]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/userfaultfd.c
ubifs: Set default assert action to read-only
[mirror_ubuntu-jammy-kernel.git] / fs / userfaultfd.c
1 /*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38 };
39
40 /*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
44 struct userfaultfd_ctx {
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
55 /* pseudo fd refcounting */
56 atomic_t refcount;
57 /* userfaultfd syscall flags */
58 unsigned int flags;
59 /* features requested from the userspace */
60 unsigned int features;
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* memory mappings are changing because of non-cooperative event */
66 bool mmap_changing;
67 /* mm with one ore more vmas attached to this userfaultfd_ctx */
68 struct mm_struct *mm;
69 };
70
71 struct userfaultfd_fork_ctx {
72 struct userfaultfd_ctx *orig;
73 struct userfaultfd_ctx *new;
74 struct list_head list;
75 };
76
77 struct userfaultfd_unmap_ctx {
78 struct userfaultfd_ctx *ctx;
79 unsigned long start;
80 unsigned long end;
81 struct list_head list;
82 };
83
84 struct userfaultfd_wait_queue {
85 struct uffd_msg msg;
86 wait_queue_entry_t wq;
87 struct userfaultfd_ctx *ctx;
88 bool waken;
89 };
90
91 struct userfaultfd_wake_range {
92 unsigned long start;
93 unsigned long len;
94 };
95
96 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
97 int wake_flags, void *key)
98 {
99 struct userfaultfd_wake_range *range = key;
100 int ret;
101 struct userfaultfd_wait_queue *uwq;
102 unsigned long start, len;
103
104 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
105 ret = 0;
106 /* len == 0 means wake all */
107 start = range->start;
108 len = range->len;
109 if (len && (start > uwq->msg.arg.pagefault.address ||
110 start + len <= uwq->msg.arg.pagefault.address))
111 goto out;
112 WRITE_ONCE(uwq->waken, true);
113 /*
114 * The Program-Order guarantees provided by the scheduler
115 * ensure uwq->waken is visible before the task is woken.
116 */
117 ret = wake_up_state(wq->private, mode);
118 if (ret) {
119 /*
120 * Wake only once, autoremove behavior.
121 *
122 * After the effect of list_del_init is visible to the other
123 * CPUs, the waitqueue may disappear from under us, see the
124 * !list_empty_careful() in handle_userfault().
125 *
126 * try_to_wake_up() has an implicit smp_mb(), and the
127 * wq->private is read before calling the extern function
128 * "wake_up_state" (which in turns calls try_to_wake_up).
129 */
130 list_del_init(&wq->entry);
131 }
132 out:
133 return ret;
134 }
135
136 /**
137 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
138 * context.
139 * @ctx: [in] Pointer to the userfaultfd context.
140 */
141 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
142 {
143 if (!atomic_inc_not_zero(&ctx->refcount))
144 BUG();
145 }
146
147 /**
148 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
149 * context.
150 * @ctx: [in] Pointer to userfaultfd context.
151 *
152 * The userfaultfd context reference must have been previously acquired either
153 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
154 */
155 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
156 {
157 if (atomic_dec_and_test(&ctx->refcount)) {
158 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
159 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
160 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
161 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
162 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
163 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
164 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
165 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
166 mmdrop(ctx->mm);
167 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
168 }
169 }
170
171 static inline void msg_init(struct uffd_msg *msg)
172 {
173 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
174 /*
175 * Must use memset to zero out the paddings or kernel data is
176 * leaked to userland.
177 */
178 memset(msg, 0, sizeof(struct uffd_msg));
179 }
180
181 static inline struct uffd_msg userfault_msg(unsigned long address,
182 unsigned int flags,
183 unsigned long reason,
184 unsigned int features)
185 {
186 struct uffd_msg msg;
187 msg_init(&msg);
188 msg.event = UFFD_EVENT_PAGEFAULT;
189 msg.arg.pagefault.address = address;
190 if (flags & FAULT_FLAG_WRITE)
191 /*
192 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
193 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
194 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
195 * was a read fault, otherwise if set it means it's
196 * a write fault.
197 */
198 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
199 if (reason & VM_UFFD_WP)
200 /*
201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
203 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
204 * a missing fault, otherwise if set it means it's a
205 * write protect fault.
206 */
207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
208 if (features & UFFD_FEATURE_THREAD_ID)
209 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
210 return msg;
211 }
212
213 #ifdef CONFIG_HUGETLB_PAGE
214 /*
215 * Same functionality as userfaultfd_must_wait below with modifications for
216 * hugepmd ranges.
217 */
218 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
219 struct vm_area_struct *vma,
220 unsigned long address,
221 unsigned long flags,
222 unsigned long reason)
223 {
224 struct mm_struct *mm = ctx->mm;
225 pte_t *ptep, pte;
226 bool ret = true;
227
228 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
229
230 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
231
232 if (!ptep)
233 goto out;
234
235 ret = false;
236 pte = huge_ptep_get(ptep);
237
238 /*
239 * Lockless access: we're in a wait_event so it's ok if it
240 * changes under us.
241 */
242 if (huge_pte_none(pte))
243 ret = true;
244 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
245 ret = true;
246 out:
247 return ret;
248 }
249 #else
250 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
251 struct vm_area_struct *vma,
252 unsigned long address,
253 unsigned long flags,
254 unsigned long reason)
255 {
256 return false; /* should never get here */
257 }
258 #endif /* CONFIG_HUGETLB_PAGE */
259
260 /*
261 * Verify the pagetables are still not ok after having reigstered into
262 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
263 * userfault that has already been resolved, if userfaultfd_read and
264 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
265 * threads.
266 */
267 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
268 unsigned long address,
269 unsigned long flags,
270 unsigned long reason)
271 {
272 struct mm_struct *mm = ctx->mm;
273 pgd_t *pgd;
274 p4d_t *p4d;
275 pud_t *pud;
276 pmd_t *pmd, _pmd;
277 pte_t *pte;
278 bool ret = true;
279
280 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
281
282 pgd = pgd_offset(mm, address);
283 if (!pgd_present(*pgd))
284 goto out;
285 p4d = p4d_offset(pgd, address);
286 if (!p4d_present(*p4d))
287 goto out;
288 pud = pud_offset(p4d, address);
289 if (!pud_present(*pud))
290 goto out;
291 pmd = pmd_offset(pud, address);
292 /*
293 * READ_ONCE must function as a barrier with narrower scope
294 * and it must be equivalent to:
295 * _pmd = *pmd; barrier();
296 *
297 * This is to deal with the instability (as in
298 * pmd_trans_unstable) of the pmd.
299 */
300 _pmd = READ_ONCE(*pmd);
301 if (pmd_none(_pmd))
302 goto out;
303
304 ret = false;
305 if (!pmd_present(_pmd))
306 goto out;
307
308 if (pmd_trans_huge(_pmd))
309 goto out;
310
311 /*
312 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
313 * and use the standard pte_offset_map() instead of parsing _pmd.
314 */
315 pte = pte_offset_map(pmd, address);
316 /*
317 * Lockless access: we're in a wait_event so it's ok if it
318 * changes under us.
319 */
320 if (pte_none(*pte))
321 ret = true;
322 pte_unmap(pte);
323
324 out:
325 return ret;
326 }
327
328 /*
329 * The locking rules involved in returning VM_FAULT_RETRY depending on
330 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
331 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
332 * recommendation in __lock_page_or_retry is not an understatement.
333 *
334 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
335 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
336 * not set.
337 *
338 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
339 * set, VM_FAULT_RETRY can still be returned if and only if there are
340 * fatal_signal_pending()s, and the mmap_sem must be released before
341 * returning it.
342 */
343 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
344 {
345 struct mm_struct *mm = vmf->vma->vm_mm;
346 struct userfaultfd_ctx *ctx;
347 struct userfaultfd_wait_queue uwq;
348 int ret;
349 bool must_wait, return_to_userland;
350 long blocking_state;
351
352 ret = VM_FAULT_SIGBUS;
353
354 /*
355 * We don't do userfault handling for the final child pid update.
356 *
357 * We also don't do userfault handling during
358 * coredumping. hugetlbfs has the special
359 * follow_hugetlb_page() to skip missing pages in the
360 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
361 * the no_page_table() helper in follow_page_mask(), but the
362 * shmem_vm_ops->fault method is invoked even during
363 * coredumping without mmap_sem and it ends up here.
364 */
365 if (current->flags & (PF_EXITING|PF_DUMPCORE))
366 goto out;
367
368 /*
369 * Coredumping runs without mmap_sem so we can only check that
370 * the mmap_sem is held, if PF_DUMPCORE was not set.
371 */
372 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
373
374 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
375 if (!ctx)
376 goto out;
377
378 BUG_ON(ctx->mm != mm);
379
380 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
381 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
382
383 if (ctx->features & UFFD_FEATURE_SIGBUS)
384 goto out;
385
386 /*
387 * If it's already released don't get it. This avoids to loop
388 * in __get_user_pages if userfaultfd_release waits on the
389 * caller of handle_userfault to release the mmap_sem.
390 */
391 if (unlikely(READ_ONCE(ctx->released))) {
392 /*
393 * Don't return VM_FAULT_SIGBUS in this case, so a non
394 * cooperative manager can close the uffd after the
395 * last UFFDIO_COPY, without risking to trigger an
396 * involuntary SIGBUS if the process was starting the
397 * userfaultfd while the userfaultfd was still armed
398 * (but after the last UFFDIO_COPY). If the uffd
399 * wasn't already closed when the userfault reached
400 * this point, that would normally be solved by
401 * userfaultfd_must_wait returning 'false'.
402 *
403 * If we were to return VM_FAULT_SIGBUS here, the non
404 * cooperative manager would be instead forced to
405 * always call UFFDIO_UNREGISTER before it can safely
406 * close the uffd.
407 */
408 ret = VM_FAULT_NOPAGE;
409 goto out;
410 }
411
412 /*
413 * Check that we can return VM_FAULT_RETRY.
414 *
415 * NOTE: it should become possible to return VM_FAULT_RETRY
416 * even if FAULT_FLAG_TRIED is set without leading to gup()
417 * -EBUSY failures, if the userfaultfd is to be extended for
418 * VM_UFFD_WP tracking and we intend to arm the userfault
419 * without first stopping userland access to the memory. For
420 * VM_UFFD_MISSING userfaults this is enough for now.
421 */
422 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
423 /*
424 * Validate the invariant that nowait must allow retry
425 * to be sure not to return SIGBUS erroneously on
426 * nowait invocations.
427 */
428 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
429 #ifdef CONFIG_DEBUG_VM
430 if (printk_ratelimit()) {
431 printk(KERN_WARNING
432 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
433 vmf->flags);
434 dump_stack();
435 }
436 #endif
437 goto out;
438 }
439
440 /*
441 * Handle nowait, not much to do other than tell it to retry
442 * and wait.
443 */
444 ret = VM_FAULT_RETRY;
445 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
446 goto out;
447
448 /* take the reference before dropping the mmap_sem */
449 userfaultfd_ctx_get(ctx);
450
451 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
452 uwq.wq.private = current;
453 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
454 ctx->features);
455 uwq.ctx = ctx;
456 uwq.waken = false;
457
458 return_to_userland =
459 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
460 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
461 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
462 TASK_KILLABLE;
463
464 spin_lock(&ctx->fault_pending_wqh.lock);
465 /*
466 * After the __add_wait_queue the uwq is visible to userland
467 * through poll/read().
468 */
469 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
470 /*
471 * The smp_mb() after __set_current_state prevents the reads
472 * following the spin_unlock to happen before the list_add in
473 * __add_wait_queue.
474 */
475 set_current_state(blocking_state);
476 spin_unlock(&ctx->fault_pending_wqh.lock);
477
478 if (!is_vm_hugetlb_page(vmf->vma))
479 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
480 reason);
481 else
482 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
483 vmf->address,
484 vmf->flags, reason);
485 up_read(&mm->mmap_sem);
486
487 if (likely(must_wait && !READ_ONCE(ctx->released) &&
488 (return_to_userland ? !signal_pending(current) :
489 !fatal_signal_pending(current)))) {
490 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
491 schedule();
492 ret |= VM_FAULT_MAJOR;
493
494 /*
495 * False wakeups can orginate even from rwsem before
496 * up_read() however userfaults will wait either for a
497 * targeted wakeup on the specific uwq waitqueue from
498 * wake_userfault() or for signals or for uffd
499 * release.
500 */
501 while (!READ_ONCE(uwq.waken)) {
502 /*
503 * This needs the full smp_store_mb()
504 * guarantee as the state write must be
505 * visible to other CPUs before reading
506 * uwq.waken from other CPUs.
507 */
508 set_current_state(blocking_state);
509 if (READ_ONCE(uwq.waken) ||
510 READ_ONCE(ctx->released) ||
511 (return_to_userland ? signal_pending(current) :
512 fatal_signal_pending(current)))
513 break;
514 schedule();
515 }
516 }
517
518 __set_current_state(TASK_RUNNING);
519
520 if (return_to_userland) {
521 if (signal_pending(current) &&
522 !fatal_signal_pending(current)) {
523 /*
524 * If we got a SIGSTOP or SIGCONT and this is
525 * a normal userland page fault, just let
526 * userland return so the signal will be
527 * handled and gdb debugging works. The page
528 * fault code immediately after we return from
529 * this function is going to release the
530 * mmap_sem and it's not depending on it
531 * (unlike gup would if we were not to return
532 * VM_FAULT_RETRY).
533 *
534 * If a fatal signal is pending we still take
535 * the streamlined VM_FAULT_RETRY failure path
536 * and there's no need to retake the mmap_sem
537 * in such case.
538 */
539 down_read(&mm->mmap_sem);
540 ret = VM_FAULT_NOPAGE;
541 }
542 }
543
544 /*
545 * Here we race with the list_del; list_add in
546 * userfaultfd_ctx_read(), however because we don't ever run
547 * list_del_init() to refile across the two lists, the prev
548 * and next pointers will never point to self. list_add also
549 * would never let any of the two pointers to point to
550 * self. So list_empty_careful won't risk to see both pointers
551 * pointing to self at any time during the list refile. The
552 * only case where list_del_init() is called is the full
553 * removal in the wake function and there we don't re-list_add
554 * and it's fine not to block on the spinlock. The uwq on this
555 * kernel stack can be released after the list_del_init.
556 */
557 if (!list_empty_careful(&uwq.wq.entry)) {
558 spin_lock(&ctx->fault_pending_wqh.lock);
559 /*
560 * No need of list_del_init(), the uwq on the stack
561 * will be freed shortly anyway.
562 */
563 list_del(&uwq.wq.entry);
564 spin_unlock(&ctx->fault_pending_wqh.lock);
565 }
566
567 /*
568 * ctx may go away after this if the userfault pseudo fd is
569 * already released.
570 */
571 userfaultfd_ctx_put(ctx);
572
573 out:
574 return ret;
575 }
576
577 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
578 struct userfaultfd_wait_queue *ewq)
579 {
580 struct userfaultfd_ctx *release_new_ctx;
581
582 if (WARN_ON_ONCE(current->flags & PF_EXITING))
583 goto out;
584
585 ewq->ctx = ctx;
586 init_waitqueue_entry(&ewq->wq, current);
587 release_new_ctx = NULL;
588
589 spin_lock(&ctx->event_wqh.lock);
590 /*
591 * After the __add_wait_queue the uwq is visible to userland
592 * through poll/read().
593 */
594 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
595 for (;;) {
596 set_current_state(TASK_KILLABLE);
597 if (ewq->msg.event == 0)
598 break;
599 if (READ_ONCE(ctx->released) ||
600 fatal_signal_pending(current)) {
601 /*
602 * &ewq->wq may be queued in fork_event, but
603 * __remove_wait_queue ignores the head
604 * parameter. It would be a problem if it
605 * didn't.
606 */
607 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
608 if (ewq->msg.event == UFFD_EVENT_FORK) {
609 struct userfaultfd_ctx *new;
610
611 new = (struct userfaultfd_ctx *)
612 (unsigned long)
613 ewq->msg.arg.reserved.reserved1;
614 release_new_ctx = new;
615 }
616 break;
617 }
618
619 spin_unlock(&ctx->event_wqh.lock);
620
621 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
622 schedule();
623
624 spin_lock(&ctx->event_wqh.lock);
625 }
626 __set_current_state(TASK_RUNNING);
627 spin_unlock(&ctx->event_wqh.lock);
628
629 if (release_new_ctx) {
630 struct vm_area_struct *vma;
631 struct mm_struct *mm = release_new_ctx->mm;
632
633 /* the various vma->vm_userfaultfd_ctx still points to it */
634 down_write(&mm->mmap_sem);
635 for (vma = mm->mmap; vma; vma = vma->vm_next)
636 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
637 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
638 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
639 }
640 up_write(&mm->mmap_sem);
641
642 userfaultfd_ctx_put(release_new_ctx);
643 }
644
645 /*
646 * ctx may go away after this if the userfault pseudo fd is
647 * already released.
648 */
649 out:
650 WRITE_ONCE(ctx->mmap_changing, false);
651 userfaultfd_ctx_put(ctx);
652 }
653
654 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
655 struct userfaultfd_wait_queue *ewq)
656 {
657 ewq->msg.event = 0;
658 wake_up_locked(&ctx->event_wqh);
659 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
660 }
661
662 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
663 {
664 struct userfaultfd_ctx *ctx = NULL, *octx;
665 struct userfaultfd_fork_ctx *fctx;
666
667 octx = vma->vm_userfaultfd_ctx.ctx;
668 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
669 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
670 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
671 return 0;
672 }
673
674 list_for_each_entry(fctx, fcs, list)
675 if (fctx->orig == octx) {
676 ctx = fctx->new;
677 break;
678 }
679
680 if (!ctx) {
681 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
682 if (!fctx)
683 return -ENOMEM;
684
685 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
686 if (!ctx) {
687 kfree(fctx);
688 return -ENOMEM;
689 }
690
691 atomic_set(&ctx->refcount, 1);
692 ctx->flags = octx->flags;
693 ctx->state = UFFD_STATE_RUNNING;
694 ctx->features = octx->features;
695 ctx->released = false;
696 ctx->mmap_changing = false;
697 ctx->mm = vma->vm_mm;
698 mmgrab(ctx->mm);
699
700 userfaultfd_ctx_get(octx);
701 WRITE_ONCE(octx->mmap_changing, true);
702 fctx->orig = octx;
703 fctx->new = ctx;
704 list_add_tail(&fctx->list, fcs);
705 }
706
707 vma->vm_userfaultfd_ctx.ctx = ctx;
708 return 0;
709 }
710
711 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
712 {
713 struct userfaultfd_ctx *ctx = fctx->orig;
714 struct userfaultfd_wait_queue ewq;
715
716 msg_init(&ewq.msg);
717
718 ewq.msg.event = UFFD_EVENT_FORK;
719 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
720
721 userfaultfd_event_wait_completion(ctx, &ewq);
722 }
723
724 void dup_userfaultfd_complete(struct list_head *fcs)
725 {
726 struct userfaultfd_fork_ctx *fctx, *n;
727
728 list_for_each_entry_safe(fctx, n, fcs, list) {
729 dup_fctx(fctx);
730 list_del(&fctx->list);
731 kfree(fctx);
732 }
733 }
734
735 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
736 struct vm_userfaultfd_ctx *vm_ctx)
737 {
738 struct userfaultfd_ctx *ctx;
739
740 ctx = vma->vm_userfaultfd_ctx.ctx;
741 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
742 vm_ctx->ctx = ctx;
743 userfaultfd_ctx_get(ctx);
744 WRITE_ONCE(ctx->mmap_changing, true);
745 }
746 }
747
748 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
749 unsigned long from, unsigned long to,
750 unsigned long len)
751 {
752 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
753 struct userfaultfd_wait_queue ewq;
754
755 if (!ctx)
756 return;
757
758 if (to & ~PAGE_MASK) {
759 userfaultfd_ctx_put(ctx);
760 return;
761 }
762
763 msg_init(&ewq.msg);
764
765 ewq.msg.event = UFFD_EVENT_REMAP;
766 ewq.msg.arg.remap.from = from;
767 ewq.msg.arg.remap.to = to;
768 ewq.msg.arg.remap.len = len;
769
770 userfaultfd_event_wait_completion(ctx, &ewq);
771 }
772
773 bool userfaultfd_remove(struct vm_area_struct *vma,
774 unsigned long start, unsigned long end)
775 {
776 struct mm_struct *mm = vma->vm_mm;
777 struct userfaultfd_ctx *ctx;
778 struct userfaultfd_wait_queue ewq;
779
780 ctx = vma->vm_userfaultfd_ctx.ctx;
781 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
782 return true;
783
784 userfaultfd_ctx_get(ctx);
785 WRITE_ONCE(ctx->mmap_changing, true);
786 up_read(&mm->mmap_sem);
787
788 msg_init(&ewq.msg);
789
790 ewq.msg.event = UFFD_EVENT_REMOVE;
791 ewq.msg.arg.remove.start = start;
792 ewq.msg.arg.remove.end = end;
793
794 userfaultfd_event_wait_completion(ctx, &ewq);
795
796 return false;
797 }
798
799 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
800 unsigned long start, unsigned long end)
801 {
802 struct userfaultfd_unmap_ctx *unmap_ctx;
803
804 list_for_each_entry(unmap_ctx, unmaps, list)
805 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
806 unmap_ctx->end == end)
807 return true;
808
809 return false;
810 }
811
812 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
813 unsigned long start, unsigned long end,
814 struct list_head *unmaps)
815 {
816 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
817 struct userfaultfd_unmap_ctx *unmap_ctx;
818 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
819
820 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
821 has_unmap_ctx(ctx, unmaps, start, end))
822 continue;
823
824 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
825 if (!unmap_ctx)
826 return -ENOMEM;
827
828 userfaultfd_ctx_get(ctx);
829 WRITE_ONCE(ctx->mmap_changing, true);
830 unmap_ctx->ctx = ctx;
831 unmap_ctx->start = start;
832 unmap_ctx->end = end;
833 list_add_tail(&unmap_ctx->list, unmaps);
834 }
835
836 return 0;
837 }
838
839 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
840 {
841 struct userfaultfd_unmap_ctx *ctx, *n;
842 struct userfaultfd_wait_queue ewq;
843
844 list_for_each_entry_safe(ctx, n, uf, list) {
845 msg_init(&ewq.msg);
846
847 ewq.msg.event = UFFD_EVENT_UNMAP;
848 ewq.msg.arg.remove.start = ctx->start;
849 ewq.msg.arg.remove.end = ctx->end;
850
851 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
852
853 list_del(&ctx->list);
854 kfree(ctx);
855 }
856 }
857
858 static int userfaultfd_release(struct inode *inode, struct file *file)
859 {
860 struct userfaultfd_ctx *ctx = file->private_data;
861 struct mm_struct *mm = ctx->mm;
862 struct vm_area_struct *vma, *prev;
863 /* len == 0 means wake all */
864 struct userfaultfd_wake_range range = { .len = 0, };
865 unsigned long new_flags;
866
867 WRITE_ONCE(ctx->released, true);
868
869 if (!mmget_not_zero(mm))
870 goto wakeup;
871
872 /*
873 * Flush page faults out of all CPUs. NOTE: all page faults
874 * must be retried without returning VM_FAULT_SIGBUS if
875 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
876 * changes while handle_userfault released the mmap_sem. So
877 * it's critical that released is set to true (above), before
878 * taking the mmap_sem for writing.
879 */
880 down_write(&mm->mmap_sem);
881 prev = NULL;
882 for (vma = mm->mmap; vma; vma = vma->vm_next) {
883 cond_resched();
884 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
885 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
886 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
887 prev = vma;
888 continue;
889 }
890 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
891 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
892 new_flags, vma->anon_vma,
893 vma->vm_file, vma->vm_pgoff,
894 vma_policy(vma),
895 NULL_VM_UFFD_CTX);
896 if (prev)
897 vma = prev;
898 else
899 prev = vma;
900 vma->vm_flags = new_flags;
901 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
902 }
903 up_write(&mm->mmap_sem);
904 mmput(mm);
905 wakeup:
906 /*
907 * After no new page faults can wait on this fault_*wqh, flush
908 * the last page faults that may have been already waiting on
909 * the fault_*wqh.
910 */
911 spin_lock(&ctx->fault_pending_wqh.lock);
912 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
913 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
914 spin_unlock(&ctx->fault_pending_wqh.lock);
915
916 /* Flush pending events that may still wait on event_wqh */
917 wake_up_all(&ctx->event_wqh);
918
919 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
920 userfaultfd_ctx_put(ctx);
921 return 0;
922 }
923
924 /* fault_pending_wqh.lock must be hold by the caller */
925 static inline struct userfaultfd_wait_queue *find_userfault_in(
926 wait_queue_head_t *wqh)
927 {
928 wait_queue_entry_t *wq;
929 struct userfaultfd_wait_queue *uwq;
930
931 VM_BUG_ON(!spin_is_locked(&wqh->lock));
932
933 uwq = NULL;
934 if (!waitqueue_active(wqh))
935 goto out;
936 /* walk in reverse to provide FIFO behavior to read userfaults */
937 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
938 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
939 out:
940 return uwq;
941 }
942
943 static inline struct userfaultfd_wait_queue *find_userfault(
944 struct userfaultfd_ctx *ctx)
945 {
946 return find_userfault_in(&ctx->fault_pending_wqh);
947 }
948
949 static inline struct userfaultfd_wait_queue *find_userfault_evt(
950 struct userfaultfd_ctx *ctx)
951 {
952 return find_userfault_in(&ctx->event_wqh);
953 }
954
955 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
956 {
957 struct userfaultfd_ctx *ctx = file->private_data;
958 __poll_t ret;
959
960 poll_wait(file, &ctx->fd_wqh, wait);
961
962 switch (ctx->state) {
963 case UFFD_STATE_WAIT_API:
964 return EPOLLERR;
965 case UFFD_STATE_RUNNING:
966 /*
967 * poll() never guarantees that read won't block.
968 * userfaults can be waken before they're read().
969 */
970 if (unlikely(!(file->f_flags & O_NONBLOCK)))
971 return EPOLLERR;
972 /*
973 * lockless access to see if there are pending faults
974 * __pollwait last action is the add_wait_queue but
975 * the spin_unlock would allow the waitqueue_active to
976 * pass above the actual list_add inside
977 * add_wait_queue critical section. So use a full
978 * memory barrier to serialize the list_add write of
979 * add_wait_queue() with the waitqueue_active read
980 * below.
981 */
982 ret = 0;
983 smp_mb();
984 if (waitqueue_active(&ctx->fault_pending_wqh))
985 ret = EPOLLIN;
986 else if (waitqueue_active(&ctx->event_wqh))
987 ret = EPOLLIN;
988
989 return ret;
990 default:
991 WARN_ON_ONCE(1);
992 return EPOLLERR;
993 }
994 }
995
996 static const struct file_operations userfaultfd_fops;
997
998 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
999 struct userfaultfd_ctx *new,
1000 struct uffd_msg *msg)
1001 {
1002 int fd;
1003
1004 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1005 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1006 if (fd < 0)
1007 return fd;
1008
1009 msg->arg.reserved.reserved1 = 0;
1010 msg->arg.fork.ufd = fd;
1011 return 0;
1012 }
1013
1014 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1015 struct uffd_msg *msg)
1016 {
1017 ssize_t ret;
1018 DECLARE_WAITQUEUE(wait, current);
1019 struct userfaultfd_wait_queue *uwq;
1020 /*
1021 * Handling fork event requires sleeping operations, so
1022 * we drop the event_wqh lock, then do these ops, then
1023 * lock it back and wake up the waiter. While the lock is
1024 * dropped the ewq may go away so we keep track of it
1025 * carefully.
1026 */
1027 LIST_HEAD(fork_event);
1028 struct userfaultfd_ctx *fork_nctx = NULL;
1029
1030 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1031 spin_lock(&ctx->fd_wqh.lock);
1032 __add_wait_queue(&ctx->fd_wqh, &wait);
1033 for (;;) {
1034 set_current_state(TASK_INTERRUPTIBLE);
1035 spin_lock(&ctx->fault_pending_wqh.lock);
1036 uwq = find_userfault(ctx);
1037 if (uwq) {
1038 /*
1039 * Use a seqcount to repeat the lockless check
1040 * in wake_userfault() to avoid missing
1041 * wakeups because during the refile both
1042 * waitqueue could become empty if this is the
1043 * only userfault.
1044 */
1045 write_seqcount_begin(&ctx->refile_seq);
1046
1047 /*
1048 * The fault_pending_wqh.lock prevents the uwq
1049 * to disappear from under us.
1050 *
1051 * Refile this userfault from
1052 * fault_pending_wqh to fault_wqh, it's not
1053 * pending anymore after we read it.
1054 *
1055 * Use list_del() by hand (as
1056 * userfaultfd_wake_function also uses
1057 * list_del_init() by hand) to be sure nobody
1058 * changes __remove_wait_queue() to use
1059 * list_del_init() in turn breaking the
1060 * !list_empty_careful() check in
1061 * handle_userfault(). The uwq->wq.head list
1062 * must never be empty at any time during the
1063 * refile, or the waitqueue could disappear
1064 * from under us. The "wait_queue_head_t"
1065 * parameter of __remove_wait_queue() is unused
1066 * anyway.
1067 */
1068 list_del(&uwq->wq.entry);
1069 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1070
1071 write_seqcount_end(&ctx->refile_seq);
1072
1073 /* careful to always initialize msg if ret == 0 */
1074 *msg = uwq->msg;
1075 spin_unlock(&ctx->fault_pending_wqh.lock);
1076 ret = 0;
1077 break;
1078 }
1079 spin_unlock(&ctx->fault_pending_wqh.lock);
1080
1081 spin_lock(&ctx->event_wqh.lock);
1082 uwq = find_userfault_evt(ctx);
1083 if (uwq) {
1084 *msg = uwq->msg;
1085
1086 if (uwq->msg.event == UFFD_EVENT_FORK) {
1087 fork_nctx = (struct userfaultfd_ctx *)
1088 (unsigned long)
1089 uwq->msg.arg.reserved.reserved1;
1090 list_move(&uwq->wq.entry, &fork_event);
1091 /*
1092 * fork_nctx can be freed as soon as
1093 * we drop the lock, unless we take a
1094 * reference on it.
1095 */
1096 userfaultfd_ctx_get(fork_nctx);
1097 spin_unlock(&ctx->event_wqh.lock);
1098 ret = 0;
1099 break;
1100 }
1101
1102 userfaultfd_event_complete(ctx, uwq);
1103 spin_unlock(&ctx->event_wqh.lock);
1104 ret = 0;
1105 break;
1106 }
1107 spin_unlock(&ctx->event_wqh.lock);
1108
1109 if (signal_pending(current)) {
1110 ret = -ERESTARTSYS;
1111 break;
1112 }
1113 if (no_wait) {
1114 ret = -EAGAIN;
1115 break;
1116 }
1117 spin_unlock(&ctx->fd_wqh.lock);
1118 schedule();
1119 spin_lock(&ctx->fd_wqh.lock);
1120 }
1121 __remove_wait_queue(&ctx->fd_wqh, &wait);
1122 __set_current_state(TASK_RUNNING);
1123 spin_unlock(&ctx->fd_wqh.lock);
1124
1125 if (!ret && msg->event == UFFD_EVENT_FORK) {
1126 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1127 spin_lock(&ctx->event_wqh.lock);
1128 if (!list_empty(&fork_event)) {
1129 /*
1130 * The fork thread didn't abort, so we can
1131 * drop the temporary refcount.
1132 */
1133 userfaultfd_ctx_put(fork_nctx);
1134
1135 uwq = list_first_entry(&fork_event,
1136 typeof(*uwq),
1137 wq.entry);
1138 /*
1139 * If fork_event list wasn't empty and in turn
1140 * the event wasn't already released by fork
1141 * (the event is allocated on fork kernel
1142 * stack), put the event back to its place in
1143 * the event_wq. fork_event head will be freed
1144 * as soon as we return so the event cannot
1145 * stay queued there no matter the current
1146 * "ret" value.
1147 */
1148 list_del(&uwq->wq.entry);
1149 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1150
1151 /*
1152 * Leave the event in the waitqueue and report
1153 * error to userland if we failed to resolve
1154 * the userfault fork.
1155 */
1156 if (likely(!ret))
1157 userfaultfd_event_complete(ctx, uwq);
1158 } else {
1159 /*
1160 * Here the fork thread aborted and the
1161 * refcount from the fork thread on fork_nctx
1162 * has already been released. We still hold
1163 * the reference we took before releasing the
1164 * lock above. If resolve_userfault_fork
1165 * failed we've to drop it because the
1166 * fork_nctx has to be freed in such case. If
1167 * it succeeded we'll hold it because the new
1168 * uffd references it.
1169 */
1170 if (ret)
1171 userfaultfd_ctx_put(fork_nctx);
1172 }
1173 spin_unlock(&ctx->event_wqh.lock);
1174 }
1175
1176 return ret;
1177 }
1178
1179 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1180 size_t count, loff_t *ppos)
1181 {
1182 struct userfaultfd_ctx *ctx = file->private_data;
1183 ssize_t _ret, ret = 0;
1184 struct uffd_msg msg;
1185 int no_wait = file->f_flags & O_NONBLOCK;
1186
1187 if (ctx->state == UFFD_STATE_WAIT_API)
1188 return -EINVAL;
1189
1190 for (;;) {
1191 if (count < sizeof(msg))
1192 return ret ? ret : -EINVAL;
1193 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1194 if (_ret < 0)
1195 return ret ? ret : _ret;
1196 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1197 return ret ? ret : -EFAULT;
1198 ret += sizeof(msg);
1199 buf += sizeof(msg);
1200 count -= sizeof(msg);
1201 /*
1202 * Allow to read more than one fault at time but only
1203 * block if waiting for the very first one.
1204 */
1205 no_wait = O_NONBLOCK;
1206 }
1207 }
1208
1209 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1210 struct userfaultfd_wake_range *range)
1211 {
1212 spin_lock(&ctx->fault_pending_wqh.lock);
1213 /* wake all in the range and autoremove */
1214 if (waitqueue_active(&ctx->fault_pending_wqh))
1215 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1216 range);
1217 if (waitqueue_active(&ctx->fault_wqh))
1218 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1219 spin_unlock(&ctx->fault_pending_wqh.lock);
1220 }
1221
1222 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1223 struct userfaultfd_wake_range *range)
1224 {
1225 unsigned seq;
1226 bool need_wakeup;
1227
1228 /*
1229 * To be sure waitqueue_active() is not reordered by the CPU
1230 * before the pagetable update, use an explicit SMP memory
1231 * barrier here. PT lock release or up_read(mmap_sem) still
1232 * have release semantics that can allow the
1233 * waitqueue_active() to be reordered before the pte update.
1234 */
1235 smp_mb();
1236
1237 /*
1238 * Use waitqueue_active because it's very frequent to
1239 * change the address space atomically even if there are no
1240 * userfaults yet. So we take the spinlock only when we're
1241 * sure we've userfaults to wake.
1242 */
1243 do {
1244 seq = read_seqcount_begin(&ctx->refile_seq);
1245 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1246 waitqueue_active(&ctx->fault_wqh);
1247 cond_resched();
1248 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1249 if (need_wakeup)
1250 __wake_userfault(ctx, range);
1251 }
1252
1253 static __always_inline int validate_range(struct mm_struct *mm,
1254 __u64 start, __u64 len)
1255 {
1256 __u64 task_size = mm->task_size;
1257
1258 if (start & ~PAGE_MASK)
1259 return -EINVAL;
1260 if (len & ~PAGE_MASK)
1261 return -EINVAL;
1262 if (!len)
1263 return -EINVAL;
1264 if (start < mmap_min_addr)
1265 return -EINVAL;
1266 if (start >= task_size)
1267 return -EINVAL;
1268 if (len > task_size - start)
1269 return -EINVAL;
1270 return 0;
1271 }
1272
1273 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1274 {
1275 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1276 vma_is_shmem(vma);
1277 }
1278
1279 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1280 unsigned long arg)
1281 {
1282 struct mm_struct *mm = ctx->mm;
1283 struct vm_area_struct *vma, *prev, *cur;
1284 int ret;
1285 struct uffdio_register uffdio_register;
1286 struct uffdio_register __user *user_uffdio_register;
1287 unsigned long vm_flags, new_flags;
1288 bool found;
1289 bool basic_ioctls;
1290 unsigned long start, end, vma_end;
1291
1292 user_uffdio_register = (struct uffdio_register __user *) arg;
1293
1294 ret = -EFAULT;
1295 if (copy_from_user(&uffdio_register, user_uffdio_register,
1296 sizeof(uffdio_register)-sizeof(__u64)))
1297 goto out;
1298
1299 ret = -EINVAL;
1300 if (!uffdio_register.mode)
1301 goto out;
1302 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1303 UFFDIO_REGISTER_MODE_WP))
1304 goto out;
1305 vm_flags = 0;
1306 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1307 vm_flags |= VM_UFFD_MISSING;
1308 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1309 vm_flags |= VM_UFFD_WP;
1310 /*
1311 * FIXME: remove the below error constraint by
1312 * implementing the wprotect tracking mode.
1313 */
1314 ret = -EINVAL;
1315 goto out;
1316 }
1317
1318 ret = validate_range(mm, uffdio_register.range.start,
1319 uffdio_register.range.len);
1320 if (ret)
1321 goto out;
1322
1323 start = uffdio_register.range.start;
1324 end = start + uffdio_register.range.len;
1325
1326 ret = -ENOMEM;
1327 if (!mmget_not_zero(mm))
1328 goto out;
1329
1330 down_write(&mm->mmap_sem);
1331 vma = find_vma_prev(mm, start, &prev);
1332 if (!vma)
1333 goto out_unlock;
1334
1335 /* check that there's at least one vma in the range */
1336 ret = -EINVAL;
1337 if (vma->vm_start >= end)
1338 goto out_unlock;
1339
1340 /*
1341 * If the first vma contains huge pages, make sure start address
1342 * is aligned to huge page size.
1343 */
1344 if (is_vm_hugetlb_page(vma)) {
1345 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1346
1347 if (start & (vma_hpagesize - 1))
1348 goto out_unlock;
1349 }
1350
1351 /*
1352 * Search for not compatible vmas.
1353 */
1354 found = false;
1355 basic_ioctls = false;
1356 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1357 cond_resched();
1358
1359 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1360 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1361
1362 /* check not compatible vmas */
1363 ret = -EINVAL;
1364 if (!vma_can_userfault(cur))
1365 goto out_unlock;
1366 /*
1367 * If this vma contains ending address, and huge pages
1368 * check alignment.
1369 */
1370 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1371 end > cur->vm_start) {
1372 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1373
1374 ret = -EINVAL;
1375
1376 if (end & (vma_hpagesize - 1))
1377 goto out_unlock;
1378 }
1379
1380 /*
1381 * Check that this vma isn't already owned by a
1382 * different userfaultfd. We can't allow more than one
1383 * userfaultfd to own a single vma simultaneously or we
1384 * wouldn't know which one to deliver the userfaults to.
1385 */
1386 ret = -EBUSY;
1387 if (cur->vm_userfaultfd_ctx.ctx &&
1388 cur->vm_userfaultfd_ctx.ctx != ctx)
1389 goto out_unlock;
1390
1391 /*
1392 * Note vmas containing huge pages
1393 */
1394 if (is_vm_hugetlb_page(cur))
1395 basic_ioctls = true;
1396
1397 found = true;
1398 }
1399 BUG_ON(!found);
1400
1401 if (vma->vm_start < start)
1402 prev = vma;
1403
1404 ret = 0;
1405 do {
1406 cond_resched();
1407
1408 BUG_ON(!vma_can_userfault(vma));
1409 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1410 vma->vm_userfaultfd_ctx.ctx != ctx);
1411
1412 /*
1413 * Nothing to do: this vma is already registered into this
1414 * userfaultfd and with the right tracking mode too.
1415 */
1416 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1417 (vma->vm_flags & vm_flags) == vm_flags)
1418 goto skip;
1419
1420 if (vma->vm_start > start)
1421 start = vma->vm_start;
1422 vma_end = min(end, vma->vm_end);
1423
1424 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1425 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1426 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1427 vma_policy(vma),
1428 ((struct vm_userfaultfd_ctx){ ctx }));
1429 if (prev) {
1430 vma = prev;
1431 goto next;
1432 }
1433 if (vma->vm_start < start) {
1434 ret = split_vma(mm, vma, start, 1);
1435 if (ret)
1436 break;
1437 }
1438 if (vma->vm_end > end) {
1439 ret = split_vma(mm, vma, end, 0);
1440 if (ret)
1441 break;
1442 }
1443 next:
1444 /*
1445 * In the vma_merge() successful mprotect-like case 8:
1446 * the next vma was merged into the current one and
1447 * the current one has not been updated yet.
1448 */
1449 vma->vm_flags = new_flags;
1450 vma->vm_userfaultfd_ctx.ctx = ctx;
1451
1452 skip:
1453 prev = vma;
1454 start = vma->vm_end;
1455 vma = vma->vm_next;
1456 } while (vma && vma->vm_start < end);
1457 out_unlock:
1458 up_write(&mm->mmap_sem);
1459 mmput(mm);
1460 if (!ret) {
1461 /*
1462 * Now that we scanned all vmas we can already tell
1463 * userland which ioctls methods are guaranteed to
1464 * succeed on this range.
1465 */
1466 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1467 UFFD_API_RANGE_IOCTLS,
1468 &user_uffdio_register->ioctls))
1469 ret = -EFAULT;
1470 }
1471 out:
1472 return ret;
1473 }
1474
1475 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1476 unsigned long arg)
1477 {
1478 struct mm_struct *mm = ctx->mm;
1479 struct vm_area_struct *vma, *prev, *cur;
1480 int ret;
1481 struct uffdio_range uffdio_unregister;
1482 unsigned long new_flags;
1483 bool found;
1484 unsigned long start, end, vma_end;
1485 const void __user *buf = (void __user *)arg;
1486
1487 ret = -EFAULT;
1488 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1489 goto out;
1490
1491 ret = validate_range(mm, uffdio_unregister.start,
1492 uffdio_unregister.len);
1493 if (ret)
1494 goto out;
1495
1496 start = uffdio_unregister.start;
1497 end = start + uffdio_unregister.len;
1498
1499 ret = -ENOMEM;
1500 if (!mmget_not_zero(mm))
1501 goto out;
1502
1503 down_write(&mm->mmap_sem);
1504 vma = find_vma_prev(mm, start, &prev);
1505 if (!vma)
1506 goto out_unlock;
1507
1508 /* check that there's at least one vma in the range */
1509 ret = -EINVAL;
1510 if (vma->vm_start >= end)
1511 goto out_unlock;
1512
1513 /*
1514 * If the first vma contains huge pages, make sure start address
1515 * is aligned to huge page size.
1516 */
1517 if (is_vm_hugetlb_page(vma)) {
1518 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1519
1520 if (start & (vma_hpagesize - 1))
1521 goto out_unlock;
1522 }
1523
1524 /*
1525 * Search for not compatible vmas.
1526 */
1527 found = false;
1528 ret = -EINVAL;
1529 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1530 cond_resched();
1531
1532 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1533 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1534
1535 /*
1536 * Check not compatible vmas, not strictly required
1537 * here as not compatible vmas cannot have an
1538 * userfaultfd_ctx registered on them, but this
1539 * provides for more strict behavior to notice
1540 * unregistration errors.
1541 */
1542 if (!vma_can_userfault(cur))
1543 goto out_unlock;
1544
1545 found = true;
1546 }
1547 BUG_ON(!found);
1548
1549 if (vma->vm_start < start)
1550 prev = vma;
1551
1552 ret = 0;
1553 do {
1554 cond_resched();
1555
1556 BUG_ON(!vma_can_userfault(vma));
1557
1558 /*
1559 * Nothing to do: this vma is already registered into this
1560 * userfaultfd and with the right tracking mode too.
1561 */
1562 if (!vma->vm_userfaultfd_ctx.ctx)
1563 goto skip;
1564
1565 if (vma->vm_start > start)
1566 start = vma->vm_start;
1567 vma_end = min(end, vma->vm_end);
1568
1569 if (userfaultfd_missing(vma)) {
1570 /*
1571 * Wake any concurrent pending userfault while
1572 * we unregister, so they will not hang
1573 * permanently and it avoids userland to call
1574 * UFFDIO_WAKE explicitly.
1575 */
1576 struct userfaultfd_wake_range range;
1577 range.start = start;
1578 range.len = vma_end - start;
1579 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1580 }
1581
1582 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1583 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1584 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1585 vma_policy(vma),
1586 NULL_VM_UFFD_CTX);
1587 if (prev) {
1588 vma = prev;
1589 goto next;
1590 }
1591 if (vma->vm_start < start) {
1592 ret = split_vma(mm, vma, start, 1);
1593 if (ret)
1594 break;
1595 }
1596 if (vma->vm_end > end) {
1597 ret = split_vma(mm, vma, end, 0);
1598 if (ret)
1599 break;
1600 }
1601 next:
1602 /*
1603 * In the vma_merge() successful mprotect-like case 8:
1604 * the next vma was merged into the current one and
1605 * the current one has not been updated yet.
1606 */
1607 vma->vm_flags = new_flags;
1608 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1609
1610 skip:
1611 prev = vma;
1612 start = vma->vm_end;
1613 vma = vma->vm_next;
1614 } while (vma && vma->vm_start < end);
1615 out_unlock:
1616 up_write(&mm->mmap_sem);
1617 mmput(mm);
1618 out:
1619 return ret;
1620 }
1621
1622 /*
1623 * userfaultfd_wake may be used in combination with the
1624 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1625 */
1626 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1627 unsigned long arg)
1628 {
1629 int ret;
1630 struct uffdio_range uffdio_wake;
1631 struct userfaultfd_wake_range range;
1632 const void __user *buf = (void __user *)arg;
1633
1634 ret = -EFAULT;
1635 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1636 goto out;
1637
1638 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1639 if (ret)
1640 goto out;
1641
1642 range.start = uffdio_wake.start;
1643 range.len = uffdio_wake.len;
1644
1645 /*
1646 * len == 0 means wake all and we don't want to wake all here,
1647 * so check it again to be sure.
1648 */
1649 VM_BUG_ON(!range.len);
1650
1651 wake_userfault(ctx, &range);
1652 ret = 0;
1653
1654 out:
1655 return ret;
1656 }
1657
1658 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1659 unsigned long arg)
1660 {
1661 __s64 ret;
1662 struct uffdio_copy uffdio_copy;
1663 struct uffdio_copy __user *user_uffdio_copy;
1664 struct userfaultfd_wake_range range;
1665
1666 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1667
1668 ret = -EAGAIN;
1669 if (READ_ONCE(ctx->mmap_changing))
1670 goto out;
1671
1672 ret = -EFAULT;
1673 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1674 /* don't copy "copy" last field */
1675 sizeof(uffdio_copy)-sizeof(__s64)))
1676 goto out;
1677
1678 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1679 if (ret)
1680 goto out;
1681 /*
1682 * double check for wraparound just in case. copy_from_user()
1683 * will later check uffdio_copy.src + uffdio_copy.len to fit
1684 * in the userland range.
1685 */
1686 ret = -EINVAL;
1687 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1688 goto out;
1689 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1690 goto out;
1691 if (mmget_not_zero(ctx->mm)) {
1692 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1693 uffdio_copy.len, &ctx->mmap_changing);
1694 mmput(ctx->mm);
1695 } else {
1696 return -ESRCH;
1697 }
1698 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1699 return -EFAULT;
1700 if (ret < 0)
1701 goto out;
1702 BUG_ON(!ret);
1703 /* len == 0 would wake all */
1704 range.len = ret;
1705 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1706 range.start = uffdio_copy.dst;
1707 wake_userfault(ctx, &range);
1708 }
1709 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1710 out:
1711 return ret;
1712 }
1713
1714 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1715 unsigned long arg)
1716 {
1717 __s64 ret;
1718 struct uffdio_zeropage uffdio_zeropage;
1719 struct uffdio_zeropage __user *user_uffdio_zeropage;
1720 struct userfaultfd_wake_range range;
1721
1722 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1723
1724 ret = -EAGAIN;
1725 if (READ_ONCE(ctx->mmap_changing))
1726 goto out;
1727
1728 ret = -EFAULT;
1729 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1730 /* don't copy "zeropage" last field */
1731 sizeof(uffdio_zeropage)-sizeof(__s64)))
1732 goto out;
1733
1734 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1735 uffdio_zeropage.range.len);
1736 if (ret)
1737 goto out;
1738 ret = -EINVAL;
1739 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1740 goto out;
1741
1742 if (mmget_not_zero(ctx->mm)) {
1743 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1744 uffdio_zeropage.range.len,
1745 &ctx->mmap_changing);
1746 mmput(ctx->mm);
1747 } else {
1748 return -ESRCH;
1749 }
1750 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1751 return -EFAULT;
1752 if (ret < 0)
1753 goto out;
1754 /* len == 0 would wake all */
1755 BUG_ON(!ret);
1756 range.len = ret;
1757 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1758 range.start = uffdio_zeropage.range.start;
1759 wake_userfault(ctx, &range);
1760 }
1761 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1762 out:
1763 return ret;
1764 }
1765
1766 static inline unsigned int uffd_ctx_features(__u64 user_features)
1767 {
1768 /*
1769 * For the current set of features the bits just coincide
1770 */
1771 return (unsigned int)user_features;
1772 }
1773
1774 /*
1775 * userland asks for a certain API version and we return which bits
1776 * and ioctl commands are implemented in this kernel for such API
1777 * version or -EINVAL if unknown.
1778 */
1779 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1780 unsigned long arg)
1781 {
1782 struct uffdio_api uffdio_api;
1783 void __user *buf = (void __user *)arg;
1784 int ret;
1785 __u64 features;
1786
1787 ret = -EINVAL;
1788 if (ctx->state != UFFD_STATE_WAIT_API)
1789 goto out;
1790 ret = -EFAULT;
1791 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1792 goto out;
1793 features = uffdio_api.features;
1794 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1795 memset(&uffdio_api, 0, sizeof(uffdio_api));
1796 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1797 goto out;
1798 ret = -EINVAL;
1799 goto out;
1800 }
1801 /* report all available features and ioctls to userland */
1802 uffdio_api.features = UFFD_API_FEATURES;
1803 uffdio_api.ioctls = UFFD_API_IOCTLS;
1804 ret = -EFAULT;
1805 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1806 goto out;
1807 ctx->state = UFFD_STATE_RUNNING;
1808 /* only enable the requested features for this uffd context */
1809 ctx->features = uffd_ctx_features(features);
1810 ret = 0;
1811 out:
1812 return ret;
1813 }
1814
1815 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1816 unsigned long arg)
1817 {
1818 int ret = -EINVAL;
1819 struct userfaultfd_ctx *ctx = file->private_data;
1820
1821 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1822 return -EINVAL;
1823
1824 switch(cmd) {
1825 case UFFDIO_API:
1826 ret = userfaultfd_api(ctx, arg);
1827 break;
1828 case UFFDIO_REGISTER:
1829 ret = userfaultfd_register(ctx, arg);
1830 break;
1831 case UFFDIO_UNREGISTER:
1832 ret = userfaultfd_unregister(ctx, arg);
1833 break;
1834 case UFFDIO_WAKE:
1835 ret = userfaultfd_wake(ctx, arg);
1836 break;
1837 case UFFDIO_COPY:
1838 ret = userfaultfd_copy(ctx, arg);
1839 break;
1840 case UFFDIO_ZEROPAGE:
1841 ret = userfaultfd_zeropage(ctx, arg);
1842 break;
1843 }
1844 return ret;
1845 }
1846
1847 #ifdef CONFIG_PROC_FS
1848 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1849 {
1850 struct userfaultfd_ctx *ctx = f->private_data;
1851 wait_queue_entry_t *wq;
1852 struct userfaultfd_wait_queue *uwq;
1853 unsigned long pending = 0, total = 0;
1854
1855 spin_lock(&ctx->fault_pending_wqh.lock);
1856 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1857 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1858 pending++;
1859 total++;
1860 }
1861 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1862 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1863 total++;
1864 }
1865 spin_unlock(&ctx->fault_pending_wqh.lock);
1866
1867 /*
1868 * If more protocols will be added, there will be all shown
1869 * separated by a space. Like this:
1870 * protocols: aa:... bb:...
1871 */
1872 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1873 pending, total, UFFD_API, ctx->features,
1874 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1875 }
1876 #endif
1877
1878 static const struct file_operations userfaultfd_fops = {
1879 #ifdef CONFIG_PROC_FS
1880 .show_fdinfo = userfaultfd_show_fdinfo,
1881 #endif
1882 .release = userfaultfd_release,
1883 .poll = userfaultfd_poll,
1884 .read = userfaultfd_read,
1885 .unlocked_ioctl = userfaultfd_ioctl,
1886 .compat_ioctl = userfaultfd_ioctl,
1887 .llseek = noop_llseek,
1888 };
1889
1890 static void init_once_userfaultfd_ctx(void *mem)
1891 {
1892 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1893
1894 init_waitqueue_head(&ctx->fault_pending_wqh);
1895 init_waitqueue_head(&ctx->fault_wqh);
1896 init_waitqueue_head(&ctx->event_wqh);
1897 init_waitqueue_head(&ctx->fd_wqh);
1898 seqcount_init(&ctx->refile_seq);
1899 }
1900
1901 SYSCALL_DEFINE1(userfaultfd, int, flags)
1902 {
1903 struct userfaultfd_ctx *ctx;
1904 int fd;
1905
1906 BUG_ON(!current->mm);
1907
1908 /* Check the UFFD_* constants for consistency. */
1909 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1910 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1911
1912 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1913 return -EINVAL;
1914
1915 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1916 if (!ctx)
1917 return -ENOMEM;
1918
1919 atomic_set(&ctx->refcount, 1);
1920 ctx->flags = flags;
1921 ctx->features = 0;
1922 ctx->state = UFFD_STATE_WAIT_API;
1923 ctx->released = false;
1924 ctx->mmap_changing = false;
1925 ctx->mm = current->mm;
1926 /* prevent the mm struct to be freed */
1927 mmgrab(ctx->mm);
1928
1929 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1930 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1931 if (fd < 0) {
1932 mmdrop(ctx->mm);
1933 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1934 }
1935 return fd;
1936 }
1937
1938 static int __init userfaultfd_init(void)
1939 {
1940 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1941 sizeof(struct userfaultfd_ctx),
1942 0,
1943 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1944 init_once_userfaultfd_ctx);
1945 return 0;
1946 }
1947 __initcall(userfaultfd_init);