to see both pointers
544 * pointing to self at any time during the list refile. The
545 * only case where list_del_init() is called is the full
546 * removal in the wake function and there we don't re-list_add
547 * and it's fine not to block on the spinlock. The uwq on this
548 * kernel stack can be released after the list_del_init.
549 */
550 if (!list_empty_careful(&uwq.wq.entry)) {
551 spin_lock(&ctx->fault_pending_wqh.lock);
552 /*
553 * No need of list_del_init(), the uwq on the stack
554 * will be freed shortly anyway.
555 */
556 list_del(&uwq.wq.entry);
557 spin_unlock(&ctx->fault_pending_wqh.lock);
558 }
559
560 /*
561 * ctx may go away after this if the userfault pseudo fd is
562 * already released.
563 */
564 userfaultfd_ctx_put(ctx);
565
566 out:
567 return ret;
568 }
569
570 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
571 struct userfaultfd_wait_queue *ewq)
572 {
573 struct userfaultfd_ctx *release_new_ctx;
574
575 if (WARN_ON_ONCE(current->flags & PF_EXITING))
576 goto out;
577
578 ewq->ctx = ctx;
579 init_waitqueue_entry(&ewq->wq, current);
580 release_new_ctx = NULL;
581
582 spin_lock(&ctx->event_wqh.lock);
583 /*
584 * After the __add_wait_queue the uwq is visible to userland
585 * through poll/read().
586 */
587 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
588 for (;;) {
589 set_current_state(TASK_KILLABLE);
590 if (ewq->msg.event == 0)
591 break;
592 if (READ_ONCE(ctx->released) ||
593 fatal_signal_pending(current)) {
594 /*
595 * &ewq->wq may be queued in fork_event, but
596 * __remove_wait_queue ignores the head
597 * parameter. It would be a problem if it
598 * didn't.
599 */
600 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
601 if (ewq->msg.event == UFFD_EVENT_FORK) {
602 struct userfaultfd_ctx *new;
603
604 new = (struct userfaultfd_ctx *)
605 (unsigned long)
606 ewq->msg.arg.reserved.reserved1;
607 release_new_ctx = new;
608 }
609 break;
610 }
611
612 spin_unlock(&ctx->event_wqh.lock);
613
614 wake_up_poll(&ctx->fd_wqh, POLLIN);
615 schedule();
616
617 spin_lock(&ctx->event_wqh.lock);
618 }
619 __set_current_state(TASK_RUNNING);
620 spin_unlock(&ctx->event_wqh.lock);
621
622 if (release_new_ctx) {
623 struct vm_area_struct *vma;
624 struct mm_struct *mm = release_new_ctx->mm;
625
626 /* the various vma->vm_userfaultfd_ctx still points to it */
627 down_write(&mm->mmap_sem);
628 for (vma = mm->mmap; vma; vma = vma->vm_next)
629 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx)
630 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
631 up_write(&mm->mmap_sem);
632
633 userfaultfd_ctx_put(release_new_ctx);
634 }
635
636 /*
637 * ctx may go away after this if the userfault pseudo fd is
638 * already released.
639 */
640 out:
641 userfaultfd_ctx_put(ctx);
642 }
643
644 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
645 struct userfaultfd_wait_queue *ewq)
646 {
647 ewq->msg.event = 0;
648 wake_up_locked(&ctx->event_wqh);
649 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
650 }
651
652 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
653 {
654 struct userfaultfd_ctx *ctx = NULL, *octx;
655 struct userfaultfd_fork_ctx *fctx;
656
657 octx = vma->vm_userfaultfd_ctx.ctx;
658 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
659 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
660 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
661 return 0;
662 }
663
664 list_for_each_entry(fctx, fcs, list)
665 if (fctx->orig == octx) {
666 ctx = fctx->new;
667 break;
668 }
669
670 if (!ctx) {
671 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
672 if (!fctx)
673 return -ENOMEM;
674
675 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
676 if (!ctx) {
677 kfree(fctx);
678 return -ENOMEM;
679 }
680
681 atomic_set(&ctx->refcount, 1);
682 ctx->flags = octx->flags;
683 ctx->state = UFFD_STATE_RUNNING;
684 ctx->features = octx->features;
685 ctx->released = false;
686 ctx->mm = vma->vm_mm;
687 mmgrab(ctx->mm);
688
689 userfaultfd_ctx_get(octx);
690 fctx->orig = octx;
691 fctx->new = ctx;
692 list_add_tail(&fctx->list, fcs);
693 }
694
695 vma->vm_userfaultfd_ctx.ctx = ctx;
696 return 0;
697 }
698
699 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
700 {
701 struct userfaultfd_ctx *ctx = fctx->orig;
702 struct userfaultfd_wait_queue ewq;
703
704 msg_init(&ewq.msg);
705
706 ewq.msg.event = UFFD_EVENT_FORK;
707 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
708
709 userfaultfd_event_wait_completion(ctx, &ewq);
710 }
711
712 void dup_userfaultfd_complete(struct list_head *fcs)
713 {
714 struct userfaultfd_fork_ctx *fctx, *n;
715
716 list_for_each_entry_safe(fctx, n, fcs, list) {
717 dup_fctx(fctx);
718 list_del(&fctx->list);
719 kfree(fctx);
720 }
721 }
722
723 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
724 struct vm_userfaultfd_ctx *vm_ctx)
725 {
726 struct userfaultfd_ctx *ctx;
727
728 ctx = vma->vm_userfaultfd_ctx.ctx;
729 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
730 vm_ctx->ctx = ctx;
731 userfaultfd_ctx_get(ctx);
732 }
733 }
734
735 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
736 unsigned long from, unsigned long to,
737 unsigned long len)
738 {
739 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
740 struct userfaultfd_wait_queue ewq;
741
742 if (!ctx)
743 return;
744
745 if (to & ~PAGE_MASK) {
746 userfaultfd_ctx_put(ctx);
747 return;
748 }
749
750 msg_init(&ewq.msg);
751
752 ewq.msg.event = UFFD_EVENT_REMAP;
753 ewq.msg.arg.remap.from = from;
754 ewq.msg.arg.remap.to = to;
755 ewq.msg.arg.remap.len = len;
756
757 userfaultfd_event_wait_completion(ctx, &ewq);
758 }
759
760 bool userfaultfd_remove(struct vm_area_struct *vma,
761 unsigned long start, unsigned long end)
762 {
763 struct mm_struct *mm = vma->vm_mm;
764 struct userfaultfd_ctx *ctx;
765 struct userfaultfd_wait_queue ewq;
766
767 ctx = vma->vm_userfaultfd_ctx.ctx;
768 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
769 return true;
770
771 userfaultfd_ctx_get(ctx);
772 up_read(&mm->mmap_sem);
773
774 msg_init(&ewq.msg);
775
776 ewq.msg.event = UFFD_EVENT_REMOVE;
777 ewq.msg.arg.remove.start = start;
778 ewq.msg.arg.remove.end = end;
779
780 userfaultfd_event_wait_completion(ctx, &ewq);
781
782 return false;
783 }
784
785 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
786 unsigned long start, unsigned long end)
787 {
788 struct userfaultfd_unmap_ctx *unmap_ctx;
789
790 list_for_each_entry(unmap_ctx, unmaps, list)
791 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
792 unmap_ctx->end == end)
793 return true;
794
795 return false;
796 }
797
798 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
799 unsigned long start, unsigned long end,
800 struct list_head *unmaps)
801 {
802 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
803 struct userfaultfd_unmap_ctx *unmap_ctx;
804 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
805
806 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
807 has_unmap_ctx(ctx, unmaps, start, end))
808 continue;
809
810 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
811 if (!unmap_ctx)
812 return -ENOMEM;
813
814 userfaultfd_ctx_get(ctx);
815 unmap_ctx->ctx = ctx;
816 unmap_ctx->start = start;
817 unmap_ctx->end = end;
818 list_add_tail(&unmap_ctx->list, unmaps);
819 }
820
821 return 0;
822 }
823
824 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
825 {
826 struct userfaultfd_unmap_ctx *ctx, *n;
827 struct userfaultfd_wait_queue ewq;
828
829 list_for_each_entry_safe(ctx, n, uf, list) {
830 msg_init(&ewq.msg);
831
832 ewq.msg.event = UFFD_EVENT_UNMAP;
833 ewq.msg.arg.remove.start = ctx->start;
834 ewq.msg.arg.remove.end = ctx->end;
835
836 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
837
838 list_del(&ctx->list);
839 kfree(ctx);
840 }
841 }
842
843 static int userfaultfd_release(struct inode *inode, struct file *file)
844 {
845 struct userfaultfd_ctx *ctx = file->private_data;
846 struct mm_struct *mm = ctx->mm;
847 struct vm_area_struct *vma, *prev;
848 /* len == 0 means wake all */
849 struct userfaultfd_wake_range range = { .len = 0, };
850 unsigned long new_flags;
851
852 WRITE_ONCE(ctx->released, true);
853
854 if (!mmget_not_zero(mm))
855 goto wakeup;
856
857 /*
858 * Flush page faults out of all CPUs. NOTE: all page faults
859 * must be retried without returning VM_FAULT_SIGBUS if
860 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
861 * changes while handle_userfault released the mmap_sem. So
862 * it's critical that released is set to true (above), before
863 * taking the mmap_sem for writing.
864 */
865 down_write(&mm->mmap_sem);
866 prev = NULL;
867 for (vma = mm->mmap; vma; vma = vma->vm_next) {
868 cond_resched();
869 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
870 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
871 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
872 prev = vma;
873 continue;
874 }
875 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
876 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
877 new_flags, vma->anon_vma,
878 vma->vm_file, vma->vm_pgoff,
879 vma_policy(vma),
880 NULL_VM_UFFD_CTX);
881 if (prev)
882 vma = prev;
883 else
884 prev = vma;
885 vma->vm_flags = new_flags;
886 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
887 }
888 up_write(&mm->mmap_sem);
889 mmput(mm);
890 wakeup:
891 /*
892 * After no new page faults can wait on this fault_*wqh, flush
893 * the last page faults that may have been already waiting on
894 * the fault_*wqh.
895 */
896 spin_lock(&ctx->fault_pending_wqh.lock);
897 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
898 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
899 spin_unlock(&ctx->fault_pending_wqh.lock);
900
901 /* Flush pending events that may still wait on event_wqh */
902 wake_up_all(&ctx->event_wqh);
903
904 wake_up_poll(&ctx->fd_wqh, POLLHUP);
905 userfaultfd_ctx_put(ctx);
906 return 0;
907 }
908
909 /* fault_pending_wqh.lock must be hold by the caller */
910 static inline struct userfaultfd_wait_queue *find_userfault_in(
911 wait_queue_head_t *wqh)
912 {
913 wait_queue_entry_t *wq;
914 struct userfaultfd_wait_queue *uwq;
915
916 VM_BUG_ON(!spin_is_locked(&wqh->lock));
917
918 uwq = NULL;
919 if (!waitqueue_active(wqh))
920 goto out;
921 /* walk in reverse to provide FIFO behavior to read userfaults */
922 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
923 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
924 out:
925 return uwq;
926 }
927
928 static inline struct userfaultfd_wait_queue *find_userfault(
929 struct userfaultfd_ctx *ctx)
930 {
931 return find_userfault_in(&ctx->fault_pending_wqh);
932 }
933
934 static inline struct userfaultfd_wait_queue *find_userfault_evt(
935 struct userfaultfd_ctx *ctx)
936 {
937 return find_userfault_in(&ctx->event_wqh);
938 }
939
940 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
941 {
942 struct userfaultfd_ctx *ctx = file->private_data;
943 unsigned int ret;
944
945 poll_wait(file, &ctx->fd_wqh, wait);
946
947 switch (ctx->state) {
948 case UFFD_STATE_WAIT_API:
949 return POLLERR;
950 case UFFD_STATE_RUNNING:
951 /*
952 * poll() never guarantees that read won't block.
953 * userfaults can be waken before they're read().
954 */
955 if (unlikely(!(file->f_flags & O_NONBLOCK)))
956 return POLLERR;
957 /*
958 * lockless access to see if there are pending faults
959 * __pollwait last action is the add_wait_queue but
960 * the spin_unlock would allow the waitqueue_active to
961 * pass above the actual list_add inside
962 * add_wait_queue critical section. So use a full
963 * memory barrier to serialize the list_add write of
964 * add_wait_queue() with the waitqueue_active read
965 * below.
966 */
967 ret = 0;
968 smp_mb();
969 if (waitqueue_active(&ctx->fault_pending_wqh))
970 ret = POLLIN;
971 else if (waitqueue_active(&ctx->event_wqh))
972 ret = POLLIN;
973
974 return ret;
975 default:
976 WARN_ON_ONCE(1);
977 return POLLERR;
978 }
979 }
980
981 static const struct file_operations userfaultfd_fops;
982
983 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
984 struct userfaultfd_ctx *new,
985 struct uffd_msg *msg)
986 {
987 int fd;
988 struct file *file;
989 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
990
991 fd = get_unused_fd_flags(flags);
992 if (fd < 0)
993 return fd;
994
995 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
996 O_RDWR | flags);
997 if (IS_ERR(file)) {
998 put_unused_fd(fd);
999 return PTR_ERR(file);
1000 }
1001
1002 fd_install(fd, file);
1003 msg->arg.reserved.reserved1 = 0;
1004 msg->arg.fork.ufd = fd;
1005
1006 return 0;
1007 }
1008
1009 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1010 struct uffd_msg *msg)
1011 {
1012 ssize_t ret;
1013 DECLARE_WAITQUEUE(wait, current);
1014 struct userfaultfd_wait_queue *uwq;
1015 /*
1016 * Handling fork event requires sleeping operations, so
1017 * we drop the event_wqh lock, then do these ops, then
1018 * lock it back and wake up the waiter. While the lock is
1019 * dropped the ewq may go away so we keep track of it
1020 * carefully.
1021 */
1022 LIST_HEAD(fork_event);
1023 struct userfaultfd_ctx *fork_nctx = NULL;
1024
1025 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1026 spin_lock(&ctx->fd_wqh.lock);
1027 __add_wait_queue(&ctx->fd_wqh, &wait);
1028 for (;;) {
1029 set_current_state(TASK_INTERRUPTIBLE);
1030 spin_lock(&ctx->fault_pending_wqh.lock);
1031 uwq = find_userfault(ctx);
1032 if (uwq) {
1033 /*
1034 * Use a seqcount to repeat the lockless check
1035 * in wake_userfault() to avoid missing
1036 * wakeups because during the refile both
1037 * waitqueue could become empty if this is the
1038 * only userfault.
1039 */
1040 write_seqcount_begin(&ctx->refile_seq);
1041
1042 /*
1043 * The fault_pending_wqh.lock prevents the uwq
1044 * to disappear from under us.
1045 *
1046 * Refile this userfault from
1047 * fault_pending_wqh to fault_wqh, it's not
1048 * pending anymore after we read it.
1049 *
1050 * Use list_del() by hand (as
1051 * userfaultfd_wake_function also uses
1052 * list_del_init() by hand) to be sure nobody
1053 * changes __remove_wait_queue() to use
1054 * list_del_init() in turn breaking the
1055 * !list_empty_careful() check in
1056 * handle_userfault(). The uwq->wq.head list
1057 * must never be empty at any time during the
1058 * refile, or the waitqueue could disappear
1059 * from under us. The "wait_queue_head_t"
1060 * parameter of __remove_wait_queue() is unused
1061 * anyway.
1062 */
1063 list_del(&uwq->wq.entry);
1064 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1065
1066 write_seqcount_end(&ctx->refile_seq);
1067
1068 /* careful to always initialize msg if ret == 0 */
1069 *msg = uwq->msg;
1070 spin_unlock(&ctx->fault_pending_wqh.lock);
1071 ret = 0;
1072 break;
1073 }
1074 spin_unlock(&ctx->fault_pending_wqh.lock);
1075
1076 spin_lock(&ctx->event_wqh.lock);
1077 uwq = find_userfault_evt(ctx);
1078 if (uwq) {
1079 *msg = uwq->msg;
1080
1081 if (uwq->msg.event == UFFD_EVENT_FORK) {
1082 fork_nctx = (struct userfaultfd_ctx *)
1083 (unsigned long)
1084 uwq->msg.arg.reserved.reserved1;
1085 list_move(&uwq->wq.entry, &fork_event);
1086 /*
1087 * fork_nctx can be freed as soon as
1088 * we drop the lock, unless we take a
1089 * reference on it.
1090 */
1091 userfaultfd_ctx_get(fork_nctx);
1092 spin_unlock(&ctx->event_wqh.lock);
1093 ret = 0;
1094 break;
1095 }
1096
1097 userfaultfd_event_complete(ctx, uwq);
1098 spin_unlock(&ctx->event_wqh.lock);
1099 ret = 0;
1100 break;
1101 }
1102 spin_unlock(&ctx->event_wqh.lock);
1103
1104 if (signal_pending(current)) {
1105 ret = -ERESTARTSYS;
1106 break;
1107 }
1108 if (no_wait) {
1109 ret = -EAGAIN;
1110 break;
1111 }
1112 spin_unlock(&ctx->fd_wqh.lock);
1113 schedule();
1114 spin_lock(&ctx->fd_wqh.lock);
1115 }
1116 __remove_wait_queue(&ctx->fd_wqh, &wait);
1117 __set_current_state(TASK_RUNNING);
1118 spin_unlock(&ctx->fd_wqh.lock);
1119
1120 if (!ret && msg->event == UFFD_EVENT_FORK) {
1121 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1122 spin_lock(&ctx->event_wqh.lock);
1123 if (!list_empty(&fork_event)) {
1124 /*
1125 * The fork thread didn't abort, so we can
1126 * drop the temporary refcount.
1127 */
1128 userfaultfd_ctx_put(fork_nctx);
1129
1130 uwq = list_first_entry(&fork_event,
1131 typeof(*uwq),
1132 wq.entry);
1133 /*
1134 * If fork_event list wasn't empty and in turn
1135 * the event wasn't already released by fork
1136 * (the event is allocated on fork kernel
1137 * stack), put the event back to its place in
1138 * the event_wq. fork_event head will be freed
1139 * as soon as we return so the event cannot
1140 * stay queued there no matter the current
1141 * "ret" value.
1142 */
1143 list_del(&uwq->wq.entry);
1144 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1145
1146 /*
1147 * Leave the event in the waitqueue and report
1148 * error to userland if we failed to resolve
1149 * the userfault fork.
1150 */
1151 if (likely(!ret))
1152 userfaultfd_event_complete(ctx, uwq);
1153 } else {
1154 /*
1155 * Here the fork thread aborted and the
1156 * refcount from the fork thread on fork_nctx
1157 * has already been released. We still hold
1158 * the reference we took before releasing the
1159 * lock above. If resolve_userfault_fork
1160 * failed we've to drop it because the
1161 * fork_nctx has to be freed in such case. If
1162 * it succeeded we'll hold it because the new
1163 * uffd references it.
1164 */
1165 if (ret)
1166 userfaultfd_ctx_put(fork_nctx);
1167 }
1168 spin_unlock(&ctx->event_wqh.lock);
1169 }
1170
1171 return ret;
1172 }
1173
1174 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1175 size_t count, loff_t *ppos)
1176 {
1177 struct userfaultfd_ctx *ctx = file->private_data;
1178 ssize_t _ret, ret = 0;
1179 struct uffd_msg msg;
1180 int no_wait = file->f_flags & O_NONBLOCK;
1181
1182 if (ctx->state == UFFD_STATE_WAIT_API)
1183 return -EINVAL;
1184
1185 for (;;) {
1186 if (count < sizeof(msg))
1187 return ret ? ret : -EINVAL;
1188 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1189 if (_ret < 0)
1190 return ret ? ret : _ret;
1191 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1192 return ret ? ret : -EFAULT;
1193 ret += sizeof(msg);
1194 buf += sizeof(msg);
1195 count -= sizeof(msg);
1196 /*
1197 * Allow to read more than one fault at time but only
1198 * block if waiting for the very first one.
1199 */
1200 no_wait = O_NONBLOCK;
1201 }
1202 }
1203
1204 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1205 struct userfaultfd_wake_range *range)
1206 {
1207 spin_lock(&ctx->fault_pending_wqh.lock);
1208 /* wake all in the range and autoremove */
1209 if (waitqueue_active(&ctx->fault_pending_wqh))
1210 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1211 range);
1212 if (waitqueue_active(&ctx->fault_wqh))
1213 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1214 spin_unlock(&ctx->fault_pending_wqh.lock);
1215 }
1216
1217 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1218 struct userfaultfd_wake_range *range)
1219 {
1220 unsigned seq;
1221 bool need_wakeup;
1222
1223 /*
1224 * To be sure waitqueue_active() is not reordered by the CPU
1225 * before the pagetable update, use an explicit SMP memory
1226 * barrier here. PT lock release or up_read(mmap_sem) still
1227 * have release semantics that can allow the
1228 * waitqueue_active() to be reordered before the pte update.
1229 */
1230 smp_mb();
1231
1232 /*
1233 * Use waitqueue_active because it's very frequent to
1234 * change the address space atomically even if there are no
1235 * userfaults yet. So we take the spinlock only when we're
1236 * sure we've userfaults to wake.
1237 */
1238 do {
1239 seq = read_seqcount_begin(&ctx->refile_seq);
1240 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1241 waitqueue_active(&ctx->fault_wqh);
1242 cond_resched();
1243 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1244 if (need_wakeup)
1245 __wake_userfault(ctx, range);
1246 }
1247
1248 static __always_inline int validate_range(struct mm_struct *mm,
1249 __u64 start, __u64 len)
1250 {
1251 __u64 task_size = mm->task_size;
1252
1253 if (start & ~PAGE_MASK)
1254 return -EINVAL;
1255 if (len & ~PAGE_MASK)
1256 return -EINVAL;
1257 if (!len)
1258 return -EINVAL;
1259 if (start < mmap_min_addr)
1260 return -EINVAL;
1261 if (start >= task_size)
1262 return -EINVAL;
1263 if (len > task_size - start)
1264 return -EINVAL;
1265 return 0;
1266 }
1267
1268 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1269 {
1270 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1271 vma_is_shmem(vma);
1272 }
1273
1274 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1275 unsigned long arg)
1276 {
1277 struct mm_struct *mm = ctx->mm;
1278 struct vm_area_struct *vma, *prev, *cur;
1279 int ret;
1280 struct uffdio_register uffdio_register;
1281 struct uffdio_register __user *user_uffdio_register;
1282 unsigned long vm_flags, new_flags;
1283 bool found;
1284 bool basic_ioctls;
1285 unsigned long start, end, vma_end;
1286
1287 user_uffdio_register = (struct uffdio_register __user *) arg;
1288
1289 ret = -EFAULT;
1290 if (copy_from_user(&uffdio_register, user_uffdio_register,
1291 sizeof(uffdio_register)-sizeof(__u64)))
1292 goto out;
1293
1294 ret = -EINVAL;
1295 if (!uffdio_register.mode)
1296 goto out;
1297 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1298 UFFDIO_REGISTER_MODE_WP))
1299 goto out;
1300 vm_flags = 0;
1301 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1302 vm_flags |= VM_UFFD_MISSING;
1303 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1304 vm_flags |= VM_UFFD_WP;
1305 /*
1306 * FIXME: remove the below error constraint by
1307 * implementing the wprotect tracking mode.
1308 */
1309 ret = -EINVAL;
1310 goto out;
1311 }
1312
1313 ret = validate_range(mm, uffdio_register.range.start,
1314 uffdio_register.range.len);
1315 if (ret)
1316 goto out;
1317
1318 start = uffdio_register.range.start;
1319 end = start + uffdio_register.range.len;
1320
1321 ret = -ENOMEM;
1322 if (!mmget_not_zero(mm))
1323 goto out;
1324
1325 down_write(&mm->mmap_sem);
1326 vma = find_vma_prev(mm, start, &prev);
1327 if (!vma)
1328 goto out_unlock;
1329
1330 /* check that there's at least one vma in the range */
1331 ret = -EINVAL;
1332 if (vma->vm_start >= end)
1333 goto out_unlock;
1334
1335 /*
1336 * If the first vma contains huge pages, make sure start address
1337 * is aligned to huge page size.
1338 */
1339 if (is_vm_hugetlb_page(vma)) {
1340 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1341
1342 if (start & (vma_hpagesize - 1))
1343 goto out_unlock;
1344 }
1345
1346 /*
1347 * Search for not compatible vmas.
1348 */
1349 found = false;
1350 basic_ioctls = false;
1351 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1352 cond_resched();
1353
1354 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1355 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1356
1357 /* check not compatible vmas */
1358 ret = -EINVAL;
1359 if (!vma_can_userfault(cur))
1360 goto out_unlock;
1361 /*
1362 * If this vma contains ending address, and huge pages
1363 * check alignment.
1364 */
1365 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1366 end > cur->vm_start) {
1367 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1368
1369 ret = -EINVAL;
1370
1371 if (end & (vma_hpagesize - 1))
1372 goto out_unlock;
1373 }
1374
1375 /*
1376 * Check that this vma isn't already owned by a
1377 * different userfaultfd. We can't allow more than one
1378 * userfaultfd to own a single vma simultaneously or we
1379 * wouldn't know which one to deliver the userfaults to.
1380 */
1381 ret = -EBUSY;
1382 if (cur->vm_userfaultfd_ctx.ctx &&
1383 cur->vm_userfaultfd_ctx.ctx != ctx)
1384 goto out_unlock;
1385
1386 /*
1387 * Note vmas containing huge pages
1388 */
1389 if (is_vm_hugetlb_page(cur))
1390 basic_ioctls = true;
1391
1392 found = true;
1393 }
1394 BUG_ON(!found);
1395
1396 if (vma->vm_start < start)
1397 prev = vma;
1398
1399 ret = 0;
1400 do {
1401 cond_resched();
1402
1403 BUG_ON(!vma_can_userfault(vma));
1404 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1405 vma->vm_userfaultfd_ctx.ctx != ctx);
1406
1407 /*
1408 * Nothing to do: this vma is already registered into this
1409 * userfaultfd and with the right tracking mode too.
1410 */
1411 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1412 (vma->vm_flags & vm_flags) == vm_flags)
1413 goto skip;
1414
1415 if (vma->vm_start > start)
1416 start = vma->vm_start;
1417 vma_end = min(end, vma->vm_end);
1418
1419 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1420 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1421 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1422 vma_policy(vma),
1423 ((struct vm_userfaultfd_ctx){ ctx }));
1424 if (prev) {
1425 vma = prev;
1426 goto next;
1427 }
1428 if (vma->vm_start < start) {
1429 ret = split_vma(mm, vma, start, 1);
1430 if (ret)
1431 break;
1432 }
1433 if (vma->vm_end > end) {
1434 ret = split_vma(mm, vma, end, 0);
1435 if (ret)
1436 break;
1437 }
1438 next:
1439 /*
1440 * In the vma_merge() successful mprotect-like case 8:
1441 * the next vma was merged into the current one and
1442 * the current one has not been updated yet.
1443 */
1444 vma->vm_flags = new_flags;
1445 vma->vm_userfaultfd_ctx.ctx = ctx;
1446
1447 skip:
1448 prev = vma;
1449 start = vma->vm_end;
1450 vma = vma->vm_next;
1451 } while (vma && vma->vm_start < end);
1452 out_unlock:
1453 up_write(&mm->mmap_sem);
1454 mmput(mm);
1455 if (!ret) {
1456 /*
1457 * Now that we scanned all vmas we can already tell
1458 * userland which ioctls methods are guaranteed to
1459 * succeed on this range.
1460 */
1461 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1462 UFFD_API_RANGE_IOCTLS,
1463 &user_uffdio_register->ioctls))
1464 ret = -EFAULT;
1465 }
1466 out:
1467 return ret;
1468 }
1469
1470 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1471 unsigned long arg)
1472 {
1473 struct mm_struct *mm = ctx->mm;
1474 struct vm_area_struct *vma, *prev, *cur;
1475 int ret;
1476 struct uffdio_range uffdio_unregister;
1477 unsigned long new_flags;
1478 bool found;
1479 unsigned long start, end, vma_end;
1480 const void __user *buf = (void __user *)arg;
1481
1482 ret = -EFAULT;
1483 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1484 goto out;
1485
1486 ret = validate_range(mm, uffdio_unregister.start,
1487 uffdio_unregister.len);
1488 if (ret)
1489 goto out;
1490
1491 start = uffdio_unregister.start;
1492 end = start + uffdio_unregister.len;
1493
1494 ret = -ENOMEM;
1495 if (!mmget_not_zero(mm))
1496 goto out;
1497
1498 down_write(&mm->mmap_sem);
1499 vma = find_vma_prev(mm, start, &prev);
1500 if (!vma)
1501 goto out_unlock;
1502
1503 /* check that there's at least one vma in the range */
1504 ret = -EINVAL;
1505 if (vma->vm_start >= end)
1506 goto out_unlock;
1507
1508 /*
1509 * If the first vma contains huge pages, make sure start address
1510 * is aligned to huge page size.
1511 */
1512 if (is_vm_hugetlb_page(vma)) {
1513 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1514
1515 if (start & (vma_hpagesize - 1))
1516 goto out_unlock;
1517 }
1518
1519 /*
1520 * Search for not compatible vmas.
1521 */
1522 found = false;
1523 ret = -EINVAL;
1524 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1525 cond_resched();
1526
1527 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1528 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1529
1530 /*
1531 * Check not compatible vmas, not strictly required
1532 * here as not compatible vmas cannot have an
1533 * userfaultfd_ctx registered on them, but this
1534 * provides for more strict behavior to notice
1535 * unregistration errors.
1536 */
1537 if (!vma_can_userfault(cur))
1538 goto out_unlock;
1539
1540 found = true;
1541 }
1542 BUG_ON(!found);
1543
1544 if (vma->vm_start < start)
1545 prev = vma;
1546
1547 ret = 0;
1548 do {
1549 cond_resched();
1550
1551 BUG_ON(!vma_can_userfault(vma));
1552
1553 /*
1554 * Nothing to do: this vma is already registered into this
1555 * userfaultfd and with the right tracking mode too.
1556 */
1557 if (!vma->vm_userfaultfd_ctx.ctx)
1558 goto skip;
1559
1560 if (vma->vm_start > start)
1561 start = vma->vm_start;
1562 vma_end = min(end, vma->vm_end);
1563
1564 if (userfaultfd_missing(vma)) {
1565 /*
1566 * Wake any concurrent pending userfault while
1567 * we unregister, so they will not hang
1568 * permanently and it avoids userland to call
1569 * UFFDIO_WAKE explicitly.
1570 */
1571 struct userfaultfd_wake_range range;
1572 range.start = start;
1573 range.len = vma_end - start;
1574 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1575 }
1576
1577 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1578 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1579 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1580 vma_policy(vma),
1581 NULL_VM_UFFD_CTX);
1582 if (prev) {
1583 vma = prev;
1584 goto next;
1585 }
1586 if (vma->vm_start < start) {
1587 ret = split_vma(mm, vma, start, 1);
1588 if (ret)
1589 break;
1590 }
1591 if (vma->vm_end > end) {
1592 ret = split_vma(mm, vma, end, 0);
1593 if (ret)
1594 break;
1595 }
1596 next:
1597 /*
1598 * In the vma_merge() successful mprotect-like case 8:
1599 * the next vma was merged into the current one and
1600 * the current one has not been updated yet.
1601 */
1602 vma->vm_flags = new_flags;
1603 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1604
1605 skip:
1606 prev = vma;
1607 start = vma->vm_end;
1608 vma = vma->vm_next;
1609 } while (vma && vma->vm_start < end);
1610 out_unlock:
1611 up_write(&mm->mmap_sem);
1612 mmput(mm);
1613 out:
1614 return ret;
1615 }
1616
1617 /*
1618 * userfaultfd_wake may be used in combination with the
1619 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1620 */
1621 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1622 unsigned long arg)
1623 {
1624 int ret;
1625 struct uffdio_range uffdio_wake;
1626 struct userfaultfd_wake_range range;
1627 const void __user *buf = (void __user *)arg;
1628
1629 ret = -EFAULT;
1630 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1631 goto out;
1632
1633 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1634 if (ret)
1635 goto out;
1636
1637 range.start = uffdio_wake.start;
1638 range.len = uffdio_wake.len;
1639
1640 /*
1641 * len == 0 means wake all and we don't want to wake all here,
1642 * so check it again to be sure.
1643 */
1644 VM_BUG_ON(!range.len);
1645
1646 wake_userfault(ctx, &range);
1647 ret = 0;
1648
1649 out:
1650 return ret;
1651 }
1652
1653 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1654 unsigned long arg)
1655 {
1656 __s64 ret;
1657 struct uffdio_copy uffdio_copy;
1658 struct uffdio_copy __user *user_uffdio_copy;
1659 struct userfaultfd_wake_range range;
1660
1661 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1662
1663 ret = -EFAULT;
1664 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1665 /* don't copy "copy" last field */
1666 sizeof(uffdio_copy)-sizeof(__s64)))
1667 goto out;
1668
1669 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1670 if (ret)
1671 goto out;
1672 /*
1673 * double check for wraparound just in case. copy_from_user()
1674 * will later check uffdio_copy.src + uffdio_copy.len to fit
1675 * in the userland range.
1676 */
1677 ret = -EINVAL;
1678 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1679 goto out;
1680 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1681 goto out;
1682 if (mmget_not_zero(ctx->mm)) {
1683 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1684 uffdio_copy.len);
1685 mmput(ctx->mm);
1686 } else {
1687 return -ESRCH;
1688 }
1689 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1690 return -EFAULT;
1691 if (ret < 0)
1692 goto out;
1693 BUG_ON(!ret);
1694 /* len == 0 would wake all */
1695 range.len = ret;
1696 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1697 range.start = uffdio_copy.dst;
1698 wake_userfault(ctx, &range);
1699 }
1700 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1701 out:
1702 return ret;
1703 }
1704
1705 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1706 unsigned long arg)
1707 {
1708 __s64 ret;
1709 struct uffdio_zeropage uffdio_zeropage;
1710 struct uffdio_zeropage __user *user_uffdio_zeropage;
1711 struct userfaultfd_wake_range range;
1712
1713 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1714
1715 ret = -EFAULT;
1716 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1717 /* don't copy "zeropage" last field */
1718 sizeof(uffdio_zeropage)-sizeof(__s64)))
1719 goto out;
1720
1721 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1722 uffdio_zeropage.range.len);
1723 if (ret)
1724 goto out;
1725 ret = -EINVAL;
1726 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1727 goto out;
1728
1729 if (mmget_not_zero(ctx->mm)) {
1730 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1731 uffdio_zeropage.range.len);
1732 mmput(ctx->mm);
1733 } else {
1734 return -ESRCH;
1735 }
1736 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1737 return -EFAULT;
1738 if (ret < 0)
1739 goto out;
1740 /* len == 0 would wake all */
1741 BUG_ON(!ret);
1742 range.len = ret;
1743 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1744 range.start = uffdio_zeropage.range.start;
1745 wake_userfault(ctx, &range);
1746 }
1747 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1748 out:
1749 return ret;
1750 }
1751
1752 static inline unsigned int uffd_ctx_features(__u64 user_features)
1753 {
1754 /*
1755 * For the current set of features the bits just coincide
1756 */
1757 return (unsigned int)user_features;
1758 }
1759
1760 /*
1761 * userland asks for a certain API version and we return which bits
1762 * and ioctl commands are implemented in this kernel for such API
1763 * version or -EINVAL if unknown.
1764 */
1765 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1766 unsigned long arg)
1767 {
1768 struct uffdio_api uffdio_api;
1769 void __user *buf = (void __user *)arg;
1770 int ret;
1771 __u64 features;
1772
1773 ret = -EINVAL;
1774 if (ctx->state != UFFD_STATE_WAIT_API)
1775 goto out;
1776 ret = -EFAULT;
1777 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1778 goto out;
1779 features = uffdio_api.features;
1780 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1781 memset(&uffdio_api, 0, sizeof(uffdio_api));
1782 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1783 goto out;
1784 ret = -EINVAL;
1785 goto out;
1786 }
1787 /* report all available features and ioctls to userland */
1788 uffdio_api.features = UFFD_API_FEATURES;
1789 uffdio_api.ioctls = UFFD_API_IOCTLS;
1790 ret = -EFAULT;
1791 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1792 goto out;
1793 ctx->state = UFFD_STATE_RUNNING;
1794 /* only enable the requested features for this uffd context */
1795 ctx->features = uffd_ctx_features(features);
1796 ret = 0;
1797 out:
1798 return ret;
1799 }
1800
1801 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1802 unsigned long arg)
1803 {
1804 int ret = -EINVAL;
1805 struct userfaultfd_ctx *ctx = file->private_data;
1806
1807 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1808 return -EINVAL;
1809
1810 switch(cmd) {
1811 case UFFDIO_API:
1812 ret = userfaultfd_api(ctx, arg);
1813 break;
1814 case UFFDIO_REGISTER:
1815 ret = userfaultfd_register(ctx, arg);
1816 break;
1817 case UFFDIO_UNREGISTER:
1818 ret = userfaultfd_unregister(ctx, arg);
1819 break;
1820 case UFFDIO_WAKE:
1821 ret = userfaultfd_wake(ctx, arg);
1822 break;
1823 case UFFDIO_COPY:
1824 ret = userfaultfd_copy(ctx, arg);
1825 break;
1826 case UFFDIO_ZEROPAGE:
1827 ret = userfaultfd_zeropage(ctx, arg);
1828 break;
1829 }
1830 return ret;
1831 }
1832
1833 #ifdef CONFIG_PROC_FS
1834 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1835 {
1836 struct userfaultfd_ctx *ctx = f->private_data;
1837 wait_queue_entry_t *wq;
1838 struct userfaultfd_wait_queue *uwq;
1839 unsigned long pending = 0, total = 0;
1840
1841 spin_lock(&ctx->fault_pending_wqh.lock);
1842 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1843 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1844 pending++;
1845 total++;
1846 }
1847 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1848 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1849 total++;
1850 }
1851 spin_unlock(&ctx->fault_pending_wqh.lock);
1852
1853 /*
1854 * If more protocols will be added, there will be all shown
1855 * separated by a space. Like this:
1856 * protocols: aa:... bb:...
1857 */
1858 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1859 pending, total, UFFD_API, ctx->features,
1860 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1861 }
1862 #endif
1863
1864 static const struct file_operations userfaultfd_fops = {
1865 #ifdef CONFIG_PROC_FS
1866 .show_fdinfo = userfaultfd_show_fdinfo,
1867 #endif
1868 .release = userfaultfd_release,
1869 .poll = userfaultfd_poll,
1870 .read = userfaultfd_read,
1871 .unlocked_ioctl = userfaultfd_ioctl,
1872 .compat_ioctl = userfaultfd_ioctl,
1873 .llseek = noop_llseek,
1874 };
1875
1876 static void init_once_userfaultfd_ctx(void *mem)
1877 {
1878 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1879
1880 init_waitqueue_head(&ctx->fault_pending_wqh);
1881 init_waitqueue_head(&ctx->fault_wqh);
1882 init_waitqueue_head(&ctx->event_wqh);
1883 init_waitqueue_head(&ctx->fd_wqh);
1884 seqcount_init(&ctx->refile_seq);
1885 }
1886
1887 /**
1888 * userfaultfd_file_create - Creates a userfaultfd file pointer.
1889 * @flags: Flags for the userfaultfd file.
1890 *
1891 * This function creates a userfaultfd file pointer, w/out installing
1892 * it into the fd table. This is useful when the userfaultfd file is
1893 * used during the initialization of data structures that require
1894 * extra setup after the userfaultfd creation. So the userfaultfd
1895 * creation is split into the file pointer creation phase, and the
1896 * file descriptor installation phase. In this way races with
1897 * userspace closing the newly installed file descriptor can be
1898 * avoided. Returns a userfaultfd file pointer, or a proper error
1899 * pointer.
1900 */
1901 static struct file *userfaultfd_file_create(int flags)
1902 {
1903 struct file *file;
1904 struct userfaultfd_ctx *ctx;
1905
1906 BUG_ON(!current->mm);
1907
1908 /* Check the UFFD_* constants for consistency. */
1909 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1910 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1911
1912 file = ERR_PTR(-EINVAL);
1913 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1914 goto out;
1915
1916 file = ERR_PTR(-ENOMEM);
1917 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1918 if (!ctx)
1919 goto out;
1920
1921 atomic_set(&ctx->refcount, 1);
1922 ctx->flags = flags;
1923 ctx->features = 0;
1924 ctx->state = UFFD_STATE_WAIT_API;
1925 ctx->released = false;
1926 ctx->mm = current->mm;
1927 /* prevent the mm struct to be freed */
1928 mmgrab(ctx->mm);
1929
1930 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1931 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1932 if (IS_ERR(file)) {
1933 mmdrop(ctx->mm);
1934 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1935 }
1936 out:
1937 return file;
1938 }
1939
1940 SYSCALL_DEFINE1(userfaultfd, int, flags)
1941 {
1942 int fd, error;
1943 struct file *file;
1944
1945 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1946 if (error < 0)
1947 return error;
1948 fd = error;
1949
1950 file = userfaultfd_file_create(flags);
1951 if (IS_ERR(file)) {
1952 error = PTR_ERR(file);
1953 goto err_put_unused_fd;
1954 }
1955 fd_install(fd, file);
1956
1957 return fd;
1958
1959 err_put_unused_fd:
1960 put_unused_fd(fd);
1961
1962 return error;
1963 }
1964
1965 static int __init userfaultfd_init(void)
1966 {
1967 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1968 sizeof(struct userfaultfd_ctx),
1969 0,
1970 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1971 init_once_userfaultfd_ctx);
1972 return 0;
1973 }
1974 __initcall(userfaultfd_init);