]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/userfaultfd.c
Merge tag 'for-linus-5.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rw...
[mirror_ubuntu-jammy-kernel.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30
31 int sysctl_unprivileged_userfaultfd __read_mostly = 1;
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38 };
39
40 /*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 *
44 * Locking order:
45 * fd_wqh.lock
46 * fault_pending_wqh.lock
47 * fault_wqh.lock
48 * event_wqh.lock
49 *
50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52 * also taken in IRQ context.
53 */
54 struct userfaultfd_ctx {
55 /* waitqueue head for the pending (i.e. not read) userfaults */
56 wait_queue_head_t fault_pending_wqh;
57 /* waitqueue head for the userfaults */
58 wait_queue_head_t fault_wqh;
59 /* waitqueue head for the pseudo fd to wakeup poll/read */
60 wait_queue_head_t fd_wqh;
61 /* waitqueue head for events */
62 wait_queue_head_t event_wqh;
63 /* a refile sequence protected by fault_pending_wqh lock */
64 struct seqcount refile_seq;
65 /* pseudo fd refcounting */
66 refcount_t refcount;
67 /* userfaultfd syscall flags */
68 unsigned int flags;
69 /* features requested from the userspace */
70 unsigned int features;
71 /* state machine */
72 enum userfaultfd_state state;
73 /* released */
74 bool released;
75 /* memory mappings are changing because of non-cooperative event */
76 bool mmap_changing;
77 /* mm with one ore more vmas attached to this userfaultfd_ctx */
78 struct mm_struct *mm;
79 };
80
81 struct userfaultfd_fork_ctx {
82 struct userfaultfd_ctx *orig;
83 struct userfaultfd_ctx *new;
84 struct list_head list;
85 };
86
87 struct userfaultfd_unmap_ctx {
88 struct userfaultfd_ctx *ctx;
89 unsigned long start;
90 unsigned long end;
91 struct list_head list;
92 };
93
94 struct userfaultfd_wait_queue {
95 struct uffd_msg msg;
96 wait_queue_entry_t wq;
97 struct userfaultfd_ctx *ctx;
98 bool waken;
99 };
100
101 struct userfaultfd_wake_range {
102 unsigned long start;
103 unsigned long len;
104 };
105
106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
107 int wake_flags, void *key)
108 {
109 struct userfaultfd_wake_range *range = key;
110 int ret;
111 struct userfaultfd_wait_queue *uwq;
112 unsigned long start, len;
113
114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115 ret = 0;
116 /* len == 0 means wake all */
117 start = range->start;
118 len = range->len;
119 if (len && (start > uwq->msg.arg.pagefault.address ||
120 start + len <= uwq->msg.arg.pagefault.address))
121 goto out;
122 WRITE_ONCE(uwq->waken, true);
123 /*
124 * The Program-Order guarantees provided by the scheduler
125 * ensure uwq->waken is visible before the task is woken.
126 */
127 ret = wake_up_state(wq->private, mode);
128 if (ret) {
129 /*
130 * Wake only once, autoremove behavior.
131 *
132 * After the effect of list_del_init is visible to the other
133 * CPUs, the waitqueue may disappear from under us, see the
134 * !list_empty_careful() in handle_userfault().
135 *
136 * try_to_wake_up() has an implicit smp_mb(), and the
137 * wq->private is read before calling the extern function
138 * "wake_up_state" (which in turns calls try_to_wake_up).
139 */
140 list_del_init(&wq->entry);
141 }
142 out:
143 return ret;
144 }
145
146 /**
147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148 * context.
149 * @ctx: [in] Pointer to the userfaultfd context.
150 */
151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
152 {
153 refcount_inc(&ctx->refcount);
154 }
155
156 /**
157 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
158 * context.
159 * @ctx: [in] Pointer to userfaultfd context.
160 *
161 * The userfaultfd context reference must have been previously acquired either
162 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
163 */
164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
165 {
166 if (refcount_dec_and_test(&ctx->refcount)) {
167 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
168 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
169 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
170 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
171 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
172 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
173 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
174 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
175 mmdrop(ctx->mm);
176 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
177 }
178 }
179
180 static inline void msg_init(struct uffd_msg *msg)
181 {
182 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
183 /*
184 * Must use memset to zero out the paddings or kernel data is
185 * leaked to userland.
186 */
187 memset(msg, 0, sizeof(struct uffd_msg));
188 }
189
190 static inline struct uffd_msg userfault_msg(unsigned long address,
191 unsigned int flags,
192 unsigned long reason,
193 unsigned int features)
194 {
195 struct uffd_msg msg;
196 msg_init(&msg);
197 msg.event = UFFD_EVENT_PAGEFAULT;
198 msg.arg.pagefault.address = address;
199 if (flags & FAULT_FLAG_WRITE)
200 /*
201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204 * was a read fault, otherwise if set it means it's
205 * a write fault.
206 */
207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
208 if (reason & VM_UFFD_WP)
209 /*
210 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213 * a missing fault, otherwise if set it means it's a
214 * write protect fault.
215 */
216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
217 if (features & UFFD_FEATURE_THREAD_ID)
218 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
219 return msg;
220 }
221
222 #ifdef CONFIG_HUGETLB_PAGE
223 /*
224 * Same functionality as userfaultfd_must_wait below with modifications for
225 * hugepmd ranges.
226 */
227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
228 struct vm_area_struct *vma,
229 unsigned long address,
230 unsigned long flags,
231 unsigned long reason)
232 {
233 struct mm_struct *mm = ctx->mm;
234 pte_t *ptep, pte;
235 bool ret = true;
236
237 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
238
239 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
240
241 if (!ptep)
242 goto out;
243
244 ret = false;
245 pte = huge_ptep_get(ptep);
246
247 /*
248 * Lockless access: we're in a wait_event so it's ok if it
249 * changes under us.
250 */
251 if (huge_pte_none(pte))
252 ret = true;
253 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
254 ret = true;
255 out:
256 return ret;
257 }
258 #else
259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
260 struct vm_area_struct *vma,
261 unsigned long address,
262 unsigned long flags,
263 unsigned long reason)
264 {
265 return false; /* should never get here */
266 }
267 #endif /* CONFIG_HUGETLB_PAGE */
268
269 /*
270 * Verify the pagetables are still not ok after having reigstered into
271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272 * userfault that has already been resolved, if userfaultfd_read and
273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274 * threads.
275 */
276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277 unsigned long address,
278 unsigned long flags,
279 unsigned long reason)
280 {
281 struct mm_struct *mm = ctx->mm;
282 pgd_t *pgd;
283 p4d_t *p4d;
284 pud_t *pud;
285 pmd_t *pmd, _pmd;
286 pte_t *pte;
287 bool ret = true;
288
289 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
290
291 pgd = pgd_offset(mm, address);
292 if (!pgd_present(*pgd))
293 goto out;
294 p4d = p4d_offset(pgd, address);
295 if (!p4d_present(*p4d))
296 goto out;
297 pud = pud_offset(p4d, address);
298 if (!pud_present(*pud))
299 goto out;
300 pmd = pmd_offset(pud, address);
301 /*
302 * READ_ONCE must function as a barrier with narrower scope
303 * and it must be equivalent to:
304 * _pmd = *pmd; barrier();
305 *
306 * This is to deal with the instability (as in
307 * pmd_trans_unstable) of the pmd.
308 */
309 _pmd = READ_ONCE(*pmd);
310 if (pmd_none(_pmd))
311 goto out;
312
313 ret = false;
314 if (!pmd_present(_pmd))
315 goto out;
316
317 if (pmd_trans_huge(_pmd))
318 goto out;
319
320 /*
321 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
322 * and use the standard pte_offset_map() instead of parsing _pmd.
323 */
324 pte = pte_offset_map(pmd, address);
325 /*
326 * Lockless access: we're in a wait_event so it's ok if it
327 * changes under us.
328 */
329 if (pte_none(*pte))
330 ret = true;
331 pte_unmap(pte);
332
333 out:
334 return ret;
335 }
336
337 /* Should pair with userfaultfd_signal_pending() */
338 static inline long userfaultfd_get_blocking_state(unsigned int flags)
339 {
340 if (flags & FAULT_FLAG_INTERRUPTIBLE)
341 return TASK_INTERRUPTIBLE;
342
343 if (flags & FAULT_FLAG_KILLABLE)
344 return TASK_KILLABLE;
345
346 return TASK_UNINTERRUPTIBLE;
347 }
348
349 /* Should pair with userfaultfd_get_blocking_state() */
350 static inline bool userfaultfd_signal_pending(unsigned int flags)
351 {
352 if (flags & FAULT_FLAG_INTERRUPTIBLE)
353 return signal_pending(current);
354
355 if (flags & FAULT_FLAG_KILLABLE)
356 return fatal_signal_pending(current);
357
358 return false;
359 }
360
361 /*
362 * The locking rules involved in returning VM_FAULT_RETRY depending on
363 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
364 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
365 * recommendation in __lock_page_or_retry is not an understatement.
366 *
367 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
368 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
369 * not set.
370 *
371 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
372 * set, VM_FAULT_RETRY can still be returned if and only if there are
373 * fatal_signal_pending()s, and the mmap_sem must be released before
374 * returning it.
375 */
376 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
377 {
378 struct mm_struct *mm = vmf->vma->vm_mm;
379 struct userfaultfd_ctx *ctx;
380 struct userfaultfd_wait_queue uwq;
381 vm_fault_t ret = VM_FAULT_SIGBUS;
382 bool must_wait;
383 long blocking_state;
384
385 /*
386 * We don't do userfault handling for the final child pid update.
387 *
388 * We also don't do userfault handling during
389 * coredumping. hugetlbfs has the special
390 * follow_hugetlb_page() to skip missing pages in the
391 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
392 * the no_page_table() helper in follow_page_mask(), but the
393 * shmem_vm_ops->fault method is invoked even during
394 * coredumping without mmap_sem and it ends up here.
395 */
396 if (current->flags & (PF_EXITING|PF_DUMPCORE))
397 goto out;
398
399 /*
400 * Coredumping runs without mmap_sem so we can only check that
401 * the mmap_sem is held, if PF_DUMPCORE was not set.
402 */
403 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
404
405 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
406 if (!ctx)
407 goto out;
408
409 BUG_ON(ctx->mm != mm);
410
411 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
412 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
413
414 if (ctx->features & UFFD_FEATURE_SIGBUS)
415 goto out;
416
417 /*
418 * If it's already released don't get it. This avoids to loop
419 * in __get_user_pages if userfaultfd_release waits on the
420 * caller of handle_userfault to release the mmap_sem.
421 */
422 if (unlikely(READ_ONCE(ctx->released))) {
423 /*
424 * Don't return VM_FAULT_SIGBUS in this case, so a non
425 * cooperative manager can close the uffd after the
426 * last UFFDIO_COPY, without risking to trigger an
427 * involuntary SIGBUS if the process was starting the
428 * userfaultfd while the userfaultfd was still armed
429 * (but after the last UFFDIO_COPY). If the uffd
430 * wasn't already closed when the userfault reached
431 * this point, that would normally be solved by
432 * userfaultfd_must_wait returning 'false'.
433 *
434 * If we were to return VM_FAULT_SIGBUS here, the non
435 * cooperative manager would be instead forced to
436 * always call UFFDIO_UNREGISTER before it can safely
437 * close the uffd.
438 */
439 ret = VM_FAULT_NOPAGE;
440 goto out;
441 }
442
443 /*
444 * Check that we can return VM_FAULT_RETRY.
445 *
446 * NOTE: it should become possible to return VM_FAULT_RETRY
447 * even if FAULT_FLAG_TRIED is set without leading to gup()
448 * -EBUSY failures, if the userfaultfd is to be extended for
449 * VM_UFFD_WP tracking and we intend to arm the userfault
450 * without first stopping userland access to the memory. For
451 * VM_UFFD_MISSING userfaults this is enough for now.
452 */
453 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
454 /*
455 * Validate the invariant that nowait must allow retry
456 * to be sure not to return SIGBUS erroneously on
457 * nowait invocations.
458 */
459 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
460 #ifdef CONFIG_DEBUG_VM
461 if (printk_ratelimit()) {
462 printk(KERN_WARNING
463 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
464 vmf->flags);
465 dump_stack();
466 }
467 #endif
468 goto out;
469 }
470
471 /*
472 * Handle nowait, not much to do other than tell it to retry
473 * and wait.
474 */
475 ret = VM_FAULT_RETRY;
476 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
477 goto out;
478
479 /* take the reference before dropping the mmap_sem */
480 userfaultfd_ctx_get(ctx);
481
482 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
483 uwq.wq.private = current;
484 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
485 ctx->features);
486 uwq.ctx = ctx;
487 uwq.waken = false;
488
489 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
490
491 spin_lock_irq(&ctx->fault_pending_wqh.lock);
492 /*
493 * After the __add_wait_queue the uwq is visible to userland
494 * through poll/read().
495 */
496 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
497 /*
498 * The smp_mb() after __set_current_state prevents the reads
499 * following the spin_unlock to happen before the list_add in
500 * __add_wait_queue.
501 */
502 set_current_state(blocking_state);
503 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
504
505 if (!is_vm_hugetlb_page(vmf->vma))
506 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
507 reason);
508 else
509 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
510 vmf->address,
511 vmf->flags, reason);
512 up_read(&mm->mmap_sem);
513
514 if (likely(must_wait && !READ_ONCE(ctx->released) &&
515 !userfaultfd_signal_pending(vmf->flags))) {
516 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
517 schedule();
518 ret |= VM_FAULT_MAJOR;
519
520 /*
521 * False wakeups can orginate even from rwsem before
522 * up_read() however userfaults will wait either for a
523 * targeted wakeup on the specific uwq waitqueue from
524 * wake_userfault() or for signals or for uffd
525 * release.
526 */
527 while (!READ_ONCE(uwq.waken)) {
528 /*
529 * This needs the full smp_store_mb()
530 * guarantee as the state write must be
531 * visible to other CPUs before reading
532 * uwq.waken from other CPUs.
533 */
534 set_current_state(blocking_state);
535 if (READ_ONCE(uwq.waken) ||
536 READ_ONCE(ctx->released) ||
537 userfaultfd_signal_pending(vmf->flags))
538 break;
539 schedule();
540 }
541 }
542
543 __set_current_state(TASK_RUNNING);
544
545 /*
546 * Here we race with the list_del; list_add in
547 * userfaultfd_ctx_read(), however because we don't ever run
548 * list_del_init() to refile across the two lists, the prev
549 * and next pointers will never point to self. list_add also
550 * would never let any of the two pointers to point to
551 * self. So list_empty_careful won't risk to see both pointers
552 * pointing to self at any time during the list refile. The
553 * only case where list_del_init() is called is the full
554 * removal in the wake function and there we don't re-list_add
555 * and it's fine not to block on the spinlock. The uwq on this
556 * kernel stack can be released after the list_del_init.
557 */
558 if (!list_empty_careful(&uwq.wq.entry)) {
559 spin_lock_irq(&ctx->fault_pending_wqh.lock);
560 /*
561 * No need of list_del_init(), the uwq on the stack
562 * will be freed shortly anyway.
563 */
564 list_del(&uwq.wq.entry);
565 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
566 }
567
568 /*
569 * ctx may go away after this if the userfault pseudo fd is
570 * already released.
571 */
572 userfaultfd_ctx_put(ctx);
573
574 out:
575 return ret;
576 }
577
578 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
579 struct userfaultfd_wait_queue *ewq)
580 {
581 struct userfaultfd_ctx *release_new_ctx;
582
583 if (WARN_ON_ONCE(current->flags & PF_EXITING))
584 goto out;
585
586 ewq->ctx = ctx;
587 init_waitqueue_entry(&ewq->wq, current);
588 release_new_ctx = NULL;
589
590 spin_lock_irq(&ctx->event_wqh.lock);
591 /*
592 * After the __add_wait_queue the uwq is visible to userland
593 * through poll/read().
594 */
595 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
596 for (;;) {
597 set_current_state(TASK_KILLABLE);
598 if (ewq->msg.event == 0)
599 break;
600 if (READ_ONCE(ctx->released) ||
601 fatal_signal_pending(current)) {
602 /*
603 * &ewq->wq may be queued in fork_event, but
604 * __remove_wait_queue ignores the head
605 * parameter. It would be a problem if it
606 * didn't.
607 */
608 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
609 if (ewq->msg.event == UFFD_EVENT_FORK) {
610 struct userfaultfd_ctx *new;
611
612 new = (struct userfaultfd_ctx *)
613 (unsigned long)
614 ewq->msg.arg.reserved.reserved1;
615 release_new_ctx = new;
616 }
617 break;
618 }
619
620 spin_unlock_irq(&ctx->event_wqh.lock);
621
622 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
623 schedule();
624
625 spin_lock_irq(&ctx->event_wqh.lock);
626 }
627 __set_current_state(TASK_RUNNING);
628 spin_unlock_irq(&ctx->event_wqh.lock);
629
630 if (release_new_ctx) {
631 struct vm_area_struct *vma;
632 struct mm_struct *mm = release_new_ctx->mm;
633
634 /* the various vma->vm_userfaultfd_ctx still points to it */
635 down_write(&mm->mmap_sem);
636 /* no task can run (and in turn coredump) yet */
637 VM_WARN_ON(!mmget_still_valid(mm));
638 for (vma = mm->mmap; vma; vma = vma->vm_next)
639 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
640 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
641 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
642 }
643 up_write(&mm->mmap_sem);
644
645 userfaultfd_ctx_put(release_new_ctx);
646 }
647
648 /*
649 * ctx may go away after this if the userfault pseudo fd is
650 * already released.
651 */
652 out:
653 WRITE_ONCE(ctx->mmap_changing, false);
654 userfaultfd_ctx_put(ctx);
655 }
656
657 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
658 struct userfaultfd_wait_queue *ewq)
659 {
660 ewq->msg.event = 0;
661 wake_up_locked(&ctx->event_wqh);
662 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
663 }
664
665 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
666 {
667 struct userfaultfd_ctx *ctx = NULL, *octx;
668 struct userfaultfd_fork_ctx *fctx;
669
670 octx = vma->vm_userfaultfd_ctx.ctx;
671 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
672 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
673 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
674 return 0;
675 }
676
677 list_for_each_entry(fctx, fcs, list)
678 if (fctx->orig == octx) {
679 ctx = fctx->new;
680 break;
681 }
682
683 if (!ctx) {
684 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
685 if (!fctx)
686 return -ENOMEM;
687
688 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
689 if (!ctx) {
690 kfree(fctx);
691 return -ENOMEM;
692 }
693
694 refcount_set(&ctx->refcount, 1);
695 ctx->flags = octx->flags;
696 ctx->state = UFFD_STATE_RUNNING;
697 ctx->features = octx->features;
698 ctx->released = false;
699 ctx->mmap_changing = false;
700 ctx->mm = vma->vm_mm;
701 mmgrab(ctx->mm);
702
703 userfaultfd_ctx_get(octx);
704 WRITE_ONCE(octx->mmap_changing, true);
705 fctx->orig = octx;
706 fctx->new = ctx;
707 list_add_tail(&fctx->list, fcs);
708 }
709
710 vma->vm_userfaultfd_ctx.ctx = ctx;
711 return 0;
712 }
713
714 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
715 {
716 struct userfaultfd_ctx *ctx = fctx->orig;
717 struct userfaultfd_wait_queue ewq;
718
719 msg_init(&ewq.msg);
720
721 ewq.msg.event = UFFD_EVENT_FORK;
722 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
723
724 userfaultfd_event_wait_completion(ctx, &ewq);
725 }
726
727 void dup_userfaultfd_complete(struct list_head *fcs)
728 {
729 struct userfaultfd_fork_ctx *fctx, *n;
730
731 list_for_each_entry_safe(fctx, n, fcs, list) {
732 dup_fctx(fctx);
733 list_del(&fctx->list);
734 kfree(fctx);
735 }
736 }
737
738 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
739 struct vm_userfaultfd_ctx *vm_ctx)
740 {
741 struct userfaultfd_ctx *ctx;
742
743 ctx = vma->vm_userfaultfd_ctx.ctx;
744
745 if (!ctx)
746 return;
747
748 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
749 vm_ctx->ctx = ctx;
750 userfaultfd_ctx_get(ctx);
751 WRITE_ONCE(ctx->mmap_changing, true);
752 } else {
753 /* Drop uffd context if remap feature not enabled */
754 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
755 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
756 }
757 }
758
759 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
760 unsigned long from, unsigned long to,
761 unsigned long len)
762 {
763 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
764 struct userfaultfd_wait_queue ewq;
765
766 if (!ctx)
767 return;
768
769 if (to & ~PAGE_MASK) {
770 userfaultfd_ctx_put(ctx);
771 return;
772 }
773
774 msg_init(&ewq.msg);
775
776 ewq.msg.event = UFFD_EVENT_REMAP;
777 ewq.msg.arg.remap.from = from;
778 ewq.msg.arg.remap.to = to;
779 ewq.msg.arg.remap.len = len;
780
781 userfaultfd_event_wait_completion(ctx, &ewq);
782 }
783
784 bool userfaultfd_remove(struct vm_area_struct *vma,
785 unsigned long start, unsigned long end)
786 {
787 struct mm_struct *mm = vma->vm_mm;
788 struct userfaultfd_ctx *ctx;
789 struct userfaultfd_wait_queue ewq;
790
791 ctx = vma->vm_userfaultfd_ctx.ctx;
792 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
793 return true;
794
795 userfaultfd_ctx_get(ctx);
796 WRITE_ONCE(ctx->mmap_changing, true);
797 up_read(&mm->mmap_sem);
798
799 msg_init(&ewq.msg);
800
801 ewq.msg.event = UFFD_EVENT_REMOVE;
802 ewq.msg.arg.remove.start = start;
803 ewq.msg.arg.remove.end = end;
804
805 userfaultfd_event_wait_completion(ctx, &ewq);
806
807 return false;
808 }
809
810 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
811 unsigned long start, unsigned long end)
812 {
813 struct userfaultfd_unmap_ctx *unmap_ctx;
814
815 list_for_each_entry(unmap_ctx, unmaps, list)
816 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
817 unmap_ctx->end == end)
818 return true;
819
820 return false;
821 }
822
823 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
824 unsigned long start, unsigned long end,
825 struct list_head *unmaps)
826 {
827 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
828 struct userfaultfd_unmap_ctx *unmap_ctx;
829 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
830
831 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
832 has_unmap_ctx(ctx, unmaps, start, end))
833 continue;
834
835 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
836 if (!unmap_ctx)
837 return -ENOMEM;
838
839 userfaultfd_ctx_get(ctx);
840 WRITE_ONCE(ctx->mmap_changing, true);
841 unmap_ctx->ctx = ctx;
842 unmap_ctx->start = start;
843 unmap_ctx->end = end;
844 list_add_tail(&unmap_ctx->list, unmaps);
845 }
846
847 return 0;
848 }
849
850 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
851 {
852 struct userfaultfd_unmap_ctx *ctx, *n;
853 struct userfaultfd_wait_queue ewq;
854
855 list_for_each_entry_safe(ctx, n, uf, list) {
856 msg_init(&ewq.msg);
857
858 ewq.msg.event = UFFD_EVENT_UNMAP;
859 ewq.msg.arg.remove.start = ctx->start;
860 ewq.msg.arg.remove.end = ctx->end;
861
862 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
863
864 list_del(&ctx->list);
865 kfree(ctx);
866 }
867 }
868
869 static int userfaultfd_release(struct inode *inode, struct file *file)
870 {
871 struct userfaultfd_ctx *ctx = file->private_data;
872 struct mm_struct *mm = ctx->mm;
873 struct vm_area_struct *vma, *prev;
874 /* len == 0 means wake all */
875 struct userfaultfd_wake_range range = { .len = 0, };
876 unsigned long new_flags;
877 bool still_valid;
878
879 WRITE_ONCE(ctx->released, true);
880
881 if (!mmget_not_zero(mm))
882 goto wakeup;
883
884 /*
885 * Flush page faults out of all CPUs. NOTE: all page faults
886 * must be retried without returning VM_FAULT_SIGBUS if
887 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
888 * changes while handle_userfault released the mmap_sem. So
889 * it's critical that released is set to true (above), before
890 * taking the mmap_sem for writing.
891 */
892 down_write(&mm->mmap_sem);
893 still_valid = mmget_still_valid(mm);
894 prev = NULL;
895 for (vma = mm->mmap; vma; vma = vma->vm_next) {
896 cond_resched();
897 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
898 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
899 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
900 prev = vma;
901 continue;
902 }
903 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
904 if (still_valid) {
905 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
906 new_flags, vma->anon_vma,
907 vma->vm_file, vma->vm_pgoff,
908 vma_policy(vma),
909 NULL_VM_UFFD_CTX);
910 if (prev)
911 vma = prev;
912 else
913 prev = vma;
914 }
915 vma->vm_flags = new_flags;
916 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
917 }
918 up_write(&mm->mmap_sem);
919 mmput(mm);
920 wakeup:
921 /*
922 * After no new page faults can wait on this fault_*wqh, flush
923 * the last page faults that may have been already waiting on
924 * the fault_*wqh.
925 */
926 spin_lock_irq(&ctx->fault_pending_wqh.lock);
927 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
928 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
929 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
930
931 /* Flush pending events that may still wait on event_wqh */
932 wake_up_all(&ctx->event_wqh);
933
934 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
935 userfaultfd_ctx_put(ctx);
936 return 0;
937 }
938
939 /* fault_pending_wqh.lock must be hold by the caller */
940 static inline struct userfaultfd_wait_queue *find_userfault_in(
941 wait_queue_head_t *wqh)
942 {
943 wait_queue_entry_t *wq;
944 struct userfaultfd_wait_queue *uwq;
945
946 lockdep_assert_held(&wqh->lock);
947
948 uwq = NULL;
949 if (!waitqueue_active(wqh))
950 goto out;
951 /* walk in reverse to provide FIFO behavior to read userfaults */
952 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
953 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
954 out:
955 return uwq;
956 }
957
958 static inline struct userfaultfd_wait_queue *find_userfault(
959 struct userfaultfd_ctx *ctx)
960 {
961 return find_userfault_in(&ctx->fault_pending_wqh);
962 }
963
964 static inline struct userfaultfd_wait_queue *find_userfault_evt(
965 struct userfaultfd_ctx *ctx)
966 {
967 return find_userfault_in(&ctx->event_wqh);
968 }
969
970 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
971 {
972 struct userfaultfd_ctx *ctx = file->private_data;
973 __poll_t ret;
974
975 poll_wait(file, &ctx->fd_wqh, wait);
976
977 switch (ctx->state) {
978 case UFFD_STATE_WAIT_API:
979 return EPOLLERR;
980 case UFFD_STATE_RUNNING:
981 /*
982 * poll() never guarantees that read won't block.
983 * userfaults can be waken before they're read().
984 */
985 if (unlikely(!(file->f_flags & O_NONBLOCK)))
986 return EPOLLERR;
987 /*
988 * lockless access to see if there are pending faults
989 * __pollwait last action is the add_wait_queue but
990 * the spin_unlock would allow the waitqueue_active to
991 * pass above the actual list_add inside
992 * add_wait_queue critical section. So use a full
993 * memory barrier to serialize the list_add write of
994 * add_wait_queue() with the waitqueue_active read
995 * below.
996 */
997 ret = 0;
998 smp_mb();
999 if (waitqueue_active(&ctx->fault_pending_wqh))
1000 ret = EPOLLIN;
1001 else if (waitqueue_active(&ctx->event_wqh))
1002 ret = EPOLLIN;
1003
1004 return ret;
1005 default:
1006 WARN_ON_ONCE(1);
1007 return EPOLLERR;
1008 }
1009 }
1010
1011 static const struct file_operations userfaultfd_fops;
1012
1013 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1014 struct userfaultfd_ctx *new,
1015 struct uffd_msg *msg)
1016 {
1017 int fd;
1018
1019 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1020 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1021 if (fd < 0)
1022 return fd;
1023
1024 msg->arg.reserved.reserved1 = 0;
1025 msg->arg.fork.ufd = fd;
1026 return 0;
1027 }
1028
1029 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1030 struct uffd_msg *msg)
1031 {
1032 ssize_t ret;
1033 DECLARE_WAITQUEUE(wait, current);
1034 struct userfaultfd_wait_queue *uwq;
1035 /*
1036 * Handling fork event requires sleeping operations, so
1037 * we drop the event_wqh lock, then do these ops, then
1038 * lock it back and wake up the waiter. While the lock is
1039 * dropped the ewq may go away so we keep track of it
1040 * carefully.
1041 */
1042 LIST_HEAD(fork_event);
1043 struct userfaultfd_ctx *fork_nctx = NULL;
1044
1045 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1046 spin_lock_irq(&ctx->fd_wqh.lock);
1047 __add_wait_queue(&ctx->fd_wqh, &wait);
1048 for (;;) {
1049 set_current_state(TASK_INTERRUPTIBLE);
1050 spin_lock(&ctx->fault_pending_wqh.lock);
1051 uwq = find_userfault(ctx);
1052 if (uwq) {
1053 /*
1054 * Use a seqcount to repeat the lockless check
1055 * in wake_userfault() to avoid missing
1056 * wakeups because during the refile both
1057 * waitqueue could become empty if this is the
1058 * only userfault.
1059 */
1060 write_seqcount_begin(&ctx->refile_seq);
1061
1062 /*
1063 * The fault_pending_wqh.lock prevents the uwq
1064 * to disappear from under us.
1065 *
1066 * Refile this userfault from
1067 * fault_pending_wqh to fault_wqh, it's not
1068 * pending anymore after we read it.
1069 *
1070 * Use list_del() by hand (as
1071 * userfaultfd_wake_function also uses
1072 * list_del_init() by hand) to be sure nobody
1073 * changes __remove_wait_queue() to use
1074 * list_del_init() in turn breaking the
1075 * !list_empty_careful() check in
1076 * handle_userfault(). The uwq->wq.head list
1077 * must never be empty at any time during the
1078 * refile, or the waitqueue could disappear
1079 * from under us. The "wait_queue_head_t"
1080 * parameter of __remove_wait_queue() is unused
1081 * anyway.
1082 */
1083 list_del(&uwq->wq.entry);
1084 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1085
1086 write_seqcount_end(&ctx->refile_seq);
1087
1088 /* careful to always initialize msg if ret == 0 */
1089 *msg = uwq->msg;
1090 spin_unlock(&ctx->fault_pending_wqh.lock);
1091 ret = 0;
1092 break;
1093 }
1094 spin_unlock(&ctx->fault_pending_wqh.lock);
1095
1096 spin_lock(&ctx->event_wqh.lock);
1097 uwq = find_userfault_evt(ctx);
1098 if (uwq) {
1099 *msg = uwq->msg;
1100
1101 if (uwq->msg.event == UFFD_EVENT_FORK) {
1102 fork_nctx = (struct userfaultfd_ctx *)
1103 (unsigned long)
1104 uwq->msg.arg.reserved.reserved1;
1105 list_move(&uwq->wq.entry, &fork_event);
1106 /*
1107 * fork_nctx can be freed as soon as
1108 * we drop the lock, unless we take a
1109 * reference on it.
1110 */
1111 userfaultfd_ctx_get(fork_nctx);
1112 spin_unlock(&ctx->event_wqh.lock);
1113 ret = 0;
1114 break;
1115 }
1116
1117 userfaultfd_event_complete(ctx, uwq);
1118 spin_unlock(&ctx->event_wqh.lock);
1119 ret = 0;
1120 break;
1121 }
1122 spin_unlock(&ctx->event_wqh.lock);
1123
1124 if (signal_pending(current)) {
1125 ret = -ERESTARTSYS;
1126 break;
1127 }
1128 if (no_wait) {
1129 ret = -EAGAIN;
1130 break;
1131 }
1132 spin_unlock_irq(&ctx->fd_wqh.lock);
1133 schedule();
1134 spin_lock_irq(&ctx->fd_wqh.lock);
1135 }
1136 __remove_wait_queue(&ctx->fd_wqh, &wait);
1137 __set_current_state(TASK_RUNNING);
1138 spin_unlock_irq(&ctx->fd_wqh.lock);
1139
1140 if (!ret && msg->event == UFFD_EVENT_FORK) {
1141 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1142 spin_lock_irq(&ctx->event_wqh.lock);
1143 if (!list_empty(&fork_event)) {
1144 /*
1145 * The fork thread didn't abort, so we can
1146 * drop the temporary refcount.
1147 */
1148 userfaultfd_ctx_put(fork_nctx);
1149
1150 uwq = list_first_entry(&fork_event,
1151 typeof(*uwq),
1152 wq.entry);
1153 /*
1154 * If fork_event list wasn't empty and in turn
1155 * the event wasn't already released by fork
1156 * (the event is allocated on fork kernel
1157 * stack), put the event back to its place in
1158 * the event_wq. fork_event head will be freed
1159 * as soon as we return so the event cannot
1160 * stay queued there no matter the current
1161 * "ret" value.
1162 */
1163 list_del(&uwq->wq.entry);
1164 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1165
1166 /*
1167 * Leave the event in the waitqueue and report
1168 * error to userland if we failed to resolve
1169 * the userfault fork.
1170 */
1171 if (likely(!ret))
1172 userfaultfd_event_complete(ctx, uwq);
1173 } else {
1174 /*
1175 * Here the fork thread aborted and the
1176 * refcount from the fork thread on fork_nctx
1177 * has already been released. We still hold
1178 * the reference we took before releasing the
1179 * lock above. If resolve_userfault_fork
1180 * failed we've to drop it because the
1181 * fork_nctx has to be freed in such case. If
1182 * it succeeded we'll hold it because the new
1183 * uffd references it.
1184 */
1185 if (ret)
1186 userfaultfd_ctx_put(fork_nctx);
1187 }
1188 spin_unlock_irq(&ctx->event_wqh.lock);
1189 }
1190
1191 return ret;
1192 }
1193
1194 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1195 size_t count, loff_t *ppos)
1196 {
1197 struct userfaultfd_ctx *ctx = file->private_data;
1198 ssize_t _ret, ret = 0;
1199 struct uffd_msg msg;
1200 int no_wait = file->f_flags & O_NONBLOCK;
1201
1202 if (ctx->state == UFFD_STATE_WAIT_API)
1203 return -EINVAL;
1204
1205 for (;;) {
1206 if (count < sizeof(msg))
1207 return ret ? ret : -EINVAL;
1208 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1209 if (_ret < 0)
1210 return ret ? ret : _ret;
1211 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1212 return ret ? ret : -EFAULT;
1213 ret += sizeof(msg);
1214 buf += sizeof(msg);
1215 count -= sizeof(msg);
1216 /*
1217 * Allow to read more than one fault at time but only
1218 * block if waiting for the very first one.
1219 */
1220 no_wait = O_NONBLOCK;
1221 }
1222 }
1223
1224 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1225 struct userfaultfd_wake_range *range)
1226 {
1227 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1228 /* wake all in the range and autoremove */
1229 if (waitqueue_active(&ctx->fault_pending_wqh))
1230 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1231 range);
1232 if (waitqueue_active(&ctx->fault_wqh))
1233 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1234 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1235 }
1236
1237 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1238 struct userfaultfd_wake_range *range)
1239 {
1240 unsigned seq;
1241 bool need_wakeup;
1242
1243 /*
1244 * To be sure waitqueue_active() is not reordered by the CPU
1245 * before the pagetable update, use an explicit SMP memory
1246 * barrier here. PT lock release or up_read(mmap_sem) still
1247 * have release semantics that can allow the
1248 * waitqueue_active() to be reordered before the pte update.
1249 */
1250 smp_mb();
1251
1252 /*
1253 * Use waitqueue_active because it's very frequent to
1254 * change the address space atomically even if there are no
1255 * userfaults yet. So we take the spinlock only when we're
1256 * sure we've userfaults to wake.
1257 */
1258 do {
1259 seq = read_seqcount_begin(&ctx->refile_seq);
1260 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1261 waitqueue_active(&ctx->fault_wqh);
1262 cond_resched();
1263 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1264 if (need_wakeup)
1265 __wake_userfault(ctx, range);
1266 }
1267
1268 static __always_inline int validate_range(struct mm_struct *mm,
1269 __u64 *start, __u64 len)
1270 {
1271 __u64 task_size = mm->task_size;
1272
1273 *start = untagged_addr(*start);
1274
1275 if (*start & ~PAGE_MASK)
1276 return -EINVAL;
1277 if (len & ~PAGE_MASK)
1278 return -EINVAL;
1279 if (!len)
1280 return -EINVAL;
1281 if (*start < mmap_min_addr)
1282 return -EINVAL;
1283 if (*start >= task_size)
1284 return -EINVAL;
1285 if (len > task_size - *start)
1286 return -EINVAL;
1287 return 0;
1288 }
1289
1290 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1291 {
1292 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1293 vma_is_shmem(vma);
1294 }
1295
1296 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1297 unsigned long arg)
1298 {
1299 struct mm_struct *mm = ctx->mm;
1300 struct vm_area_struct *vma, *prev, *cur;
1301 int ret;
1302 struct uffdio_register uffdio_register;
1303 struct uffdio_register __user *user_uffdio_register;
1304 unsigned long vm_flags, new_flags;
1305 bool found;
1306 bool basic_ioctls;
1307 unsigned long start, end, vma_end;
1308
1309 user_uffdio_register = (struct uffdio_register __user *) arg;
1310
1311 ret = -EFAULT;
1312 if (copy_from_user(&uffdio_register, user_uffdio_register,
1313 sizeof(uffdio_register)-sizeof(__u64)))
1314 goto out;
1315
1316 ret = -EINVAL;
1317 if (!uffdio_register.mode)
1318 goto out;
1319 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1320 UFFDIO_REGISTER_MODE_WP))
1321 goto out;
1322 vm_flags = 0;
1323 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1324 vm_flags |= VM_UFFD_MISSING;
1325 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1326 vm_flags |= VM_UFFD_WP;
1327 /*
1328 * FIXME: remove the below error constraint by
1329 * implementing the wprotect tracking mode.
1330 */
1331 ret = -EINVAL;
1332 goto out;
1333 }
1334
1335 ret = validate_range(mm, &uffdio_register.range.start,
1336 uffdio_register.range.len);
1337 if (ret)
1338 goto out;
1339
1340 start = uffdio_register.range.start;
1341 end = start + uffdio_register.range.len;
1342
1343 ret = -ENOMEM;
1344 if (!mmget_not_zero(mm))
1345 goto out;
1346
1347 down_write(&mm->mmap_sem);
1348 if (!mmget_still_valid(mm))
1349 goto out_unlock;
1350 vma = find_vma_prev(mm, start, &prev);
1351 if (!vma)
1352 goto out_unlock;
1353
1354 /* check that there's at least one vma in the range */
1355 ret = -EINVAL;
1356 if (vma->vm_start >= end)
1357 goto out_unlock;
1358
1359 /*
1360 * If the first vma contains huge pages, make sure start address
1361 * is aligned to huge page size.
1362 */
1363 if (is_vm_hugetlb_page(vma)) {
1364 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1365
1366 if (start & (vma_hpagesize - 1))
1367 goto out_unlock;
1368 }
1369
1370 /*
1371 * Search for not compatible vmas.
1372 */
1373 found = false;
1374 basic_ioctls = false;
1375 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1376 cond_resched();
1377
1378 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1379 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1380
1381 /* check not compatible vmas */
1382 ret = -EINVAL;
1383 if (!vma_can_userfault(cur))
1384 goto out_unlock;
1385
1386 /*
1387 * UFFDIO_COPY will fill file holes even without
1388 * PROT_WRITE. This check enforces that if this is a
1389 * MAP_SHARED, the process has write permission to the backing
1390 * file. If VM_MAYWRITE is set it also enforces that on a
1391 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1392 * F_WRITE_SEAL can be taken until the vma is destroyed.
1393 */
1394 ret = -EPERM;
1395 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1396 goto out_unlock;
1397
1398 /*
1399 * If this vma contains ending address, and huge pages
1400 * check alignment.
1401 */
1402 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1403 end > cur->vm_start) {
1404 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1405
1406 ret = -EINVAL;
1407
1408 if (end & (vma_hpagesize - 1))
1409 goto out_unlock;
1410 }
1411
1412 /*
1413 * Check that this vma isn't already owned by a
1414 * different userfaultfd. We can't allow more than one
1415 * userfaultfd to own a single vma simultaneously or we
1416 * wouldn't know which one to deliver the userfaults to.
1417 */
1418 ret = -EBUSY;
1419 if (cur->vm_userfaultfd_ctx.ctx &&
1420 cur->vm_userfaultfd_ctx.ctx != ctx)
1421 goto out_unlock;
1422
1423 /*
1424 * Note vmas containing huge pages
1425 */
1426 if (is_vm_hugetlb_page(cur))
1427 basic_ioctls = true;
1428
1429 found = true;
1430 }
1431 BUG_ON(!found);
1432
1433 if (vma->vm_start < start)
1434 prev = vma;
1435
1436 ret = 0;
1437 do {
1438 cond_resched();
1439
1440 BUG_ON(!vma_can_userfault(vma));
1441 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1442 vma->vm_userfaultfd_ctx.ctx != ctx);
1443 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1444
1445 /*
1446 * Nothing to do: this vma is already registered into this
1447 * userfaultfd and with the right tracking mode too.
1448 */
1449 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1450 (vma->vm_flags & vm_flags) == vm_flags)
1451 goto skip;
1452
1453 if (vma->vm_start > start)
1454 start = vma->vm_start;
1455 vma_end = min(end, vma->vm_end);
1456
1457 new_flags = (vma->vm_flags &
1458 ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
1459 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1460 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1461 vma_policy(vma),
1462 ((struct vm_userfaultfd_ctx){ ctx }));
1463 if (prev) {
1464 vma = prev;
1465 goto next;
1466 }
1467 if (vma->vm_start < start) {
1468 ret = split_vma(mm, vma, start, 1);
1469 if (ret)
1470 break;
1471 }
1472 if (vma->vm_end > end) {
1473 ret = split_vma(mm, vma, end, 0);
1474 if (ret)
1475 break;
1476 }
1477 next:
1478 /*
1479 * In the vma_merge() successful mprotect-like case 8:
1480 * the next vma was merged into the current one and
1481 * the current one has not been updated yet.
1482 */
1483 vma->vm_flags = new_flags;
1484 vma->vm_userfaultfd_ctx.ctx = ctx;
1485
1486 skip:
1487 prev = vma;
1488 start = vma->vm_end;
1489 vma = vma->vm_next;
1490 } while (vma && vma->vm_start < end);
1491 out_unlock:
1492 up_write(&mm->mmap_sem);
1493 mmput(mm);
1494 if (!ret) {
1495 /*
1496 * Now that we scanned all vmas we can already tell
1497 * userland which ioctls methods are guaranteed to
1498 * succeed on this range.
1499 */
1500 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1501 UFFD_API_RANGE_IOCTLS,
1502 &user_uffdio_register->ioctls))
1503 ret = -EFAULT;
1504 }
1505 out:
1506 return ret;
1507 }
1508
1509 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1510 unsigned long arg)
1511 {
1512 struct mm_struct *mm = ctx->mm;
1513 struct vm_area_struct *vma, *prev, *cur;
1514 int ret;
1515 struct uffdio_range uffdio_unregister;
1516 unsigned long new_flags;
1517 bool found;
1518 unsigned long start, end, vma_end;
1519 const void __user *buf = (void __user *)arg;
1520
1521 ret = -EFAULT;
1522 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1523 goto out;
1524
1525 ret = validate_range(mm, &uffdio_unregister.start,
1526 uffdio_unregister.len);
1527 if (ret)
1528 goto out;
1529
1530 start = uffdio_unregister.start;
1531 end = start + uffdio_unregister.len;
1532
1533 ret = -ENOMEM;
1534 if (!mmget_not_zero(mm))
1535 goto out;
1536
1537 down_write(&mm->mmap_sem);
1538 if (!mmget_still_valid(mm))
1539 goto out_unlock;
1540 vma = find_vma_prev(mm, start, &prev);
1541 if (!vma)
1542 goto out_unlock;
1543
1544 /* check that there's at least one vma in the range */
1545 ret = -EINVAL;
1546 if (vma->vm_start >= end)
1547 goto out_unlock;
1548
1549 /*
1550 * If the first vma contains huge pages, make sure start address
1551 * is aligned to huge page size.
1552 */
1553 if (is_vm_hugetlb_page(vma)) {
1554 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1555
1556 if (start & (vma_hpagesize - 1))
1557 goto out_unlock;
1558 }
1559
1560 /*
1561 * Search for not compatible vmas.
1562 */
1563 found = false;
1564 ret = -EINVAL;
1565 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1566 cond_resched();
1567
1568 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1569 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1570
1571 /*
1572 * Check not compatible vmas, not strictly required
1573 * here as not compatible vmas cannot have an
1574 * userfaultfd_ctx registered on them, but this
1575 * provides for more strict behavior to notice
1576 * unregistration errors.
1577 */
1578 if (!vma_can_userfault(cur))
1579 goto out_unlock;
1580
1581 found = true;
1582 }
1583 BUG_ON(!found);
1584
1585 if (vma->vm_start < start)
1586 prev = vma;
1587
1588 ret = 0;
1589 do {
1590 cond_resched();
1591
1592 BUG_ON(!vma_can_userfault(vma));
1593
1594 /*
1595 * Nothing to do: this vma is already registered into this
1596 * userfaultfd and with the right tracking mode too.
1597 */
1598 if (!vma->vm_userfaultfd_ctx.ctx)
1599 goto skip;
1600
1601 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1602
1603 if (vma->vm_start > start)
1604 start = vma->vm_start;
1605 vma_end = min(end, vma->vm_end);
1606
1607 if (userfaultfd_missing(vma)) {
1608 /*
1609 * Wake any concurrent pending userfault while
1610 * we unregister, so they will not hang
1611 * permanently and it avoids userland to call
1612 * UFFDIO_WAKE explicitly.
1613 */
1614 struct userfaultfd_wake_range range;
1615 range.start = start;
1616 range.len = vma_end - start;
1617 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1618 }
1619
1620 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1621 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1622 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1623 vma_policy(vma),
1624 NULL_VM_UFFD_CTX);
1625 if (prev) {
1626 vma = prev;
1627 goto next;
1628 }
1629 if (vma->vm_start < start) {
1630 ret = split_vma(mm, vma, start, 1);
1631 if (ret)
1632 break;
1633 }
1634 if (vma->vm_end > end) {
1635 ret = split_vma(mm, vma, end, 0);
1636 if (ret)
1637 break;
1638 }
1639 next:
1640 /*
1641 * In the vma_merge() successful mprotect-like case 8:
1642 * the next vma was merged into the current one and
1643 * the current one has not been updated yet.
1644 */
1645 vma->vm_flags = new_flags;
1646 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1647
1648 skip:
1649 prev = vma;
1650 start = vma->vm_end;
1651 vma = vma->vm_next;
1652 } while (vma && vma->vm_start < end);
1653 out_unlock:
1654 up_write(&mm->mmap_sem);
1655 mmput(mm);
1656 out:
1657 return ret;
1658 }
1659
1660 /*
1661 * userfaultfd_wake may be used in combination with the
1662 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1663 */
1664 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1665 unsigned long arg)
1666 {
1667 int ret;
1668 struct uffdio_range uffdio_wake;
1669 struct userfaultfd_wake_range range;
1670 const void __user *buf = (void __user *)arg;
1671
1672 ret = -EFAULT;
1673 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1674 goto out;
1675
1676 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
1677 if (ret)
1678 goto out;
1679
1680 range.start = uffdio_wake.start;
1681 range.len = uffdio_wake.len;
1682
1683 /*
1684 * len == 0 means wake all and we don't want to wake all here,
1685 * so check it again to be sure.
1686 */
1687 VM_BUG_ON(!range.len);
1688
1689 wake_userfault(ctx, &range);
1690 ret = 0;
1691
1692 out:
1693 return ret;
1694 }
1695
1696 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1697 unsigned long arg)
1698 {
1699 __s64 ret;
1700 struct uffdio_copy uffdio_copy;
1701 struct uffdio_copy __user *user_uffdio_copy;
1702 struct userfaultfd_wake_range range;
1703
1704 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1705
1706 ret = -EAGAIN;
1707 if (READ_ONCE(ctx->mmap_changing))
1708 goto out;
1709
1710 ret = -EFAULT;
1711 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1712 /* don't copy "copy" last field */
1713 sizeof(uffdio_copy)-sizeof(__s64)))
1714 goto out;
1715
1716 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
1717 if (ret)
1718 goto out;
1719 /*
1720 * double check for wraparound just in case. copy_from_user()
1721 * will later check uffdio_copy.src + uffdio_copy.len to fit
1722 * in the userland range.
1723 */
1724 ret = -EINVAL;
1725 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1726 goto out;
1727 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1728 goto out;
1729 if (mmget_not_zero(ctx->mm)) {
1730 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1731 uffdio_copy.len, &ctx->mmap_changing);
1732 mmput(ctx->mm);
1733 } else {
1734 return -ESRCH;
1735 }
1736 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1737 return -EFAULT;
1738 if (ret < 0)
1739 goto out;
1740 BUG_ON(!ret);
1741 /* len == 0 would wake all */
1742 range.len = ret;
1743 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1744 range.start = uffdio_copy.dst;
1745 wake_userfault(ctx, &range);
1746 }
1747 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1748 out:
1749 return ret;
1750 }
1751
1752 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1753 unsigned long arg)
1754 {
1755 __s64 ret;
1756 struct uffdio_zeropage uffdio_zeropage;
1757 struct uffdio_zeropage __user *user_uffdio_zeropage;
1758 struct userfaultfd_wake_range range;
1759
1760 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1761
1762 ret = -EAGAIN;
1763 if (READ_ONCE(ctx->mmap_changing))
1764 goto out;
1765
1766 ret = -EFAULT;
1767 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1768 /* don't copy "zeropage" last field */
1769 sizeof(uffdio_zeropage)-sizeof(__s64)))
1770 goto out;
1771
1772 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
1773 uffdio_zeropage.range.len);
1774 if (ret)
1775 goto out;
1776 ret = -EINVAL;
1777 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1778 goto out;
1779
1780 if (mmget_not_zero(ctx->mm)) {
1781 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1782 uffdio_zeropage.range.len,
1783 &ctx->mmap_changing);
1784 mmput(ctx->mm);
1785 } else {
1786 return -ESRCH;
1787 }
1788 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1789 return -EFAULT;
1790 if (ret < 0)
1791 goto out;
1792 /* len == 0 would wake all */
1793 BUG_ON(!ret);
1794 range.len = ret;
1795 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1796 range.start = uffdio_zeropage.range.start;
1797 wake_userfault(ctx, &range);
1798 }
1799 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1800 out:
1801 return ret;
1802 }
1803
1804 static inline unsigned int uffd_ctx_features(__u64 user_features)
1805 {
1806 /*
1807 * For the current set of features the bits just coincide
1808 */
1809 return (unsigned int)user_features;
1810 }
1811
1812 /*
1813 * userland asks for a certain API version and we return which bits
1814 * and ioctl commands are implemented in this kernel for such API
1815 * version or -EINVAL if unknown.
1816 */
1817 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1818 unsigned long arg)
1819 {
1820 struct uffdio_api uffdio_api;
1821 void __user *buf = (void __user *)arg;
1822 int ret;
1823 __u64 features;
1824
1825 ret = -EINVAL;
1826 if (ctx->state != UFFD_STATE_WAIT_API)
1827 goto out;
1828 ret = -EFAULT;
1829 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1830 goto out;
1831 features = uffdio_api.features;
1832 ret = -EINVAL;
1833 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1834 goto err_out;
1835 ret = -EPERM;
1836 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1837 goto err_out;
1838 /* report all available features and ioctls to userland */
1839 uffdio_api.features = UFFD_API_FEATURES;
1840 uffdio_api.ioctls = UFFD_API_IOCTLS;
1841 ret = -EFAULT;
1842 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1843 goto out;
1844 ctx->state = UFFD_STATE_RUNNING;
1845 /* only enable the requested features for this uffd context */
1846 ctx->features = uffd_ctx_features(features);
1847 ret = 0;
1848 out:
1849 return ret;
1850 err_out:
1851 memset(&uffdio_api, 0, sizeof(uffdio_api));
1852 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1853 ret = -EFAULT;
1854 goto out;
1855 }
1856
1857 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1858 unsigned long arg)
1859 {
1860 int ret = -EINVAL;
1861 struct userfaultfd_ctx *ctx = file->private_data;
1862
1863 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1864 return -EINVAL;
1865
1866 switch(cmd) {
1867 case UFFDIO_API:
1868 ret = userfaultfd_api(ctx, arg);
1869 break;
1870 case UFFDIO_REGISTER:
1871 ret = userfaultfd_register(ctx, arg);
1872 break;
1873 case UFFDIO_UNREGISTER:
1874 ret = userfaultfd_unregister(ctx, arg);
1875 break;
1876 case UFFDIO_WAKE:
1877 ret = userfaultfd_wake(ctx, arg);
1878 break;
1879 case UFFDIO_COPY:
1880 ret = userfaultfd_copy(ctx, arg);
1881 break;
1882 case UFFDIO_ZEROPAGE:
1883 ret = userfaultfd_zeropage(ctx, arg);
1884 break;
1885 }
1886 return ret;
1887 }
1888
1889 #ifdef CONFIG_PROC_FS
1890 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1891 {
1892 struct userfaultfd_ctx *ctx = f->private_data;
1893 wait_queue_entry_t *wq;
1894 unsigned long pending = 0, total = 0;
1895
1896 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1897 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1898 pending++;
1899 total++;
1900 }
1901 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1902 total++;
1903 }
1904 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1905
1906 /*
1907 * If more protocols will be added, there will be all shown
1908 * separated by a space. Like this:
1909 * protocols: aa:... bb:...
1910 */
1911 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1912 pending, total, UFFD_API, ctx->features,
1913 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1914 }
1915 #endif
1916
1917 static const struct file_operations userfaultfd_fops = {
1918 #ifdef CONFIG_PROC_FS
1919 .show_fdinfo = userfaultfd_show_fdinfo,
1920 #endif
1921 .release = userfaultfd_release,
1922 .poll = userfaultfd_poll,
1923 .read = userfaultfd_read,
1924 .unlocked_ioctl = userfaultfd_ioctl,
1925 .compat_ioctl = compat_ptr_ioctl,
1926 .llseek = noop_llseek,
1927 };
1928
1929 static void init_once_userfaultfd_ctx(void *mem)
1930 {
1931 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1932
1933 init_waitqueue_head(&ctx->fault_pending_wqh);
1934 init_waitqueue_head(&ctx->fault_wqh);
1935 init_waitqueue_head(&ctx->event_wqh);
1936 init_waitqueue_head(&ctx->fd_wqh);
1937 seqcount_init(&ctx->refile_seq);
1938 }
1939
1940 SYSCALL_DEFINE1(userfaultfd, int, flags)
1941 {
1942 struct userfaultfd_ctx *ctx;
1943 int fd;
1944
1945 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1946 return -EPERM;
1947
1948 BUG_ON(!current->mm);
1949
1950 /* Check the UFFD_* constants for consistency. */
1951 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1952 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1953
1954 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1955 return -EINVAL;
1956
1957 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1958 if (!ctx)
1959 return -ENOMEM;
1960
1961 refcount_set(&ctx->refcount, 1);
1962 ctx->flags = flags;
1963 ctx->features = 0;
1964 ctx->state = UFFD_STATE_WAIT_API;
1965 ctx->released = false;
1966 ctx->mmap_changing = false;
1967 ctx->mm = current->mm;
1968 /* prevent the mm struct to be freed */
1969 mmgrab(ctx->mm);
1970
1971 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1972 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1973 if (fd < 0) {
1974 mmdrop(ctx->mm);
1975 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1976 }
1977 return fd;
1978 }
1979
1980 static int __init userfaultfd_init(void)
1981 {
1982 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1983 sizeof(struct userfaultfd_ctx),
1984 0,
1985 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1986 init_once_userfaultfd_ctx);
1987 return 0;
1988 }
1989 __initcall(userfaultfd_init);