]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/userfaultfd.c
sched/debug: Implement consistent task-state printing
[mirror_ubuntu-hirsute-kernel.git] / fs / userfaultfd.c
1 /*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38 };
39
40 /*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
44 struct userfaultfd_ctx {
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
55 /* pseudo fd refcounting */
56 atomic_t refcount;
57 /* userfaultfd syscall flags */
58 unsigned int flags;
59 /* features requested from the userspace */
60 unsigned int features;
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67 };
68
69 struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73 };
74
75 struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80 };
81
82 struct userfaultfd_wait_queue {
83 struct uffd_msg msg;
84 wait_queue_entry_t wq;
85 struct userfaultfd_ctx *ctx;
86 bool waken;
87 };
88
89 struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92 };
93
94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
95 int wake_flags, void *key)
96 {
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
109 goto out;
110 WRITE_ONCE(uwq->waken, true);
111 /*
112 * The Program-Order guarantees provided by the scheduler
113 * ensure uwq->waken is visible before the task is woken.
114 */
115 ret = wake_up_state(wq->private, mode);
116 if (ret) {
117 /*
118 * Wake only once, autoremove behavior.
119 *
120 * After the effect of list_del_init is visible to the other
121 * CPUs, the waitqueue may disappear from under us, see the
122 * !list_empty_careful() in handle_userfault().
123 *
124 * try_to_wake_up() has an implicit smp_mb(), and the
125 * wq->private is read before calling the extern function
126 * "wake_up_state" (which in turns calls try_to_wake_up).
127 */
128 list_del_init(&wq->entry);
129 }
130 out:
131 return ret;
132 }
133
134 /**
135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136 * context.
137 * @ctx: [in] Pointer to the userfaultfd context.
138 */
139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140 {
141 if (!atomic_inc_not_zero(&ctx->refcount))
142 BUG();
143 }
144
145 /**
146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147 * context.
148 * @ctx: [in] Pointer to userfaultfd context.
149 *
150 * The userfaultfd context reference must have been previously acquired either
151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152 */
153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154 {
155 if (atomic_dec_and_test(&ctx->refcount)) {
156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
164 mmdrop(ctx->mm);
165 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
166 }
167 }
168
169 static inline void msg_init(struct uffd_msg *msg)
170 {
171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172 /*
173 * Must use memset to zero out the paddings or kernel data is
174 * leaked to userland.
175 */
176 memset(msg, 0, sizeof(struct uffd_msg));
177 }
178
179 static inline struct uffd_msg userfault_msg(unsigned long address,
180 unsigned int flags,
181 unsigned long reason,
182 unsigned int features)
183 {
184 struct uffd_msg msg;
185 msg_init(&msg);
186 msg.event = UFFD_EVENT_PAGEFAULT;
187 msg.arg.pagefault.address = address;
188 if (flags & FAULT_FLAG_WRITE)
189 /*
190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 * was a read fault, otherwise if set it means it's
194 * a write fault.
195 */
196 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
197 if (reason & VM_UFFD_WP)
198 /*
199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 * a missing fault, otherwise if set it means it's a
203 * write protect fault.
204 */
205 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
206 if (features & UFFD_FEATURE_THREAD_ID)
207 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
208 return msg;
209 }
210
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213 * Same functionality as userfaultfd_must_wait below with modifications for
214 * hugepmd ranges.
215 */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 struct vm_area_struct *vma,
218 unsigned long address,
219 unsigned long flags,
220 unsigned long reason)
221 {
222 struct mm_struct *mm = ctx->mm;
223 pte_t *pte;
224 bool ret = true;
225
226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227
228 pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229 if (!pte)
230 goto out;
231
232 ret = false;
233
234 /*
235 * Lockless access: we're in a wait_event so it's ok if it
236 * changes under us.
237 */
238 if (huge_pte_none(*pte))
239 ret = true;
240 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
241 ret = true;
242 out:
243 return ret;
244 }
245 #else
246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
247 struct vm_area_struct *vma,
248 unsigned long address,
249 unsigned long flags,
250 unsigned long reason)
251 {
252 return false; /* should never get here */
253 }
254 #endif /* CONFIG_HUGETLB_PAGE */
255
256 /*
257 * Verify the pagetables are still not ok after having reigstered into
258 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259 * userfault that has already been resolved, if userfaultfd_read and
260 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
261 * threads.
262 */
263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
264 unsigned long address,
265 unsigned long flags,
266 unsigned long reason)
267 {
268 struct mm_struct *mm = ctx->mm;
269 pgd_t *pgd;
270 p4d_t *p4d;
271 pud_t *pud;
272 pmd_t *pmd, _pmd;
273 pte_t *pte;
274 bool ret = true;
275
276 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
277
278 pgd = pgd_offset(mm, address);
279 if (!pgd_present(*pgd))
280 goto out;
281 p4d = p4d_offset(pgd, address);
282 if (!p4d_present(*p4d))
283 goto out;
284 pud = pud_offset(p4d, address);
285 if (!pud_present(*pud))
286 goto out;
287 pmd = pmd_offset(pud, address);
288 /*
289 * READ_ONCE must function as a barrier with narrower scope
290 * and it must be equivalent to:
291 * _pmd = *pmd; barrier();
292 *
293 * This is to deal with the instability (as in
294 * pmd_trans_unstable) of the pmd.
295 */
296 _pmd = READ_ONCE(*pmd);
297 if (!pmd_present(_pmd))
298 goto out;
299
300 ret = false;
301 if (pmd_trans_huge(_pmd))
302 goto out;
303
304 /*
305 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
306 * and use the standard pte_offset_map() instead of parsing _pmd.
307 */
308 pte = pte_offset_map(pmd, address);
309 /*
310 * Lockless access: we're in a wait_event so it's ok if it
311 * changes under us.
312 */
313 if (pte_none(*pte))
314 ret = true;
315 pte_unmap(pte);
316
317 out:
318 return ret;
319 }
320
321 /*
322 * The locking rules involved in returning VM_FAULT_RETRY depending on
323 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
324 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
325 * recommendation in __lock_page_or_retry is not an understatement.
326 *
327 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
328 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
329 * not set.
330 *
331 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
332 * set, VM_FAULT_RETRY can still be returned if and only if there are
333 * fatal_signal_pending()s, and the mmap_sem must be released before
334 * returning it.
335 */
336 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
337 {
338 struct mm_struct *mm = vmf->vma->vm_mm;
339 struct userfaultfd_ctx *ctx;
340 struct userfaultfd_wait_queue uwq;
341 int ret;
342 bool must_wait, return_to_userland;
343 long blocking_state;
344
345 ret = VM_FAULT_SIGBUS;
346
347 /*
348 * We don't do userfault handling for the final child pid update.
349 *
350 * We also don't do userfault handling during
351 * coredumping. hugetlbfs has the special
352 * follow_hugetlb_page() to skip missing pages in the
353 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
354 * the no_page_table() helper in follow_page_mask(), but the
355 * shmem_vm_ops->fault method is invoked even during
356 * coredumping without mmap_sem and it ends up here.
357 */
358 if (current->flags & (PF_EXITING|PF_DUMPCORE))
359 goto out;
360
361 /*
362 * Coredumping runs without mmap_sem so we can only check that
363 * the mmap_sem is held, if PF_DUMPCORE was not set.
364 */
365 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
366
367 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
368 if (!ctx)
369 goto out;
370
371 BUG_ON(ctx->mm != mm);
372
373 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
374 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
375
376 if (ctx->features & UFFD_FEATURE_SIGBUS)
377 goto out;
378
379 /*
380 * If it's already released don't get it. This avoids to loop
381 * in __get_user_pages if userfaultfd_release waits on the
382 * caller of handle_userfault to release the mmap_sem.
383 */
384 if (unlikely(ACCESS_ONCE(ctx->released))) {
385 /*
386 * Don't return VM_FAULT_SIGBUS in this case, so a non
387 * cooperative manager can close the uffd after the
388 * last UFFDIO_COPY, without risking to trigger an
389 * involuntary SIGBUS if the process was starting the
390 * userfaultfd while the userfaultfd was still armed
391 * (but after the last UFFDIO_COPY). If the uffd
392 * wasn't already closed when the userfault reached
393 * this point, that would normally be solved by
394 * userfaultfd_must_wait returning 'false'.
395 *
396 * If we were to return VM_FAULT_SIGBUS here, the non
397 * cooperative manager would be instead forced to
398 * always call UFFDIO_UNREGISTER before it can safely
399 * close the uffd.
400 */
401 ret = VM_FAULT_NOPAGE;
402 goto out;
403 }
404
405 /*
406 * Check that we can return VM_FAULT_RETRY.
407 *
408 * NOTE: it should become possible to return VM_FAULT_RETRY
409 * even if FAULT_FLAG_TRIED is set without leading to gup()
410 * -EBUSY failures, if the userfaultfd is to be extended for
411 * VM_UFFD_WP tracking and we intend to arm the userfault
412 * without first stopping userland access to the memory. For
413 * VM_UFFD_MISSING userfaults this is enough for now.
414 */
415 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
416 /*
417 * Validate the invariant that nowait must allow retry
418 * to be sure not to return SIGBUS erroneously on
419 * nowait invocations.
420 */
421 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
422 #ifdef CONFIG_DEBUG_VM
423 if (printk_ratelimit()) {
424 printk(KERN_WARNING
425 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
426 vmf->flags);
427 dump_stack();
428 }
429 #endif
430 goto out;
431 }
432
433 /*
434 * Handle nowait, not much to do other than tell it to retry
435 * and wait.
436 */
437 ret = VM_FAULT_RETRY;
438 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
439 goto out;
440
441 /* take the reference before dropping the mmap_sem */
442 userfaultfd_ctx_get(ctx);
443
444 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
445 uwq.wq.private = current;
446 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
447 ctx->features);
448 uwq.ctx = ctx;
449 uwq.waken = false;
450
451 return_to_userland =
452 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
453 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
454 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
455 TASK_KILLABLE;
456
457 spin_lock(&ctx->fault_pending_wqh.lock);
458 /*
459 * After the __add_wait_queue the uwq is visible to userland
460 * through poll/read().
461 */
462 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
463 /*
464 * The smp_mb() after __set_current_state prevents the reads
465 * following the spin_unlock to happen before the list_add in
466 * __add_wait_queue.
467 */
468 set_current_state(blocking_state);
469 spin_unlock(&ctx->fault_pending_wqh.lock);
470
471 if (!is_vm_hugetlb_page(vmf->vma))
472 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
473 reason);
474 else
475 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
476 vmf->address,
477 vmf->flags, reason);
478 up_read(&mm->mmap_sem);
479
480 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
481 (return_to_userland ? !signal_pending(current) :
482 !fatal_signal_pending(current)))) {
483 wake_up_poll(&ctx->fd_wqh, POLLIN);
484 schedule();
485 ret |= VM_FAULT_MAJOR;
486
487 /*
488 * False wakeups can orginate even from rwsem before
489 * up_read() however userfaults will wait either for a
490 * targeted wakeup on the specific uwq waitqueue from
491 * wake_userfault() or for signals or for uffd
492 * release.
493 */
494 while (!READ_ONCE(uwq.waken)) {
495 /*
496 * This needs the full smp_store_mb()
497 * guarantee as the state write must be
498 * visible to other CPUs before reading
499 * uwq.waken from other CPUs.
500 */
501 set_current_state(blocking_state);
502 if (READ_ONCE(uwq.waken) ||
503 READ_ONCE(ctx->released) ||
504 (return_to_userland ? signal_pending(current) :
505 fatal_signal_pending(current)))
506 break;
507 schedule();
508 }
509 }
510
511 __set_current_state(TASK_RUNNING);
512
513 if (return_to_userland) {
514 if (signal_pending(current) &&
515 !fatal_signal_pending(current)) {
516 /*
517 * If we got a SIGSTOP or SIGCONT and this is
518 * a normal userland page fault, just let
519 * userland return so the signal will be
520 * handled and gdb debugging works. The page
521 * fault code immediately after we return from
522 * this function is going to release the
523 * mmap_sem and it's not depending on it
524 * (unlike gup would if we were not to return
525 * VM_FAULT_RETRY).
526 *
527 * If a fatal signal is pending we still take
528 * the streamlined VM_FAULT_RETRY failure path
529 * and there's no need to retake the mmap_sem
530 * in such case.
531 */
532 down_read(&mm->mmap_sem);
533 ret = VM_FAULT_NOPAGE;
534 }
535 }
536
537 /*
538 * Here we race with the list_del; list_add in
539 * userfaultfd_ctx_read(), however because we don't ever run
540 * list_del_init() to refile across the two lists, the prev
541 * and next pointers will never point to self. list_add also
542 * would never let any of the two pointers to point to
543 * self. So list_empty_careful won't risk to see both pointers
544 * pointing to self at any time during the list refile. The
545 * only case where list_del_init() is called is the full
546 * removal in the wake function and there we don't re-list_add
547 * and it's fine not to block on the spinlock. The uwq on this
548 * kernel stack can be released after the list_del_init.
549 */
550 if (!list_empty_careful(&uwq.wq.entry)) {
551 spin_lock(&ctx->fault_pending_wqh.lock);
552 /*
553 * No need of list_del_init(), the uwq on the stack
554 * will be freed shortly anyway.
555 */
556 list_del(&uwq.wq.entry);
557 spin_unlock(&ctx->fault_pending_wqh.lock);
558 }
559
560 /*
561 * ctx may go away after this if the userfault pseudo fd is
562 * already released.
563 */
564 userfaultfd_ctx_put(ctx);
565
566 out:
567 return ret;
568 }
569
570 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
571 struct userfaultfd_wait_queue *ewq)
572 {
573 if (WARN_ON_ONCE(current->flags & PF_EXITING))
574 goto out;
575
576 ewq->ctx = ctx;
577 init_waitqueue_entry(&ewq->wq, current);
578
579 spin_lock(&ctx->event_wqh.lock);
580 /*
581 * After the __add_wait_queue the uwq is visible to userland
582 * through poll/read().
583 */
584 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
585 for (;;) {
586 set_current_state(TASK_KILLABLE);
587 if (ewq->msg.event == 0)
588 break;
589 if (ACCESS_ONCE(ctx->released) ||
590 fatal_signal_pending(current)) {
591 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
592 if (ewq->msg.event == UFFD_EVENT_FORK) {
593 struct userfaultfd_ctx *new;
594
595 new = (struct userfaultfd_ctx *)
596 (unsigned long)
597 ewq->msg.arg.reserved.reserved1;
598
599 userfaultfd_ctx_put(new);
600 }
601 break;
602 }
603
604 spin_unlock(&ctx->event_wqh.lock);
605
606 wake_up_poll(&ctx->fd_wqh, POLLIN);
607 schedule();
608
609 spin_lock(&ctx->event_wqh.lock);
610 }
611 __set_current_state(TASK_RUNNING);
612 spin_unlock(&ctx->event_wqh.lock);
613
614 /*
615 * ctx may go away after this if the userfault pseudo fd is
616 * already released.
617 */
618 out:
619 userfaultfd_ctx_put(ctx);
620 }
621
622 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
623 struct userfaultfd_wait_queue *ewq)
624 {
625 ewq->msg.event = 0;
626 wake_up_locked(&ctx->event_wqh);
627 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
628 }
629
630 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
631 {
632 struct userfaultfd_ctx *ctx = NULL, *octx;
633 struct userfaultfd_fork_ctx *fctx;
634
635 octx = vma->vm_userfaultfd_ctx.ctx;
636 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
637 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
638 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
639 return 0;
640 }
641
642 list_for_each_entry(fctx, fcs, list)
643 if (fctx->orig == octx) {
644 ctx = fctx->new;
645 break;
646 }
647
648 if (!ctx) {
649 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
650 if (!fctx)
651 return -ENOMEM;
652
653 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
654 if (!ctx) {
655 kfree(fctx);
656 return -ENOMEM;
657 }
658
659 atomic_set(&ctx->refcount, 1);
660 ctx->flags = octx->flags;
661 ctx->state = UFFD_STATE_RUNNING;
662 ctx->features = octx->features;
663 ctx->released = false;
664 ctx->mm = vma->vm_mm;
665 atomic_inc(&ctx->mm->mm_count);
666
667 userfaultfd_ctx_get(octx);
668 fctx->orig = octx;
669 fctx->new = ctx;
670 list_add_tail(&fctx->list, fcs);
671 }
672
673 vma->vm_userfaultfd_ctx.ctx = ctx;
674 return 0;
675 }
676
677 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
678 {
679 struct userfaultfd_ctx *ctx = fctx->orig;
680 struct userfaultfd_wait_queue ewq;
681
682 msg_init(&ewq.msg);
683
684 ewq.msg.event = UFFD_EVENT_FORK;
685 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
686
687 userfaultfd_event_wait_completion(ctx, &ewq);
688 }
689
690 void dup_userfaultfd_complete(struct list_head *fcs)
691 {
692 struct userfaultfd_fork_ctx *fctx, *n;
693
694 list_for_each_entry_safe(fctx, n, fcs, list) {
695 dup_fctx(fctx);
696 list_del(&fctx->list);
697 kfree(fctx);
698 }
699 }
700
701 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
702 struct vm_userfaultfd_ctx *vm_ctx)
703 {
704 struct userfaultfd_ctx *ctx;
705
706 ctx = vma->vm_userfaultfd_ctx.ctx;
707 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
708 vm_ctx->ctx = ctx;
709 userfaultfd_ctx_get(ctx);
710 }
711 }
712
713 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
714 unsigned long from, unsigned long to,
715 unsigned long len)
716 {
717 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
718 struct userfaultfd_wait_queue ewq;
719
720 if (!ctx)
721 return;
722
723 if (to & ~PAGE_MASK) {
724 userfaultfd_ctx_put(ctx);
725 return;
726 }
727
728 msg_init(&ewq.msg);
729
730 ewq.msg.event = UFFD_EVENT_REMAP;
731 ewq.msg.arg.remap.from = from;
732 ewq.msg.arg.remap.to = to;
733 ewq.msg.arg.remap.len = len;
734
735 userfaultfd_event_wait_completion(ctx, &ewq);
736 }
737
738 bool userfaultfd_remove(struct vm_area_struct *vma,
739 unsigned long start, unsigned long end)
740 {
741 struct mm_struct *mm = vma->vm_mm;
742 struct userfaultfd_ctx *ctx;
743 struct userfaultfd_wait_queue ewq;
744
745 ctx = vma->vm_userfaultfd_ctx.ctx;
746 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
747 return true;
748
749 userfaultfd_ctx_get(ctx);
750 up_read(&mm->mmap_sem);
751
752 msg_init(&ewq.msg);
753
754 ewq.msg.event = UFFD_EVENT_REMOVE;
755 ewq.msg.arg.remove.start = start;
756 ewq.msg.arg.remove.end = end;
757
758 userfaultfd_event_wait_completion(ctx, &ewq);
759
760 return false;
761 }
762
763 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
764 unsigned long start, unsigned long end)
765 {
766 struct userfaultfd_unmap_ctx *unmap_ctx;
767
768 list_for_each_entry(unmap_ctx, unmaps, list)
769 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
770 unmap_ctx->end == end)
771 return true;
772
773 return false;
774 }
775
776 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
777 unsigned long start, unsigned long end,
778 struct list_head *unmaps)
779 {
780 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
781 struct userfaultfd_unmap_ctx *unmap_ctx;
782 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
783
784 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
785 has_unmap_ctx(ctx, unmaps, start, end))
786 continue;
787
788 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
789 if (!unmap_ctx)
790 return -ENOMEM;
791
792 userfaultfd_ctx_get(ctx);
793 unmap_ctx->ctx = ctx;
794 unmap_ctx->start = start;
795 unmap_ctx->end = end;
796 list_add_tail(&unmap_ctx->list, unmaps);
797 }
798
799 return 0;
800 }
801
802 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
803 {
804 struct userfaultfd_unmap_ctx *ctx, *n;
805 struct userfaultfd_wait_queue ewq;
806
807 list_for_each_entry_safe(ctx, n, uf, list) {
808 msg_init(&ewq.msg);
809
810 ewq.msg.event = UFFD_EVENT_UNMAP;
811 ewq.msg.arg.remove.start = ctx->start;
812 ewq.msg.arg.remove.end = ctx->end;
813
814 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
815
816 list_del(&ctx->list);
817 kfree(ctx);
818 }
819 }
820
821 static int userfaultfd_release(struct inode *inode, struct file *file)
822 {
823 struct userfaultfd_ctx *ctx = file->private_data;
824 struct mm_struct *mm = ctx->mm;
825 struct vm_area_struct *vma, *prev;
826 /* len == 0 means wake all */
827 struct userfaultfd_wake_range range = { .len = 0, };
828 unsigned long new_flags;
829
830 ACCESS_ONCE(ctx->released) = true;
831
832 if (!mmget_not_zero(mm))
833 goto wakeup;
834
835 /*
836 * Flush page faults out of all CPUs. NOTE: all page faults
837 * must be retried without returning VM_FAULT_SIGBUS if
838 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
839 * changes while handle_userfault released the mmap_sem. So
840 * it's critical that released is set to true (above), before
841 * taking the mmap_sem for writing.
842 */
843 down_write(&mm->mmap_sem);
844 prev = NULL;
845 for (vma = mm->mmap; vma; vma = vma->vm_next) {
846 cond_resched();
847 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
848 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
849 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
850 prev = vma;
851 continue;
852 }
853 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
854 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
855 new_flags, vma->anon_vma,
856 vma->vm_file, vma->vm_pgoff,
857 vma_policy(vma),
858 NULL_VM_UFFD_CTX);
859 if (prev)
860 vma = prev;
861 else
862 prev = vma;
863 vma->vm_flags = new_flags;
864 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
865 }
866 up_write(&mm->mmap_sem);
867 mmput(mm);
868 wakeup:
869 /*
870 * After no new page faults can wait on this fault_*wqh, flush
871 * the last page faults that may have been already waiting on
872 * the fault_*wqh.
873 */
874 spin_lock(&ctx->fault_pending_wqh.lock);
875 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
876 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
877 spin_unlock(&ctx->fault_pending_wqh.lock);
878
879 /* Flush pending events that may still wait on event_wqh */
880 wake_up_all(&ctx->event_wqh);
881
882 wake_up_poll(&ctx->fd_wqh, POLLHUP);
883 userfaultfd_ctx_put(ctx);
884 return 0;
885 }
886
887 /* fault_pending_wqh.lock must be hold by the caller */
888 static inline struct userfaultfd_wait_queue *find_userfault_in(
889 wait_queue_head_t *wqh)
890 {
891 wait_queue_entry_t *wq;
892 struct userfaultfd_wait_queue *uwq;
893
894 VM_BUG_ON(!spin_is_locked(&wqh->lock));
895
896 uwq = NULL;
897 if (!waitqueue_active(wqh))
898 goto out;
899 /* walk in reverse to provide FIFO behavior to read userfaults */
900 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
901 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
902 out:
903 return uwq;
904 }
905
906 static inline struct userfaultfd_wait_queue *find_userfault(
907 struct userfaultfd_ctx *ctx)
908 {
909 return find_userfault_in(&ctx->fault_pending_wqh);
910 }
911
912 static inline struct userfaultfd_wait_queue *find_userfault_evt(
913 struct userfaultfd_ctx *ctx)
914 {
915 return find_userfault_in(&ctx->event_wqh);
916 }
917
918 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
919 {
920 struct userfaultfd_ctx *ctx = file->private_data;
921 unsigned int ret;
922
923 poll_wait(file, &ctx->fd_wqh, wait);
924
925 switch (ctx->state) {
926 case UFFD_STATE_WAIT_API:
927 return POLLERR;
928 case UFFD_STATE_RUNNING:
929 /*
930 * poll() never guarantees that read won't block.
931 * userfaults can be waken before they're read().
932 */
933 if (unlikely(!(file->f_flags & O_NONBLOCK)))
934 return POLLERR;
935 /*
936 * lockless access to see if there are pending faults
937 * __pollwait last action is the add_wait_queue but
938 * the spin_unlock would allow the waitqueue_active to
939 * pass above the actual list_add inside
940 * add_wait_queue critical section. So use a full
941 * memory barrier to serialize the list_add write of
942 * add_wait_queue() with the waitqueue_active read
943 * below.
944 */
945 ret = 0;
946 smp_mb();
947 if (waitqueue_active(&ctx->fault_pending_wqh))
948 ret = POLLIN;
949 else if (waitqueue_active(&ctx->event_wqh))
950 ret = POLLIN;
951
952 return ret;
953 default:
954 WARN_ON_ONCE(1);
955 return POLLERR;
956 }
957 }
958
959 static const struct file_operations userfaultfd_fops;
960
961 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
962 struct userfaultfd_ctx *new,
963 struct uffd_msg *msg)
964 {
965 int fd;
966 struct file *file;
967 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
968
969 fd = get_unused_fd_flags(flags);
970 if (fd < 0)
971 return fd;
972
973 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
974 O_RDWR | flags);
975 if (IS_ERR(file)) {
976 put_unused_fd(fd);
977 return PTR_ERR(file);
978 }
979
980 fd_install(fd, file);
981 msg->arg.reserved.reserved1 = 0;
982 msg->arg.fork.ufd = fd;
983
984 return 0;
985 }
986
987 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
988 struct uffd_msg *msg)
989 {
990 ssize_t ret;
991 DECLARE_WAITQUEUE(wait, current);
992 struct userfaultfd_wait_queue *uwq;
993 /*
994 * Handling fork event requires sleeping operations, so
995 * we drop the event_wqh lock, then do these ops, then
996 * lock it back and wake up the waiter. While the lock is
997 * dropped the ewq may go away so we keep track of it
998 * carefully.
999 */
1000 LIST_HEAD(fork_event);
1001 struct userfaultfd_ctx *fork_nctx = NULL;
1002
1003 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1004 spin_lock(&ctx->fd_wqh.lock);
1005 __add_wait_queue(&ctx->fd_wqh, &wait);
1006 for (;;) {
1007 set_current_state(TASK_INTERRUPTIBLE);
1008 spin_lock(&ctx->fault_pending_wqh.lock);
1009 uwq = find_userfault(ctx);
1010 if (uwq) {
1011 /*
1012 * Use a seqcount to repeat the lockless check
1013 * in wake_userfault() to avoid missing
1014 * wakeups because during the refile both
1015 * waitqueue could become empty if this is the
1016 * only userfault.
1017 */
1018 write_seqcount_begin(&ctx->refile_seq);
1019
1020 /*
1021 * The fault_pending_wqh.lock prevents the uwq
1022 * to disappear from under us.
1023 *
1024 * Refile this userfault from
1025 * fault_pending_wqh to fault_wqh, it's not
1026 * pending anymore after we read it.
1027 *
1028 * Use list_del() by hand (as
1029 * userfaultfd_wake_function also uses
1030 * list_del_init() by hand) to be sure nobody
1031 * changes __remove_wait_queue() to use
1032 * list_del_init() in turn breaking the
1033 * !list_empty_careful() check in
1034 * handle_userfault(). The uwq->wq.head list
1035 * must never be empty at any time during the
1036 * refile, or the waitqueue could disappear
1037 * from under us. The "wait_queue_head_t"
1038 * parameter of __remove_wait_queue() is unused
1039 * anyway.
1040 */
1041 list_del(&uwq->wq.entry);
1042 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1043
1044 write_seqcount_end(&ctx->refile_seq);
1045
1046 /* careful to always initialize msg if ret == 0 */
1047 *msg = uwq->msg;
1048 spin_unlock(&ctx->fault_pending_wqh.lock);
1049 ret = 0;
1050 break;
1051 }
1052 spin_unlock(&ctx->fault_pending_wqh.lock);
1053
1054 spin_lock(&ctx->event_wqh.lock);
1055 uwq = find_userfault_evt(ctx);
1056 if (uwq) {
1057 *msg = uwq->msg;
1058
1059 if (uwq->msg.event == UFFD_EVENT_FORK) {
1060 fork_nctx = (struct userfaultfd_ctx *)
1061 (unsigned long)
1062 uwq->msg.arg.reserved.reserved1;
1063 list_move(&uwq->wq.entry, &fork_event);
1064 spin_unlock(&ctx->event_wqh.lock);
1065 ret = 0;
1066 break;
1067 }
1068
1069 userfaultfd_event_complete(ctx, uwq);
1070 spin_unlock(&ctx->event_wqh.lock);
1071 ret = 0;
1072 break;
1073 }
1074 spin_unlock(&ctx->event_wqh.lock);
1075
1076 if (signal_pending(current)) {
1077 ret = -ERESTARTSYS;
1078 break;
1079 }
1080 if (no_wait) {
1081 ret = -EAGAIN;
1082 break;
1083 }
1084 spin_unlock(&ctx->fd_wqh.lock);
1085 schedule();
1086 spin_lock(&ctx->fd_wqh.lock);
1087 }
1088 __remove_wait_queue(&ctx->fd_wqh, &wait);
1089 __set_current_state(TASK_RUNNING);
1090 spin_unlock(&ctx->fd_wqh.lock);
1091
1092 if (!ret && msg->event == UFFD_EVENT_FORK) {
1093 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1094
1095 if (!ret) {
1096 spin_lock(&ctx->event_wqh.lock);
1097 if (!list_empty(&fork_event)) {
1098 uwq = list_first_entry(&fork_event,
1099 typeof(*uwq),
1100 wq.entry);
1101 list_del(&uwq->wq.entry);
1102 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1103 userfaultfd_event_complete(ctx, uwq);
1104 }
1105 spin_unlock(&ctx->event_wqh.lock);
1106 }
1107 }
1108
1109 return ret;
1110 }
1111
1112 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1113 size_t count, loff_t *ppos)
1114 {
1115 struct userfaultfd_ctx *ctx = file->private_data;
1116 ssize_t _ret, ret = 0;
1117 struct uffd_msg msg;
1118 int no_wait = file->f_flags & O_NONBLOCK;
1119
1120 if (ctx->state == UFFD_STATE_WAIT_API)
1121 return -EINVAL;
1122
1123 for (;;) {
1124 if (count < sizeof(msg))
1125 return ret ? ret : -EINVAL;
1126 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1127 if (_ret < 0)
1128 return ret ? ret : _ret;
1129 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1130 return ret ? ret : -EFAULT;
1131 ret += sizeof(msg);
1132 buf += sizeof(msg);
1133 count -= sizeof(msg);
1134 /*
1135 * Allow to read more than one fault at time but only
1136 * block if waiting for the very first one.
1137 */
1138 no_wait = O_NONBLOCK;
1139 }
1140 }
1141
1142 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1143 struct userfaultfd_wake_range *range)
1144 {
1145 spin_lock(&ctx->fault_pending_wqh.lock);
1146 /* wake all in the range and autoremove */
1147 if (waitqueue_active(&ctx->fault_pending_wqh))
1148 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1149 range);
1150 if (waitqueue_active(&ctx->fault_wqh))
1151 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1152 spin_unlock(&ctx->fault_pending_wqh.lock);
1153 }
1154
1155 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1156 struct userfaultfd_wake_range *range)
1157 {
1158 unsigned seq;
1159 bool need_wakeup;
1160
1161 /*
1162 * To be sure waitqueue_active() is not reordered by the CPU
1163 * before the pagetable update, use an explicit SMP memory
1164 * barrier here. PT lock release or up_read(mmap_sem) still
1165 * have release semantics that can allow the
1166 * waitqueue_active() to be reordered before the pte update.
1167 */
1168 smp_mb();
1169
1170 /*
1171 * Use waitqueue_active because it's very frequent to
1172 * change the address space atomically even if there are no
1173 * userfaults yet. So we take the spinlock only when we're
1174 * sure we've userfaults to wake.
1175 */
1176 do {
1177 seq = read_seqcount_begin(&ctx->refile_seq);
1178 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1179 waitqueue_active(&ctx->fault_wqh);
1180 cond_resched();
1181 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1182 if (need_wakeup)
1183 __wake_userfault(ctx, range);
1184 }
1185
1186 static __always_inline int validate_range(struct mm_struct *mm,
1187 __u64 start, __u64 len)
1188 {
1189 __u64 task_size = mm->task_size;
1190
1191 if (start & ~PAGE_MASK)
1192 return -EINVAL;
1193 if (len & ~PAGE_MASK)
1194 return -EINVAL;
1195 if (!len)
1196 return -EINVAL;
1197 if (start < mmap_min_addr)
1198 return -EINVAL;
1199 if (start >= task_size)
1200 return -EINVAL;
1201 if (len > task_size - start)
1202 return -EINVAL;
1203 return 0;
1204 }
1205
1206 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1207 {
1208 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1209 vma_is_shmem(vma);
1210 }
1211
1212 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1213 unsigned long arg)
1214 {
1215 struct mm_struct *mm = ctx->mm;
1216 struct vm_area_struct *vma, *prev, *cur;
1217 int ret;
1218 struct uffdio_register uffdio_register;
1219 struct uffdio_register __user *user_uffdio_register;
1220 unsigned long vm_flags, new_flags;
1221 bool found;
1222 bool basic_ioctls;
1223 unsigned long start, end, vma_end;
1224
1225 user_uffdio_register = (struct uffdio_register __user *) arg;
1226
1227 ret = -EFAULT;
1228 if (copy_from_user(&uffdio_register, user_uffdio_register,
1229 sizeof(uffdio_register)-sizeof(__u64)))
1230 goto out;
1231
1232 ret = -EINVAL;
1233 if (!uffdio_register.mode)
1234 goto out;
1235 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1236 UFFDIO_REGISTER_MODE_WP))
1237 goto out;
1238 vm_flags = 0;
1239 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1240 vm_flags |= VM_UFFD_MISSING;
1241 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1242 vm_flags |= VM_UFFD_WP;
1243 /*
1244 * FIXME: remove the below error constraint by
1245 * implementing the wprotect tracking mode.
1246 */
1247 ret = -EINVAL;
1248 goto out;
1249 }
1250
1251 ret = validate_range(mm, uffdio_register.range.start,
1252 uffdio_register.range.len);
1253 if (ret)
1254 goto out;
1255
1256 start = uffdio_register.range.start;
1257 end = start + uffdio_register.range.len;
1258
1259 ret = -ENOMEM;
1260 if (!mmget_not_zero(mm))
1261 goto out;
1262
1263 down_write(&mm->mmap_sem);
1264 vma = find_vma_prev(mm, start, &prev);
1265 if (!vma)
1266 goto out_unlock;
1267
1268 /* check that there's at least one vma in the range */
1269 ret = -EINVAL;
1270 if (vma->vm_start >= end)
1271 goto out_unlock;
1272
1273 /*
1274 * If the first vma contains huge pages, make sure start address
1275 * is aligned to huge page size.
1276 */
1277 if (is_vm_hugetlb_page(vma)) {
1278 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1279
1280 if (start & (vma_hpagesize - 1))
1281 goto out_unlock;
1282 }
1283
1284 /*
1285 * Search for not compatible vmas.
1286 */
1287 found = false;
1288 basic_ioctls = false;
1289 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1290 cond_resched();
1291
1292 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1293 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1294
1295 /* check not compatible vmas */
1296 ret = -EINVAL;
1297 if (!vma_can_userfault(cur))
1298 goto out_unlock;
1299 /*
1300 * If this vma contains ending address, and huge pages
1301 * check alignment.
1302 */
1303 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1304 end > cur->vm_start) {
1305 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1306
1307 ret = -EINVAL;
1308
1309 if (end & (vma_hpagesize - 1))
1310 goto out_unlock;
1311 }
1312
1313 /*
1314 * Check that this vma isn't already owned by a
1315 * different userfaultfd. We can't allow more than one
1316 * userfaultfd to own a single vma simultaneously or we
1317 * wouldn't know which one to deliver the userfaults to.
1318 */
1319 ret = -EBUSY;
1320 if (cur->vm_userfaultfd_ctx.ctx &&
1321 cur->vm_userfaultfd_ctx.ctx != ctx)
1322 goto out_unlock;
1323
1324 /*
1325 * Note vmas containing huge pages
1326 */
1327 if (is_vm_hugetlb_page(cur))
1328 basic_ioctls = true;
1329
1330 found = true;
1331 }
1332 BUG_ON(!found);
1333
1334 if (vma->vm_start < start)
1335 prev = vma;
1336
1337 ret = 0;
1338 do {
1339 cond_resched();
1340
1341 BUG_ON(!vma_can_userfault(vma));
1342 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1343 vma->vm_userfaultfd_ctx.ctx != ctx);
1344
1345 /*
1346 * Nothing to do: this vma is already registered into this
1347 * userfaultfd and with the right tracking mode too.
1348 */
1349 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1350 (vma->vm_flags & vm_flags) == vm_flags)
1351 goto skip;
1352
1353 if (vma->vm_start > start)
1354 start = vma->vm_start;
1355 vma_end = min(end, vma->vm_end);
1356
1357 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1358 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1359 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1360 vma_policy(vma),
1361 ((struct vm_userfaultfd_ctx){ ctx }));
1362 if (prev) {
1363 vma = prev;
1364 goto next;
1365 }
1366 if (vma->vm_start < start) {
1367 ret = split_vma(mm, vma, start, 1);
1368 if (ret)
1369 break;
1370 }
1371 if (vma->vm_end > end) {
1372 ret = split_vma(mm, vma, end, 0);
1373 if (ret)
1374 break;
1375 }
1376 next:
1377 /*
1378 * In the vma_merge() successful mprotect-like case 8:
1379 * the next vma was merged into the current one and
1380 * the current one has not been updated yet.
1381 */
1382 vma->vm_flags = new_flags;
1383 vma->vm_userfaultfd_ctx.ctx = ctx;
1384
1385 skip:
1386 prev = vma;
1387 start = vma->vm_end;
1388 vma = vma->vm_next;
1389 } while (vma && vma->vm_start < end);
1390 out_unlock:
1391 up_write(&mm->mmap_sem);
1392 mmput(mm);
1393 if (!ret) {
1394 /*
1395 * Now that we scanned all vmas we can already tell
1396 * userland which ioctls methods are guaranteed to
1397 * succeed on this range.
1398 */
1399 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1400 UFFD_API_RANGE_IOCTLS,
1401 &user_uffdio_register->ioctls))
1402 ret = -EFAULT;
1403 }
1404 out:
1405 return ret;
1406 }
1407
1408 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1409 unsigned long arg)
1410 {
1411 struct mm_struct *mm = ctx->mm;
1412 struct vm_area_struct *vma, *prev, *cur;
1413 int ret;
1414 struct uffdio_range uffdio_unregister;
1415 unsigned long new_flags;
1416 bool found;
1417 unsigned long start, end, vma_end;
1418 const void __user *buf = (void __user *)arg;
1419
1420 ret = -EFAULT;
1421 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1422 goto out;
1423
1424 ret = validate_range(mm, uffdio_unregister.start,
1425 uffdio_unregister.len);
1426 if (ret)
1427 goto out;
1428
1429 start = uffdio_unregister.start;
1430 end = start + uffdio_unregister.len;
1431
1432 ret = -ENOMEM;
1433 if (!mmget_not_zero(mm))
1434 goto out;
1435
1436 down_write(&mm->mmap_sem);
1437 vma = find_vma_prev(mm, start, &prev);
1438 if (!vma)
1439 goto out_unlock;
1440
1441 /* check that there's at least one vma in the range */
1442 ret = -EINVAL;
1443 if (vma->vm_start >= end)
1444 goto out_unlock;
1445
1446 /*
1447 * If the first vma contains huge pages, make sure start address
1448 * is aligned to huge page size.
1449 */
1450 if (is_vm_hugetlb_page(vma)) {
1451 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1452
1453 if (start & (vma_hpagesize - 1))
1454 goto out_unlock;
1455 }
1456
1457 /*
1458 * Search for not compatible vmas.
1459 */
1460 found = false;
1461 ret = -EINVAL;
1462 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1463 cond_resched();
1464
1465 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1466 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1467
1468 /*
1469 * Check not compatible vmas, not strictly required
1470 * here as not compatible vmas cannot have an
1471 * userfaultfd_ctx registered on them, but this
1472 * provides for more strict behavior to notice
1473 * unregistration errors.
1474 */
1475 if (!vma_can_userfault(cur))
1476 goto out_unlock;
1477
1478 found = true;
1479 }
1480 BUG_ON(!found);
1481
1482 if (vma->vm_start < start)
1483 prev = vma;
1484
1485 ret = 0;
1486 do {
1487 cond_resched();
1488
1489 BUG_ON(!vma_can_userfault(vma));
1490
1491 /*
1492 * Nothing to do: this vma is already registered into this
1493 * userfaultfd and with the right tracking mode too.
1494 */
1495 if (!vma->vm_userfaultfd_ctx.ctx)
1496 goto skip;
1497
1498 if (vma->vm_start > start)
1499 start = vma->vm_start;
1500 vma_end = min(end, vma->vm_end);
1501
1502 if (userfaultfd_missing(vma)) {
1503 /*
1504 * Wake any concurrent pending userfault while
1505 * we unregister, so they will not hang
1506 * permanently and it avoids userland to call
1507 * UFFDIO_WAKE explicitly.
1508 */
1509 struct userfaultfd_wake_range range;
1510 range.start = start;
1511 range.len = vma_end - start;
1512 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1513 }
1514
1515 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1516 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1517 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1518 vma_policy(vma),
1519 NULL_VM_UFFD_CTX);
1520 if (prev) {
1521 vma = prev;
1522 goto next;
1523 }
1524 if (vma->vm_start < start) {
1525 ret = split_vma(mm, vma, start, 1);
1526 if (ret)
1527 break;
1528 }
1529 if (vma->vm_end > end) {
1530 ret = split_vma(mm, vma, end, 0);
1531 if (ret)
1532 break;
1533 }
1534 next:
1535 /*
1536 * In the vma_merge() successful mprotect-like case 8:
1537 * the next vma was merged into the current one and
1538 * the current one has not been updated yet.
1539 */
1540 vma->vm_flags = new_flags;
1541 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1542
1543 skip:
1544 prev = vma;
1545 start = vma->vm_end;
1546 vma = vma->vm_next;
1547 } while (vma && vma->vm_start < end);
1548 out_unlock:
1549 up_write(&mm->mmap_sem);
1550 mmput(mm);
1551 out:
1552 return ret;
1553 }
1554
1555 /*
1556 * userfaultfd_wake may be used in combination with the
1557 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1558 */
1559 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1560 unsigned long arg)
1561 {
1562 int ret;
1563 struct uffdio_range uffdio_wake;
1564 struct userfaultfd_wake_range range;
1565 const void __user *buf = (void __user *)arg;
1566
1567 ret = -EFAULT;
1568 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1569 goto out;
1570
1571 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1572 if (ret)
1573 goto out;
1574
1575 range.start = uffdio_wake.start;
1576 range.len = uffdio_wake.len;
1577
1578 /*
1579 * len == 0 means wake all and we don't want to wake all here,
1580 * so check it again to be sure.
1581 */
1582 VM_BUG_ON(!range.len);
1583
1584 wake_userfault(ctx, &range);
1585 ret = 0;
1586
1587 out:
1588 return ret;
1589 }
1590
1591 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1592 unsigned long arg)
1593 {
1594 __s64 ret;
1595 struct uffdio_copy uffdio_copy;
1596 struct uffdio_copy __user *user_uffdio_copy;
1597 struct userfaultfd_wake_range range;
1598
1599 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1600
1601 ret = -EFAULT;
1602 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1603 /* don't copy "copy" last field */
1604 sizeof(uffdio_copy)-sizeof(__s64)))
1605 goto out;
1606
1607 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1608 if (ret)
1609 goto out;
1610 /*
1611 * double check for wraparound just in case. copy_from_user()
1612 * will later check uffdio_copy.src + uffdio_copy.len to fit
1613 * in the userland range.
1614 */
1615 ret = -EINVAL;
1616 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1617 goto out;
1618 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1619 goto out;
1620 if (mmget_not_zero(ctx->mm)) {
1621 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1622 uffdio_copy.len);
1623 mmput(ctx->mm);
1624 } else {
1625 return -ESRCH;
1626 }
1627 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1628 return -EFAULT;
1629 if (ret < 0)
1630 goto out;
1631 BUG_ON(!ret);
1632 /* len == 0 would wake all */
1633 range.len = ret;
1634 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1635 range.start = uffdio_copy.dst;
1636 wake_userfault(ctx, &range);
1637 }
1638 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1639 out:
1640 return ret;
1641 }
1642
1643 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1644 unsigned long arg)
1645 {
1646 __s64 ret;
1647 struct uffdio_zeropage uffdio_zeropage;
1648 struct uffdio_zeropage __user *user_uffdio_zeropage;
1649 struct userfaultfd_wake_range range;
1650
1651 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1652
1653 ret = -EFAULT;
1654 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1655 /* don't copy "zeropage" last field */
1656 sizeof(uffdio_zeropage)-sizeof(__s64)))
1657 goto out;
1658
1659 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1660 uffdio_zeropage.range.len);
1661 if (ret)
1662 goto out;
1663 ret = -EINVAL;
1664 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1665 goto out;
1666
1667 if (mmget_not_zero(ctx->mm)) {
1668 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1669 uffdio_zeropage.range.len);
1670 mmput(ctx->mm);
1671 } else {
1672 return -ESRCH;
1673 }
1674 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1675 return -EFAULT;
1676 if (ret < 0)
1677 goto out;
1678 /* len == 0 would wake all */
1679 BUG_ON(!ret);
1680 range.len = ret;
1681 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1682 range.start = uffdio_zeropage.range.start;
1683 wake_userfault(ctx, &range);
1684 }
1685 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1686 out:
1687 return ret;
1688 }
1689
1690 static inline unsigned int uffd_ctx_features(__u64 user_features)
1691 {
1692 /*
1693 * For the current set of features the bits just coincide
1694 */
1695 return (unsigned int)user_features;
1696 }
1697
1698 /*
1699 * userland asks for a certain API version and we return which bits
1700 * and ioctl commands are implemented in this kernel for such API
1701 * version or -EINVAL if unknown.
1702 */
1703 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1704 unsigned long arg)
1705 {
1706 struct uffdio_api uffdio_api;
1707 void __user *buf = (void __user *)arg;
1708 int ret;
1709 __u64 features;
1710
1711 ret = -EINVAL;
1712 if (ctx->state != UFFD_STATE_WAIT_API)
1713 goto out;
1714 ret = -EFAULT;
1715 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1716 goto out;
1717 features = uffdio_api.features;
1718 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1719 memset(&uffdio_api, 0, sizeof(uffdio_api));
1720 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1721 goto out;
1722 ret = -EINVAL;
1723 goto out;
1724 }
1725 /* report all available features and ioctls to userland */
1726 uffdio_api.features = UFFD_API_FEATURES;
1727 uffdio_api.ioctls = UFFD_API_IOCTLS;
1728 ret = -EFAULT;
1729 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1730 goto out;
1731 ctx->state = UFFD_STATE_RUNNING;
1732 /* only enable the requested features for this uffd context */
1733 ctx->features = uffd_ctx_features(features);
1734 ret = 0;
1735 out:
1736 return ret;
1737 }
1738
1739 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1740 unsigned long arg)
1741 {
1742 int ret = -EINVAL;
1743 struct userfaultfd_ctx *ctx = file->private_data;
1744
1745 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1746 return -EINVAL;
1747
1748 switch(cmd) {
1749 case UFFDIO_API:
1750 ret = userfaultfd_api(ctx, arg);
1751 break;
1752 case UFFDIO_REGISTER:
1753 ret = userfaultfd_register(ctx, arg);
1754 break;
1755 case UFFDIO_UNREGISTER:
1756 ret = userfaultfd_unregister(ctx, arg);
1757 break;
1758 case UFFDIO_WAKE:
1759 ret = userfaultfd_wake(ctx, arg);
1760 break;
1761 case UFFDIO_COPY:
1762 ret = userfaultfd_copy(ctx, arg);
1763 break;
1764 case UFFDIO_ZEROPAGE:
1765 ret = userfaultfd_zeropage(ctx, arg);
1766 break;
1767 }
1768 return ret;
1769 }
1770
1771 #ifdef CONFIG_PROC_FS
1772 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1773 {
1774 struct userfaultfd_ctx *ctx = f->private_data;
1775 wait_queue_entry_t *wq;
1776 struct userfaultfd_wait_queue *uwq;
1777 unsigned long pending = 0, total = 0;
1778
1779 spin_lock(&ctx->fault_pending_wqh.lock);
1780 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1781 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1782 pending++;
1783 total++;
1784 }
1785 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1786 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1787 total++;
1788 }
1789 spin_unlock(&ctx->fault_pending_wqh.lock);
1790
1791 /*
1792 * If more protocols will be added, there will be all shown
1793 * separated by a space. Like this:
1794 * protocols: aa:... bb:...
1795 */
1796 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1797 pending, total, UFFD_API, ctx->features,
1798 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1799 }
1800 #endif
1801
1802 static const struct file_operations userfaultfd_fops = {
1803 #ifdef CONFIG_PROC_FS
1804 .show_fdinfo = userfaultfd_show_fdinfo,
1805 #endif
1806 .release = userfaultfd_release,
1807 .poll = userfaultfd_poll,
1808 .read = userfaultfd_read,
1809 .unlocked_ioctl = userfaultfd_ioctl,
1810 .compat_ioctl = userfaultfd_ioctl,
1811 .llseek = noop_llseek,
1812 };
1813
1814 static void init_once_userfaultfd_ctx(void *mem)
1815 {
1816 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1817
1818 init_waitqueue_head(&ctx->fault_pending_wqh);
1819 init_waitqueue_head(&ctx->fault_wqh);
1820 init_waitqueue_head(&ctx->event_wqh);
1821 init_waitqueue_head(&ctx->fd_wqh);
1822 seqcount_init(&ctx->refile_seq);
1823 }
1824
1825 /**
1826 * userfaultfd_file_create - Creates a userfaultfd file pointer.
1827 * @flags: Flags for the userfaultfd file.
1828 *
1829 * This function creates a userfaultfd file pointer, w/out installing
1830 * it into the fd table. This is useful when the userfaultfd file is
1831 * used during the initialization of data structures that require
1832 * extra setup after the userfaultfd creation. So the userfaultfd
1833 * creation is split into the file pointer creation phase, and the
1834 * file descriptor installation phase. In this way races with
1835 * userspace closing the newly installed file descriptor can be
1836 * avoided. Returns a userfaultfd file pointer, or a proper error
1837 * pointer.
1838 */
1839 static struct file *userfaultfd_file_create(int flags)
1840 {
1841 struct file *file;
1842 struct userfaultfd_ctx *ctx;
1843
1844 BUG_ON(!current->mm);
1845
1846 /* Check the UFFD_* constants for consistency. */
1847 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1848 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1849
1850 file = ERR_PTR(-EINVAL);
1851 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1852 goto out;
1853
1854 file = ERR_PTR(-ENOMEM);
1855 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1856 if (!ctx)
1857 goto out;
1858
1859 atomic_set(&ctx->refcount, 1);
1860 ctx->flags = flags;
1861 ctx->features = 0;
1862 ctx->state = UFFD_STATE_WAIT_API;
1863 ctx->released = false;
1864 ctx->mm = current->mm;
1865 /* prevent the mm struct to be freed */
1866 mmgrab(ctx->mm);
1867
1868 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1869 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1870 if (IS_ERR(file)) {
1871 mmdrop(ctx->mm);
1872 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1873 }
1874 out:
1875 return file;
1876 }
1877
1878 SYSCALL_DEFINE1(userfaultfd, int, flags)
1879 {
1880 int fd, error;
1881 struct file *file;
1882
1883 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1884 if (error < 0)
1885 return error;
1886 fd = error;
1887
1888 file = userfaultfd_file_create(flags);
1889 if (IS_ERR(file)) {
1890 error = PTR_ERR(file);
1891 goto err_put_unused_fd;
1892 }
1893 fd_install(fd, file);
1894
1895 return fd;
1896
1897 err_put_unused_fd:
1898 put_unused_fd(fd);
1899
1900 return error;
1901 }
1902
1903 static int __init userfaultfd_init(void)
1904 {
1905 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1906 sizeof(struct userfaultfd_ctx),
1907 0,
1908 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1909 init_once_userfaultfd_ctx);
1910 return 0;
1911 }
1912 __initcall(userfaultfd_init);