]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/userfaultfd.c
vhost: scsi: add weight support
[mirror_ubuntu-bionic-kernel.git] / fs / userfaultfd.c
1 /*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38 };
39
40 /*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
44 struct userfaultfd_ctx {
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
55 /* pseudo fd refcounting */
56 atomic_t refcount;
57 /* userfaultfd syscall flags */
58 unsigned int flags;
59 /* features requested from the userspace */
60 unsigned int features;
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67 };
68
69 struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73 };
74
75 struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80 };
81
82 struct userfaultfd_wait_queue {
83 struct uffd_msg msg;
84 wait_queue_entry_t wq;
85 struct userfaultfd_ctx *ctx;
86 bool waken;
87 };
88
89 struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92 };
93
94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
95 int wake_flags, void *key)
96 {
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
109 goto out;
110 WRITE_ONCE(uwq->waken, true);
111 /*
112 * The Program-Order guarantees provided by the scheduler
113 * ensure uwq->waken is visible before the task is woken.
114 */
115 ret = wake_up_state(wq->private, mode);
116 if (ret) {
117 /*
118 * Wake only once, autoremove behavior.
119 *
120 * After the effect of list_del_init is visible to the other
121 * CPUs, the waitqueue may disappear from under us, see the
122 * !list_empty_careful() in handle_userfault().
123 *
124 * try_to_wake_up() has an implicit smp_mb(), and the
125 * wq->private is read before calling the extern function
126 * "wake_up_state" (which in turns calls try_to_wake_up).
127 */
128 list_del_init(&wq->entry);
129 }
130 out:
131 return ret;
132 }
133
134 /**
135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136 * context.
137 * @ctx: [in] Pointer to the userfaultfd context.
138 */
139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140 {
141 if (!atomic_inc_not_zero(&ctx->refcount))
142 BUG();
143 }
144
145 /**
146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147 * context.
148 * @ctx: [in] Pointer to userfaultfd context.
149 *
150 * The userfaultfd context reference must have been previously acquired either
151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152 */
153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154 {
155 if (atomic_dec_and_test(&ctx->refcount)) {
156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
164 mmdrop(ctx->mm);
165 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
166 }
167 }
168
169 static inline void msg_init(struct uffd_msg *msg)
170 {
171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172 /*
173 * Must use memset to zero out the paddings or kernel data is
174 * leaked to userland.
175 */
176 memset(msg, 0, sizeof(struct uffd_msg));
177 }
178
179 static inline struct uffd_msg userfault_msg(unsigned long address,
180 unsigned int flags,
181 unsigned long reason,
182 unsigned int features)
183 {
184 struct uffd_msg msg;
185 msg_init(&msg);
186 msg.event = UFFD_EVENT_PAGEFAULT;
187 msg.arg.pagefault.address = address;
188 if (flags & FAULT_FLAG_WRITE)
189 /*
190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 * was a read fault, otherwise if set it means it's
194 * a write fault.
195 */
196 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
197 if (reason & VM_UFFD_WP)
198 /*
199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 * a missing fault, otherwise if set it means it's a
203 * write protect fault.
204 */
205 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
206 if (features & UFFD_FEATURE_THREAD_ID)
207 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
208 return msg;
209 }
210
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213 * Same functionality as userfaultfd_must_wait below with modifications for
214 * hugepmd ranges.
215 */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 struct vm_area_struct *vma,
218 unsigned long address,
219 unsigned long flags,
220 unsigned long reason)
221 {
222 struct mm_struct *mm = ctx->mm;
223 pte_t *ptep, pte;
224 bool ret = true;
225
226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227
228 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229
230 if (!ptep)
231 goto out;
232
233 ret = false;
234 pte = huge_ptep_get(ptep);
235
236 /*
237 * Lockless access: we're in a wait_event so it's ok if it
238 * changes under us.
239 */
240 if (huge_pte_none(pte))
241 ret = true;
242 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
243 ret = true;
244 out:
245 return ret;
246 }
247 #else
248 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
249 struct vm_area_struct *vma,
250 unsigned long address,
251 unsigned long flags,
252 unsigned long reason)
253 {
254 return false; /* should never get here */
255 }
256 #endif /* CONFIG_HUGETLB_PAGE */
257
258 /*
259 * Verify the pagetables are still not ok after having reigstered into
260 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
261 * userfault that has already been resolved, if userfaultfd_read and
262 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
263 * threads.
264 */
265 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
266 unsigned long address,
267 unsigned long flags,
268 unsigned long reason)
269 {
270 struct mm_struct *mm = ctx->mm;
271 pgd_t *pgd;
272 p4d_t *p4d;
273 pud_t *pud;
274 pmd_t *pmd, _pmd;
275 pte_t *pte;
276 bool ret = true;
277
278 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
279
280 pgd = pgd_offset(mm, address);
281 if (!pgd_present(*pgd))
282 goto out;
283 p4d = p4d_offset(pgd, address);
284 if (!p4d_present(*p4d))
285 goto out;
286 pud = pud_offset(p4d, address);
287 if (!pud_present(*pud))
288 goto out;
289 pmd = pmd_offset(pud, address);
290 /*
291 * READ_ONCE must function as a barrier with narrower scope
292 * and it must be equivalent to:
293 * _pmd = *pmd; barrier();
294 *
295 * This is to deal with the instability (as in
296 * pmd_trans_unstable) of the pmd.
297 */
298 _pmd = READ_ONCE(*pmd);
299 if (!pmd_present(_pmd))
300 goto out;
301
302 ret = false;
303 if (pmd_trans_huge(_pmd))
304 goto out;
305
306 /*
307 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
308 * and use the standard pte_offset_map() instead of parsing _pmd.
309 */
310 pte = pte_offset_map(pmd, address);
311 /*
312 * Lockless access: we're in a wait_event so it's ok if it
313 * changes under us.
314 */
315 if (pte_none(*pte))
316 ret = true;
317 pte_unmap(pte);
318
319 out:
320 return ret;
321 }
322
323 /*
324 * The locking rules involved in returning VM_FAULT_RETRY depending on
325 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
326 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
327 * recommendation in __lock_page_or_retry is not an understatement.
328 *
329 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
330 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
331 * not set.
332 *
333 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
334 * set, VM_FAULT_RETRY can still be returned if and only if there are
335 * fatal_signal_pending()s, and the mmap_sem must be released before
336 * returning it.
337 */
338 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
339 {
340 struct mm_struct *mm = vmf->vma->vm_mm;
341 struct userfaultfd_ctx *ctx;
342 struct userfaultfd_wait_queue uwq;
343 int ret;
344 bool must_wait, return_to_userland;
345 long blocking_state;
346
347 ret = VM_FAULT_SIGBUS;
348
349 /*
350 * We don't do userfault handling for the final child pid update.
351 *
352 * We also don't do userfault handling during
353 * coredumping. hugetlbfs has the special
354 * follow_hugetlb_page() to skip missing pages in the
355 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
356 * the no_page_table() helper in follow_page_mask(), but the
357 * shmem_vm_ops->fault method is invoked even during
358 * coredumping without mmap_sem and it ends up here.
359 */
360 if (current->flags & (PF_EXITING|PF_DUMPCORE))
361 goto out;
362
363 /*
364 * Coredumping runs without mmap_sem so we can only check that
365 * the mmap_sem is held, if PF_DUMPCORE was not set.
366 */
367 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
368
369 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
370 if (!ctx)
371 goto out;
372
373 BUG_ON(ctx->mm != mm);
374
375 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
376 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
377
378 if (ctx->features & UFFD_FEATURE_SIGBUS)
379 goto out;
380
381 /*
382 * If it's already released don't get it. This avoids to loop
383 * in __get_user_pages if userfaultfd_release waits on the
384 * caller of handle_userfault to release the mmap_sem.
385 */
386 if (unlikely(READ_ONCE(ctx->released))) {
387 /*
388 * Don't return VM_FAULT_SIGBUS in this case, so a non
389 * cooperative manager can close the uffd after the
390 * last UFFDIO_COPY, without risking to trigger an
391 * involuntary SIGBUS if the process was starting the
392 * userfaultfd while the userfaultfd was still armed
393 * (but after the last UFFDIO_COPY). If the uffd
394 * wasn't already closed when the userfault reached
395 * this point, that would normally be solved by
396 * userfaultfd_must_wait returning 'false'.
397 *
398 * If we were to return VM_FAULT_SIGBUS here, the non
399 * cooperative manager would be instead forced to
400 * always call UFFDIO_UNREGISTER before it can safely
401 * close the uffd.
402 */
403 ret = VM_FAULT_NOPAGE;
404 goto out;
405 }
406
407 /*
408 * Check that we can return VM_FAULT_RETRY.
409 *
410 * NOTE: it should become possible to return VM_FAULT_RETRY
411 * even if FAULT_FLAG_TRIED is set without leading to gup()
412 * -EBUSY failures, if the userfaultfd is to be extended for
413 * VM_UFFD_WP tracking and we intend to arm the userfault
414 * without first stopping userland access to the memory. For
415 * VM_UFFD_MISSING userfaults this is enough for now.
416 */
417 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
418 /*
419 * Validate the invariant that nowait must allow retry
420 * to be sure not to return SIGBUS erroneously on
421 * nowait invocations.
422 */
423 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
424 #ifdef CONFIG_DEBUG_VM
425 if (printk_ratelimit()) {
426 printk(KERN_WARNING
427 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
428 vmf->flags);
429 dump_stack();
430 }
431 #endif
432 goto out;
433 }
434
435 /*
436 * Handle nowait, not much to do other than tell it to retry
437 * and wait.
438 */
439 ret = VM_FAULT_RETRY;
440 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
441 goto out;
442
443 /* take the reference before dropping the mmap_sem */
444 userfaultfd_ctx_get(ctx);
445
446 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
447 uwq.wq.private = current;
448 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
449 ctx->features);
450 uwq.ctx = ctx;
451 uwq.waken = false;
452
453 return_to_userland =
454 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
455 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
456 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
457 TASK_KILLABLE;
458
459 spin_lock(&ctx->fault_pending_wqh.lock);
460 /*
461 * After the __add_wait_queue the uwq is visible to userland
462 * through poll/read().
463 */
464 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
465 /*
466 * The smp_mb() after __set_current_state prevents the reads
467 * following the spin_unlock to happen before the list_add in
468 * __add_wait_queue.
469 */
470 set_current_state(blocking_state);
471 spin_unlock(&ctx->fault_pending_wqh.lock);
472
473 if (!is_vm_hugetlb_page(vmf->vma))
474 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
475 reason);
476 else
477 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
478 vmf->address,
479 vmf->flags, reason);
480 up_read(&mm->mmap_sem);
481
482 if (likely(must_wait && !READ_ONCE(ctx->released) &&
483 (return_to_userland ? !signal_pending(current) :
484 !fatal_signal_pending(current)))) {
485 wake_up_poll(&ctx->fd_wqh, POLLIN);
486 schedule();
487 ret |= VM_FAULT_MAJOR;
488
489 /*
490 * False wakeups can orginate even from rwsem before
491 * up_read() however userfaults will wait either for a
492 * targeted wakeup on the specific uwq waitqueue from
493 * wake_userfault() or for signals or for uffd
494 * release.
495 */
496 while (!READ_ONCE(uwq.waken)) {
497 /*
498 * This needs the full smp_store_mb()
499 * guarantee as the state write must be
500 * visible to other CPUs before reading
501 * uwq.waken from other CPUs.
502 */
503 set_current_state(blocking_state);
504 if (READ_ONCE(uwq.waken) ||
505 READ_ONCE(ctx->released) ||
506 (return_to_userland ? signal_pending(current) :
507 fatal_signal_pending(current)))
508 break;
509 schedule();
510 }
511 }
512
513 __set_current_state(TASK_RUNNING);
514
515 if (return_to_userland) {
516 if (signal_pending(current) &&
517 !fatal_signal_pending(current)) {
518 /*
519 * If we got a SIGSTOP or SIGCONT and this is
520 * a normal userland page fault, just let
521 * userland return so the signal will be
522 * handled and gdb debugging works. The page
523 * fault code immediately after we return from
524 * this function is going to release the
525 * mmap_sem and it's not depending on it
526 * (unlike gup would if we were not to return
527 * VM_FAULT_RETRY).
528 *
529 * If a fatal signal is pending we still take
530 * the streamlined VM_FAULT_RETRY failure path
531 * and there's no need to retake the mmap_sem
532 * in such case.
533 */
534 down_read(&mm->mmap_sem);
535 ret = VM_FAULT_NOPAGE;
536 }
537 }
538
539 /*
540 * Here we race with the list_del; list_add in
541 * userfaultfd_ctx_read(), however because we don't ever run
542 * list_del_init() to refile across the two lists, the prev
543 * and next pointers will never point to self. list_add also
544 * would never let any of the two pointers to point to
545 * self. So list_empty_careful won't risk to see both pointers
546 * pointing to self at any time during the list refile. The
547 * only case where list_del_init() is called is the full
548 * removal in the wake function and there we don't re-list_add
549 * and it's fine not to block on the spinlock. The uwq on this
550 * kernel stack can be released after the list_del_init.
551 */
552 if (!list_empty_careful(&uwq.wq.entry)) {
553 spin_lock(&ctx->fault_pending_wqh.lock);
554 /*
555 * No need of list_del_init(), the uwq on the stack
556 * will be freed shortly anyway.
557 */
558 list_del(&uwq.wq.entry);
559 spin_unlock(&ctx->fault_pending_wqh.lock);
560 }
561
562 /*
563 * ctx may go away after this if the userfault pseudo fd is
564 * already released.
565 */
566 userfaultfd_ctx_put(ctx);
567
568 out:
569 return ret;
570 }
571
572 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
573 struct userfaultfd_wait_queue *ewq)
574 {
575 struct userfaultfd_ctx *release_new_ctx;
576
577 if (WARN_ON_ONCE(current->flags & PF_EXITING))
578 goto out;
579
580 ewq->ctx = ctx;
581 init_waitqueue_entry(&ewq->wq, current);
582 release_new_ctx = NULL;
583
584 spin_lock(&ctx->event_wqh.lock);
585 /*
586 * After the __add_wait_queue the uwq is visible to userland
587 * through poll/read().
588 */
589 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
590 for (;;) {
591 set_current_state(TASK_KILLABLE);
592 if (ewq->msg.event == 0)
593 break;
594 if (READ_ONCE(ctx->released) ||
595 fatal_signal_pending(current)) {
596 /*
597 * &ewq->wq may be queued in fork_event, but
598 * __remove_wait_queue ignores the head
599 * parameter. It would be a problem if it
600 * didn't.
601 */
602 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
603 if (ewq->msg.event == UFFD_EVENT_FORK) {
604 struct userfaultfd_ctx *new;
605
606 new = (struct userfaultfd_ctx *)
607 (unsigned long)
608 ewq->msg.arg.reserved.reserved1;
609 release_new_ctx = new;
610 }
611 break;
612 }
613
614 spin_unlock(&ctx->event_wqh.lock);
615
616 wake_up_poll(&ctx->fd_wqh, POLLIN);
617 schedule();
618
619 spin_lock(&ctx->event_wqh.lock);
620 }
621 __set_current_state(TASK_RUNNING);
622 spin_unlock(&ctx->event_wqh.lock);
623
624 if (release_new_ctx) {
625 struct vm_area_struct *vma;
626 struct mm_struct *mm = release_new_ctx->mm;
627
628 /* the various vma->vm_userfaultfd_ctx still points to it */
629 down_write(&mm->mmap_sem);
630 /* no task can run (and in turn coredump) yet */
631 VM_WARN_ON(!mmget_still_valid(mm));
632 for (vma = mm->mmap; vma; vma = vma->vm_next)
633 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
634 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
635 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
636 }
637 up_write(&mm->mmap_sem);
638
639 userfaultfd_ctx_put(release_new_ctx);
640 }
641
642 /*
643 * ctx may go away after this if the userfault pseudo fd is
644 * already released.
645 */
646 out:
647 userfaultfd_ctx_put(ctx);
648 }
649
650 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
651 struct userfaultfd_wait_queue *ewq)
652 {
653 ewq->msg.event = 0;
654 wake_up_locked(&ctx->event_wqh);
655 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
656 }
657
658 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
659 {
660 struct userfaultfd_ctx *ctx = NULL, *octx;
661 struct userfaultfd_fork_ctx *fctx;
662
663 octx = vma->vm_userfaultfd_ctx.ctx;
664 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
665 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
666 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
667 return 0;
668 }
669
670 list_for_each_entry(fctx, fcs, list)
671 if (fctx->orig == octx) {
672 ctx = fctx->new;
673 break;
674 }
675
676 if (!ctx) {
677 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
678 if (!fctx)
679 return -ENOMEM;
680
681 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
682 if (!ctx) {
683 kfree(fctx);
684 return -ENOMEM;
685 }
686
687 atomic_set(&ctx->refcount, 1);
688 ctx->flags = octx->flags;
689 ctx->state = UFFD_STATE_RUNNING;
690 ctx->features = octx->features;
691 ctx->released = false;
692 ctx->mm = vma->vm_mm;
693 mmgrab(ctx->mm);
694
695 userfaultfd_ctx_get(octx);
696 fctx->orig = octx;
697 fctx->new = ctx;
698 list_add_tail(&fctx->list, fcs);
699 }
700
701 vma->vm_userfaultfd_ctx.ctx = ctx;
702 return 0;
703 }
704
705 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
706 {
707 struct userfaultfd_ctx *ctx = fctx->orig;
708 struct userfaultfd_wait_queue ewq;
709
710 msg_init(&ewq.msg);
711
712 ewq.msg.event = UFFD_EVENT_FORK;
713 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
714
715 userfaultfd_event_wait_completion(ctx, &ewq);
716 }
717
718 void dup_userfaultfd_complete(struct list_head *fcs)
719 {
720 struct userfaultfd_fork_ctx *fctx, *n;
721
722 list_for_each_entry_safe(fctx, n, fcs, list) {
723 dup_fctx(fctx);
724 list_del(&fctx->list);
725 kfree(fctx);
726 }
727 }
728
729 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
730 struct vm_userfaultfd_ctx *vm_ctx)
731 {
732 struct userfaultfd_ctx *ctx;
733
734 ctx = vma->vm_userfaultfd_ctx.ctx;
735
736 if (!ctx)
737 return;
738
739 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
740 vm_ctx->ctx = ctx;
741 userfaultfd_ctx_get(ctx);
742 } else {
743 /* Drop uffd context if remap feature not enabled */
744 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
745 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
746 }
747 }
748
749 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
750 unsigned long from, unsigned long to,
751 unsigned long len)
752 {
753 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
754 struct userfaultfd_wait_queue ewq;
755
756 if (!ctx)
757 return;
758
759 if (to & ~PAGE_MASK) {
760 userfaultfd_ctx_put(ctx);
761 return;
762 }
763
764 msg_init(&ewq.msg);
765
766 ewq.msg.event = UFFD_EVENT_REMAP;
767 ewq.msg.arg.remap.from = from;
768 ewq.msg.arg.remap.to = to;
769 ewq.msg.arg.remap.len = len;
770
771 userfaultfd_event_wait_completion(ctx, &ewq);
772 }
773
774 bool userfaultfd_remove(struct vm_area_struct *vma,
775 unsigned long start, unsigned long end)
776 {
777 struct mm_struct *mm = vma->vm_mm;
778 struct userfaultfd_ctx *ctx;
779 struct userfaultfd_wait_queue ewq;
780
781 ctx = vma->vm_userfaultfd_ctx.ctx;
782 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
783 return true;
784
785 userfaultfd_ctx_get(ctx);
786 up_read(&mm->mmap_sem);
787
788 msg_init(&ewq.msg);
789
790 ewq.msg.event = UFFD_EVENT_REMOVE;
791 ewq.msg.arg.remove.start = start;
792 ewq.msg.arg.remove.end = end;
793
794 userfaultfd_event_wait_completion(ctx, &ewq);
795
796 return false;
797 }
798
799 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
800 unsigned long start, unsigned long end)
801 {
802 struct userfaultfd_unmap_ctx *unmap_ctx;
803
804 list_for_each_entry(unmap_ctx, unmaps, list)
805 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
806 unmap_ctx->end == end)
807 return true;
808
809 return false;
810 }
811
812 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
813 unsigned long start, unsigned long end,
814 struct list_head *unmaps)
815 {
816 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
817 struct userfaultfd_unmap_ctx *unmap_ctx;
818 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
819
820 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
821 has_unmap_ctx(ctx, unmaps, start, end))
822 continue;
823
824 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
825 if (!unmap_ctx)
826 return -ENOMEM;
827
828 userfaultfd_ctx_get(ctx);
829 unmap_ctx->ctx = ctx;
830 unmap_ctx->start = start;
831 unmap_ctx->end = end;
832 list_add_tail(&unmap_ctx->list, unmaps);
833 }
834
835 return 0;
836 }
837
838 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
839 {
840 struct userfaultfd_unmap_ctx *ctx, *n;
841 struct userfaultfd_wait_queue ewq;
842
843 list_for_each_entry_safe(ctx, n, uf, list) {
844 msg_init(&ewq.msg);
845
846 ewq.msg.event = UFFD_EVENT_UNMAP;
847 ewq.msg.arg.remove.start = ctx->start;
848 ewq.msg.arg.remove.end = ctx->end;
849
850 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
851
852 list_del(&ctx->list);
853 kfree(ctx);
854 }
855 }
856
857 static int userfaultfd_release(struct inode *inode, struct file *file)
858 {
859 struct userfaultfd_ctx *ctx = file->private_data;
860 struct mm_struct *mm = ctx->mm;
861 struct vm_area_struct *vma, *prev;
862 /* len == 0 means wake all */
863 struct userfaultfd_wake_range range = { .len = 0, };
864 unsigned long new_flags;
865
866 WRITE_ONCE(ctx->released, true);
867
868 if (!mmget_not_zero(mm))
869 goto wakeup;
870
871 /*
872 * Flush page faults out of all CPUs. NOTE: all page faults
873 * must be retried without returning VM_FAULT_SIGBUS if
874 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
875 * changes while handle_userfault released the mmap_sem. So
876 * it's critical that released is set to true (above), before
877 * taking the mmap_sem for writing.
878 */
879 down_write(&mm->mmap_sem);
880 if (!mmget_still_valid(mm))
881 goto skip_mm;
882 prev = NULL;
883 for (vma = mm->mmap; vma; vma = vma->vm_next) {
884 cond_resched();
885 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
886 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
887 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
888 prev = vma;
889 continue;
890 }
891 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
892 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
893 new_flags, vma->anon_vma,
894 vma->vm_file, vma->vm_pgoff,
895 vma_policy(vma),
896 NULL_VM_UFFD_CTX);
897 if (prev)
898 vma = prev;
899 else
900 prev = vma;
901 vma->vm_flags = new_flags;
902 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
903 }
904 skip_mm:
905 up_write(&mm->mmap_sem);
906 mmput(mm);
907 wakeup:
908 /*
909 * After no new page faults can wait on this fault_*wqh, flush
910 * the last page faults that may have been already waiting on
911 * the fault_*wqh.
912 */
913 spin_lock(&ctx->fault_pending_wqh.lock);
914 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
915 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
916 spin_unlock(&ctx->fault_pending_wqh.lock);
917
918 /* Flush pending events that may still wait on event_wqh */
919 wake_up_all(&ctx->event_wqh);
920
921 wake_up_poll(&ctx->fd_wqh, POLLHUP);
922 userfaultfd_ctx_put(ctx);
923 return 0;
924 }
925
926 /* fault_pending_wqh.lock must be hold by the caller */
927 static inline struct userfaultfd_wait_queue *find_userfault_in(
928 wait_queue_head_t *wqh)
929 {
930 wait_queue_entry_t *wq;
931 struct userfaultfd_wait_queue *uwq;
932
933 VM_BUG_ON(!spin_is_locked(&wqh->lock));
934
935 uwq = NULL;
936 if (!waitqueue_active(wqh))
937 goto out;
938 /* walk in reverse to provide FIFO behavior to read userfaults */
939 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
940 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
941 out:
942 return uwq;
943 }
944
945 static inline struct userfaultfd_wait_queue *find_userfault(
946 struct userfaultfd_ctx *ctx)
947 {
948 return find_userfault_in(&ctx->fault_pending_wqh);
949 }
950
951 static inline struct userfaultfd_wait_queue *find_userfault_evt(
952 struct userfaultfd_ctx *ctx)
953 {
954 return find_userfault_in(&ctx->event_wqh);
955 }
956
957 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
958 {
959 struct userfaultfd_ctx *ctx = file->private_data;
960 unsigned int ret;
961
962 poll_wait(file, &ctx->fd_wqh, wait);
963
964 switch (ctx->state) {
965 case UFFD_STATE_WAIT_API:
966 return POLLERR;
967 case UFFD_STATE_RUNNING:
968 /*
969 * poll() never guarantees that read won't block.
970 * userfaults can be waken before they're read().
971 */
972 if (unlikely(!(file->f_flags & O_NONBLOCK)))
973 return POLLERR;
974 /*
975 * lockless access to see if there are pending faults
976 * __pollwait last action is the add_wait_queue but
977 * the spin_unlock would allow the waitqueue_active to
978 * pass above the actual list_add inside
979 * add_wait_queue critical section. So use a full
980 * memory barrier to serialize the list_add write of
981 * add_wait_queue() with the waitqueue_active read
982 * below.
983 */
984 ret = 0;
985 smp_mb();
986 if (waitqueue_active(&ctx->fault_pending_wqh))
987 ret = POLLIN;
988 else if (waitqueue_active(&ctx->event_wqh))
989 ret = POLLIN;
990
991 return ret;
992 default:
993 WARN_ON_ONCE(1);
994 return POLLERR;
995 }
996 }
997
998 static const struct file_operations userfaultfd_fops;
999
1000 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1001 struct userfaultfd_ctx *new,
1002 struct uffd_msg *msg)
1003 {
1004 int fd;
1005 struct file *file;
1006 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
1007
1008 fd = get_unused_fd_flags(flags);
1009 if (fd < 0)
1010 return fd;
1011
1012 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
1013 O_RDWR | flags);
1014 if (IS_ERR(file)) {
1015 put_unused_fd(fd);
1016 return PTR_ERR(file);
1017 }
1018
1019 fd_install(fd, file);
1020 msg->arg.reserved.reserved1 = 0;
1021 msg->arg.fork.ufd = fd;
1022
1023 return 0;
1024 }
1025
1026 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1027 struct uffd_msg *msg)
1028 {
1029 ssize_t ret;
1030 DECLARE_WAITQUEUE(wait, current);
1031 struct userfaultfd_wait_queue *uwq;
1032 /*
1033 * Handling fork event requires sleeping operations, so
1034 * we drop the event_wqh lock, then do these ops, then
1035 * lock it back and wake up the waiter. While the lock is
1036 * dropped the ewq may go away so we keep track of it
1037 * carefully.
1038 */
1039 LIST_HEAD(fork_event);
1040 struct userfaultfd_ctx *fork_nctx = NULL;
1041
1042 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1043 spin_lock(&ctx->fd_wqh.lock);
1044 __add_wait_queue(&ctx->fd_wqh, &wait);
1045 for (;;) {
1046 set_current_state(TASK_INTERRUPTIBLE);
1047 spin_lock(&ctx->fault_pending_wqh.lock);
1048 uwq = find_userfault(ctx);
1049 if (uwq) {
1050 /*
1051 * Use a seqcount to repeat the lockless check
1052 * in wake_userfault() to avoid missing
1053 * wakeups because during the refile both
1054 * waitqueue could become empty if this is the
1055 * only userfault.
1056 */
1057 write_seqcount_begin(&ctx->refile_seq);
1058
1059 /*
1060 * The fault_pending_wqh.lock prevents the uwq
1061 * to disappear from under us.
1062 *
1063 * Refile this userfault from
1064 * fault_pending_wqh to fault_wqh, it's not
1065 * pending anymore after we read it.
1066 *
1067 * Use list_del() by hand (as
1068 * userfaultfd_wake_function also uses
1069 * list_del_init() by hand) to be sure nobody
1070 * changes __remove_wait_queue() to use
1071 * list_del_init() in turn breaking the
1072 * !list_empty_careful() check in
1073 * handle_userfault(). The uwq->wq.head list
1074 * must never be empty at any time during the
1075 * refile, or the waitqueue could disappear
1076 * from under us. The "wait_queue_head_t"
1077 * parameter of __remove_wait_queue() is unused
1078 * anyway.
1079 */
1080 list_del(&uwq->wq.entry);
1081 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1082
1083 write_seqcount_end(&ctx->refile_seq);
1084
1085 /* careful to always initialize msg if ret == 0 */
1086 *msg = uwq->msg;
1087 spin_unlock(&ctx->fault_pending_wqh.lock);
1088 ret = 0;
1089 break;
1090 }
1091 spin_unlock(&ctx->fault_pending_wqh.lock);
1092
1093 spin_lock(&ctx->event_wqh.lock);
1094 uwq = find_userfault_evt(ctx);
1095 if (uwq) {
1096 *msg = uwq->msg;
1097
1098 if (uwq->msg.event == UFFD_EVENT_FORK) {
1099 fork_nctx = (struct userfaultfd_ctx *)
1100 (unsigned long)
1101 uwq->msg.arg.reserved.reserved1;
1102 list_move(&uwq->wq.entry, &fork_event);
1103 /*
1104 * fork_nctx can be freed as soon as
1105 * we drop the lock, unless we take a
1106 * reference on it.
1107 */
1108 userfaultfd_ctx_get(fork_nctx);
1109 spin_unlock(&ctx->event_wqh.lock);
1110 ret = 0;
1111 break;
1112 }
1113
1114 userfaultfd_event_complete(ctx, uwq);
1115 spin_unlock(&ctx->event_wqh.lock);
1116 ret = 0;
1117 break;
1118 }
1119 spin_unlock(&ctx->event_wqh.lock);
1120
1121 if (signal_pending(current)) {
1122 ret = -ERESTARTSYS;
1123 break;
1124 }
1125 if (no_wait) {
1126 ret = -EAGAIN;
1127 break;
1128 }
1129 spin_unlock(&ctx->fd_wqh.lock);
1130 schedule();
1131 spin_lock(&ctx->fd_wqh.lock);
1132 }
1133 __remove_wait_queue(&ctx->fd_wqh, &wait);
1134 __set_current_state(TASK_RUNNING);
1135 spin_unlock(&ctx->fd_wqh.lock);
1136
1137 if (!ret && msg->event == UFFD_EVENT_FORK) {
1138 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1139 spin_lock(&ctx->event_wqh.lock);
1140 if (!list_empty(&fork_event)) {
1141 /*
1142 * The fork thread didn't abort, so we can
1143 * drop the temporary refcount.
1144 */
1145 userfaultfd_ctx_put(fork_nctx);
1146
1147 uwq = list_first_entry(&fork_event,
1148 typeof(*uwq),
1149 wq.entry);
1150 /*
1151 * If fork_event list wasn't empty and in turn
1152 * the event wasn't already released by fork
1153 * (the event is allocated on fork kernel
1154 * stack), put the event back to its place in
1155 * the event_wq. fork_event head will be freed
1156 * as soon as we return so the event cannot
1157 * stay queued there no matter the current
1158 * "ret" value.
1159 */
1160 list_del(&uwq->wq.entry);
1161 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1162
1163 /*
1164 * Leave the event in the waitqueue and report
1165 * error to userland if we failed to resolve
1166 * the userfault fork.
1167 */
1168 if (likely(!ret))
1169 userfaultfd_event_complete(ctx, uwq);
1170 } else {
1171 /*
1172 * Here the fork thread aborted and the
1173 * refcount from the fork thread on fork_nctx
1174 * has already been released. We still hold
1175 * the reference we took before releasing the
1176 * lock above. If resolve_userfault_fork
1177 * failed we've to drop it because the
1178 * fork_nctx has to be freed in such case. If
1179 * it succeeded we'll hold it because the new
1180 * uffd references it.
1181 */
1182 if (ret)
1183 userfaultfd_ctx_put(fork_nctx);
1184 }
1185 spin_unlock(&ctx->event_wqh.lock);
1186 }
1187
1188 return ret;
1189 }
1190
1191 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1192 size_t count, loff_t *ppos)
1193 {
1194 struct userfaultfd_ctx *ctx = file->private_data;
1195 ssize_t _ret, ret = 0;
1196 struct uffd_msg msg;
1197 int no_wait = file->f_flags & O_NONBLOCK;
1198
1199 if (ctx->state == UFFD_STATE_WAIT_API)
1200 return -EINVAL;
1201
1202 for (;;) {
1203 if (count < sizeof(msg))
1204 return ret ? ret : -EINVAL;
1205 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1206 if (_ret < 0)
1207 return ret ? ret : _ret;
1208 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1209 return ret ? ret : -EFAULT;
1210 ret += sizeof(msg);
1211 buf += sizeof(msg);
1212 count -= sizeof(msg);
1213 /*
1214 * Allow to read more than one fault at time but only
1215 * block if waiting for the very first one.
1216 */
1217 no_wait = O_NONBLOCK;
1218 }
1219 }
1220
1221 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1222 struct userfaultfd_wake_range *range)
1223 {
1224 spin_lock(&ctx->fault_pending_wqh.lock);
1225 /* wake all in the range and autoremove */
1226 if (waitqueue_active(&ctx->fault_pending_wqh))
1227 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1228 range);
1229 if (waitqueue_active(&ctx->fault_wqh))
1230 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1231 spin_unlock(&ctx->fault_pending_wqh.lock);
1232 }
1233
1234 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1235 struct userfaultfd_wake_range *range)
1236 {
1237 unsigned seq;
1238 bool need_wakeup;
1239
1240 /*
1241 * To be sure waitqueue_active() is not reordered by the CPU
1242 * before the pagetable update, use an explicit SMP memory
1243 * barrier here. PT lock release or up_read(mmap_sem) still
1244 * have release semantics that can allow the
1245 * waitqueue_active() to be reordered before the pte update.
1246 */
1247 smp_mb();
1248
1249 /*
1250 * Use waitqueue_active because it's very frequent to
1251 * change the address space atomically even if there are no
1252 * userfaults yet. So we take the spinlock only when we're
1253 * sure we've userfaults to wake.
1254 */
1255 do {
1256 seq = read_seqcount_begin(&ctx->refile_seq);
1257 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1258 waitqueue_active(&ctx->fault_wqh);
1259 cond_resched();
1260 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1261 if (need_wakeup)
1262 __wake_userfault(ctx, range);
1263 }
1264
1265 static __always_inline int validate_range(struct mm_struct *mm,
1266 __u64 start, __u64 len)
1267 {
1268 __u64 task_size = mm->task_size;
1269
1270 if (start & ~PAGE_MASK)
1271 return -EINVAL;
1272 if (len & ~PAGE_MASK)
1273 return -EINVAL;
1274 if (!len)
1275 return -EINVAL;
1276 if (start < mmap_min_addr)
1277 return -EINVAL;
1278 if (start >= task_size)
1279 return -EINVAL;
1280 if (len > task_size - start)
1281 return -EINVAL;
1282 return 0;
1283 }
1284
1285 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1286 {
1287 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1288 vma_is_shmem(vma);
1289 }
1290
1291 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1292 unsigned long arg)
1293 {
1294 struct mm_struct *mm = ctx->mm;
1295 struct vm_area_struct *vma, *prev, *cur;
1296 int ret;
1297 struct uffdio_register uffdio_register;
1298 struct uffdio_register __user *user_uffdio_register;
1299 unsigned long vm_flags, new_flags;
1300 bool found;
1301 bool basic_ioctls;
1302 unsigned long start, end, vma_end;
1303
1304 user_uffdio_register = (struct uffdio_register __user *) arg;
1305
1306 ret = -EFAULT;
1307 if (copy_from_user(&uffdio_register, user_uffdio_register,
1308 sizeof(uffdio_register)-sizeof(__u64)))
1309 goto out;
1310
1311 ret = -EINVAL;
1312 if (!uffdio_register.mode)
1313 goto out;
1314 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1315 UFFDIO_REGISTER_MODE_WP))
1316 goto out;
1317 vm_flags = 0;
1318 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1319 vm_flags |= VM_UFFD_MISSING;
1320 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1321 vm_flags |= VM_UFFD_WP;
1322 /*
1323 * FIXME: remove the below error constraint by
1324 * implementing the wprotect tracking mode.
1325 */
1326 ret = -EINVAL;
1327 goto out;
1328 }
1329
1330 ret = validate_range(mm, uffdio_register.range.start,
1331 uffdio_register.range.len);
1332 if (ret)
1333 goto out;
1334
1335 start = uffdio_register.range.start;
1336 end = start + uffdio_register.range.len;
1337
1338 ret = -ENOMEM;
1339 if (!mmget_not_zero(mm))
1340 goto out;
1341
1342 down_write(&mm->mmap_sem);
1343 if (!mmget_still_valid(mm))
1344 goto out_unlock;
1345 vma = find_vma_prev(mm, start, &prev);
1346 if (!vma)
1347 goto out_unlock;
1348
1349 /* check that there's at least one vma in the range */
1350 ret = -EINVAL;
1351 if (vma->vm_start >= end)
1352 goto out_unlock;
1353
1354 /*
1355 * If the first vma contains huge pages, make sure start address
1356 * is aligned to huge page size.
1357 */
1358 if (is_vm_hugetlb_page(vma)) {
1359 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1360
1361 if (start & (vma_hpagesize - 1))
1362 goto out_unlock;
1363 }
1364
1365 /*
1366 * Search for not compatible vmas.
1367 */
1368 found = false;
1369 basic_ioctls = false;
1370 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1371 cond_resched();
1372
1373 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1374 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1375
1376 /* check not compatible vmas */
1377 ret = -EINVAL;
1378 if (!vma_can_userfault(cur))
1379 goto out_unlock;
1380
1381 /*
1382 * UFFDIO_COPY will fill file holes even without
1383 * PROT_WRITE. This check enforces that if this is a
1384 * MAP_SHARED, the process has write permission to the backing
1385 * file. If VM_MAYWRITE is set it also enforces that on a
1386 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1387 * F_WRITE_SEAL can be taken until the vma is destroyed.
1388 */
1389 ret = -EPERM;
1390 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1391 goto out_unlock;
1392
1393 /*
1394 * If this vma contains ending address, and huge pages
1395 * check alignment.
1396 */
1397 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1398 end > cur->vm_start) {
1399 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1400
1401 ret = -EINVAL;
1402
1403 if (end & (vma_hpagesize - 1))
1404 goto out_unlock;
1405 }
1406
1407 /*
1408 * Check that this vma isn't already owned by a
1409 * different userfaultfd. We can't allow more than one
1410 * userfaultfd to own a single vma simultaneously or we
1411 * wouldn't know which one to deliver the userfaults to.
1412 */
1413 ret = -EBUSY;
1414 if (cur->vm_userfaultfd_ctx.ctx &&
1415 cur->vm_userfaultfd_ctx.ctx != ctx)
1416 goto out_unlock;
1417
1418 /*
1419 * Note vmas containing huge pages
1420 */
1421 if (is_vm_hugetlb_page(cur))
1422 basic_ioctls = true;
1423
1424 found = true;
1425 }
1426 BUG_ON(!found);
1427
1428 if (vma->vm_start < start)
1429 prev = vma;
1430
1431 ret = 0;
1432 do {
1433 cond_resched();
1434
1435 BUG_ON(!vma_can_userfault(vma));
1436 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1437 vma->vm_userfaultfd_ctx.ctx != ctx);
1438 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1439
1440 /*
1441 * Nothing to do: this vma is already registered into this
1442 * userfaultfd and with the right tracking mode too.
1443 */
1444 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1445 (vma->vm_flags & vm_flags) == vm_flags)
1446 goto skip;
1447
1448 if (vma->vm_start > start)
1449 start = vma->vm_start;
1450 vma_end = min(end, vma->vm_end);
1451
1452 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1453 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1454 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1455 vma_policy(vma),
1456 ((struct vm_userfaultfd_ctx){ ctx }));
1457 if (prev) {
1458 vma = prev;
1459 goto next;
1460 }
1461 if (vma->vm_start < start) {
1462 ret = split_vma(mm, vma, start, 1);
1463 if (ret)
1464 break;
1465 }
1466 if (vma->vm_end > end) {
1467 ret = split_vma(mm, vma, end, 0);
1468 if (ret)
1469 break;
1470 }
1471 next:
1472 /*
1473 * In the vma_merge() successful mprotect-like case 8:
1474 * the next vma was merged into the current one and
1475 * the current one has not been updated yet.
1476 */
1477 vma->vm_flags = new_flags;
1478 vma->vm_userfaultfd_ctx.ctx = ctx;
1479
1480 skip:
1481 prev = vma;
1482 start = vma->vm_end;
1483 vma = vma->vm_next;
1484 } while (vma && vma->vm_start < end);
1485 out_unlock:
1486 up_write(&mm->mmap_sem);
1487 mmput(mm);
1488 if (!ret) {
1489 /*
1490 * Now that we scanned all vmas we can already tell
1491 * userland which ioctls methods are guaranteed to
1492 * succeed on this range.
1493 */
1494 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1495 UFFD_API_RANGE_IOCTLS,
1496 &user_uffdio_register->ioctls))
1497 ret = -EFAULT;
1498 }
1499 out:
1500 return ret;
1501 }
1502
1503 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1504 unsigned long arg)
1505 {
1506 struct mm_struct *mm = ctx->mm;
1507 struct vm_area_struct *vma, *prev, *cur;
1508 int ret;
1509 struct uffdio_range uffdio_unregister;
1510 unsigned long new_flags;
1511 bool found;
1512 unsigned long start, end, vma_end;
1513 const void __user *buf = (void __user *)arg;
1514
1515 ret = -EFAULT;
1516 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1517 goto out;
1518
1519 ret = validate_range(mm, uffdio_unregister.start,
1520 uffdio_unregister.len);
1521 if (ret)
1522 goto out;
1523
1524 start = uffdio_unregister.start;
1525 end = start + uffdio_unregister.len;
1526
1527 ret = -ENOMEM;
1528 if (!mmget_not_zero(mm))
1529 goto out;
1530
1531 down_write(&mm->mmap_sem);
1532 if (!mmget_still_valid(mm))
1533 goto out_unlock;
1534 vma = find_vma_prev(mm, start, &prev);
1535 if (!vma)
1536 goto out_unlock;
1537
1538 /* check that there's at least one vma in the range */
1539 ret = -EINVAL;
1540 if (vma->vm_start >= end)
1541 goto out_unlock;
1542
1543 /*
1544 * If the first vma contains huge pages, make sure start address
1545 * is aligned to huge page size.
1546 */
1547 if (is_vm_hugetlb_page(vma)) {
1548 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1549
1550 if (start & (vma_hpagesize - 1))
1551 goto out_unlock;
1552 }
1553
1554 /*
1555 * Search for not compatible vmas.
1556 */
1557 found = false;
1558 ret = -EINVAL;
1559 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1560 cond_resched();
1561
1562 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1563 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1564
1565 /*
1566 * Check not compatible vmas, not strictly required
1567 * here as not compatible vmas cannot have an
1568 * userfaultfd_ctx registered on them, but this
1569 * provides for more strict behavior to notice
1570 * unregistration errors.
1571 */
1572 if (!vma_can_userfault(cur))
1573 goto out_unlock;
1574
1575 found = true;
1576 }
1577 BUG_ON(!found);
1578
1579 if (vma->vm_start < start)
1580 prev = vma;
1581
1582 ret = 0;
1583 do {
1584 cond_resched();
1585
1586 BUG_ON(!vma_can_userfault(vma));
1587
1588 /*
1589 * Nothing to do: this vma is already registered into this
1590 * userfaultfd and with the right tracking mode too.
1591 */
1592 if (!vma->vm_userfaultfd_ctx.ctx)
1593 goto skip;
1594
1595 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1596
1597 if (vma->vm_start > start)
1598 start = vma->vm_start;
1599 vma_end = min(end, vma->vm_end);
1600
1601 if (userfaultfd_missing(vma)) {
1602 /*
1603 * Wake any concurrent pending userfault while
1604 * we unregister, so they will not hang
1605 * permanently and it avoids userland to call
1606 * UFFDIO_WAKE explicitly.
1607 */
1608 struct userfaultfd_wake_range range;
1609 range.start = start;
1610 range.len = vma_end - start;
1611 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1612 }
1613
1614 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1615 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1616 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1617 vma_policy(vma),
1618 NULL_VM_UFFD_CTX);
1619 if (prev) {
1620 vma = prev;
1621 goto next;
1622 }
1623 if (vma->vm_start < start) {
1624 ret = split_vma(mm, vma, start, 1);
1625 if (ret)
1626 break;
1627 }
1628 if (vma->vm_end > end) {
1629 ret = split_vma(mm, vma, end, 0);
1630 if (ret)
1631 break;
1632 }
1633 next:
1634 /*
1635 * In the vma_merge() successful mprotect-like case 8:
1636 * the next vma was merged into the current one and
1637 * the current one has not been updated yet.
1638 */
1639 vma->vm_flags = new_flags;
1640 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1641
1642 skip:
1643 prev = vma;
1644 start = vma->vm_end;
1645 vma = vma->vm_next;
1646 } while (vma && vma->vm_start < end);
1647 out_unlock:
1648 up_write(&mm->mmap_sem);
1649 mmput(mm);
1650 out:
1651 return ret;
1652 }
1653
1654 /*
1655 * userfaultfd_wake may be used in combination with the
1656 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1657 */
1658 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1659 unsigned long arg)
1660 {
1661 int ret;
1662 struct uffdio_range uffdio_wake;
1663 struct userfaultfd_wake_range range;
1664 const void __user *buf = (void __user *)arg;
1665
1666 ret = -EFAULT;
1667 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1668 goto out;
1669
1670 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1671 if (ret)
1672 goto out;
1673
1674 range.start = uffdio_wake.start;
1675 range.len = uffdio_wake.len;
1676
1677 /*
1678 * len == 0 means wake all and we don't want to wake all here,
1679 * so check it again to be sure.
1680 */
1681 VM_BUG_ON(!range.len);
1682
1683 wake_userfault(ctx, &range);
1684 ret = 0;
1685
1686 out:
1687 return ret;
1688 }
1689
1690 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1691 unsigned long arg)
1692 {
1693 __s64 ret;
1694 struct uffdio_copy uffdio_copy;
1695 struct uffdio_copy __user *user_uffdio_copy;
1696 struct userfaultfd_wake_range range;
1697
1698 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1699
1700 ret = -EFAULT;
1701 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1702 /* don't copy "copy" last field */
1703 sizeof(uffdio_copy)-sizeof(__s64)))
1704 goto out;
1705
1706 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1707 if (ret)
1708 goto out;
1709 /*
1710 * double check for wraparound just in case. copy_from_user()
1711 * will later check uffdio_copy.src + uffdio_copy.len to fit
1712 * in the userland range.
1713 */
1714 ret = -EINVAL;
1715 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1716 goto out;
1717 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1718 goto out;
1719 if (mmget_not_zero(ctx->mm)) {
1720 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1721 uffdio_copy.len);
1722 mmput(ctx->mm);
1723 } else {
1724 return -ESRCH;
1725 }
1726 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1727 return -EFAULT;
1728 if (ret < 0)
1729 goto out;
1730 BUG_ON(!ret);
1731 /* len == 0 would wake all */
1732 range.len = ret;
1733 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1734 range.start = uffdio_copy.dst;
1735 wake_userfault(ctx, &range);
1736 }
1737 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1738 out:
1739 return ret;
1740 }
1741
1742 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1743 unsigned long arg)
1744 {
1745 __s64 ret;
1746 struct uffdio_zeropage uffdio_zeropage;
1747 struct uffdio_zeropage __user *user_uffdio_zeropage;
1748 struct userfaultfd_wake_range range;
1749
1750 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1751
1752 ret = -EFAULT;
1753 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1754 /* don't copy "zeropage" last field */
1755 sizeof(uffdio_zeropage)-sizeof(__s64)))
1756 goto out;
1757
1758 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1759 uffdio_zeropage.range.len);
1760 if (ret)
1761 goto out;
1762 ret = -EINVAL;
1763 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1764 goto out;
1765
1766 if (mmget_not_zero(ctx->mm)) {
1767 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1768 uffdio_zeropage.range.len);
1769 mmput(ctx->mm);
1770 } else {
1771 return -ESRCH;
1772 }
1773 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1774 return -EFAULT;
1775 if (ret < 0)
1776 goto out;
1777 /* len == 0 would wake all */
1778 BUG_ON(!ret);
1779 range.len = ret;
1780 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1781 range.start = uffdio_zeropage.range.start;
1782 wake_userfault(ctx, &range);
1783 }
1784 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1785 out:
1786 return ret;
1787 }
1788
1789 static inline unsigned int uffd_ctx_features(__u64 user_features)
1790 {
1791 /*
1792 * For the current set of features the bits just coincide
1793 */
1794 return (unsigned int)user_features;
1795 }
1796
1797 /*
1798 * userland asks for a certain API version and we return which bits
1799 * and ioctl commands are implemented in this kernel for such API
1800 * version or -EINVAL if unknown.
1801 */
1802 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1803 unsigned long arg)
1804 {
1805 struct uffdio_api uffdio_api;
1806 void __user *buf = (void __user *)arg;
1807 int ret;
1808 __u64 features;
1809
1810 ret = -EINVAL;
1811 if (ctx->state != UFFD_STATE_WAIT_API)
1812 goto out;
1813 ret = -EFAULT;
1814 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1815 goto out;
1816 features = uffdio_api.features;
1817 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1818 memset(&uffdio_api, 0, sizeof(uffdio_api));
1819 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1820 goto out;
1821 ret = -EINVAL;
1822 goto out;
1823 }
1824 /* report all available features and ioctls to userland */
1825 uffdio_api.features = UFFD_API_FEATURES;
1826 uffdio_api.ioctls = UFFD_API_IOCTLS;
1827 ret = -EFAULT;
1828 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1829 goto out;
1830 ctx->state = UFFD_STATE_RUNNING;
1831 /* only enable the requested features for this uffd context */
1832 ctx->features = uffd_ctx_features(features);
1833 ret = 0;
1834 out:
1835 return ret;
1836 }
1837
1838 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1839 unsigned long arg)
1840 {
1841 int ret = -EINVAL;
1842 struct userfaultfd_ctx *ctx = file->private_data;
1843
1844 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1845 return -EINVAL;
1846
1847 switch(cmd) {
1848 case UFFDIO_API:
1849 ret = userfaultfd_api(ctx, arg);
1850 break;
1851 case UFFDIO_REGISTER:
1852 ret = userfaultfd_register(ctx, arg);
1853 break;
1854 case UFFDIO_UNREGISTER:
1855 ret = userfaultfd_unregister(ctx, arg);
1856 break;
1857 case UFFDIO_WAKE:
1858 ret = userfaultfd_wake(ctx, arg);
1859 break;
1860 case UFFDIO_COPY:
1861 ret = userfaultfd_copy(ctx, arg);
1862 break;
1863 case UFFDIO_ZEROPAGE:
1864 ret = userfaultfd_zeropage(ctx, arg);
1865 break;
1866 }
1867 return ret;
1868 }
1869
1870 #ifdef CONFIG_PROC_FS
1871 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1872 {
1873 struct userfaultfd_ctx *ctx = f->private_data;
1874 wait_queue_entry_t *wq;
1875 struct userfaultfd_wait_queue *uwq;
1876 unsigned long pending = 0, total = 0;
1877
1878 spin_lock(&ctx->fault_pending_wqh.lock);
1879 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1880 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1881 pending++;
1882 total++;
1883 }
1884 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1885 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1886 total++;
1887 }
1888 spin_unlock(&ctx->fault_pending_wqh.lock);
1889
1890 /*
1891 * If more protocols will be added, there will be all shown
1892 * separated by a space. Like this:
1893 * protocols: aa:... bb:...
1894 */
1895 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1896 pending, total, UFFD_API, ctx->features,
1897 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1898 }
1899 #endif
1900
1901 static const struct file_operations userfaultfd_fops = {
1902 #ifdef CONFIG_PROC_FS
1903 .show_fdinfo = userfaultfd_show_fdinfo,
1904 #endif
1905 .release = userfaultfd_release,
1906 .poll = userfaultfd_poll,
1907 .read = userfaultfd_read,
1908 .unlocked_ioctl = userfaultfd_ioctl,
1909 .compat_ioctl = userfaultfd_ioctl,
1910 .llseek = noop_llseek,
1911 };
1912
1913 static void init_once_userfaultfd_ctx(void *mem)
1914 {
1915 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1916
1917 init_waitqueue_head(&ctx->fault_pending_wqh);
1918 init_waitqueue_head(&ctx->fault_wqh);
1919 init_waitqueue_head(&ctx->event_wqh);
1920 init_waitqueue_head(&ctx->fd_wqh);
1921 seqcount_init(&ctx->refile_seq);
1922 }
1923
1924 /**
1925 * userfaultfd_file_create - Creates a userfaultfd file pointer.
1926 * @flags: Flags for the userfaultfd file.
1927 *
1928 * This function creates a userfaultfd file pointer, w/out installing
1929 * it into the fd table. This is useful when the userfaultfd file is
1930 * used during the initialization of data structures that require
1931 * extra setup after the userfaultfd creation. So the userfaultfd
1932 * creation is split into the file pointer creation phase, and the
1933 * file descriptor installation phase. In this way races with
1934 * userspace closing the newly installed file descriptor can be
1935 * avoided. Returns a userfaultfd file pointer, or a proper error
1936 * pointer.
1937 */
1938 static struct file *userfaultfd_file_create(int flags)
1939 {
1940 struct file *file;
1941 struct userfaultfd_ctx *ctx;
1942
1943 BUG_ON(!current->mm);
1944
1945 /* Check the UFFD_* constants for consistency. */
1946 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1947 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1948
1949 file = ERR_PTR(-EINVAL);
1950 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1951 goto out;
1952
1953 file = ERR_PTR(-ENOMEM);
1954 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1955 if (!ctx)
1956 goto out;
1957
1958 atomic_set(&ctx->refcount, 1);
1959 ctx->flags = flags;
1960 ctx->features = 0;
1961 ctx->state = UFFD_STATE_WAIT_API;
1962 ctx->released = false;
1963 ctx->mm = current->mm;
1964 /* prevent the mm struct to be freed */
1965 mmgrab(ctx->mm);
1966
1967 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1968 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1969 if (IS_ERR(file)) {
1970 mmdrop(ctx->mm);
1971 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1972 }
1973 out:
1974 return file;
1975 }
1976
1977 SYSCALL_DEFINE1(userfaultfd, int, flags)
1978 {
1979 int fd, error;
1980 struct file *file;
1981
1982 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1983 if (error < 0)
1984 return error;
1985 fd = error;
1986
1987 file = userfaultfd_file_create(flags);
1988 if (IS_ERR(file)) {
1989 error = PTR_ERR(file);
1990 goto err_put_unused_fd;
1991 }
1992 fd_install(fd, file);
1993
1994 return fd;
1995
1996 err_put_unused_fd:
1997 put_unused_fd(fd);
1998
1999 return error;
2000 }
2001
2002 static int __init userfaultfd_init(void)
2003 {
2004 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2005 sizeof(struct userfaultfd_ctx),
2006 0,
2007 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2008 init_once_userfaultfd_ctx);
2009 return 0;
2010 }
2011 __initcall(userfaultfd_init);