]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/userfaultfd.c
mm/page_idle.c: fix oops because end_pfn is larger than max_pfn
[mirror_ubuntu-bionic-kernel.git] / fs / userfaultfd.c
1 /*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38 };
39
40 /*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
44 struct userfaultfd_ctx {
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
55 /* pseudo fd refcounting */
56 atomic_t refcount;
57 /* userfaultfd syscall flags */
58 unsigned int flags;
59 /* features requested from the userspace */
60 unsigned int features;
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67 };
68
69 struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73 };
74
75 struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80 };
81
82 struct userfaultfd_wait_queue {
83 struct uffd_msg msg;
84 wait_queue_entry_t wq;
85 struct userfaultfd_ctx *ctx;
86 bool waken;
87 };
88
89 struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92 };
93
94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
95 int wake_flags, void *key)
96 {
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
109 goto out;
110 WRITE_ONCE(uwq->waken, true);
111 /*
112 * The Program-Order guarantees provided by the scheduler
113 * ensure uwq->waken is visible before the task is woken.
114 */
115 ret = wake_up_state(wq->private, mode);
116 if (ret) {
117 /*
118 * Wake only once, autoremove behavior.
119 *
120 * After the effect of list_del_init is visible to the other
121 * CPUs, the waitqueue may disappear from under us, see the
122 * !list_empty_careful() in handle_userfault().
123 *
124 * try_to_wake_up() has an implicit smp_mb(), and the
125 * wq->private is read before calling the extern function
126 * "wake_up_state" (which in turns calls try_to_wake_up).
127 */
128 list_del_init(&wq->entry);
129 }
130 out:
131 return ret;
132 }
133
134 /**
135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136 * context.
137 * @ctx: [in] Pointer to the userfaultfd context.
138 */
139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140 {
141 if (!atomic_inc_not_zero(&ctx->refcount))
142 BUG();
143 }
144
145 /**
146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147 * context.
148 * @ctx: [in] Pointer to userfaultfd context.
149 *
150 * The userfaultfd context reference must have been previously acquired either
151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152 */
153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154 {
155 if (atomic_dec_and_test(&ctx->refcount)) {
156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
164 mmdrop(ctx->mm);
165 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
166 }
167 }
168
169 static inline void msg_init(struct uffd_msg *msg)
170 {
171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172 /*
173 * Must use memset to zero out the paddings or kernel data is
174 * leaked to userland.
175 */
176 memset(msg, 0, sizeof(struct uffd_msg));
177 }
178
179 static inline struct uffd_msg userfault_msg(unsigned long address,
180 unsigned int flags,
181 unsigned long reason,
182 unsigned int features)
183 {
184 struct uffd_msg msg;
185 msg_init(&msg);
186 msg.event = UFFD_EVENT_PAGEFAULT;
187 msg.arg.pagefault.address = address;
188 if (flags & FAULT_FLAG_WRITE)
189 /*
190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 * was a read fault, otherwise if set it means it's
194 * a write fault.
195 */
196 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
197 if (reason & VM_UFFD_WP)
198 /*
199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 * a missing fault, otherwise if set it means it's a
203 * write protect fault.
204 */
205 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
206 if (features & UFFD_FEATURE_THREAD_ID)
207 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
208 return msg;
209 }
210
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213 * Same functionality as userfaultfd_must_wait below with modifications for
214 * hugepmd ranges.
215 */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 struct vm_area_struct *vma,
218 unsigned long address,
219 unsigned long flags,
220 unsigned long reason)
221 {
222 struct mm_struct *mm = ctx->mm;
223 pte_t *ptep, pte;
224 bool ret = true;
225
226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227
228 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229
230 if (!ptep)
231 goto out;
232
233 ret = false;
234 pte = huge_ptep_get(ptep);
235
236 /*
237 * Lockless access: we're in a wait_event so it's ok if it
238 * changes under us.
239 */
240 if (huge_pte_none(pte))
241 ret = true;
242 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
243 ret = true;
244 out:
245 return ret;
246 }
247 #else
248 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
249 struct vm_area_struct *vma,
250 unsigned long address,
251 unsigned long flags,
252 unsigned long reason)
253 {
254 return false; /* should never get here */
255 }
256 #endif /* CONFIG_HUGETLB_PAGE */
257
258 /*
259 * Verify the pagetables are still not ok after having reigstered into
260 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
261 * userfault that has already been resolved, if userfaultfd_read and
262 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
263 * threads.
264 */
265 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
266 unsigned long address,
267 unsigned long flags,
268 unsigned long reason)
269 {
270 struct mm_struct *mm = ctx->mm;
271 pgd_t *pgd;
272 p4d_t *p4d;
273 pud_t *pud;
274 pmd_t *pmd, _pmd;
275 pte_t *pte;
276 bool ret = true;
277
278 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
279
280 pgd = pgd_offset(mm, address);
281 if (!pgd_present(*pgd))
282 goto out;
283 p4d = p4d_offset(pgd, address);
284 if (!p4d_present(*p4d))
285 goto out;
286 pud = pud_offset(p4d, address);
287 if (!pud_present(*pud))
288 goto out;
289 pmd = pmd_offset(pud, address);
290 /*
291 * READ_ONCE must function as a barrier with narrower scope
292 * and it must be equivalent to:
293 * _pmd = *pmd; barrier();
294 *
295 * This is to deal with the instability (as in
296 * pmd_trans_unstable) of the pmd.
297 */
298 _pmd = READ_ONCE(*pmd);
299 if (!pmd_present(_pmd))
300 goto out;
301
302 ret = false;
303 if (pmd_trans_huge(_pmd))
304 goto out;
305
306 /*
307 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
308 * and use the standard pte_offset_map() instead of parsing _pmd.
309 */
310 pte = pte_offset_map(pmd, address);
311 /*
312 * Lockless access: we're in a wait_event so it's ok if it
313 * changes under us.
314 */
315 if (pte_none(*pte))
316 ret = true;
317 pte_unmap(pte);
318
319 out:
320 return ret;
321 }
322
323 /*
324 * The locking rules involved in returning VM_FAULT_RETRY depending on
325 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
326 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
327 * recommendation in __lock_page_or_retry is not an understatement.
328 *
329 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
330 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
331 * not set.
332 *
333 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
334 * set, VM_FAULT_RETRY can still be returned if and only if there are
335 * fatal_signal_pending()s, and the mmap_sem must be released before
336 * returning it.
337 */
338 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
339 {
340 struct mm_struct *mm = vmf->vma->vm_mm;
341 struct userfaultfd_ctx *ctx;
342 struct userfaultfd_wait_queue uwq;
343 int ret;
344 bool must_wait, return_to_userland;
345 long blocking_state;
346
347 ret = VM_FAULT_SIGBUS;
348
349 /*
350 * We don't do userfault handling for the final child pid update.
351 *
352 * We also don't do userfault handling during
353 * coredumping. hugetlbfs has the special
354 * follow_hugetlb_page() to skip missing pages in the
355 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
356 * the no_page_table() helper in follow_page_mask(), but the
357 * shmem_vm_ops->fault method is invoked even during
358 * coredumping without mmap_sem and it ends up here.
359 */
360 if (current->flags & (PF_EXITING|PF_DUMPCORE))
361 goto out;
362
363 /*
364 * Coredumping runs without mmap_sem so we can only check that
365 * the mmap_sem is held, if PF_DUMPCORE was not set.
366 */
367 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
368
369 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
370 if (!ctx)
371 goto out;
372
373 BUG_ON(ctx->mm != mm);
374
375 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
376 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
377
378 if (ctx->features & UFFD_FEATURE_SIGBUS)
379 goto out;
380
381 /*
382 * If it's already released don't get it. This avoids to loop
383 * in __get_user_pages if userfaultfd_release waits on the
384 * caller of handle_userfault to release the mmap_sem.
385 */
386 if (unlikely(READ_ONCE(ctx->released))) {
387 /*
388 * Don't return VM_FAULT_SIGBUS in this case, so a non
389 * cooperative manager can close the uffd after the
390 * last UFFDIO_COPY, without risking to trigger an
391 * involuntary SIGBUS if the process was starting the
392 * userfaultfd while the userfaultfd was still armed
393 * (but after the last UFFDIO_COPY). If the uffd
394 * wasn't already closed when the userfault reached
395 * this point, that would normally be solved by
396 * userfaultfd_must_wait returning 'false'.
397 *
398 * If we were to return VM_FAULT_SIGBUS here, the non
399 * cooperative manager would be instead forced to
400 * always call UFFDIO_UNREGISTER before it can safely
401 * close the uffd.
402 */
403 ret = VM_FAULT_NOPAGE;
404 goto out;
405 }
406
407 /*
408 * Check that we can return VM_FAULT_RETRY.
409 *
410 * NOTE: it should become possible to return VM_FAULT_RETRY
411 * even if FAULT_FLAG_TRIED is set without leading to gup()
412 * -EBUSY failures, if the userfaultfd is to be extended for
413 * VM_UFFD_WP tracking and we intend to arm the userfault
414 * without first stopping userland access to the memory. For
415 * VM_UFFD_MISSING userfaults this is enough for now.
416 */
417 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
418 /*
419 * Validate the invariant that nowait must allow retry
420 * to be sure not to return SIGBUS erroneously on
421 * nowait invocations.
422 */
423 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
424 #ifdef CONFIG_DEBUG_VM
425 if (printk_ratelimit()) {
426 printk(KERN_WARNING
427 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
428 vmf->flags);
429 dump_stack();
430 }
431 #endif
432 goto out;
433 }
434
435 /*
436 * Handle nowait, not much to do other than tell it to retry
437 * and wait.
438 */
439 ret = VM_FAULT_RETRY;
440 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
441 goto out;
442
443 /* take the reference before dropping the mmap_sem */
444 userfaultfd_ctx_get(ctx);
445
446 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
447 uwq.wq.private = current;
448 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
449 ctx->features);
450 uwq.ctx = ctx;
451 uwq.waken = false;
452
453 return_to_userland =
454 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
455 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
456 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
457 TASK_KILLABLE;
458
459 spin_lock(&ctx->fault_pending_wqh.lock);
460 /*
461 * After the __add_wait_queue the uwq is visible to userland
462 * through poll/read().
463 */
464 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
465 /*
466 * The smp_mb() after __set_current_state prevents the reads
467 * following the spin_unlock to happen before the list_add in
468 * __add_wait_queue.
469 */
470 set_current_state(blocking_state);
471 spin_unlock(&ctx->fault_pending_wqh.lock);
472
473 if (!is_vm_hugetlb_page(vmf->vma))
474 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
475 reason);
476 else
477 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
478 vmf->address,
479 vmf->flags, reason);
480 up_read(&mm->mmap_sem);
481
482 if (likely(must_wait && !READ_ONCE(ctx->released) &&
483 (return_to_userland ? !signal_pending(current) :
484 !fatal_signal_pending(current)))) {
485 wake_up_poll(&ctx->fd_wqh, POLLIN);
486 schedule();
487 ret |= VM_FAULT_MAJOR;
488
489 /*
490 * False wakeups can orginate even from rwsem before
491 * up_read() however userfaults will wait either for a
492 * targeted wakeup on the specific uwq waitqueue from
493 * wake_userfault() or for signals or for uffd
494 * release.
495 */
496 while (!READ_ONCE(uwq.waken)) {
497 /*
498 * This needs the full smp_store_mb()
499 * guarantee as the state write must be
500 * visible to other CPUs before reading
501 * uwq.waken from other CPUs.
502 */
503 set_current_state(blocking_state);
504 if (READ_ONCE(uwq.waken) ||
505 READ_ONCE(ctx->released) ||
506 (return_to_userland ? signal_pending(current) :
507 fatal_signal_pending(current)))
508 break;
509 schedule();
510 }
511 }
512
513 __set_current_state(TASK_RUNNING);
514
515 if (return_to_userland) {
516 if (signal_pending(current) &&
517 !fatal_signal_pending(current)) {
518 /*
519 * If we got a SIGSTOP or SIGCONT and this is
520 * a normal userland page fault, just let
521 * userland return so the signal will be
522 * handled and gdb debugging works. The page
523 * fault code immediately after we return from
524 * this function is going to release the
525 * mmap_sem and it's not depending on it
526 * (unlike gup would if we were not to return
527 * VM_FAULT_RETRY).
528 *
529 * If a fatal signal is pending we still take
530 * the streamlined VM_FAULT_RETRY failure path
531 * and there's no need to retake the mmap_sem
532 * in such case.
533 */
534 down_read(&mm->mmap_sem);
535 ret = VM_FAULT_NOPAGE;
536 }
537 }
538
539 /*
540 * Here we race with the list_del; list_add in
541 * userfaultfd_ctx_read(), however because we don't ever run
542 * list_del_init() to refile across the two lists, the prev
543 * and next pointers will never point to self. list_add also
544 * would never let any of the two pointers to point to
545 * self. So list_empty_careful won't risk to see both pointers
546 * pointing to self at any time during the list refile. The
547 * only case where list_del_init() is called is the full
548 * removal in the wake function and there we don't re-list_add
549 * and it's fine not to block on the spinlock. The uwq on this
550 * kernel stack can be released after the list_del_init.
551 */
552 if (!list_empty_careful(&uwq.wq.entry)) {
553 spin_lock(&ctx->fault_pending_wqh.lock);
554 /*
555 * No need of list_del_init(), the uwq on the stack
556 * will be freed shortly anyway.
557 */
558 list_del(&uwq.wq.entry);
559 spin_unlock(&ctx->fault_pending_wqh.lock);
560 }
561
562 /*
563 * ctx may go away after this if the userfault pseudo fd is
564 * already released.
565 */
566 userfaultfd_ctx_put(ctx);
567
568 out:
569 return ret;
570 }
571
572 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
573 struct userfaultfd_wait_queue *ewq)
574 {
575 struct userfaultfd_ctx *release_new_ctx;
576
577 if (WARN_ON_ONCE(current->flags & PF_EXITING))
578 goto out;
579
580 ewq->ctx = ctx;
581 init_waitqueue_entry(&ewq->wq, current);
582 release_new_ctx = NULL;
583
584 spin_lock(&ctx->event_wqh.lock);
585 /*
586 * After the __add_wait_queue the uwq is visible to userland
587 * through poll/read().
588 */
589 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
590 for (;;) {
591 set_current_state(TASK_KILLABLE);
592 if (ewq->msg.event == 0)
593 break;
594 if (READ_ONCE(ctx->released) ||
595 fatal_signal_pending(current)) {
596 /*
597 * &ewq->wq may be queued in fork_event, but
598 * __remove_wait_queue ignores the head
599 * parameter. It would be a problem if it
600 * didn't.
601 */
602 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
603 if (ewq->msg.event == UFFD_EVENT_FORK) {
604 struct userfaultfd_ctx *new;
605
606 new = (struct userfaultfd_ctx *)
607 (unsigned long)
608 ewq->msg.arg.reserved.reserved1;
609 release_new_ctx = new;
610 }
611 break;
612 }
613
614 spin_unlock(&ctx->event_wqh.lock);
615
616 wake_up_poll(&ctx->fd_wqh, POLLIN);
617 schedule();
618
619 spin_lock(&ctx->event_wqh.lock);
620 }
621 __set_current_state(TASK_RUNNING);
622 spin_unlock(&ctx->event_wqh.lock);
623
624 if (release_new_ctx) {
625 struct vm_area_struct *vma;
626 struct mm_struct *mm = release_new_ctx->mm;
627
628 /* the various vma->vm_userfaultfd_ctx still points to it */
629 down_write(&mm->mmap_sem);
630 for (vma = mm->mmap; vma; vma = vma->vm_next)
631 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx)
632 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
633 up_write(&mm->mmap_sem);
634
635 userfaultfd_ctx_put(release_new_ctx);
636 }
637
638 /*
639 * ctx may go away after this if the userfault pseudo fd is
640 * already released.
641 */
642 out:
643 userfaultfd_ctx_put(ctx);
644 }
645
646 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
647 struct userfaultfd_wait_queue *ewq)
648 {
649 ewq->msg.event = 0;
650 wake_up_locked(&ctx->event_wqh);
651 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
652 }
653
654 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
655 {
656 struct userfaultfd_ctx *ctx = NULL, *octx;
657 struct userfaultfd_fork_ctx *fctx;
658
659 octx = vma->vm_userfaultfd_ctx.ctx;
660 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
661 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
662 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
663 return 0;
664 }
665
666 list_for_each_entry(fctx, fcs, list)
667 if (fctx->orig == octx) {
668 ctx = fctx->new;
669 break;
670 }
671
672 if (!ctx) {
673 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
674 if (!fctx)
675 return -ENOMEM;
676
677 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
678 if (!ctx) {
679 kfree(fctx);
680 return -ENOMEM;
681 }
682
683 atomic_set(&ctx->refcount, 1);
684 ctx->flags = octx->flags;
685 ctx->state = UFFD_STATE_RUNNING;
686 ctx->features = octx->features;
687 ctx->released = false;
688 ctx->mm = vma->vm_mm;
689 mmgrab(ctx->mm);
690
691 userfaultfd_ctx_get(octx);
692 fctx->orig = octx;
693 fctx->new = ctx;
694 list_add_tail(&fctx->list, fcs);
695 }
696
697 vma->vm_userfaultfd_ctx.ctx = ctx;
698 return 0;
699 }
700
701 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
702 {
703 struct userfaultfd_ctx *ctx = fctx->orig;
704 struct userfaultfd_wait_queue ewq;
705
706 msg_init(&ewq.msg);
707
708 ewq.msg.event = UFFD_EVENT_FORK;
709 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
710
711 userfaultfd_event_wait_completion(ctx, &ewq);
712 }
713
714 void dup_userfaultfd_complete(struct list_head *fcs)
715 {
716 struct userfaultfd_fork_ctx *fctx, *n;
717
718 list_for_each_entry_safe(fctx, n, fcs, list) {
719 dup_fctx(fctx);
720 list_del(&fctx->list);
721 kfree(fctx);
722 }
723 }
724
725 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
726 struct vm_userfaultfd_ctx *vm_ctx)
727 {
728 struct userfaultfd_ctx *ctx;
729
730 ctx = vma->vm_userfaultfd_ctx.ctx;
731 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
732 vm_ctx->ctx = ctx;
733 userfaultfd_ctx_get(ctx);
734 }
735 }
736
737 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
738 unsigned long from, unsigned long to,
739 unsigned long len)
740 {
741 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
742 struct userfaultfd_wait_queue ewq;
743
744 if (!ctx)
745 return;
746
747 if (to & ~PAGE_MASK) {
748 userfaultfd_ctx_put(ctx);
749 return;
750 }
751
752 msg_init(&ewq.msg);
753
754 ewq.msg.event = UFFD_EVENT_REMAP;
755 ewq.msg.arg.remap.from = from;
756 ewq.msg.arg.remap.to = to;
757 ewq.msg.arg.remap.len = len;
758
759 userfaultfd_event_wait_completion(ctx, &ewq);
760 }
761
762 bool userfaultfd_remove(struct vm_area_struct *vma,
763 unsigned long start, unsigned long end)
764 {
765 struct mm_struct *mm = vma->vm_mm;
766 struct userfaultfd_ctx *ctx;
767 struct userfaultfd_wait_queue ewq;
768
769 ctx = vma->vm_userfaultfd_ctx.ctx;
770 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
771 return true;
772
773 userfaultfd_ctx_get(ctx);
774 up_read(&mm->mmap_sem);
775
776 msg_init(&ewq.msg);
777
778 ewq.msg.event = UFFD_EVENT_REMOVE;
779 ewq.msg.arg.remove.start = start;
780 ewq.msg.arg.remove.end = end;
781
782 userfaultfd_event_wait_completion(ctx, &ewq);
783
784 return false;
785 }
786
787 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
788 unsigned long start, unsigned long end)
789 {
790 struct userfaultfd_unmap_ctx *unmap_ctx;
791
792 list_for_each_entry(unmap_ctx, unmaps, list)
793 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
794 unmap_ctx->end == end)
795 return true;
796
797 return false;
798 }
799
800 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
801 unsigned long start, unsigned long end,
802 struct list_head *unmaps)
803 {
804 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
805 struct userfaultfd_unmap_ctx *unmap_ctx;
806 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
807
808 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
809 has_unmap_ctx(ctx, unmaps, start, end))
810 continue;
811
812 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
813 if (!unmap_ctx)
814 return -ENOMEM;
815
816 userfaultfd_ctx_get(ctx);
817 unmap_ctx->ctx = ctx;
818 unmap_ctx->start = start;
819 unmap_ctx->end = end;
820 list_add_tail(&unmap_ctx->list, unmaps);
821 }
822
823 return 0;
824 }
825
826 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
827 {
828 struct userfaultfd_unmap_ctx *ctx, *n;
829 struct userfaultfd_wait_queue ewq;
830
831 list_for_each_entry_safe(ctx, n, uf, list) {
832 msg_init(&ewq.msg);
833
834 ewq.msg.event = UFFD_EVENT_UNMAP;
835 ewq.msg.arg.remove.start = ctx->start;
836 ewq.msg.arg.remove.end = ctx->end;
837
838 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
839
840 list_del(&ctx->list);
841 kfree(ctx);
842 }
843 }
844
845 static int userfaultfd_release(struct inode *inode, struct file *file)
846 {
847 struct userfaultfd_ctx *ctx = file->private_data;
848 struct mm_struct *mm = ctx->mm;
849 struct vm_area_struct *vma, *prev;
850 /* len == 0 means wake all */
851 struct userfaultfd_wake_range range = { .len = 0, };
852 unsigned long new_flags;
853
854 WRITE_ONCE(ctx->released, true);
855
856 if (!mmget_not_zero(mm))
857 goto wakeup;
858
859 /*
860 * Flush page faults out of all CPUs. NOTE: all page faults
861 * must be retried without returning VM_FAULT_SIGBUS if
862 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
863 * changes while handle_userfault released the mmap_sem. So
864 * it's critical that released is set to true (above), before
865 * taking the mmap_sem for writing.
866 */
867 down_write(&mm->mmap_sem);
868 prev = NULL;
869 for (vma = mm->mmap; vma; vma = vma->vm_next) {
870 cond_resched();
871 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
872 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
873 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
874 prev = vma;
875 continue;
876 }
877 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
878 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
879 new_flags, vma->anon_vma,
880 vma->vm_file, vma->vm_pgoff,
881 vma_policy(vma),
882 NULL_VM_UFFD_CTX);
883 if (prev)
884 vma = prev;
885 else
886 prev = vma;
887 vma->vm_flags = new_flags;
888 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
889 }
890 up_write(&mm->mmap_sem);
891 mmput(mm);
892 wakeup:
893 /*
894 * After no new page faults can wait on this fault_*wqh, flush
895 * the last page faults that may have been already waiting on
896 * the fault_*wqh.
897 */
898 spin_lock(&ctx->fault_pending_wqh.lock);
899 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
900 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
901 spin_unlock(&ctx->fault_pending_wqh.lock);
902
903 /* Flush pending events that may still wait on event_wqh */
904 wake_up_all(&ctx->event_wqh);
905
906 wake_up_poll(&ctx->fd_wqh, POLLHUP);
907 userfaultfd_ctx_put(ctx);
908 return 0;
909 }
910
911 /* fault_pending_wqh.lock must be hold by the caller */
912 static inline struct userfaultfd_wait_queue *find_userfault_in(
913 wait_queue_head_t *wqh)
914 {
915 wait_queue_entry_t *wq;
916 struct userfaultfd_wait_queue *uwq;
917
918 VM_BUG_ON(!spin_is_locked(&wqh->lock));
919
920 uwq = NULL;
921 if (!waitqueue_active(wqh))
922 goto out;
923 /* walk in reverse to provide FIFO behavior to read userfaults */
924 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
925 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
926 out:
927 return uwq;
928 }
929
930 static inline struct userfaultfd_wait_queue *find_userfault(
931 struct userfaultfd_ctx *ctx)
932 {
933 return find_userfault_in(&ctx->fault_pending_wqh);
934 }
935
936 static inline struct userfaultfd_wait_queue *find_userfault_evt(
937 struct userfaultfd_ctx *ctx)
938 {
939 return find_userfault_in(&ctx->event_wqh);
940 }
941
942 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
943 {
944 struct userfaultfd_ctx *ctx = file->private_data;
945 unsigned int ret;
946
947 poll_wait(file, &ctx->fd_wqh, wait);
948
949 switch (ctx->state) {
950 case UFFD_STATE_WAIT_API:
951 return POLLERR;
952 case UFFD_STATE_RUNNING:
953 /*
954 * poll() never guarantees that read won't block.
955 * userfaults can be waken before they're read().
956 */
957 if (unlikely(!(file->f_flags & O_NONBLOCK)))
958 return POLLERR;
959 /*
960 * lockless access to see if there are pending faults
961 * __pollwait last action is the add_wait_queue but
962 * the spin_unlock would allow the waitqueue_active to
963 * pass above the actual list_add inside
964 * add_wait_queue critical section. So use a full
965 * memory barrier to serialize the list_add write of
966 * add_wait_queue() with the waitqueue_active read
967 * below.
968 */
969 ret = 0;
970 smp_mb();
971 if (waitqueue_active(&ctx->fault_pending_wqh))
972 ret = POLLIN;
973 else if (waitqueue_active(&ctx->event_wqh))
974 ret = POLLIN;
975
976 return ret;
977 default:
978 WARN_ON_ONCE(1);
979 return POLLERR;
980 }
981 }
982
983 static const struct file_operations userfaultfd_fops;
984
985 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
986 struct userfaultfd_ctx *new,
987 struct uffd_msg *msg)
988 {
989 int fd;
990 struct file *file;
991 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
992
993 fd = get_unused_fd_flags(flags);
994 if (fd < 0)
995 return fd;
996
997 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
998 O_RDWR | flags);
999 if (IS_ERR(file)) {
1000 put_unused_fd(fd);
1001 return PTR_ERR(file);
1002 }
1003
1004 fd_install(fd, file);
1005 msg->arg.reserved.reserved1 = 0;
1006 msg->arg.fork.ufd = fd;
1007
1008 return 0;
1009 }
1010
1011 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1012 struct uffd_msg *msg)
1013 {
1014 ssize_t ret;
1015 DECLARE_WAITQUEUE(wait, current);
1016 struct userfaultfd_wait_queue *uwq;
1017 /*
1018 * Handling fork event requires sleeping operations, so
1019 * we drop the event_wqh lock, then do these ops, then
1020 * lock it back and wake up the waiter. While the lock is
1021 * dropped the ewq may go away so we keep track of it
1022 * carefully.
1023 */
1024 LIST_HEAD(fork_event);
1025 struct userfaultfd_ctx *fork_nctx = NULL;
1026
1027 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1028 spin_lock(&ctx->fd_wqh.lock);
1029 __add_wait_queue(&ctx->fd_wqh, &wait);
1030 for (;;) {
1031 set_current_state(TASK_INTERRUPTIBLE);
1032 spin_lock(&ctx->fault_pending_wqh.lock);
1033 uwq = find_userfault(ctx);
1034 if (uwq) {
1035 /*
1036 * Use a seqcount to repeat the lockless check
1037 * in wake_userfault() to avoid missing
1038 * wakeups because during the refile both
1039 * waitqueue could become empty if this is the
1040 * only userfault.
1041 */
1042 write_seqcount_begin(&ctx->refile_seq);
1043
1044 /*
1045 * The fault_pending_wqh.lock prevents the uwq
1046 * to disappear from under us.
1047 *
1048 * Refile this userfault from
1049 * fault_pending_wqh to fault_wqh, it's not
1050 * pending anymore after we read it.
1051 *
1052 * Use list_del() by hand (as
1053 * userfaultfd_wake_function also uses
1054 * list_del_init() by hand) to be sure nobody
1055 * changes __remove_wait_queue() to use
1056 * list_del_init() in turn breaking the
1057 * !list_empty_careful() check in
1058 * handle_userfault(). The uwq->wq.head list
1059 * must never be empty at any time during the
1060 * refile, or the waitqueue could disappear
1061 * from under us. The "wait_queue_head_t"
1062 * parameter of __remove_wait_queue() is unused
1063 * anyway.
1064 */
1065 list_del(&uwq->wq.entry);
1066 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1067
1068 write_seqcount_end(&ctx->refile_seq);
1069
1070 /* careful to always initialize msg if ret == 0 */
1071 *msg = uwq->msg;
1072 spin_unlock(&ctx->fault_pending_wqh.lock);
1073 ret = 0;
1074 break;
1075 }
1076 spin_unlock(&ctx->fault_pending_wqh.lock);
1077
1078 spin_lock(&ctx->event_wqh.lock);
1079 uwq = find_userfault_evt(ctx);
1080 if (uwq) {
1081 *msg = uwq->msg;
1082
1083 if (uwq->msg.event == UFFD_EVENT_FORK) {
1084 fork_nctx = (struct userfaultfd_ctx *)
1085 (unsigned long)
1086 uwq->msg.arg.reserved.reserved1;
1087 list_move(&uwq->wq.entry, &fork_event);
1088 /*
1089 * fork_nctx can be freed as soon as
1090 * we drop the lock, unless we take a
1091 * reference on it.
1092 */
1093 userfaultfd_ctx_get(fork_nctx);
1094 spin_unlock(&ctx->event_wqh.lock);
1095 ret = 0;
1096 break;
1097 }
1098
1099 userfaultfd_event_complete(ctx, uwq);
1100 spin_unlock(&ctx->event_wqh.lock);
1101 ret = 0;
1102 break;
1103 }
1104 spin_unlock(&ctx->event_wqh.lock);
1105
1106 if (signal_pending(current)) {
1107 ret = -ERESTARTSYS;
1108 break;
1109 }
1110 if (no_wait) {
1111 ret = -EAGAIN;
1112 break;
1113 }
1114 spin_unlock(&ctx->fd_wqh.lock);
1115 schedule();
1116 spin_lock(&ctx->fd_wqh.lock);
1117 }
1118 __remove_wait_queue(&ctx->fd_wqh, &wait);
1119 __set_current_state(TASK_RUNNING);
1120 spin_unlock(&ctx->fd_wqh.lock);
1121
1122 if (!ret && msg->event == UFFD_EVENT_FORK) {
1123 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1124 spin_lock(&ctx->event_wqh.lock);
1125 if (!list_empty(&fork_event)) {
1126 /*
1127 * The fork thread didn't abort, so we can
1128 * drop the temporary refcount.
1129 */
1130 userfaultfd_ctx_put(fork_nctx);
1131
1132 uwq = list_first_entry(&fork_event,
1133 typeof(*uwq),
1134 wq.entry);
1135 /*
1136 * If fork_event list wasn't empty and in turn
1137 * the event wasn't already released by fork
1138 * (the event is allocated on fork kernel
1139 * stack), put the event back to its place in
1140 * the event_wq. fork_event head will be freed
1141 * as soon as we return so the event cannot
1142 * stay queued there no matter the current
1143 * "ret" value.
1144 */
1145 list_del(&uwq->wq.entry);
1146 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1147
1148 /*
1149 * Leave the event in the waitqueue and report
1150 * error to userland if we failed to resolve
1151 * the userfault fork.
1152 */
1153 if (likely(!ret))
1154 userfaultfd_event_complete(ctx, uwq);
1155 } else {
1156 /*
1157 * Here the fork thread aborted and the
1158 * refcount from the fork thread on fork_nctx
1159 * has already been released. We still hold
1160 * the reference we took before releasing the
1161 * lock above. If resolve_userfault_fork
1162 * failed we've to drop it because the
1163 * fork_nctx has to be freed in such case. If
1164 * it succeeded we'll hold it because the new
1165 * uffd references it.
1166 */
1167 if (ret)
1168 userfaultfd_ctx_put(fork_nctx);
1169 }
1170 spin_unlock(&ctx->event_wqh.lock);
1171 }
1172
1173 return ret;
1174 }
1175
1176 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1177 size_t count, loff_t *ppos)
1178 {
1179 struct userfaultfd_ctx *ctx = file->private_data;
1180 ssize_t _ret, ret = 0;
1181 struct uffd_msg msg;
1182 int no_wait = file->f_flags & O_NONBLOCK;
1183
1184 if (ctx->state == UFFD_STATE_WAIT_API)
1185 return -EINVAL;
1186
1187 for (;;) {
1188 if (count < sizeof(msg))
1189 return ret ? ret : -EINVAL;
1190 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1191 if (_ret < 0)
1192 return ret ? ret : _ret;
1193 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1194 return ret ? ret : -EFAULT;
1195 ret += sizeof(msg);
1196 buf += sizeof(msg);
1197 count -= sizeof(msg);
1198 /*
1199 * Allow to read more than one fault at time but only
1200 * block if waiting for the very first one.
1201 */
1202 no_wait = O_NONBLOCK;
1203 }
1204 }
1205
1206 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1207 struct userfaultfd_wake_range *range)
1208 {
1209 spin_lock(&ctx->fault_pending_wqh.lock);
1210 /* wake all in the range and autoremove */
1211 if (waitqueue_active(&ctx->fault_pending_wqh))
1212 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1213 range);
1214 if (waitqueue_active(&ctx->fault_wqh))
1215 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1216 spin_unlock(&ctx->fault_pending_wqh.lock);
1217 }
1218
1219 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1220 struct userfaultfd_wake_range *range)
1221 {
1222 unsigned seq;
1223 bool need_wakeup;
1224
1225 /*
1226 * To be sure waitqueue_active() is not reordered by the CPU
1227 * before the pagetable update, use an explicit SMP memory
1228 * barrier here. PT lock release or up_read(mmap_sem) still
1229 * have release semantics that can allow the
1230 * waitqueue_active() to be reordered before the pte update.
1231 */
1232 smp_mb();
1233
1234 /*
1235 * Use waitqueue_active because it's very frequent to
1236 * change the address space atomically even if there are no
1237 * userfaults yet. So we take the spinlock only when we're
1238 * sure we've userfaults to wake.
1239 */
1240 do {
1241 seq = read_seqcount_begin(&ctx->refile_seq);
1242 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1243 waitqueue_active(&ctx->fault_wqh);
1244 cond_resched();
1245 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1246 if (need_wakeup)
1247 __wake_userfault(ctx, range);
1248 }
1249
1250 static __always_inline int validate_range(struct mm_struct *mm,
1251 __u64 start, __u64 len)
1252 {
1253 __u64 task_size = mm->task_size;
1254
1255 if (start & ~PAGE_MASK)
1256 return -EINVAL;
1257 if (len & ~PAGE_MASK)
1258 return -EINVAL;
1259 if (!len)
1260 return -EINVAL;
1261 if (start < mmap_min_addr)
1262 return -EINVAL;
1263 if (start >= task_size)
1264 return -EINVAL;
1265 if (len > task_size - start)
1266 return -EINVAL;
1267 return 0;
1268 }
1269
1270 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1271 {
1272 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1273 vma_is_shmem(vma);
1274 }
1275
1276 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1277 unsigned long arg)
1278 {
1279 struct mm_struct *mm = ctx->mm;
1280 struct vm_area_struct *vma, *prev, *cur;
1281 int ret;
1282 struct uffdio_register uffdio_register;
1283 struct uffdio_register __user *user_uffdio_register;
1284 unsigned long vm_flags, new_flags;
1285 bool found;
1286 bool basic_ioctls;
1287 unsigned long start, end, vma_end;
1288
1289 user_uffdio_register = (struct uffdio_register __user *) arg;
1290
1291 ret = -EFAULT;
1292 if (copy_from_user(&uffdio_register, user_uffdio_register,
1293 sizeof(uffdio_register)-sizeof(__u64)))
1294 goto out;
1295
1296 ret = -EINVAL;
1297 if (!uffdio_register.mode)
1298 goto out;
1299 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1300 UFFDIO_REGISTER_MODE_WP))
1301 goto out;
1302 vm_flags = 0;
1303 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1304 vm_flags |= VM_UFFD_MISSING;
1305 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1306 vm_flags |= VM_UFFD_WP;
1307 /*
1308 * FIXME: remove the below error constraint by
1309 * implementing the wprotect tracking mode.
1310 */
1311 ret = -EINVAL;
1312 goto out;
1313 }
1314
1315 ret = validate_range(mm, uffdio_register.range.start,
1316 uffdio_register.range.len);
1317 if (ret)
1318 goto out;
1319
1320 start = uffdio_register.range.start;
1321 end = start + uffdio_register.range.len;
1322
1323 ret = -ENOMEM;
1324 if (!mmget_not_zero(mm))
1325 goto out;
1326
1327 down_write(&mm->mmap_sem);
1328 vma = find_vma_prev(mm, start, &prev);
1329 if (!vma)
1330 goto out_unlock;
1331
1332 /* check that there's at least one vma in the range */
1333 ret = -EINVAL;
1334 if (vma->vm_start >= end)
1335 goto out_unlock;
1336
1337 /*
1338 * If the first vma contains huge pages, make sure start address
1339 * is aligned to huge page size.
1340 */
1341 if (is_vm_hugetlb_page(vma)) {
1342 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1343
1344 if (start & (vma_hpagesize - 1))
1345 goto out_unlock;
1346 }
1347
1348 /*
1349 * Search for not compatible vmas.
1350 */
1351 found = false;
1352 basic_ioctls = false;
1353 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1354 cond_resched();
1355
1356 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1357 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1358
1359 /* check not compatible vmas */
1360 ret = -EINVAL;
1361 if (!vma_can_userfault(cur))
1362 goto out_unlock;
1363
1364 /*
1365 * UFFDIO_COPY will fill file holes even without
1366 * PROT_WRITE. This check enforces that if this is a
1367 * MAP_SHARED, the process has write permission to the backing
1368 * file. If VM_MAYWRITE is set it also enforces that on a
1369 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1370 * F_WRITE_SEAL can be taken until the vma is destroyed.
1371 */
1372 ret = -EPERM;
1373 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1374 goto out_unlock;
1375
1376 /*
1377 * If this vma contains ending address, and huge pages
1378 * check alignment.
1379 */
1380 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1381 end > cur->vm_start) {
1382 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1383
1384 ret = -EINVAL;
1385
1386 if (end & (vma_hpagesize - 1))
1387 goto out_unlock;
1388 }
1389
1390 /*
1391 * Check that this vma isn't already owned by a
1392 * different userfaultfd. We can't allow more than one
1393 * userfaultfd to own a single vma simultaneously or we
1394 * wouldn't know which one to deliver the userfaults to.
1395 */
1396 ret = -EBUSY;
1397 if (cur->vm_userfaultfd_ctx.ctx &&
1398 cur->vm_userfaultfd_ctx.ctx != ctx)
1399 goto out_unlock;
1400
1401 /*
1402 * Note vmas containing huge pages
1403 */
1404 if (is_vm_hugetlb_page(cur))
1405 basic_ioctls = true;
1406
1407 found = true;
1408 }
1409 BUG_ON(!found);
1410
1411 if (vma->vm_start < start)
1412 prev = vma;
1413
1414 ret = 0;
1415 do {
1416 cond_resched();
1417
1418 BUG_ON(!vma_can_userfault(vma));
1419 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1420 vma->vm_userfaultfd_ctx.ctx != ctx);
1421 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1422
1423 /*
1424 * Nothing to do: this vma is already registered into this
1425 * userfaultfd and with the right tracking mode too.
1426 */
1427 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1428 (vma->vm_flags & vm_flags) == vm_flags)
1429 goto skip;
1430
1431 if (vma->vm_start > start)
1432 start = vma->vm_start;
1433 vma_end = min(end, vma->vm_end);
1434
1435 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1436 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1437 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1438 vma_policy(vma),
1439 ((struct vm_userfaultfd_ctx){ ctx }));
1440 if (prev) {
1441 vma = prev;
1442 goto next;
1443 }
1444 if (vma->vm_start < start) {
1445 ret = split_vma(mm, vma, start, 1);
1446 if (ret)
1447 break;
1448 }
1449 if (vma->vm_end > end) {
1450 ret = split_vma(mm, vma, end, 0);
1451 if (ret)
1452 break;
1453 }
1454 next:
1455 /*
1456 * In the vma_merge() successful mprotect-like case 8:
1457 * the next vma was merged into the current one and
1458 * the current one has not been updated yet.
1459 */
1460 vma->vm_flags = new_flags;
1461 vma->vm_userfaultfd_ctx.ctx = ctx;
1462
1463 skip:
1464 prev = vma;
1465 start = vma->vm_end;
1466 vma = vma->vm_next;
1467 } while (vma && vma->vm_start < end);
1468 out_unlock:
1469 up_write(&mm->mmap_sem);
1470 mmput(mm);
1471 if (!ret) {
1472 /*
1473 * Now that we scanned all vmas we can already tell
1474 * userland which ioctls methods are guaranteed to
1475 * succeed on this range.
1476 */
1477 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1478 UFFD_API_RANGE_IOCTLS,
1479 &user_uffdio_register->ioctls))
1480 ret = -EFAULT;
1481 }
1482 out:
1483 return ret;
1484 }
1485
1486 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1487 unsigned long arg)
1488 {
1489 struct mm_struct *mm = ctx->mm;
1490 struct vm_area_struct *vma, *prev, *cur;
1491 int ret;
1492 struct uffdio_range uffdio_unregister;
1493 unsigned long new_flags;
1494 bool found;
1495 unsigned long start, end, vma_end;
1496 const void __user *buf = (void __user *)arg;
1497
1498 ret = -EFAULT;
1499 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1500 goto out;
1501
1502 ret = validate_range(mm, uffdio_unregister.start,
1503 uffdio_unregister.len);
1504 if (ret)
1505 goto out;
1506
1507 start = uffdio_unregister.start;
1508 end = start + uffdio_unregister.len;
1509
1510 ret = -ENOMEM;
1511 if (!mmget_not_zero(mm))
1512 goto out;
1513
1514 down_write(&mm->mmap_sem);
1515 vma = find_vma_prev(mm, start, &prev);
1516 if (!vma)
1517 goto out_unlock;
1518
1519 /* check that there's at least one vma in the range */
1520 ret = -EINVAL;
1521 if (vma->vm_start >= end)
1522 goto out_unlock;
1523
1524 /*
1525 * If the first vma contains huge pages, make sure start address
1526 * is aligned to huge page size.
1527 */
1528 if (is_vm_hugetlb_page(vma)) {
1529 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1530
1531 if (start & (vma_hpagesize - 1))
1532 goto out_unlock;
1533 }
1534
1535 /*
1536 * Search for not compatible vmas.
1537 */
1538 found = false;
1539 ret = -EINVAL;
1540 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1541 cond_resched();
1542
1543 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1544 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1545
1546 /*
1547 * Check not compatible vmas, not strictly required
1548 * here as not compatible vmas cannot have an
1549 * userfaultfd_ctx registered on them, but this
1550 * provides for more strict behavior to notice
1551 * unregistration errors.
1552 */
1553 if (!vma_can_userfault(cur))
1554 goto out_unlock;
1555
1556 found = true;
1557 }
1558 BUG_ON(!found);
1559
1560 if (vma->vm_start < start)
1561 prev = vma;
1562
1563 ret = 0;
1564 do {
1565 cond_resched();
1566
1567 BUG_ON(!vma_can_userfault(vma));
1568 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1569
1570 /*
1571 * Nothing to do: this vma is already registered into this
1572 * userfaultfd and with the right tracking mode too.
1573 */
1574 if (!vma->vm_userfaultfd_ctx.ctx)
1575 goto skip;
1576
1577 if (vma->vm_start > start)
1578 start = vma->vm_start;
1579 vma_end = min(end, vma->vm_end);
1580
1581 if (userfaultfd_missing(vma)) {
1582 /*
1583 * Wake any concurrent pending userfault while
1584 * we unregister, so they will not hang
1585 * permanently and it avoids userland to call
1586 * UFFDIO_WAKE explicitly.
1587 */
1588 struct userfaultfd_wake_range range;
1589 range.start = start;
1590 range.len = vma_end - start;
1591 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1592 }
1593
1594 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1595 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1596 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1597 vma_policy(vma),
1598 NULL_VM_UFFD_CTX);
1599 if (prev) {
1600 vma = prev;
1601 goto next;
1602 }
1603 if (vma->vm_start < start) {
1604 ret = split_vma(mm, vma, start, 1);
1605 if (ret)
1606 break;
1607 }
1608 if (vma->vm_end > end) {
1609 ret = split_vma(mm, vma, end, 0);
1610 if (ret)
1611 break;
1612 }
1613 next:
1614 /*
1615 * In the vma_merge() successful mprotect-like case 8:
1616 * the next vma was merged into the current one and
1617 * the current one has not been updated yet.
1618 */
1619 vma->vm_flags = new_flags;
1620 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1621
1622 skip:
1623 prev = vma;
1624 start = vma->vm_end;
1625 vma = vma->vm_next;
1626 } while (vma && vma->vm_start < end);
1627 out_unlock:
1628 up_write(&mm->mmap_sem);
1629 mmput(mm);
1630 out:
1631 return ret;
1632 }
1633
1634 /*
1635 * userfaultfd_wake may be used in combination with the
1636 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1637 */
1638 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1639 unsigned long arg)
1640 {
1641 int ret;
1642 struct uffdio_range uffdio_wake;
1643 struct userfaultfd_wake_range range;
1644 const void __user *buf = (void __user *)arg;
1645
1646 ret = -EFAULT;
1647 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1648 goto out;
1649
1650 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1651 if (ret)
1652 goto out;
1653
1654 range.start = uffdio_wake.start;
1655 range.len = uffdio_wake.len;
1656
1657 /*
1658 * len == 0 means wake all and we don't want to wake all here,
1659 * so check it again to be sure.
1660 */
1661 VM_BUG_ON(!range.len);
1662
1663 wake_userfault(ctx, &range);
1664 ret = 0;
1665
1666 out:
1667 return ret;
1668 }
1669
1670 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1671 unsigned long arg)
1672 {
1673 __s64 ret;
1674 struct uffdio_copy uffdio_copy;
1675 struct uffdio_copy __user *user_uffdio_copy;
1676 struct userfaultfd_wake_range range;
1677
1678 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1679
1680 ret = -EFAULT;
1681 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1682 /* don't copy "copy" last field */
1683 sizeof(uffdio_copy)-sizeof(__s64)))
1684 goto out;
1685
1686 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1687 if (ret)
1688 goto out;
1689 /*
1690 * double check for wraparound just in case. copy_from_user()
1691 * will later check uffdio_copy.src + uffdio_copy.len to fit
1692 * in the userland range.
1693 */
1694 ret = -EINVAL;
1695 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1696 goto out;
1697 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1698 goto out;
1699 if (mmget_not_zero(ctx->mm)) {
1700 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1701 uffdio_copy.len);
1702 mmput(ctx->mm);
1703 } else {
1704 return -ESRCH;
1705 }
1706 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1707 return -EFAULT;
1708 if (ret < 0)
1709 goto out;
1710 BUG_ON(!ret);
1711 /* len == 0 would wake all */
1712 range.len = ret;
1713 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1714 range.start = uffdio_copy.dst;
1715 wake_userfault(ctx, &range);
1716 }
1717 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1718 out:
1719 return ret;
1720 }
1721
1722 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1723 unsigned long arg)
1724 {
1725 __s64 ret;
1726 struct uffdio_zeropage uffdio_zeropage;
1727 struct uffdio_zeropage __user *user_uffdio_zeropage;
1728 struct userfaultfd_wake_range range;
1729
1730 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1731
1732 ret = -EFAULT;
1733 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1734 /* don't copy "zeropage" last field */
1735 sizeof(uffdio_zeropage)-sizeof(__s64)))
1736 goto out;
1737
1738 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1739 uffdio_zeropage.range.len);
1740 if (ret)
1741 goto out;
1742 ret = -EINVAL;
1743 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1744 goto out;
1745
1746 if (mmget_not_zero(ctx->mm)) {
1747 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1748 uffdio_zeropage.range.len);
1749 mmput(ctx->mm);
1750 } else {
1751 return -ESRCH;
1752 }
1753 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1754 return -EFAULT;
1755 if (ret < 0)
1756 goto out;
1757 /* len == 0 would wake all */
1758 BUG_ON(!ret);
1759 range.len = ret;
1760 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1761 range.start = uffdio_zeropage.range.start;
1762 wake_userfault(ctx, &range);
1763 }
1764 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1765 out:
1766 return ret;
1767 }
1768
1769 static inline unsigned int uffd_ctx_features(__u64 user_features)
1770 {
1771 /*
1772 * For the current set of features the bits just coincide
1773 */
1774 return (unsigned int)user_features;
1775 }
1776
1777 /*
1778 * userland asks for a certain API version and we return which bits
1779 * and ioctl commands are implemented in this kernel for such API
1780 * version or -EINVAL if unknown.
1781 */
1782 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1783 unsigned long arg)
1784 {
1785 struct uffdio_api uffdio_api;
1786 void __user *buf = (void __user *)arg;
1787 int ret;
1788 __u64 features;
1789
1790 ret = -EINVAL;
1791 if (ctx->state != UFFD_STATE_WAIT_API)
1792 goto out;
1793 ret = -EFAULT;
1794 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1795 goto out;
1796 features = uffdio_api.features;
1797 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1798 memset(&uffdio_api, 0, sizeof(uffdio_api));
1799 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1800 goto out;
1801 ret = -EINVAL;
1802 goto out;
1803 }
1804 /* report all available features and ioctls to userland */
1805 uffdio_api.features = UFFD_API_FEATURES;
1806 uffdio_api.ioctls = UFFD_API_IOCTLS;
1807 ret = -EFAULT;
1808 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1809 goto out;
1810 ctx->state = UFFD_STATE_RUNNING;
1811 /* only enable the requested features for this uffd context */
1812 ctx->features = uffd_ctx_features(features);
1813 ret = 0;
1814 out:
1815 return ret;
1816 }
1817
1818 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1819 unsigned long arg)
1820 {
1821 int ret = -EINVAL;
1822 struct userfaultfd_ctx *ctx = file->private_data;
1823
1824 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1825 return -EINVAL;
1826
1827 switch(cmd) {
1828 case UFFDIO_API:
1829 ret = userfaultfd_api(ctx, arg);
1830 break;
1831 case UFFDIO_REGISTER:
1832 ret = userfaultfd_register(ctx, arg);
1833 break;
1834 case UFFDIO_UNREGISTER:
1835 ret = userfaultfd_unregister(ctx, arg);
1836 break;
1837 case UFFDIO_WAKE:
1838 ret = userfaultfd_wake(ctx, arg);
1839 break;
1840 case UFFDIO_COPY:
1841 ret = userfaultfd_copy(ctx, arg);
1842 break;
1843 case UFFDIO_ZEROPAGE:
1844 ret = userfaultfd_zeropage(ctx, arg);
1845 break;
1846 }
1847 return ret;
1848 }
1849
1850 #ifdef CONFIG_PROC_FS
1851 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1852 {
1853 struct userfaultfd_ctx *ctx = f->private_data;
1854 wait_queue_entry_t *wq;
1855 struct userfaultfd_wait_queue *uwq;
1856 unsigned long pending = 0, total = 0;
1857
1858 spin_lock(&ctx->fault_pending_wqh.lock);
1859 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1860 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1861 pending++;
1862 total++;
1863 }
1864 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1865 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1866 total++;
1867 }
1868 spin_unlock(&ctx->fault_pending_wqh.lock);
1869
1870 /*
1871 * If more protocols will be added, there will be all shown
1872 * separated by a space. Like this:
1873 * protocols: aa:... bb:...
1874 */
1875 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1876 pending, total, UFFD_API, ctx->features,
1877 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1878 }
1879 #endif
1880
1881 static const struct file_operations userfaultfd_fops = {
1882 #ifdef CONFIG_PROC_FS
1883 .show_fdinfo = userfaultfd_show_fdinfo,
1884 #endif
1885 .release = userfaultfd_release,
1886 .poll = userfaultfd_poll,
1887 .read = userfaultfd_read,
1888 .unlocked_ioctl = userfaultfd_ioctl,
1889 .compat_ioctl = userfaultfd_ioctl,
1890 .llseek = noop_llseek,
1891 };
1892
1893 static void init_once_userfaultfd_ctx(void *mem)
1894 {
1895 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1896
1897 init_waitqueue_head(&ctx->fault_pending_wqh);
1898 init_waitqueue_head(&ctx->fault_wqh);
1899 init_waitqueue_head(&ctx->event_wqh);
1900 init_waitqueue_head(&ctx->fd_wqh);
1901 seqcount_init(&ctx->refile_seq);
1902 }
1903
1904 /**
1905 * userfaultfd_file_create - Creates a userfaultfd file pointer.
1906 * @flags: Flags for the userfaultfd file.
1907 *
1908 * This function creates a userfaultfd file pointer, w/out installing
1909 * it into the fd table. This is useful when the userfaultfd file is
1910 * used during the initialization of data structures that require
1911 * extra setup after the userfaultfd creation. So the userfaultfd
1912 * creation is split into the file pointer creation phase, and the
1913 * file descriptor installation phase. In this way races with
1914 * userspace closing the newly installed file descriptor can be
1915 * avoided. Returns a userfaultfd file pointer, or a proper error
1916 * pointer.
1917 */
1918 static struct file *userfaultfd_file_create(int flags)
1919 {
1920 struct file *file;
1921 struct userfaultfd_ctx *ctx;
1922
1923 BUG_ON(!current->mm);
1924
1925 /* Check the UFFD_* constants for consistency. */
1926 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1927 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1928
1929 file = ERR_PTR(-EINVAL);
1930 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1931 goto out;
1932
1933 file = ERR_PTR(-ENOMEM);
1934 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1935 if (!ctx)
1936 goto out;
1937
1938 atomic_set(&ctx->refcount, 1);
1939 ctx->flags = flags;
1940 ctx->features = 0;
1941 ctx->state = UFFD_STATE_WAIT_API;
1942 ctx->released = false;
1943 ctx->mm = current->mm;
1944 /* prevent the mm struct to be freed */
1945 mmgrab(ctx->mm);
1946
1947 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1948 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1949 if (IS_ERR(file)) {
1950 mmdrop(ctx->mm);
1951 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1952 }
1953 out:
1954 return file;
1955 }
1956
1957 SYSCALL_DEFINE1(userfaultfd, int, flags)
1958 {
1959 int fd, error;
1960 struct file *file;
1961
1962 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1963 if (error < 0)
1964 return error;
1965 fd = error;
1966
1967 file = userfaultfd_file_create(flags);
1968 if (IS_ERR(file)) {
1969 error = PTR_ERR(file);
1970 goto err_put_unused_fd;
1971 }
1972 fd_install(fd, file);
1973
1974 return fd;
1975
1976 err_put_unused_fd:
1977 put_unused_fd(fd);
1978
1979 return error;
1980 }
1981
1982 static int __init userfaultfd_init(void)
1983 {
1984 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1985 sizeof(struct userfaultfd_ctx),
1986 0,
1987 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1988 init_once_userfaultfd_ctx);
1989 return 0;
1990 }
1991 __initcall(userfaultfd_init);