]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/userfaultfd.c
netfilter: merge ctinfo into nfct pointer storage area
[mirror_ubuntu-artful-kernel.git] / fs / userfaultfd.c
1 /*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15 #include <linux/hashtable.h>
16 #include <linux/sched.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29
30 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
31
32 enum userfaultfd_state {
33 UFFD_STATE_WAIT_API,
34 UFFD_STATE_RUNNING,
35 };
36
37 /*
38 * Start with fault_pending_wqh and fault_wqh so they're more likely
39 * to be in the same cacheline.
40 */
41 struct userfaultfd_ctx {
42 /* waitqueue head for the pending (i.e. not read) userfaults */
43 wait_queue_head_t fault_pending_wqh;
44 /* waitqueue head for the userfaults */
45 wait_queue_head_t fault_wqh;
46 /* waitqueue head for the pseudo fd to wakeup poll/read */
47 wait_queue_head_t fd_wqh;
48 /* a refile sequence protected by fault_pending_wqh lock */
49 struct seqcount refile_seq;
50 /* pseudo fd refcounting */
51 atomic_t refcount;
52 /* userfaultfd syscall flags */
53 unsigned int flags;
54 /* state machine */
55 enum userfaultfd_state state;
56 /* released */
57 bool released;
58 /* mm with one ore more vmas attached to this userfaultfd_ctx */
59 struct mm_struct *mm;
60 };
61
62 struct userfaultfd_wait_queue {
63 struct uffd_msg msg;
64 wait_queue_t wq;
65 struct userfaultfd_ctx *ctx;
66 };
67
68 struct userfaultfd_wake_range {
69 unsigned long start;
70 unsigned long len;
71 };
72
73 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
74 int wake_flags, void *key)
75 {
76 struct userfaultfd_wake_range *range = key;
77 int ret;
78 struct userfaultfd_wait_queue *uwq;
79 unsigned long start, len;
80
81 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
82 ret = 0;
83 /* len == 0 means wake all */
84 start = range->start;
85 len = range->len;
86 if (len && (start > uwq->msg.arg.pagefault.address ||
87 start + len <= uwq->msg.arg.pagefault.address))
88 goto out;
89 ret = wake_up_state(wq->private, mode);
90 if (ret)
91 /*
92 * Wake only once, autoremove behavior.
93 *
94 * After the effect of list_del_init is visible to the
95 * other CPUs, the waitqueue may disappear from under
96 * us, see the !list_empty_careful() in
97 * handle_userfault(). try_to_wake_up() has an
98 * implicit smp_mb__before_spinlock, and the
99 * wq->private is read before calling the extern
100 * function "wake_up_state" (which in turns calls
101 * try_to_wake_up). While the spin_lock;spin_unlock;
102 * wouldn't be enough, the smp_mb__before_spinlock is
103 * enough to avoid an explicit smp_mb() here.
104 */
105 list_del_init(&wq->task_list);
106 out:
107 return ret;
108 }
109
110 /**
111 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
112 * context.
113 * @ctx: [in] Pointer to the userfaultfd context.
114 *
115 * Returns: In case of success, returns not zero.
116 */
117 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
118 {
119 if (!atomic_inc_not_zero(&ctx->refcount))
120 BUG();
121 }
122
123 /**
124 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
125 * context.
126 * @ctx: [in] Pointer to userfaultfd context.
127 *
128 * The userfaultfd context reference must have been previously acquired either
129 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
130 */
131 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
132 {
133 if (atomic_dec_and_test(&ctx->refcount)) {
134 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
135 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
136 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
137 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
138 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
139 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
140 mmdrop(ctx->mm);
141 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
142 }
143 }
144
145 static inline void msg_init(struct uffd_msg *msg)
146 {
147 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
148 /*
149 * Must use memset to zero out the paddings or kernel data is
150 * leaked to userland.
151 */
152 memset(msg, 0, sizeof(struct uffd_msg));
153 }
154
155 static inline struct uffd_msg userfault_msg(unsigned long address,
156 unsigned int flags,
157 unsigned long reason)
158 {
159 struct uffd_msg msg;
160 msg_init(&msg);
161 msg.event = UFFD_EVENT_PAGEFAULT;
162 msg.arg.pagefault.address = address;
163 if (flags & FAULT_FLAG_WRITE)
164 /*
165 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
166 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
167 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
168 * was a read fault, otherwise if set it means it's
169 * a write fault.
170 */
171 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
172 if (reason & VM_UFFD_WP)
173 /*
174 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
175 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
176 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
177 * a missing fault, otherwise if set it means it's a
178 * write protect fault.
179 */
180 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
181 return msg;
182 }
183
184 /*
185 * Verify the pagetables are still not ok after having reigstered into
186 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
187 * userfault that has already been resolved, if userfaultfd_read and
188 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
189 * threads.
190 */
191 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
192 unsigned long address,
193 unsigned long flags,
194 unsigned long reason)
195 {
196 struct mm_struct *mm = ctx->mm;
197 pgd_t *pgd;
198 pud_t *pud;
199 pmd_t *pmd, _pmd;
200 pte_t *pte;
201 bool ret = true;
202
203 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
204
205 pgd = pgd_offset(mm, address);
206 if (!pgd_present(*pgd))
207 goto out;
208 pud = pud_offset(pgd, address);
209 if (!pud_present(*pud))
210 goto out;
211 pmd = pmd_offset(pud, address);
212 /*
213 * READ_ONCE must function as a barrier with narrower scope
214 * and it must be equivalent to:
215 * _pmd = *pmd; barrier();
216 *
217 * This is to deal with the instability (as in
218 * pmd_trans_unstable) of the pmd.
219 */
220 _pmd = READ_ONCE(*pmd);
221 if (!pmd_present(_pmd))
222 goto out;
223
224 ret = false;
225 if (pmd_trans_huge(_pmd))
226 goto out;
227
228 /*
229 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
230 * and use the standard pte_offset_map() instead of parsing _pmd.
231 */
232 pte = pte_offset_map(pmd, address);
233 /*
234 * Lockless access: we're in a wait_event so it's ok if it
235 * changes under us.
236 */
237 if (pte_none(*pte))
238 ret = true;
239 pte_unmap(pte);
240
241 out:
242 return ret;
243 }
244
245 /*
246 * The locking rules involved in returning VM_FAULT_RETRY depending on
247 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
248 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
249 * recommendation in __lock_page_or_retry is not an understatement.
250 *
251 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
252 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
253 * not set.
254 *
255 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
256 * set, VM_FAULT_RETRY can still be returned if and only if there are
257 * fatal_signal_pending()s, and the mmap_sem must be released before
258 * returning it.
259 */
260 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
261 {
262 struct mm_struct *mm = vmf->vma->vm_mm;
263 struct userfaultfd_ctx *ctx;
264 struct userfaultfd_wait_queue uwq;
265 int ret;
266 bool must_wait, return_to_userland;
267
268 BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
269
270 ret = VM_FAULT_SIGBUS;
271 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
272 if (!ctx)
273 goto out;
274
275 BUG_ON(ctx->mm != mm);
276
277 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
278 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
279
280 /*
281 * If it's already released don't get it. This avoids to loop
282 * in __get_user_pages if userfaultfd_release waits on the
283 * caller of handle_userfault to release the mmap_sem.
284 */
285 if (unlikely(ACCESS_ONCE(ctx->released)))
286 goto out;
287
288 /*
289 * We don't do userfault handling for the final child pid update.
290 */
291 if (current->flags & PF_EXITING)
292 goto out;
293
294 /*
295 * Check that we can return VM_FAULT_RETRY.
296 *
297 * NOTE: it should become possible to return VM_FAULT_RETRY
298 * even if FAULT_FLAG_TRIED is set without leading to gup()
299 * -EBUSY failures, if the userfaultfd is to be extended for
300 * VM_UFFD_WP tracking and we intend to arm the userfault
301 * without first stopping userland access to the memory. For
302 * VM_UFFD_MISSING userfaults this is enough for now.
303 */
304 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
305 /*
306 * Validate the invariant that nowait must allow retry
307 * to be sure not to return SIGBUS erroneously on
308 * nowait invocations.
309 */
310 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
311 #ifdef CONFIG_DEBUG_VM
312 if (printk_ratelimit()) {
313 printk(KERN_WARNING
314 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
315 vmf->flags);
316 dump_stack();
317 }
318 #endif
319 goto out;
320 }
321
322 /*
323 * Handle nowait, not much to do other than tell it to retry
324 * and wait.
325 */
326 ret = VM_FAULT_RETRY;
327 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
328 goto out;
329
330 /* take the reference before dropping the mmap_sem */
331 userfaultfd_ctx_get(ctx);
332
333 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
334 uwq.wq.private = current;
335 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
336 uwq.ctx = ctx;
337
338 return_to_userland =
339 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
340 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
341
342 spin_lock(&ctx->fault_pending_wqh.lock);
343 /*
344 * After the __add_wait_queue the uwq is visible to userland
345 * through poll/read().
346 */
347 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
348 /*
349 * The smp_mb() after __set_current_state prevents the reads
350 * following the spin_unlock to happen before the list_add in
351 * __add_wait_queue.
352 */
353 set_current_state(return_to_userland ? TASK_INTERRUPTIBLE :
354 TASK_KILLABLE);
355 spin_unlock(&ctx->fault_pending_wqh.lock);
356
357 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
358 reason);
359 up_read(&mm->mmap_sem);
360
361 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
362 (return_to_userland ? !signal_pending(current) :
363 !fatal_signal_pending(current)))) {
364 wake_up_poll(&ctx->fd_wqh, POLLIN);
365 schedule();
366 ret |= VM_FAULT_MAJOR;
367 }
368
369 __set_current_state(TASK_RUNNING);
370
371 if (return_to_userland) {
372 if (signal_pending(current) &&
373 !fatal_signal_pending(current)) {
374 /*
375 * If we got a SIGSTOP or SIGCONT and this is
376 * a normal userland page fault, just let
377 * userland return so the signal will be
378 * handled and gdb debugging works. The page
379 * fault code immediately after we return from
380 * this function is going to release the
381 * mmap_sem and it's not depending on it
382 * (unlike gup would if we were not to return
383 * VM_FAULT_RETRY).
384 *
385 * If a fatal signal is pending we still take
386 * the streamlined VM_FAULT_RETRY failure path
387 * and there's no need to retake the mmap_sem
388 * in such case.
389 */
390 down_read(&mm->mmap_sem);
391 ret = 0;
392 }
393 }
394
395 /*
396 * Here we race with the list_del; list_add in
397 * userfaultfd_ctx_read(), however because we don't ever run
398 * list_del_init() to refile across the two lists, the prev
399 * and next pointers will never point to self. list_add also
400 * would never let any of the two pointers to point to
401 * self. So list_empty_careful won't risk to see both pointers
402 * pointing to self at any time during the list refile. The
403 * only case where list_del_init() is called is the full
404 * removal in the wake function and there we don't re-list_add
405 * and it's fine not to block on the spinlock. The uwq on this
406 * kernel stack can be released after the list_del_init.
407 */
408 if (!list_empty_careful(&uwq.wq.task_list)) {
409 spin_lock(&ctx->fault_pending_wqh.lock);
410 /*
411 * No need of list_del_init(), the uwq on the stack
412 * will be freed shortly anyway.
413 */
414 list_del(&uwq.wq.task_list);
415 spin_unlock(&ctx->fault_pending_wqh.lock);
416 }
417
418 /*
419 * ctx may go away after this if the userfault pseudo fd is
420 * already released.
421 */
422 userfaultfd_ctx_put(ctx);
423
424 out:
425 return ret;
426 }
427
428 static int userfaultfd_release(struct inode *inode, struct file *file)
429 {
430 struct userfaultfd_ctx *ctx = file->private_data;
431 struct mm_struct *mm = ctx->mm;
432 struct vm_area_struct *vma, *prev;
433 /* len == 0 means wake all */
434 struct userfaultfd_wake_range range = { .len = 0, };
435 unsigned long new_flags;
436
437 ACCESS_ONCE(ctx->released) = true;
438
439 if (!mmget_not_zero(mm))
440 goto wakeup;
441
442 /*
443 * Flush page faults out of all CPUs. NOTE: all page faults
444 * must be retried without returning VM_FAULT_SIGBUS if
445 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
446 * changes while handle_userfault released the mmap_sem. So
447 * it's critical that released is set to true (above), before
448 * taking the mmap_sem for writing.
449 */
450 down_write(&mm->mmap_sem);
451 prev = NULL;
452 for (vma = mm->mmap; vma; vma = vma->vm_next) {
453 cond_resched();
454 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
455 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
456 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
457 prev = vma;
458 continue;
459 }
460 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
461 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
462 new_flags, vma->anon_vma,
463 vma->vm_file, vma->vm_pgoff,
464 vma_policy(vma),
465 NULL_VM_UFFD_CTX);
466 if (prev)
467 vma = prev;
468 else
469 prev = vma;
470 vma->vm_flags = new_flags;
471 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
472 }
473 up_write(&mm->mmap_sem);
474 mmput(mm);
475 wakeup:
476 /*
477 * After no new page faults can wait on this fault_*wqh, flush
478 * the last page faults that may have been already waiting on
479 * the fault_*wqh.
480 */
481 spin_lock(&ctx->fault_pending_wqh.lock);
482 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
483 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
484 spin_unlock(&ctx->fault_pending_wqh.lock);
485
486 wake_up_poll(&ctx->fd_wqh, POLLHUP);
487 userfaultfd_ctx_put(ctx);
488 return 0;
489 }
490
491 /* fault_pending_wqh.lock must be hold by the caller */
492 static inline struct userfaultfd_wait_queue *find_userfault(
493 struct userfaultfd_ctx *ctx)
494 {
495 wait_queue_t *wq;
496 struct userfaultfd_wait_queue *uwq;
497
498 VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
499
500 uwq = NULL;
501 if (!waitqueue_active(&ctx->fault_pending_wqh))
502 goto out;
503 /* walk in reverse to provide FIFO behavior to read userfaults */
504 wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
505 typeof(*wq), task_list);
506 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
507 out:
508 return uwq;
509 }
510
511 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
512 {
513 struct userfaultfd_ctx *ctx = file->private_data;
514 unsigned int ret;
515
516 poll_wait(file, &ctx->fd_wqh, wait);
517
518 switch (ctx->state) {
519 case UFFD_STATE_WAIT_API:
520 return POLLERR;
521 case UFFD_STATE_RUNNING:
522 /*
523 * poll() never guarantees that read won't block.
524 * userfaults can be waken before they're read().
525 */
526 if (unlikely(!(file->f_flags & O_NONBLOCK)))
527 return POLLERR;
528 /*
529 * lockless access to see if there are pending faults
530 * __pollwait last action is the add_wait_queue but
531 * the spin_unlock would allow the waitqueue_active to
532 * pass above the actual list_add inside
533 * add_wait_queue critical section. So use a full
534 * memory barrier to serialize the list_add write of
535 * add_wait_queue() with the waitqueue_active read
536 * below.
537 */
538 ret = 0;
539 smp_mb();
540 if (waitqueue_active(&ctx->fault_pending_wqh))
541 ret = POLLIN;
542 return ret;
543 default:
544 BUG();
545 }
546 }
547
548 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
549 struct uffd_msg *msg)
550 {
551 ssize_t ret;
552 DECLARE_WAITQUEUE(wait, current);
553 struct userfaultfd_wait_queue *uwq;
554
555 /* always take the fd_wqh lock before the fault_pending_wqh lock */
556 spin_lock(&ctx->fd_wqh.lock);
557 __add_wait_queue(&ctx->fd_wqh, &wait);
558 for (;;) {
559 set_current_state(TASK_INTERRUPTIBLE);
560 spin_lock(&ctx->fault_pending_wqh.lock);
561 uwq = find_userfault(ctx);
562 if (uwq) {
563 /*
564 * Use a seqcount to repeat the lockless check
565 * in wake_userfault() to avoid missing
566 * wakeups because during the refile both
567 * waitqueue could become empty if this is the
568 * only userfault.
569 */
570 write_seqcount_begin(&ctx->refile_seq);
571
572 /*
573 * The fault_pending_wqh.lock prevents the uwq
574 * to disappear from under us.
575 *
576 * Refile this userfault from
577 * fault_pending_wqh to fault_wqh, it's not
578 * pending anymore after we read it.
579 *
580 * Use list_del() by hand (as
581 * userfaultfd_wake_function also uses
582 * list_del_init() by hand) to be sure nobody
583 * changes __remove_wait_queue() to use
584 * list_del_init() in turn breaking the
585 * !list_empty_careful() check in
586 * handle_userfault(). The uwq->wq.task_list
587 * must never be empty at any time during the
588 * refile, or the waitqueue could disappear
589 * from under us. The "wait_queue_head_t"
590 * parameter of __remove_wait_queue() is unused
591 * anyway.
592 */
593 list_del(&uwq->wq.task_list);
594 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
595
596 write_seqcount_end(&ctx->refile_seq);
597
598 /* careful to always initialize msg if ret == 0 */
599 *msg = uwq->msg;
600 spin_unlock(&ctx->fault_pending_wqh.lock);
601 ret = 0;
602 break;
603 }
604 spin_unlock(&ctx->fault_pending_wqh.lock);
605 if (signal_pending(current)) {
606 ret = -ERESTARTSYS;
607 break;
608 }
609 if (no_wait) {
610 ret = -EAGAIN;
611 break;
612 }
613 spin_unlock(&ctx->fd_wqh.lock);
614 schedule();
615 spin_lock(&ctx->fd_wqh.lock);
616 }
617 __remove_wait_queue(&ctx->fd_wqh, &wait);
618 __set_current_state(TASK_RUNNING);
619 spin_unlock(&ctx->fd_wqh.lock);
620
621 return ret;
622 }
623
624 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
625 size_t count, loff_t *ppos)
626 {
627 struct userfaultfd_ctx *ctx = file->private_data;
628 ssize_t _ret, ret = 0;
629 struct uffd_msg msg;
630 int no_wait = file->f_flags & O_NONBLOCK;
631
632 if (ctx->state == UFFD_STATE_WAIT_API)
633 return -EINVAL;
634
635 for (;;) {
636 if (count < sizeof(msg))
637 return ret ? ret : -EINVAL;
638 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
639 if (_ret < 0)
640 return ret ? ret : _ret;
641 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
642 return ret ? ret : -EFAULT;
643 ret += sizeof(msg);
644 buf += sizeof(msg);
645 count -= sizeof(msg);
646 /*
647 * Allow to read more than one fault at time but only
648 * block if waiting for the very first one.
649 */
650 no_wait = O_NONBLOCK;
651 }
652 }
653
654 static void __wake_userfault(struct userfaultfd_ctx *ctx,
655 struct userfaultfd_wake_range *range)
656 {
657 unsigned long start, end;
658
659 start = range->start;
660 end = range->start + range->len;
661
662 spin_lock(&ctx->fault_pending_wqh.lock);
663 /* wake all in the range and autoremove */
664 if (waitqueue_active(&ctx->fault_pending_wqh))
665 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
666 range);
667 if (waitqueue_active(&ctx->fault_wqh))
668 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
669 spin_unlock(&ctx->fault_pending_wqh.lock);
670 }
671
672 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
673 struct userfaultfd_wake_range *range)
674 {
675 unsigned seq;
676 bool need_wakeup;
677
678 /*
679 * To be sure waitqueue_active() is not reordered by the CPU
680 * before the pagetable update, use an explicit SMP memory
681 * barrier here. PT lock release or up_read(mmap_sem) still
682 * have release semantics that can allow the
683 * waitqueue_active() to be reordered before the pte update.
684 */
685 smp_mb();
686
687 /*
688 * Use waitqueue_active because it's very frequent to
689 * change the address space atomically even if there are no
690 * userfaults yet. So we take the spinlock only when we're
691 * sure we've userfaults to wake.
692 */
693 do {
694 seq = read_seqcount_begin(&ctx->refile_seq);
695 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
696 waitqueue_active(&ctx->fault_wqh);
697 cond_resched();
698 } while (read_seqcount_retry(&ctx->refile_seq, seq));
699 if (need_wakeup)
700 __wake_userfault(ctx, range);
701 }
702
703 static __always_inline int validate_range(struct mm_struct *mm,
704 __u64 start, __u64 len)
705 {
706 __u64 task_size = mm->task_size;
707
708 if (start & ~PAGE_MASK)
709 return -EINVAL;
710 if (len & ~PAGE_MASK)
711 return -EINVAL;
712 if (!len)
713 return -EINVAL;
714 if (start < mmap_min_addr)
715 return -EINVAL;
716 if (start >= task_size)
717 return -EINVAL;
718 if (len > task_size - start)
719 return -EINVAL;
720 return 0;
721 }
722
723 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
724 unsigned long arg)
725 {
726 struct mm_struct *mm = ctx->mm;
727 struct vm_area_struct *vma, *prev, *cur;
728 int ret;
729 struct uffdio_register uffdio_register;
730 struct uffdio_register __user *user_uffdio_register;
731 unsigned long vm_flags, new_flags;
732 bool found;
733 unsigned long start, end, vma_end;
734
735 user_uffdio_register = (struct uffdio_register __user *) arg;
736
737 ret = -EFAULT;
738 if (copy_from_user(&uffdio_register, user_uffdio_register,
739 sizeof(uffdio_register)-sizeof(__u64)))
740 goto out;
741
742 ret = -EINVAL;
743 if (!uffdio_register.mode)
744 goto out;
745 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
746 UFFDIO_REGISTER_MODE_WP))
747 goto out;
748 vm_flags = 0;
749 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
750 vm_flags |= VM_UFFD_MISSING;
751 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
752 vm_flags |= VM_UFFD_WP;
753 /*
754 * FIXME: remove the below error constraint by
755 * implementing the wprotect tracking mode.
756 */
757 ret = -EINVAL;
758 goto out;
759 }
760
761 ret = validate_range(mm, uffdio_register.range.start,
762 uffdio_register.range.len);
763 if (ret)
764 goto out;
765
766 start = uffdio_register.range.start;
767 end = start + uffdio_register.range.len;
768
769 ret = -ENOMEM;
770 if (!mmget_not_zero(mm))
771 goto out;
772
773 down_write(&mm->mmap_sem);
774 vma = find_vma_prev(mm, start, &prev);
775 if (!vma)
776 goto out_unlock;
777
778 /* check that there's at least one vma in the range */
779 ret = -EINVAL;
780 if (vma->vm_start >= end)
781 goto out_unlock;
782
783 /*
784 * Search for not compatible vmas.
785 *
786 * FIXME: this shall be relaxed later so that it doesn't fail
787 * on tmpfs backed vmas (in addition to the current allowance
788 * on anonymous vmas).
789 */
790 found = false;
791 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
792 cond_resched();
793
794 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
795 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
796
797 /* check not compatible vmas */
798 ret = -EINVAL;
799 if (cur->vm_ops)
800 goto out_unlock;
801
802 /*
803 * Check that this vma isn't already owned by a
804 * different userfaultfd. We can't allow more than one
805 * userfaultfd to own a single vma simultaneously or we
806 * wouldn't know which one to deliver the userfaults to.
807 */
808 ret = -EBUSY;
809 if (cur->vm_userfaultfd_ctx.ctx &&
810 cur->vm_userfaultfd_ctx.ctx != ctx)
811 goto out_unlock;
812
813 found = true;
814 }
815 BUG_ON(!found);
816
817 if (vma->vm_start < start)
818 prev = vma;
819
820 ret = 0;
821 do {
822 cond_resched();
823
824 BUG_ON(vma->vm_ops);
825 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
826 vma->vm_userfaultfd_ctx.ctx != ctx);
827
828 /*
829 * Nothing to do: this vma is already registered into this
830 * userfaultfd and with the right tracking mode too.
831 */
832 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
833 (vma->vm_flags & vm_flags) == vm_flags)
834 goto skip;
835
836 if (vma->vm_start > start)
837 start = vma->vm_start;
838 vma_end = min(end, vma->vm_end);
839
840 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
841 prev = vma_merge(mm, prev, start, vma_end, new_flags,
842 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
843 vma_policy(vma),
844 ((struct vm_userfaultfd_ctx){ ctx }));
845 if (prev) {
846 vma = prev;
847 goto next;
848 }
849 if (vma->vm_start < start) {
850 ret = split_vma(mm, vma, start, 1);
851 if (ret)
852 break;
853 }
854 if (vma->vm_end > end) {
855 ret = split_vma(mm, vma, end, 0);
856 if (ret)
857 break;
858 }
859 next:
860 /*
861 * In the vma_merge() successful mprotect-like case 8:
862 * the next vma was merged into the current one and
863 * the current one has not been updated yet.
864 */
865 vma->vm_flags = new_flags;
866 vma->vm_userfaultfd_ctx.ctx = ctx;
867
868 skip:
869 prev = vma;
870 start = vma->vm_end;
871 vma = vma->vm_next;
872 } while (vma && vma->vm_start < end);
873 out_unlock:
874 up_write(&mm->mmap_sem);
875 mmput(mm);
876 if (!ret) {
877 /*
878 * Now that we scanned all vmas we can already tell
879 * userland which ioctls methods are guaranteed to
880 * succeed on this range.
881 */
882 if (put_user(UFFD_API_RANGE_IOCTLS,
883 &user_uffdio_register->ioctls))
884 ret = -EFAULT;
885 }
886 out:
887 return ret;
888 }
889
890 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
891 unsigned long arg)
892 {
893 struct mm_struct *mm = ctx->mm;
894 struct vm_area_struct *vma, *prev, *cur;
895 int ret;
896 struct uffdio_range uffdio_unregister;
897 unsigned long new_flags;
898 bool found;
899 unsigned long start, end, vma_end;
900 const void __user *buf = (void __user *)arg;
901
902 ret = -EFAULT;
903 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
904 goto out;
905
906 ret = validate_range(mm, uffdio_unregister.start,
907 uffdio_unregister.len);
908 if (ret)
909 goto out;
910
911 start = uffdio_unregister.start;
912 end = start + uffdio_unregister.len;
913
914 ret = -ENOMEM;
915 if (!mmget_not_zero(mm))
916 goto out;
917
918 down_write(&mm->mmap_sem);
919 vma = find_vma_prev(mm, start, &prev);
920 if (!vma)
921 goto out_unlock;
922
923 /* check that there's at least one vma in the range */
924 ret = -EINVAL;
925 if (vma->vm_start >= end)
926 goto out_unlock;
927
928 /*
929 * Search for not compatible vmas.
930 *
931 * FIXME: this shall be relaxed later so that it doesn't fail
932 * on tmpfs backed vmas (in addition to the current allowance
933 * on anonymous vmas).
934 */
935 found = false;
936 ret = -EINVAL;
937 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
938 cond_resched();
939
940 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
941 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
942
943 /*
944 * Check not compatible vmas, not strictly required
945 * here as not compatible vmas cannot have an
946 * userfaultfd_ctx registered on them, but this
947 * provides for more strict behavior to notice
948 * unregistration errors.
949 */
950 if (cur->vm_ops)
951 goto out_unlock;
952
953 found = true;
954 }
955 BUG_ON(!found);
956
957 if (vma->vm_start < start)
958 prev = vma;
959
960 ret = 0;
961 do {
962 cond_resched();
963
964 BUG_ON(vma->vm_ops);
965
966 /*
967 * Nothing to do: this vma is already registered into this
968 * userfaultfd and with the right tracking mode too.
969 */
970 if (!vma->vm_userfaultfd_ctx.ctx)
971 goto skip;
972
973 if (vma->vm_start > start)
974 start = vma->vm_start;
975 vma_end = min(end, vma->vm_end);
976
977 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
978 prev = vma_merge(mm, prev, start, vma_end, new_flags,
979 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
980 vma_policy(vma),
981 NULL_VM_UFFD_CTX);
982 if (prev) {
983 vma = prev;
984 goto next;
985 }
986 if (vma->vm_start < start) {
987 ret = split_vma(mm, vma, start, 1);
988 if (ret)
989 break;
990 }
991 if (vma->vm_end > end) {
992 ret = split_vma(mm, vma, end, 0);
993 if (ret)
994 break;
995 }
996 next:
997 /*
998 * In the vma_merge() successful mprotect-like case 8:
999 * the next vma was merged into the current one and
1000 * the current one has not been updated yet.
1001 */
1002 vma->vm_flags = new_flags;
1003 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1004
1005 skip:
1006 prev = vma;
1007 start = vma->vm_end;
1008 vma = vma->vm_next;
1009 } while (vma && vma->vm_start < end);
1010 out_unlock:
1011 up_write(&mm->mmap_sem);
1012 mmput(mm);
1013 out:
1014 return ret;
1015 }
1016
1017 /*
1018 * userfaultfd_wake may be used in combination with the
1019 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1020 */
1021 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1022 unsigned long arg)
1023 {
1024 int ret;
1025 struct uffdio_range uffdio_wake;
1026 struct userfaultfd_wake_range range;
1027 const void __user *buf = (void __user *)arg;
1028
1029 ret = -EFAULT;
1030 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1031 goto out;
1032
1033 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1034 if (ret)
1035 goto out;
1036
1037 range.start = uffdio_wake.start;
1038 range.len = uffdio_wake.len;
1039
1040 /*
1041 * len == 0 means wake all and we don't want to wake all here,
1042 * so check it again to be sure.
1043 */
1044 VM_BUG_ON(!range.len);
1045
1046 wake_userfault(ctx, &range);
1047 ret = 0;
1048
1049 out:
1050 return ret;
1051 }
1052
1053 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1054 unsigned long arg)
1055 {
1056 __s64 ret;
1057 struct uffdio_copy uffdio_copy;
1058 struct uffdio_copy __user *user_uffdio_copy;
1059 struct userfaultfd_wake_range range;
1060
1061 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1062
1063 ret = -EFAULT;
1064 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1065 /* don't copy "copy" last field */
1066 sizeof(uffdio_copy)-sizeof(__s64)))
1067 goto out;
1068
1069 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1070 if (ret)
1071 goto out;
1072 /*
1073 * double check for wraparound just in case. copy_from_user()
1074 * will later check uffdio_copy.src + uffdio_copy.len to fit
1075 * in the userland range.
1076 */
1077 ret = -EINVAL;
1078 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1079 goto out;
1080 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1081 goto out;
1082 if (mmget_not_zero(ctx->mm)) {
1083 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1084 uffdio_copy.len);
1085 mmput(ctx->mm);
1086 }
1087 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1088 return -EFAULT;
1089 if (ret < 0)
1090 goto out;
1091 BUG_ON(!ret);
1092 /* len == 0 would wake all */
1093 range.len = ret;
1094 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1095 range.start = uffdio_copy.dst;
1096 wake_userfault(ctx, &range);
1097 }
1098 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1099 out:
1100 return ret;
1101 }
1102
1103 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1104 unsigned long arg)
1105 {
1106 __s64 ret;
1107 struct uffdio_zeropage uffdio_zeropage;
1108 struct uffdio_zeropage __user *user_uffdio_zeropage;
1109 struct userfaultfd_wake_range range;
1110
1111 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1112
1113 ret = -EFAULT;
1114 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1115 /* don't copy "zeropage" last field */
1116 sizeof(uffdio_zeropage)-sizeof(__s64)))
1117 goto out;
1118
1119 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1120 uffdio_zeropage.range.len);
1121 if (ret)
1122 goto out;
1123 ret = -EINVAL;
1124 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1125 goto out;
1126
1127 if (mmget_not_zero(ctx->mm)) {
1128 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1129 uffdio_zeropage.range.len);
1130 mmput(ctx->mm);
1131 }
1132 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1133 return -EFAULT;
1134 if (ret < 0)
1135 goto out;
1136 /* len == 0 would wake all */
1137 BUG_ON(!ret);
1138 range.len = ret;
1139 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1140 range.start = uffdio_zeropage.range.start;
1141 wake_userfault(ctx, &range);
1142 }
1143 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1144 out:
1145 return ret;
1146 }
1147
1148 /*
1149 * userland asks for a certain API version and we return which bits
1150 * and ioctl commands are implemented in this kernel for such API
1151 * version or -EINVAL if unknown.
1152 */
1153 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1154 unsigned long arg)
1155 {
1156 struct uffdio_api uffdio_api;
1157 void __user *buf = (void __user *)arg;
1158 int ret;
1159
1160 ret = -EINVAL;
1161 if (ctx->state != UFFD_STATE_WAIT_API)
1162 goto out;
1163 ret = -EFAULT;
1164 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1165 goto out;
1166 if (uffdio_api.api != UFFD_API || uffdio_api.features) {
1167 memset(&uffdio_api, 0, sizeof(uffdio_api));
1168 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1169 goto out;
1170 ret = -EINVAL;
1171 goto out;
1172 }
1173 uffdio_api.features = UFFD_API_FEATURES;
1174 uffdio_api.ioctls = UFFD_API_IOCTLS;
1175 ret = -EFAULT;
1176 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1177 goto out;
1178 ctx->state = UFFD_STATE_RUNNING;
1179 ret = 0;
1180 out:
1181 return ret;
1182 }
1183
1184 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1185 unsigned long arg)
1186 {
1187 int ret = -EINVAL;
1188 struct userfaultfd_ctx *ctx = file->private_data;
1189
1190 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1191 return -EINVAL;
1192
1193 switch(cmd) {
1194 case UFFDIO_API:
1195 ret = userfaultfd_api(ctx, arg);
1196 break;
1197 case UFFDIO_REGISTER:
1198 ret = userfaultfd_register(ctx, arg);
1199 break;
1200 case UFFDIO_UNREGISTER:
1201 ret = userfaultfd_unregister(ctx, arg);
1202 break;
1203 case UFFDIO_WAKE:
1204 ret = userfaultfd_wake(ctx, arg);
1205 break;
1206 case UFFDIO_COPY:
1207 ret = userfaultfd_copy(ctx, arg);
1208 break;
1209 case UFFDIO_ZEROPAGE:
1210 ret = userfaultfd_zeropage(ctx, arg);
1211 break;
1212 }
1213 return ret;
1214 }
1215
1216 #ifdef CONFIG_PROC_FS
1217 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1218 {
1219 struct userfaultfd_ctx *ctx = f->private_data;
1220 wait_queue_t *wq;
1221 struct userfaultfd_wait_queue *uwq;
1222 unsigned long pending = 0, total = 0;
1223
1224 spin_lock(&ctx->fault_pending_wqh.lock);
1225 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1226 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1227 pending++;
1228 total++;
1229 }
1230 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1231 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1232 total++;
1233 }
1234 spin_unlock(&ctx->fault_pending_wqh.lock);
1235
1236 /*
1237 * If more protocols will be added, there will be all shown
1238 * separated by a space. Like this:
1239 * protocols: aa:... bb:...
1240 */
1241 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1242 pending, total, UFFD_API, UFFD_API_FEATURES,
1243 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1244 }
1245 #endif
1246
1247 static const struct file_operations userfaultfd_fops = {
1248 #ifdef CONFIG_PROC_FS
1249 .show_fdinfo = userfaultfd_show_fdinfo,
1250 #endif
1251 .release = userfaultfd_release,
1252 .poll = userfaultfd_poll,
1253 .read = userfaultfd_read,
1254 .unlocked_ioctl = userfaultfd_ioctl,
1255 .compat_ioctl = userfaultfd_ioctl,
1256 .llseek = noop_llseek,
1257 };
1258
1259 static void init_once_userfaultfd_ctx(void *mem)
1260 {
1261 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1262
1263 init_waitqueue_head(&ctx->fault_pending_wqh);
1264 init_waitqueue_head(&ctx->fault_wqh);
1265 init_waitqueue_head(&ctx->fd_wqh);
1266 seqcount_init(&ctx->refile_seq);
1267 }
1268
1269 /**
1270 * userfaultfd_file_create - Creates an userfaultfd file pointer.
1271 * @flags: Flags for the userfaultfd file.
1272 *
1273 * This function creates an userfaultfd file pointer, w/out installing
1274 * it into the fd table. This is useful when the userfaultfd file is
1275 * used during the initialization of data structures that require
1276 * extra setup after the userfaultfd creation. So the userfaultfd
1277 * creation is split into the file pointer creation phase, and the
1278 * file descriptor installation phase. In this way races with
1279 * userspace closing the newly installed file descriptor can be
1280 * avoided. Returns an userfaultfd file pointer, or a proper error
1281 * pointer.
1282 */
1283 static struct file *userfaultfd_file_create(int flags)
1284 {
1285 struct file *file;
1286 struct userfaultfd_ctx *ctx;
1287
1288 BUG_ON(!current->mm);
1289
1290 /* Check the UFFD_* constants for consistency. */
1291 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1292 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1293
1294 file = ERR_PTR(-EINVAL);
1295 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1296 goto out;
1297
1298 file = ERR_PTR(-ENOMEM);
1299 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1300 if (!ctx)
1301 goto out;
1302
1303 atomic_set(&ctx->refcount, 1);
1304 ctx->flags = flags;
1305 ctx->state = UFFD_STATE_WAIT_API;
1306 ctx->released = false;
1307 ctx->mm = current->mm;
1308 /* prevent the mm struct to be freed */
1309 atomic_inc(&ctx->mm->mm_count);
1310
1311 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1312 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1313 if (IS_ERR(file)) {
1314 mmdrop(ctx->mm);
1315 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1316 }
1317 out:
1318 return file;
1319 }
1320
1321 SYSCALL_DEFINE1(userfaultfd, int, flags)
1322 {
1323 int fd, error;
1324 struct file *file;
1325
1326 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1327 if (error < 0)
1328 return error;
1329 fd = error;
1330
1331 file = userfaultfd_file_create(flags);
1332 if (IS_ERR(file)) {
1333 error = PTR_ERR(file);
1334 goto err_put_unused_fd;
1335 }
1336 fd_install(fd, file);
1337
1338 return fd;
1339
1340 err_put_unused_fd:
1341 put_unused_fd(fd);
1342
1343 return error;
1344 }
1345
1346 static int __init userfaultfd_init(void)
1347 {
1348 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1349 sizeof(struct userfaultfd_ctx),
1350 0,
1351 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1352 init_once_userfaultfd_ctx);
1353 return 0;
1354 }
1355 __initcall(userfaultfd_init);