]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/userfaultfd.c
ntb_hw_switchtec: NT req id mapping table register entry number should be 512
[mirror_ubuntu-bionic-kernel.git] / fs / userfaultfd.c
1 /*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38 };
39
40 /*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
44 struct userfaultfd_ctx {
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
55 /* pseudo fd refcounting */
56 atomic_t refcount;
57 /* userfaultfd syscall flags */
58 unsigned int flags;
59 /* features requested from the userspace */
60 unsigned int features;
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67 };
68
69 struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73 };
74
75 struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80 };
81
82 struct userfaultfd_wait_queue {
83 struct uffd_msg msg;
84 wait_queue_entry_t wq;
85 struct userfaultfd_ctx *ctx;
86 bool waken;
87 };
88
89 struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92 };
93
94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
95 int wake_flags, void *key)
96 {
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
109 goto out;
110 WRITE_ONCE(uwq->waken, true);
111 /*
112 * The Program-Order guarantees provided by the scheduler
113 * ensure uwq->waken is visible before the task is woken.
114 */
115 ret = wake_up_state(wq->private, mode);
116 if (ret) {
117 /*
118 * Wake only once, autoremove behavior.
119 *
120 * After the effect of list_del_init is visible to the other
121 * CPUs, the waitqueue may disappear from under us, see the
122 * !list_empty_careful() in handle_userfault().
123 *
124 * try_to_wake_up() has an implicit smp_mb(), and the
125 * wq->private is read before calling the extern function
126 * "wake_up_state" (which in turns calls try_to_wake_up).
127 */
128 list_del_init(&wq->entry);
129 }
130 out:
131 return ret;
132 }
133
134 /**
135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136 * context.
137 * @ctx: [in] Pointer to the userfaultfd context.
138 */
139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140 {
141 if (!atomic_inc_not_zero(&ctx->refcount))
142 BUG();
143 }
144
145 /**
146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147 * context.
148 * @ctx: [in] Pointer to userfaultfd context.
149 *
150 * The userfaultfd context reference must have been previously acquired either
151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152 */
153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154 {
155 if (atomic_dec_and_test(&ctx->refcount)) {
156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
164 mmdrop(ctx->mm);
165 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
166 }
167 }
168
169 static inline void msg_init(struct uffd_msg *msg)
170 {
171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172 /*
173 * Must use memset to zero out the paddings or kernel data is
174 * leaked to userland.
175 */
176 memset(msg, 0, sizeof(struct uffd_msg));
177 }
178
179 static inline struct uffd_msg userfault_msg(unsigned long address,
180 unsigned int flags,
181 unsigned long reason,
182 unsigned int features)
183 {
184 struct uffd_msg msg;
185 msg_init(&msg);
186 msg.event = UFFD_EVENT_PAGEFAULT;
187 msg.arg.pagefault.address = address;
188 if (flags & FAULT_FLAG_WRITE)
189 /*
190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 * was a read fault, otherwise if set it means it's
194 * a write fault.
195 */
196 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
197 if (reason & VM_UFFD_WP)
198 /*
199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 * a missing fault, otherwise if set it means it's a
203 * write protect fault.
204 */
205 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
206 if (features & UFFD_FEATURE_THREAD_ID)
207 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
208 return msg;
209 }
210
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213 * Same functionality as userfaultfd_must_wait below with modifications for
214 * hugepmd ranges.
215 */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 struct vm_area_struct *vma,
218 unsigned long address,
219 unsigned long flags,
220 unsigned long reason)
221 {
222 struct mm_struct *mm = ctx->mm;
223 pte_t *ptep, pte;
224 bool ret = true;
225
226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227
228 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229
230 if (!ptep)
231 goto out;
232
233 ret = false;
234 pte = huge_ptep_get(ptep);
235
236 /*
237 * Lockless access: we're in a wait_event so it's ok if it
238 * changes under us.
239 */
240 if (huge_pte_none(pte))
241 ret = true;
242 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
243 ret = true;
244 out:
245 return ret;
246 }
247 #else
248 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
249 struct vm_area_struct *vma,
250 unsigned long address,
251 unsigned long flags,
252 unsigned long reason)
253 {
254 return false; /* should never get here */
255 }
256 #endif /* CONFIG_HUGETLB_PAGE */
257
258 /*
259 * Verify the pagetables are still not ok after having reigstered into
260 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
261 * userfault that has already been resolved, if userfaultfd_read and
262 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
263 * threads.
264 */
265 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
266 unsigned long address,
267 unsigned long flags,
268 unsigned long reason)
269 {
270 struct mm_struct *mm = ctx->mm;
271 pgd_t *pgd;
272 p4d_t *p4d;
273 pud_t *pud;
274 pmd_t *pmd, _pmd;
275 pte_t *pte;
276 bool ret = true;
277
278 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
279
280 pgd = pgd_offset(mm, address);
281 if (!pgd_present(*pgd))
282 goto out;
283 p4d = p4d_offset(pgd, address);
284 if (!p4d_present(*p4d))
285 goto out;
286 pud = pud_offset(p4d, address);
287 if (!pud_present(*pud))
288 goto out;
289 pmd = pmd_offset(pud, address);
290 /*
291 * READ_ONCE must function as a barrier with narrower scope
292 * and it must be equivalent to:
293 * _pmd = *pmd; barrier();
294 *
295 * This is to deal with the instability (as in
296 * pmd_trans_unstable) of the pmd.
297 */
298 _pmd = READ_ONCE(*pmd);
299 if (!pmd_present(_pmd))
300 goto out;
301
302 ret = false;
303 if (pmd_trans_huge(_pmd))
304 goto out;
305
306 /*
307 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
308 * and use the standard pte_offset_map() instead of parsing _pmd.
309 */
310 pte = pte_offset_map(pmd, address);
311 /*
312 * Lockless access: we're in a wait_event so it's ok if it
313 * changes under us.
314 */
315 if (pte_none(*pte))
316 ret = true;
317 pte_unmap(pte);
318
319 out:
320 return ret;
321 }
322
323 /*
324 * The locking rules involved in returning VM_FAULT_RETRY depending on
325 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
326 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
327 * recommendation in __lock_page_or_retry is not an understatement.
328 *
329 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
330 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
331 * not set.
332 *
333 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
334 * set, VM_FAULT_RETRY can still be returned if and only if there are
335 * fatal_signal_pending()s, and the mmap_sem must be released before
336 * returning it.
337 */
338 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
339 {
340 struct mm_struct *mm = vmf->vma->vm_mm;
341 struct userfaultfd_ctx *ctx;
342 struct userfaultfd_wait_queue uwq;
343 int ret;
344 bool must_wait, return_to_userland;
345 long blocking_state;
346
347 ret = VM_FAULT_SIGBUS;
348
349 /*
350 * We don't do userfault handling for the final child pid update.
351 *
352 * We also don't do userfault handling during
353 * coredumping. hugetlbfs has the special
354 * follow_hugetlb_page() to skip missing pages in the
355 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
356 * the no_page_table() helper in follow_page_mask(), but the
357 * shmem_vm_ops->fault method is invoked even during
358 * coredumping without mmap_sem and it ends up here.
359 */
360 if (current->flags & (PF_EXITING|PF_DUMPCORE))
361 goto out;
362
363 /*
364 * Coredumping runs without mmap_sem so we can only check that
365 * the mmap_sem is held, if PF_DUMPCORE was not set.
366 */
367 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
368
369 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
370 if (!ctx)
371 goto out;
372
373 BUG_ON(ctx->mm != mm);
374
375 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
376 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
377
378 if (ctx->features & UFFD_FEATURE_SIGBUS)
379 goto out;
380
381 /*
382 * If it's already released don't get it. This avoids to loop
383 * in __get_user_pages if userfaultfd_release waits on the
384 * caller of handle_userfault to release the mmap_sem.
385 */
386 if (unlikely(READ_ONCE(ctx->released))) {
387 /*
388 * Don't return VM_FAULT_SIGBUS in this case, so a non
389 * cooperative manager can close the uffd after the
390 * last UFFDIO_COPY, without risking to trigger an
391 * involuntary SIGBUS if the process was starting the
392 * userfaultfd while the userfaultfd was still armed
393 * (but after the last UFFDIO_COPY). If the uffd
394 * wasn't already closed when the userfault reached
395 * this point, that would normally be solved by
396 * userfaultfd_must_wait returning 'false'.
397 *
398 * If we were to return VM_FAULT_SIGBUS here, the non
399 * cooperative manager would be instead forced to
400 * always call UFFDIO_UNREGISTER before it can safely
401 * close the uffd.
402 */
403 ret = VM_FAULT_NOPAGE;
404 goto out;
405 }
406
407 /*
408 * Check that we can return VM_FAULT_RETRY.
409 *
410 * NOTE: it should become possible to return VM_FAULT_RETRY
411 * even if FAULT_FLAG_TRIED is set without leading to gup()
412 * -EBUSY failures, if the userfaultfd is to be extended for
413 * VM_UFFD_WP tracking and we intend to arm the userfault
414 * without first stopping userland access to the memory. For
415 * VM_UFFD_MISSING userfaults this is enough for now.
416 */
417 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
418 /*
419 * Validate the invariant that nowait must allow retry
420 * to be sure not to return SIGBUS erroneously on
421 * nowait invocations.
422 */
423 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
424 #ifdef CONFIG_DEBUG_VM
425 if (printk_ratelimit()) {
426 printk(KERN_WARNING
427 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
428 vmf->flags);
429 dump_stack();
430 }
431 #endif
432 goto out;
433 }
434
435 /*
436 * Handle nowait, not much to do other than tell it to retry
437 * and wait.
438 */
439 ret = VM_FAULT_RETRY;
440 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
441 goto out;
442
443 /* take the reference before dropping the mmap_sem */
444 userfaultfd_ctx_get(ctx);
445
446 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
447 uwq.wq.private = current;
448 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
449 ctx->features);
450 uwq.ctx = ctx;
451 uwq.waken = false;
452
453 return_to_userland =
454 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
455 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
456 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
457 TASK_KILLABLE;
458
459 spin_lock(&ctx->fault_pending_wqh.lock);
460 /*
461 * After the __add_wait_queue the uwq is visible to userland
462 * through poll/read().
463 */
464 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
465 /*
466 * The smp_mb() after __set_current_state prevents the reads
467 * following the spin_unlock to happen before the list_add in
468 * __add_wait_queue.
469 */
470 set_current_state(blocking_state);
471 spin_unlock(&ctx->fault_pending_wqh.lock);
472
473 if (!is_vm_hugetlb_page(vmf->vma))
474 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
475 reason);
476 else
477 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
478 vmf->address,
479 vmf->flags, reason);
480 up_read(&mm->mmap_sem);
481
482 if (likely(must_wait && !READ_ONCE(ctx->released) &&
483 (return_to_userland ? !signal_pending(current) :
484 !fatal_signal_pending(current)))) {
485 wake_up_poll(&ctx->fd_wqh, POLLIN);
486 schedule();
487 ret |= VM_FAULT_MAJOR;
488
489 /*
490 * False wakeups can orginate even from rwsem before
491 * up_read() however userfaults will wait either for a
492 * targeted wakeup on the specific uwq waitqueue from
493 * wake_userfault() or for signals or for uffd
494 * release.
495 */
496 while (!READ_ONCE(uwq.waken)) {
497 /*
498 * This needs the full smp_store_mb()
499 * guarantee as the state write must be
500 * visible to other CPUs before reading
501 * uwq.waken from other CPUs.
502 */
503 set_current_state(blocking_state);
504 if (READ_ONCE(uwq.waken) ||
505 READ_ONCE(ctx->released) ||
506 (return_to_userland ? signal_pending(current) :
507 fatal_signal_pending(current)))
508 break;
509 schedule();
510 }
511 }
512
513 __set_current_state(TASK_RUNNING);
514
515 if (return_to_userland) {
516 if (signal_pending(current) &&
517 !fatal_signal_pending(current)) {
518 /*
519 * If we got a SIGSTOP or SIGCONT and this is
520 * a normal userland page fault, just let
521 * userland return so the signal will be
522 * handled and gdb debugging works. The page
523 * fault code immediately after we return from
524 * this function is going to release the
525 * mmap_sem and it's not depending on it
526 * (unlike gup would if we were not to return
527 * VM_FAULT_RETRY).
528 *
529 * If a fatal signal is pending we still take
530 * the streamlined VM_FAULT_RETRY failure path
531 * and there's no need to retake the mmap_sem
532 * in such case.
533 */
534 down_read(&mm->mmap_sem);
535 ret = VM_FAULT_NOPAGE;
536 }
537 }
538
539 /*
540 * Here we race with the list_del; list_add in
541 * userfaultfd_ctx_read(), however because we don't ever run
542 * list_del_init() to refile across the two lists, the prev
543 * and next pointers will never point to self. list_add also
544 * would never let any of the two pointers to point to
545 * self. So list_empty_careful won't risk to see both pointers
546 * pointing to self at any time during the list refile. The
547 * only case where list_del_init() is called is the full
548 * removal in the wake function and there we don't re-list_add
549 * and it's fine not to block on the spinlock. The uwq on this
550 * kernel stack can be released after the list_del_init.
551 */
552 if (!list_empty_careful(&uwq.wq.entry)) {
553 spin_lock(&ctx->fault_pending_wqh.lock);
554 /*
555 * No need of list_del_init(), the uwq on the stack
556 * will be freed shortly anyway.
557 */
558 list_del(&uwq.wq.entry);
559 spin_unlock(&ctx->fault_pending_wqh.lock);
560 }
561
562 /*
563 * ctx may go away after this if the userfault pseudo fd is
564 * already released.
565 */
566 userfaultfd_ctx_put(ctx);
567
568 out:
569 return ret;
570 }
571
572 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
573 struct userfaultfd_wait_queue *ewq)
574 {
575 struct userfaultfd_ctx *release_new_ctx;
576
577 if (WARN_ON_ONCE(current->flags & PF_EXITING))
578 goto out;
579
580 ewq->ctx = ctx;
581 init_waitqueue_entry(&ewq->wq, current);
582 release_new_ctx = NULL;
583
584 spin_lock(&ctx->event_wqh.lock);
585 /*
586 * After the __add_wait_queue the uwq is visible to userland
587 * through poll/read().
588 */
589 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
590 for (;;) {
591 set_current_state(TASK_KILLABLE);
592 if (ewq->msg.event == 0)
593 break;
594 if (READ_ONCE(ctx->released) ||
595 fatal_signal_pending(current)) {
596 /*
597 * &ewq->wq may be queued in fork_event, but
598 * __remove_wait_queue ignores the head
599 * parameter. It would be a problem if it
600 * didn't.
601 */
602 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
603 if (ewq->msg.event == UFFD_EVENT_FORK) {
604 struct userfaultfd_ctx *new;
605
606 new = (struct userfaultfd_ctx *)
607 (unsigned long)
608 ewq->msg.arg.reserved.reserved1;
609 release_new_ctx = new;
610 }
611 break;
612 }
613
614 spin_unlock(&ctx->event_wqh.lock);
615
616 wake_up_poll(&ctx->fd_wqh, POLLIN);
617 schedule();
618
619 spin_lock(&ctx->event_wqh.lock);
620 }
621 __set_current_state(TASK_RUNNING);
622 spin_unlock(&ctx->event_wqh.lock);
623
624 if (release_new_ctx) {
625 struct vm_area_struct *vma;
626 struct mm_struct *mm = release_new_ctx->mm;
627
628 /* the various vma->vm_userfaultfd_ctx still points to it */
629 down_write(&mm->mmap_sem);
630 /* no task can run (and in turn coredump) yet */
631 VM_WARN_ON(!mmget_still_valid(mm));
632 for (vma = mm->mmap; vma; vma = vma->vm_next)
633 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
634 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
635 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
636 }
637 up_write(&mm->mmap_sem);
638
639 userfaultfd_ctx_put(release_new_ctx);
640 }
641
642 /*
643 * ctx may go away after this if the userfault pseudo fd is
644 * already released.
645 */
646 out:
647 userfaultfd_ctx_put(ctx);
648 }
649
650 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
651 struct userfaultfd_wait_queue *ewq)
652 {
653 ewq->msg.event = 0;
654 wake_up_locked(&ctx->event_wqh);
655 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
656 }
657
658 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
659 {
660 struct userfaultfd_ctx *ctx = NULL, *octx;
661 struct userfaultfd_fork_ctx *fctx;
662
663 octx = vma->vm_userfaultfd_ctx.ctx;
664 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
665 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
666 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
667 return 0;
668 }
669
670 list_for_each_entry(fctx, fcs, list)
671 if (fctx->orig == octx) {
672 ctx = fctx->new;
673 break;
674 }
675
676 if (!ctx) {
677 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
678 if (!fctx)
679 return -ENOMEM;
680
681 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
682 if (!ctx) {
683 kfree(fctx);
684 return -ENOMEM;
685 }
686
687 atomic_set(&ctx->refcount, 1);
688 ctx->flags = octx->flags;
689 ctx->state = UFFD_STATE_RUNNING;
690 ctx->features = octx->features;
691 ctx->released = false;
692 ctx->mm = vma->vm_mm;
693 mmgrab(ctx->mm);
694
695 userfaultfd_ctx_get(octx);
696 fctx->orig = octx;
697 fctx->new = ctx;
698 list_add_tail(&fctx->list, fcs);
699 }
700
701 vma->vm_userfaultfd_ctx.ctx = ctx;
702 return 0;
703 }
704
705 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
706 {
707 struct userfaultfd_ctx *ctx = fctx->orig;
708 struct userfaultfd_wait_queue ewq;
709
710 msg_init(&ewq.msg);
711
712 ewq.msg.event = UFFD_EVENT_FORK;
713 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
714
715 userfaultfd_event_wait_completion(ctx, &ewq);
716 }
717
718 void dup_userfaultfd_complete(struct list_head *fcs)
719 {
720 struct userfaultfd_fork_ctx *fctx, *n;
721
722 list_for_each_entry_safe(fctx, n, fcs, list) {
723 dup_fctx(fctx);
724 list_del(&fctx->list);
725 kfree(fctx);
726 }
727 }
728
729 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
730 struct vm_userfaultfd_ctx *vm_ctx)
731 {
732 struct userfaultfd_ctx *ctx;
733
734 ctx = vma->vm_userfaultfd_ctx.ctx;
735
736 if (!ctx)
737 return;
738
739 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
740 vm_ctx->ctx = ctx;
741 userfaultfd_ctx_get(ctx);
742 } else {
743 /* Drop uffd context if remap feature not enabled */
744 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
745 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
746 }
747 }
748
749 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
750 unsigned long from, unsigned long to,
751 unsigned long len)
752 {
753 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
754 struct userfaultfd_wait_queue ewq;
755
756 if (!ctx)
757 return;
758
759 if (to & ~PAGE_MASK) {
760 userfaultfd_ctx_put(ctx);
761 return;
762 }
763
764 msg_init(&ewq.msg);
765
766 ewq.msg.event = UFFD_EVENT_REMAP;
767 ewq.msg.arg.remap.from = from;
768 ewq.msg.arg.remap.to = to;
769 ewq.msg.arg.remap.len = len;
770
771 userfaultfd_event_wait_completion(ctx, &ewq);
772 }
773
774 bool userfaultfd_remove(struct vm_area_struct *vma,
775 unsigned long start, unsigned long end)
776 {
777 struct mm_struct *mm = vma->vm_mm;
778 struct userfaultfd_ctx *ctx;
779 struct userfaultfd_wait_queue ewq;
780
781 ctx = vma->vm_userfaultfd_ctx.ctx;
782 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
783 return true;
784
785 userfaultfd_ctx_get(ctx);
786 up_read(&mm->mmap_sem);
787
788 msg_init(&ewq.msg);
789
790 ewq.msg.event = UFFD_EVENT_REMOVE;
791 ewq.msg.arg.remove.start = start;
792 ewq.msg.arg.remove.end = end;
793
794 userfaultfd_event_wait_completion(ctx, &ewq);
795
796 return false;
797 }
798
799 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
800 unsigned long start, unsigned long end)
801 {
802 struct userfaultfd_unmap_ctx *unmap_ctx;
803
804 list_for_each_entry(unmap_ctx, unmaps, list)
805 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
806 unmap_ctx->end == end)
807 return true;
808
809 return false;
810 }
811
812 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
813 unsigned long start, unsigned long end,
814 struct list_head *unmaps)
815 {
816 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
817 struct userfaultfd_unmap_ctx *unmap_ctx;
818 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
819
820 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
821 has_unmap_ctx(ctx, unmaps, start, end))
822 continue;
823
824 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
825 if (!unmap_ctx)
826 return -ENOMEM;
827
828 userfaultfd_ctx_get(ctx);
829 unmap_ctx->ctx = ctx;
830 unmap_ctx->start = start;
831 unmap_ctx->end = end;
832 list_add_tail(&unmap_ctx->list, unmaps);
833 }
834
835 return 0;
836 }
837
838 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
839 {
840 struct userfaultfd_unmap_ctx *ctx, *n;
841 struct userfaultfd_wait_queue ewq;
842
843 list_for_each_entry_safe(ctx, n, uf, list) {
844 msg_init(&ewq.msg);
845
846 ewq.msg.event = UFFD_EVENT_UNMAP;
847 ewq.msg.arg.remove.start = ctx->start;
848 ewq.msg.arg.remove.end = ctx->end;
849
850 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
851
852 list_del(&ctx->list);
853 kfree(ctx);
854 }
855 }
856
857 static int userfaultfd_release(struct inode *inode, struct file *file)
858 {
859 struct userfaultfd_ctx *ctx = file->private_data;
860 struct mm_struct *mm = ctx->mm;
861 struct vm_area_struct *vma, *prev;
862 /* len == 0 means wake all */
863 struct userfaultfd_wake_range range = { .len = 0, };
864 unsigned long new_flags;
865 bool still_valid;
866
867 WRITE_ONCE(ctx->released, true);
868
869 if (!mmget_not_zero(mm))
870 goto wakeup;
871
872 /*
873 * Flush page faults out of all CPUs. NOTE: all page faults
874 * must be retried without returning VM_FAULT_SIGBUS if
875 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
876 * changes while handle_userfault released the mmap_sem. So
877 * it's critical that released is set to true (above), before
878 * taking the mmap_sem for writing.
879 */
880 down_write(&mm->mmap_sem);
881 still_valid = mmget_still_valid(mm);
882 prev = NULL;
883 for (vma = mm->mmap; vma; vma = vma->vm_next) {
884 cond_resched();
885 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
886 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
887 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
888 prev = vma;
889 continue;
890 }
891 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
892 if (still_valid) {
893 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
894 new_flags, vma->anon_vma,
895 vma->vm_file, vma->vm_pgoff,
896 vma_policy(vma),
897 NULL_VM_UFFD_CTX);
898 if (prev)
899 vma = prev;
900 else
901 prev = vma;
902 }
903 vma->vm_flags = new_flags;
904 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
905 }
906 up_write(&mm->mmap_sem);
907 mmput(mm);
908 wakeup:
909 /*
910 * After no new page faults can wait on this fault_*wqh, flush
911 * the last page faults that may have been already waiting on
912 * the fault_*wqh.
913 */
914 spin_lock(&ctx->fault_pending_wqh.lock);
915 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
916 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
917 spin_unlock(&ctx->fault_pending_wqh.lock);
918
919 /* Flush pending events that may still wait on event_wqh */
920 wake_up_all(&ctx->event_wqh);
921
922 wake_up_poll(&ctx->fd_wqh, POLLHUP);
923 userfaultfd_ctx_put(ctx);
924 return 0;
925 }
926
927 /* fault_pending_wqh.lock must be hold by the caller */
928 static inline struct userfaultfd_wait_queue *find_userfault_in(
929 wait_queue_head_t *wqh)
930 {
931 wait_queue_entry_t *wq;
932 struct userfaultfd_wait_queue *uwq;
933
934 VM_BUG_ON(!spin_is_locked(&wqh->lock));
935
936 uwq = NULL;
937 if (!waitqueue_active(wqh))
938 goto out;
939 /* walk in reverse to provide FIFO behavior to read userfaults */
940 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
941 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
942 out:
943 return uwq;
944 }
945
946 static inline struct userfaultfd_wait_queue *find_userfault(
947 struct userfaultfd_ctx *ctx)
948 {
949 return find_userfault_in(&ctx->fault_pending_wqh);
950 }
951
952 static inline struct userfaultfd_wait_queue *find_userfault_evt(
953 struct userfaultfd_ctx *ctx)
954 {
955 return find_userfault_in(&ctx->event_wqh);
956 }
957
958 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
959 {
960 struct userfaultfd_ctx *ctx = file->private_data;
961 unsigned int ret;
962
963 poll_wait(file, &ctx->fd_wqh, wait);
964
965 switch (ctx->state) {
966 case UFFD_STATE_WAIT_API:
967 return POLLERR;
968 case UFFD_STATE_RUNNING:
969 /*
970 * poll() never guarantees that read won't block.
971 * userfaults can be waken before they're read().
972 */
973 if (unlikely(!(file->f_flags & O_NONBLOCK)))
974 return POLLERR;
975 /*
976 * lockless access to see if there are pending faults
977 * __pollwait last action is the add_wait_queue but
978 * the spin_unlock would allow the waitqueue_active to
979 * pass above the actual list_add inside
980 * add_wait_queue critical section. So use a full
981 * memory barrier to serialize the list_add write of
982 * add_wait_queue() with the waitqueue_active read
983 * below.
984 */
985 ret = 0;
986 smp_mb();
987 if (waitqueue_active(&ctx->fault_pending_wqh))
988 ret = POLLIN;
989 else if (waitqueue_active(&ctx->event_wqh))
990 ret = POLLIN;
991
992 return ret;
993 default:
994 WARN_ON_ONCE(1);
995 return POLLERR;
996 }
997 }
998
999 static const struct file_operations userfaultfd_fops;
1000
1001 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1002 struct userfaultfd_ctx *new,
1003 struct uffd_msg *msg)
1004 {
1005 int fd;
1006 struct file *file;
1007 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
1008
1009 fd = get_unused_fd_flags(flags);
1010 if (fd < 0)
1011 return fd;
1012
1013 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
1014 O_RDWR | flags);
1015 if (IS_ERR(file)) {
1016 put_unused_fd(fd);
1017 return PTR_ERR(file);
1018 }
1019
1020 fd_install(fd, file);
1021 msg->arg.reserved.reserved1 = 0;
1022 msg->arg.fork.ufd = fd;
1023
1024 return 0;
1025 }
1026
1027 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1028 struct uffd_msg *msg)
1029 {
1030 ssize_t ret;
1031 DECLARE_WAITQUEUE(wait, current);
1032 struct userfaultfd_wait_queue *uwq;
1033 /*
1034 * Handling fork event requires sleeping operations, so
1035 * we drop the event_wqh lock, then do these ops, then
1036 * lock it back and wake up the waiter. While the lock is
1037 * dropped the ewq may go away so we keep track of it
1038 * carefully.
1039 */
1040 LIST_HEAD(fork_event);
1041 struct userfaultfd_ctx *fork_nctx = NULL;
1042
1043 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1044 spin_lock(&ctx->fd_wqh.lock);
1045 __add_wait_queue(&ctx->fd_wqh, &wait);
1046 for (;;) {
1047 set_current_state(TASK_INTERRUPTIBLE);
1048 spin_lock(&ctx->fault_pending_wqh.lock);
1049 uwq = find_userfault(ctx);
1050 if (uwq) {
1051 /*
1052 * Use a seqcount to repeat the lockless check
1053 * in wake_userfault() to avoid missing
1054 * wakeups because during the refile both
1055 * waitqueue could become empty if this is the
1056 * only userfault.
1057 */
1058 write_seqcount_begin(&ctx->refile_seq);
1059
1060 /*
1061 * The fault_pending_wqh.lock prevents the uwq
1062 * to disappear from under us.
1063 *
1064 * Refile this userfault from
1065 * fault_pending_wqh to fault_wqh, it's not
1066 * pending anymore after we read it.
1067 *
1068 * Use list_del() by hand (as
1069 * userfaultfd_wake_function also uses
1070 * list_del_init() by hand) to be sure nobody
1071 * changes __remove_wait_queue() to use
1072 * list_del_init() in turn breaking the
1073 * !list_empty_careful() check in
1074 * handle_userfault(). The uwq->wq.head list
1075 * must never be empty at any time during the
1076 * refile, or the waitqueue could disappear
1077 * from under us. The "wait_queue_head_t"
1078 * parameter of __remove_wait_queue() is unused
1079 * anyway.
1080 */
1081 list_del(&uwq->wq.entry);
1082 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1083
1084 write_seqcount_end(&ctx->refile_seq);
1085
1086 /* careful to always initialize msg if ret == 0 */
1087 *msg = uwq->msg;
1088 spin_unlock(&ctx->fault_pending_wqh.lock);
1089 ret = 0;
1090 break;
1091 }
1092 spin_unlock(&ctx->fault_pending_wqh.lock);
1093
1094 spin_lock(&ctx->event_wqh.lock);
1095 uwq = find_userfault_evt(ctx);
1096 if (uwq) {
1097 *msg = uwq->msg;
1098
1099 if (uwq->msg.event == UFFD_EVENT_FORK) {
1100 fork_nctx = (struct userfaultfd_ctx *)
1101 (unsigned long)
1102 uwq->msg.arg.reserved.reserved1;
1103 list_move(&uwq->wq.entry, &fork_event);
1104 /*
1105 * fork_nctx can be freed as soon as
1106 * we drop the lock, unless we take a
1107 * reference on it.
1108 */
1109 userfaultfd_ctx_get(fork_nctx);
1110 spin_unlock(&ctx->event_wqh.lock);
1111 ret = 0;
1112 break;
1113 }
1114
1115 userfaultfd_event_complete(ctx, uwq);
1116 spin_unlock(&ctx->event_wqh.lock);
1117 ret = 0;
1118 break;
1119 }
1120 spin_unlock(&ctx->event_wqh.lock);
1121
1122 if (signal_pending(current)) {
1123 ret = -ERESTARTSYS;
1124 break;
1125 }
1126 if (no_wait) {
1127 ret = -EAGAIN;
1128 break;
1129 }
1130 spin_unlock(&ctx->fd_wqh.lock);
1131 schedule();
1132 spin_lock(&ctx->fd_wqh.lock);
1133 }
1134 __remove_wait_queue(&ctx->fd_wqh, &wait);
1135 __set_current_state(TASK_RUNNING);
1136 spin_unlock(&ctx->fd_wqh.lock);
1137
1138 if (!ret && msg->event == UFFD_EVENT_FORK) {
1139 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1140 spin_lock(&ctx->event_wqh.lock);
1141 if (!list_empty(&fork_event)) {
1142 /*
1143 * The fork thread didn't abort, so we can
1144 * drop the temporary refcount.
1145 */
1146 userfaultfd_ctx_put(fork_nctx);
1147
1148 uwq = list_first_entry(&fork_event,
1149 typeof(*uwq),
1150 wq.entry);
1151 /*
1152 * If fork_event list wasn't empty and in turn
1153 * the event wasn't already released by fork
1154 * (the event is allocated on fork kernel
1155 * stack), put the event back to its place in
1156 * the event_wq. fork_event head will be freed
1157 * as soon as we return so the event cannot
1158 * stay queued there no matter the current
1159 * "ret" value.
1160 */
1161 list_del(&uwq->wq.entry);
1162 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1163
1164 /*
1165 * Leave the event in the waitqueue and report
1166 * error to userland if we failed to resolve
1167 * the userfault fork.
1168 */
1169 if (likely(!ret))
1170 userfaultfd_event_complete(ctx, uwq);
1171 } else {
1172 /*
1173 * Here the fork thread aborted and the
1174 * refcount from the fork thread on fork_nctx
1175 * has already been released. We still hold
1176 * the reference we took before releasing the
1177 * lock above. If resolve_userfault_fork
1178 * failed we've to drop it because the
1179 * fork_nctx has to be freed in such case. If
1180 * it succeeded we'll hold it because the new
1181 * uffd references it.
1182 */
1183 if (ret)
1184 userfaultfd_ctx_put(fork_nctx);
1185 }
1186 spin_unlock(&ctx->event_wqh.lock);
1187 }
1188
1189 return ret;
1190 }
1191
1192 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1193 size_t count, loff_t *ppos)
1194 {
1195 struct userfaultfd_ctx *ctx = file->private_data;
1196 ssize_t _ret, ret = 0;
1197 struct uffd_msg msg;
1198 int no_wait = file->f_flags & O_NONBLOCK;
1199
1200 if (ctx->state == UFFD_STATE_WAIT_API)
1201 return -EINVAL;
1202
1203 for (;;) {
1204 if (count < sizeof(msg))
1205 return ret ? ret : -EINVAL;
1206 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1207 if (_ret < 0)
1208 return ret ? ret : _ret;
1209 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1210 return ret ? ret : -EFAULT;
1211 ret += sizeof(msg);
1212 buf += sizeof(msg);
1213 count -= sizeof(msg);
1214 /*
1215 * Allow to read more than one fault at time but only
1216 * block if waiting for the very first one.
1217 */
1218 no_wait = O_NONBLOCK;
1219 }
1220 }
1221
1222 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1223 struct userfaultfd_wake_range *range)
1224 {
1225 spin_lock(&ctx->fault_pending_wqh.lock);
1226 /* wake all in the range and autoremove */
1227 if (waitqueue_active(&ctx->fault_pending_wqh))
1228 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1229 range);
1230 if (waitqueue_active(&ctx->fault_wqh))
1231 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1232 spin_unlock(&ctx->fault_pending_wqh.lock);
1233 }
1234
1235 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1236 struct userfaultfd_wake_range *range)
1237 {
1238 unsigned seq;
1239 bool need_wakeup;
1240
1241 /*
1242 * To be sure waitqueue_active() is not reordered by the CPU
1243 * before the pagetable update, use an explicit SMP memory
1244 * barrier here. PT lock release or up_read(mmap_sem) still
1245 * have release semantics that can allow the
1246 * waitqueue_active() to be reordered before the pte update.
1247 */
1248 smp_mb();
1249
1250 /*
1251 * Use waitqueue_active because it's very frequent to
1252 * change the address space atomically even if there are no
1253 * userfaults yet. So we take the spinlock only when we're
1254 * sure we've userfaults to wake.
1255 */
1256 do {
1257 seq = read_seqcount_begin(&ctx->refile_seq);
1258 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1259 waitqueue_active(&ctx->fault_wqh);
1260 cond_resched();
1261 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1262 if (need_wakeup)
1263 __wake_userfault(ctx, range);
1264 }
1265
1266 static __always_inline int validate_range(struct mm_struct *mm,
1267 __u64 start, __u64 len)
1268 {
1269 __u64 task_size = mm->task_size;
1270
1271 if (start & ~PAGE_MASK)
1272 return -EINVAL;
1273 if (len & ~PAGE_MASK)
1274 return -EINVAL;
1275 if (!len)
1276 return -EINVAL;
1277 if (start < mmap_min_addr)
1278 return -EINVAL;
1279 if (start >= task_size)
1280 return -EINVAL;
1281 if (len > task_size - start)
1282 return -EINVAL;
1283 return 0;
1284 }
1285
1286 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1287 {
1288 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1289 vma_is_shmem(vma);
1290 }
1291
1292 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1293 unsigned long arg)
1294 {
1295 struct mm_struct *mm = ctx->mm;
1296 struct vm_area_struct *vma, *prev, *cur;
1297 int ret;
1298 struct uffdio_register uffdio_register;
1299 struct uffdio_register __user *user_uffdio_register;
1300 unsigned long vm_flags, new_flags;
1301 bool found;
1302 bool basic_ioctls;
1303 unsigned long start, end, vma_end;
1304
1305 user_uffdio_register = (struct uffdio_register __user *) arg;
1306
1307 ret = -EFAULT;
1308 if (copy_from_user(&uffdio_register, user_uffdio_register,
1309 sizeof(uffdio_register)-sizeof(__u64)))
1310 goto out;
1311
1312 ret = -EINVAL;
1313 if (!uffdio_register.mode)
1314 goto out;
1315 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1316 UFFDIO_REGISTER_MODE_WP))
1317 goto out;
1318 vm_flags = 0;
1319 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1320 vm_flags |= VM_UFFD_MISSING;
1321 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1322 vm_flags |= VM_UFFD_WP;
1323 /*
1324 * FIXME: remove the below error constraint by
1325 * implementing the wprotect tracking mode.
1326 */
1327 ret = -EINVAL;
1328 goto out;
1329 }
1330
1331 ret = validate_range(mm, uffdio_register.range.start,
1332 uffdio_register.range.len);
1333 if (ret)
1334 goto out;
1335
1336 start = uffdio_register.range.start;
1337 end = start + uffdio_register.range.len;
1338
1339 ret = -ENOMEM;
1340 if (!mmget_not_zero(mm))
1341 goto out;
1342
1343 down_write(&mm->mmap_sem);
1344 if (!mmget_still_valid(mm))
1345 goto out_unlock;
1346 vma = find_vma_prev(mm, start, &prev);
1347 if (!vma)
1348 goto out_unlock;
1349
1350 /* check that there's at least one vma in the range */
1351 ret = -EINVAL;
1352 if (vma->vm_start >= end)
1353 goto out_unlock;
1354
1355 /*
1356 * If the first vma contains huge pages, make sure start address
1357 * is aligned to huge page size.
1358 */
1359 if (is_vm_hugetlb_page(vma)) {
1360 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1361
1362 if (start & (vma_hpagesize - 1))
1363 goto out_unlock;
1364 }
1365
1366 /*
1367 * Search for not compatible vmas.
1368 */
1369 found = false;
1370 basic_ioctls = false;
1371 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1372 cond_resched();
1373
1374 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1375 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1376
1377 /* check not compatible vmas */
1378 ret = -EINVAL;
1379 if (!vma_can_userfault(cur))
1380 goto out_unlock;
1381
1382 /*
1383 * UFFDIO_COPY will fill file holes even without
1384 * PROT_WRITE. This check enforces that if this is a
1385 * MAP_SHARED, the process has write permission to the backing
1386 * file. If VM_MAYWRITE is set it also enforces that on a
1387 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1388 * F_WRITE_SEAL can be taken until the vma is destroyed.
1389 */
1390 ret = -EPERM;
1391 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1392 goto out_unlock;
1393
1394 /*
1395 * If this vma contains ending address, and huge pages
1396 * check alignment.
1397 */
1398 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1399 end > cur->vm_start) {
1400 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1401
1402 ret = -EINVAL;
1403
1404 if (end & (vma_hpagesize - 1))
1405 goto out_unlock;
1406 }
1407
1408 /*
1409 * Check that this vma isn't already owned by a
1410 * different userfaultfd. We can't allow more than one
1411 * userfaultfd to own a single vma simultaneously or we
1412 * wouldn't know which one to deliver the userfaults to.
1413 */
1414 ret = -EBUSY;
1415 if (cur->vm_userfaultfd_ctx.ctx &&
1416 cur->vm_userfaultfd_ctx.ctx != ctx)
1417 goto out_unlock;
1418
1419 /*
1420 * Note vmas containing huge pages
1421 */
1422 if (is_vm_hugetlb_page(cur))
1423 basic_ioctls = true;
1424
1425 found = true;
1426 }
1427 BUG_ON(!found);
1428
1429 if (vma->vm_start < start)
1430 prev = vma;
1431
1432 ret = 0;
1433 do {
1434 cond_resched();
1435
1436 BUG_ON(!vma_can_userfault(vma));
1437 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1438 vma->vm_userfaultfd_ctx.ctx != ctx);
1439 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1440
1441 /*
1442 * Nothing to do: this vma is already registered into this
1443 * userfaultfd and with the right tracking mode too.
1444 */
1445 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1446 (vma->vm_flags & vm_flags) == vm_flags)
1447 goto skip;
1448
1449 if (vma->vm_start > start)
1450 start = vma->vm_start;
1451 vma_end = min(end, vma->vm_end);
1452
1453 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1454 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1455 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1456 vma_policy(vma),
1457 ((struct vm_userfaultfd_ctx){ ctx }));
1458 if (prev) {
1459 vma = prev;
1460 goto next;
1461 }
1462 if (vma->vm_start < start) {
1463 ret = split_vma(mm, vma, start, 1);
1464 if (ret)
1465 break;
1466 }
1467 if (vma->vm_end > end) {
1468 ret = split_vma(mm, vma, end, 0);
1469 if (ret)
1470 break;
1471 }
1472 next:
1473 /*
1474 * In the vma_merge() successful mprotect-like case 8:
1475 * the next vma was merged into the current one and
1476 * the current one has not been updated yet.
1477 */
1478 vma->vm_flags = new_flags;
1479 vma->vm_userfaultfd_ctx.ctx = ctx;
1480
1481 skip:
1482 prev = vma;
1483 start = vma->vm_end;
1484 vma = vma->vm_next;
1485 } while (vma && vma->vm_start < end);
1486 out_unlock:
1487 up_write(&mm->mmap_sem);
1488 mmput(mm);
1489 if (!ret) {
1490 /*
1491 * Now that we scanned all vmas we can already tell
1492 * userland which ioctls methods are guaranteed to
1493 * succeed on this range.
1494 */
1495 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1496 UFFD_API_RANGE_IOCTLS,
1497 &user_uffdio_register->ioctls))
1498 ret = -EFAULT;
1499 }
1500 out:
1501 return ret;
1502 }
1503
1504 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1505 unsigned long arg)
1506 {
1507 struct mm_struct *mm = ctx->mm;
1508 struct vm_area_struct *vma, *prev, *cur;
1509 int ret;
1510 struct uffdio_range uffdio_unregister;
1511 unsigned long new_flags;
1512 bool found;
1513 unsigned long start, end, vma_end;
1514 const void __user *buf = (void __user *)arg;
1515
1516 ret = -EFAULT;
1517 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1518 goto out;
1519
1520 ret = validate_range(mm, uffdio_unregister.start,
1521 uffdio_unregister.len);
1522 if (ret)
1523 goto out;
1524
1525 start = uffdio_unregister.start;
1526 end = start + uffdio_unregister.len;
1527
1528 ret = -ENOMEM;
1529 if (!mmget_not_zero(mm))
1530 goto out;
1531
1532 down_write(&mm->mmap_sem);
1533 if (!mmget_still_valid(mm))
1534 goto out_unlock;
1535 vma = find_vma_prev(mm, start, &prev);
1536 if (!vma)
1537 goto out_unlock;
1538
1539 /* check that there's at least one vma in the range */
1540 ret = -EINVAL;
1541 if (vma->vm_start >= end)
1542 goto out_unlock;
1543
1544 /*
1545 * If the first vma contains huge pages, make sure start address
1546 * is aligned to huge page size.
1547 */
1548 if (is_vm_hugetlb_page(vma)) {
1549 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1550
1551 if (start & (vma_hpagesize - 1))
1552 goto out_unlock;
1553 }
1554
1555 /*
1556 * Search for not compatible vmas.
1557 */
1558 found = false;
1559 ret = -EINVAL;
1560 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1561 cond_resched();
1562
1563 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1564 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1565
1566 /*
1567 * Check not compatible vmas, not strictly required
1568 * here as not compatible vmas cannot have an
1569 * userfaultfd_ctx registered on them, but this
1570 * provides for more strict behavior to notice
1571 * unregistration errors.
1572 */
1573 if (!vma_can_userfault(cur))
1574 goto out_unlock;
1575
1576 found = true;
1577 }
1578 BUG_ON(!found);
1579
1580 if (vma->vm_start < start)
1581 prev = vma;
1582
1583 ret = 0;
1584 do {
1585 cond_resched();
1586
1587 BUG_ON(!vma_can_userfault(vma));
1588
1589 /*
1590 * Nothing to do: this vma is already registered into this
1591 * userfaultfd and with the right tracking mode too.
1592 */
1593 if (!vma->vm_userfaultfd_ctx.ctx)
1594 goto skip;
1595
1596 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1597
1598 if (vma->vm_start > start)
1599 start = vma->vm_start;
1600 vma_end = min(end, vma->vm_end);
1601
1602 if (userfaultfd_missing(vma)) {
1603 /*
1604 * Wake any concurrent pending userfault while
1605 * we unregister, so they will not hang
1606 * permanently and it avoids userland to call
1607 * UFFDIO_WAKE explicitly.
1608 */
1609 struct userfaultfd_wake_range range;
1610 range.start = start;
1611 range.len = vma_end - start;
1612 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1613 }
1614
1615 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1616 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1617 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1618 vma_policy(vma),
1619 NULL_VM_UFFD_CTX);
1620 if (prev) {
1621 vma = prev;
1622 goto next;
1623 }
1624 if (vma->vm_start < start) {
1625 ret = split_vma(mm, vma, start, 1);
1626 if (ret)
1627 break;
1628 }
1629 if (vma->vm_end > end) {
1630 ret = split_vma(mm, vma, end, 0);
1631 if (ret)
1632 break;
1633 }
1634 next:
1635 /*
1636 * In the vma_merge() successful mprotect-like case 8:
1637 * the next vma was merged into the current one and
1638 * the current one has not been updated yet.
1639 */
1640 vma->vm_flags = new_flags;
1641 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1642
1643 skip:
1644 prev = vma;
1645 start = vma->vm_end;
1646 vma = vma->vm_next;
1647 } while (vma && vma->vm_start < end);
1648 out_unlock:
1649 up_write(&mm->mmap_sem);
1650 mmput(mm);
1651 out:
1652 return ret;
1653 }
1654
1655 /*
1656 * userfaultfd_wake may be used in combination with the
1657 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1658 */
1659 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1660 unsigned long arg)
1661 {
1662 int ret;
1663 struct uffdio_range uffdio_wake;
1664 struct userfaultfd_wake_range range;
1665 const void __user *buf = (void __user *)arg;
1666
1667 ret = -EFAULT;
1668 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1669 goto out;
1670
1671 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1672 if (ret)
1673 goto out;
1674
1675 range.start = uffdio_wake.start;
1676 range.len = uffdio_wake.len;
1677
1678 /*
1679 * len == 0 means wake all and we don't want to wake all here,
1680 * so check it again to be sure.
1681 */
1682 VM_BUG_ON(!range.len);
1683
1684 wake_userfault(ctx, &range);
1685 ret = 0;
1686
1687 out:
1688 return ret;
1689 }
1690
1691 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1692 unsigned long arg)
1693 {
1694 __s64 ret;
1695 struct uffdio_copy uffdio_copy;
1696 struct uffdio_copy __user *user_uffdio_copy;
1697 struct userfaultfd_wake_range range;
1698
1699 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1700
1701 ret = -EFAULT;
1702 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1703 /* don't copy "copy" last field */
1704 sizeof(uffdio_copy)-sizeof(__s64)))
1705 goto out;
1706
1707 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1708 if (ret)
1709 goto out;
1710 /*
1711 * double check for wraparound just in case. copy_from_user()
1712 * will later check uffdio_copy.src + uffdio_copy.len to fit
1713 * in the userland range.
1714 */
1715 ret = -EINVAL;
1716 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1717 goto out;
1718 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1719 goto out;
1720 if (mmget_not_zero(ctx->mm)) {
1721 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1722 uffdio_copy.len);
1723 mmput(ctx->mm);
1724 } else {
1725 return -ESRCH;
1726 }
1727 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1728 return -EFAULT;
1729 if (ret < 0)
1730 goto out;
1731 BUG_ON(!ret);
1732 /* len == 0 would wake all */
1733 range.len = ret;
1734 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1735 range.start = uffdio_copy.dst;
1736 wake_userfault(ctx, &range);
1737 }
1738 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1739 out:
1740 return ret;
1741 }
1742
1743 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1744 unsigned long arg)
1745 {
1746 __s64 ret;
1747 struct uffdio_zeropage uffdio_zeropage;
1748 struct uffdio_zeropage __user *user_uffdio_zeropage;
1749 struct userfaultfd_wake_range range;
1750
1751 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1752
1753 ret = -EFAULT;
1754 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1755 /* don't copy "zeropage" last field */
1756 sizeof(uffdio_zeropage)-sizeof(__s64)))
1757 goto out;
1758
1759 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1760 uffdio_zeropage.range.len);
1761 if (ret)
1762 goto out;
1763 ret = -EINVAL;
1764 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1765 goto out;
1766
1767 if (mmget_not_zero(ctx->mm)) {
1768 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1769 uffdio_zeropage.range.len);
1770 mmput(ctx->mm);
1771 } else {
1772 return -ESRCH;
1773 }
1774 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1775 return -EFAULT;
1776 if (ret < 0)
1777 goto out;
1778 /* len == 0 would wake all */
1779 BUG_ON(!ret);
1780 range.len = ret;
1781 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1782 range.start = uffdio_zeropage.range.start;
1783 wake_userfault(ctx, &range);
1784 }
1785 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1786 out:
1787 return ret;
1788 }
1789
1790 static inline unsigned int uffd_ctx_features(__u64 user_features)
1791 {
1792 /*
1793 * For the current set of features the bits just coincide
1794 */
1795 return (unsigned int)user_features;
1796 }
1797
1798 /*
1799 * userland asks for a certain API version and we return which bits
1800 * and ioctl commands are implemented in this kernel for such API
1801 * version or -EINVAL if unknown.
1802 */
1803 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1804 unsigned long arg)
1805 {
1806 struct uffdio_api uffdio_api;
1807 void __user *buf = (void __user *)arg;
1808 int ret;
1809 __u64 features;
1810
1811 ret = -EINVAL;
1812 if (ctx->state != UFFD_STATE_WAIT_API)
1813 goto out;
1814 ret = -EFAULT;
1815 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1816 goto out;
1817 features = uffdio_api.features;
1818 ret = -EINVAL;
1819 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1820 goto err_out;
1821 ret = -EPERM;
1822 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1823 goto err_out;
1824 /* report all available features and ioctls to userland */
1825 uffdio_api.features = UFFD_API_FEATURES;
1826 uffdio_api.ioctls = UFFD_API_IOCTLS;
1827 ret = -EFAULT;
1828 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1829 goto out;
1830 ctx->state = UFFD_STATE_RUNNING;
1831 /* only enable the requested features for this uffd context */
1832 ctx->features = uffd_ctx_features(features);
1833 ret = 0;
1834 out:
1835 return ret;
1836 err_out:
1837 memset(&uffdio_api, 0, sizeof(uffdio_api));
1838 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1839 ret = -EFAULT;
1840 goto out;
1841 }
1842
1843 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1844 unsigned long arg)
1845 {
1846 int ret = -EINVAL;
1847 struct userfaultfd_ctx *ctx = file->private_data;
1848
1849 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1850 return -EINVAL;
1851
1852 switch(cmd) {
1853 case UFFDIO_API:
1854 ret = userfaultfd_api(ctx, arg);
1855 break;
1856 case UFFDIO_REGISTER:
1857 ret = userfaultfd_register(ctx, arg);
1858 break;
1859 case UFFDIO_UNREGISTER:
1860 ret = userfaultfd_unregister(ctx, arg);
1861 break;
1862 case UFFDIO_WAKE:
1863 ret = userfaultfd_wake(ctx, arg);
1864 break;
1865 case UFFDIO_COPY:
1866 ret = userfaultfd_copy(ctx, arg);
1867 break;
1868 case UFFDIO_ZEROPAGE:
1869 ret = userfaultfd_zeropage(ctx, arg);
1870 break;
1871 }
1872 return ret;
1873 }
1874
1875 #ifdef CONFIG_PROC_FS
1876 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1877 {
1878 struct userfaultfd_ctx *ctx = f->private_data;
1879 wait_queue_entry_t *wq;
1880 struct userfaultfd_wait_queue *uwq;
1881 unsigned long pending = 0, total = 0;
1882
1883 spin_lock(&ctx->fault_pending_wqh.lock);
1884 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1885 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1886 pending++;
1887 total++;
1888 }
1889 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1890 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1891 total++;
1892 }
1893 spin_unlock(&ctx->fault_pending_wqh.lock);
1894
1895 /*
1896 * If more protocols will be added, there will be all shown
1897 * separated by a space. Like this:
1898 * protocols: aa:... bb:...
1899 */
1900 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1901 pending, total, UFFD_API, ctx->features,
1902 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1903 }
1904 #endif
1905
1906 static const struct file_operations userfaultfd_fops = {
1907 #ifdef CONFIG_PROC_FS
1908 .show_fdinfo = userfaultfd_show_fdinfo,
1909 #endif
1910 .release = userfaultfd_release,
1911 .poll = userfaultfd_poll,
1912 .read = userfaultfd_read,
1913 .unlocked_ioctl = userfaultfd_ioctl,
1914 .compat_ioctl = userfaultfd_ioctl,
1915 .llseek = noop_llseek,
1916 };
1917
1918 static void init_once_userfaultfd_ctx(void *mem)
1919 {
1920 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1921
1922 init_waitqueue_head(&ctx->fault_pending_wqh);
1923 init_waitqueue_head(&ctx->fault_wqh);
1924 init_waitqueue_head(&ctx->event_wqh);
1925 init_waitqueue_head(&ctx->fd_wqh);
1926 seqcount_init(&ctx->refile_seq);
1927 }
1928
1929 /**
1930 * userfaultfd_file_create - Creates a userfaultfd file pointer.
1931 * @flags: Flags for the userfaultfd file.
1932 *
1933 * This function creates a userfaultfd file pointer, w/out installing
1934 * it into the fd table. This is useful when the userfaultfd file is
1935 * used during the initialization of data structures that require
1936 * extra setup after the userfaultfd creation. So the userfaultfd
1937 * creation is split into the file pointer creation phase, and the
1938 * file descriptor installation phase. In this way races with
1939 * userspace closing the newly installed file descriptor can be
1940 * avoided. Returns a userfaultfd file pointer, or a proper error
1941 * pointer.
1942 */
1943 static struct file *userfaultfd_file_create(int flags)
1944 {
1945 struct file *file;
1946 struct userfaultfd_ctx *ctx;
1947
1948 BUG_ON(!current->mm);
1949
1950 /* Check the UFFD_* constants for consistency. */
1951 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1952 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1953
1954 file = ERR_PTR(-EINVAL);
1955 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1956 goto out;
1957
1958 file = ERR_PTR(-ENOMEM);
1959 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1960 if (!ctx)
1961 goto out;
1962
1963 atomic_set(&ctx->refcount, 1);
1964 ctx->flags = flags;
1965 ctx->features = 0;
1966 ctx->state = UFFD_STATE_WAIT_API;
1967 ctx->released = false;
1968 ctx->mm = current->mm;
1969 /* prevent the mm struct to be freed */
1970 mmgrab(ctx->mm);
1971
1972 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1973 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1974 if (IS_ERR(file)) {
1975 mmdrop(ctx->mm);
1976 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1977 }
1978 out:
1979 return file;
1980 }
1981
1982 SYSCALL_DEFINE1(userfaultfd, int, flags)
1983 {
1984 int fd, error;
1985 struct file *file;
1986
1987 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1988 if (error < 0)
1989 return error;
1990 fd = error;
1991
1992 file = userfaultfd_file_create(flags);
1993 if (IS_ERR(file)) {
1994 error = PTR_ERR(file);
1995 goto err_put_unused_fd;
1996 }
1997 fd_install(fd, file);
1998
1999 return fd;
2000
2001 err_put_unused_fd:
2002 put_unused_fd(fd);
2003
2004 return error;
2005 }
2006
2007 static int __init userfaultfd_init(void)
2008 {
2009 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2010 sizeof(struct userfaultfd_ctx),
2011 0,
2012 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2013 init_once_userfaultfd_ctx);
2014 return 0;
2015 }
2016 __initcall(userfaultfd_init);