]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/libxfs/xfs_attr_leaf.c
xfs: hold xfs_buf locked between shortform->leaf conversion and the addition of an...
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / libxfs / xfs_attr_leaf.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * Copyright (c) 2013 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_shared.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_bit.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_trans.h"
32 #include "xfs_inode_item.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_bmap.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_attr_remote.h"
37 #include "xfs_attr.h"
38 #include "xfs_attr_leaf.h"
39 #include "xfs_error.h"
40 #include "xfs_trace.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_cksum.h"
43 #include "xfs_dir2.h"
44 #include "xfs_log.h"
45
46
47 /*
48 * xfs_attr_leaf.c
49 *
50 * Routines to implement leaf blocks of attributes as Btrees of hashed names.
51 */
52
53 /*========================================================================
54 * Function prototypes for the kernel.
55 *========================================================================*/
56
57 /*
58 * Routines used for growing the Btree.
59 */
60 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
61 xfs_dablk_t which_block, struct xfs_buf **bpp);
62 STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
63 struct xfs_attr3_icleaf_hdr *ichdr,
64 struct xfs_da_args *args, int freemap_index);
65 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
66 struct xfs_attr3_icleaf_hdr *ichdr,
67 struct xfs_buf *leaf_buffer);
68 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
69 xfs_da_state_blk_t *blk1,
70 xfs_da_state_blk_t *blk2);
71 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
72 xfs_da_state_blk_t *leaf_blk_1,
73 struct xfs_attr3_icleaf_hdr *ichdr1,
74 xfs_da_state_blk_t *leaf_blk_2,
75 struct xfs_attr3_icleaf_hdr *ichdr2,
76 int *number_entries_in_blk1,
77 int *number_usedbytes_in_blk1);
78
79 /*
80 * Utility routines.
81 */
82 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args,
83 struct xfs_attr_leafblock *src_leaf,
84 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
85 struct xfs_attr_leafblock *dst_leaf,
86 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
87 int move_count);
88 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
89
90 /*
91 * attr3 block 'firstused' conversion helpers.
92 *
93 * firstused refers to the offset of the first used byte of the nameval region
94 * of an attr leaf block. The region starts at the tail of the block and expands
95 * backwards towards the middle. As such, firstused is initialized to the block
96 * size for an empty leaf block and is reduced from there.
97 *
98 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k.
99 * The in-core firstused field is 32-bit and thus supports the maximum fsb size.
100 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this
101 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent
102 * the attr block size. The following helpers manage the conversion between the
103 * in-core and on-disk formats.
104 */
105
106 static void
107 xfs_attr3_leaf_firstused_from_disk(
108 struct xfs_da_geometry *geo,
109 struct xfs_attr3_icleaf_hdr *to,
110 struct xfs_attr_leafblock *from)
111 {
112 struct xfs_attr3_leaf_hdr *hdr3;
113
114 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
115 hdr3 = (struct xfs_attr3_leaf_hdr *) from;
116 to->firstused = be16_to_cpu(hdr3->firstused);
117 } else {
118 to->firstused = be16_to_cpu(from->hdr.firstused);
119 }
120
121 /*
122 * Convert from the magic fsb size value to actual blocksize. This
123 * should only occur for empty blocks when the block size overflows
124 * 16-bits.
125 */
126 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) {
127 ASSERT(!to->count && !to->usedbytes);
128 ASSERT(geo->blksize > USHRT_MAX);
129 to->firstused = geo->blksize;
130 }
131 }
132
133 static void
134 xfs_attr3_leaf_firstused_to_disk(
135 struct xfs_da_geometry *geo,
136 struct xfs_attr_leafblock *to,
137 struct xfs_attr3_icleaf_hdr *from)
138 {
139 struct xfs_attr3_leaf_hdr *hdr3;
140 uint32_t firstused;
141
142 /* magic value should only be seen on disk */
143 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF);
144
145 /*
146 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk
147 * value. This only overflows at the max supported value of 64k. Use the
148 * magic on-disk value to represent block size in this case.
149 */
150 firstused = from->firstused;
151 if (firstused > USHRT_MAX) {
152 ASSERT(from->firstused == geo->blksize);
153 firstused = XFS_ATTR3_LEAF_NULLOFF;
154 }
155
156 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
157 hdr3 = (struct xfs_attr3_leaf_hdr *) to;
158 hdr3->firstused = cpu_to_be16(firstused);
159 } else {
160 to->hdr.firstused = cpu_to_be16(firstused);
161 }
162 }
163
164 void
165 xfs_attr3_leaf_hdr_from_disk(
166 struct xfs_da_geometry *geo,
167 struct xfs_attr3_icleaf_hdr *to,
168 struct xfs_attr_leafblock *from)
169 {
170 int i;
171
172 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
173 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
174
175 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
176 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
177
178 to->forw = be32_to_cpu(hdr3->info.hdr.forw);
179 to->back = be32_to_cpu(hdr3->info.hdr.back);
180 to->magic = be16_to_cpu(hdr3->info.hdr.magic);
181 to->count = be16_to_cpu(hdr3->count);
182 to->usedbytes = be16_to_cpu(hdr3->usedbytes);
183 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
184 to->holes = hdr3->holes;
185
186 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
187 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
188 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
189 }
190 return;
191 }
192 to->forw = be32_to_cpu(from->hdr.info.forw);
193 to->back = be32_to_cpu(from->hdr.info.back);
194 to->magic = be16_to_cpu(from->hdr.info.magic);
195 to->count = be16_to_cpu(from->hdr.count);
196 to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
197 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
198 to->holes = from->hdr.holes;
199
200 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
201 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
202 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
203 }
204 }
205
206 void
207 xfs_attr3_leaf_hdr_to_disk(
208 struct xfs_da_geometry *geo,
209 struct xfs_attr_leafblock *to,
210 struct xfs_attr3_icleaf_hdr *from)
211 {
212 int i;
213
214 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
215 from->magic == XFS_ATTR3_LEAF_MAGIC);
216
217 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
218 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
219
220 hdr3->info.hdr.forw = cpu_to_be32(from->forw);
221 hdr3->info.hdr.back = cpu_to_be32(from->back);
222 hdr3->info.hdr.magic = cpu_to_be16(from->magic);
223 hdr3->count = cpu_to_be16(from->count);
224 hdr3->usedbytes = cpu_to_be16(from->usedbytes);
225 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
226 hdr3->holes = from->holes;
227 hdr3->pad1 = 0;
228
229 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
230 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
231 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
232 }
233 return;
234 }
235 to->hdr.info.forw = cpu_to_be32(from->forw);
236 to->hdr.info.back = cpu_to_be32(from->back);
237 to->hdr.info.magic = cpu_to_be16(from->magic);
238 to->hdr.count = cpu_to_be16(from->count);
239 to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
240 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
241 to->hdr.holes = from->holes;
242 to->hdr.pad1 = 0;
243
244 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
245 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
246 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
247 }
248 }
249
250 static bool
251 xfs_attr3_leaf_verify(
252 struct xfs_buf *bp)
253 {
254 struct xfs_mount *mp = bp->b_target->bt_mount;
255 struct xfs_attr_leafblock *leaf = bp->b_addr;
256 struct xfs_perag *pag = bp->b_pag;
257 struct xfs_attr3_icleaf_hdr ichdr;
258
259 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf);
260
261 if (xfs_sb_version_hascrc(&mp->m_sb)) {
262 struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
263
264 if (ichdr.magic != XFS_ATTR3_LEAF_MAGIC)
265 return false;
266
267 if (!uuid_equal(&hdr3->info.uuid, &mp->m_sb.sb_meta_uuid))
268 return false;
269 if (be64_to_cpu(hdr3->info.blkno) != bp->b_bn)
270 return false;
271 if (!xfs_log_check_lsn(mp, be64_to_cpu(hdr3->info.lsn)))
272 return false;
273 } else {
274 if (ichdr.magic != XFS_ATTR_LEAF_MAGIC)
275 return false;
276 }
277 /*
278 * In recovery there is a transient state where count == 0 is valid
279 * because we may have transitioned an empty shortform attr to a leaf
280 * if the attr didn't fit in shortform.
281 */
282 if (pag && pag->pagf_init && ichdr.count == 0)
283 return false;
284
285 /* XXX: need to range check rest of attr header values */
286 /* XXX: hash order check? */
287
288 return true;
289 }
290
291 static void
292 xfs_attr3_leaf_write_verify(
293 struct xfs_buf *bp)
294 {
295 struct xfs_mount *mp = bp->b_target->bt_mount;
296 struct xfs_buf_log_item *bip = bp->b_fspriv;
297 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
298
299 if (!xfs_attr3_leaf_verify(bp)) {
300 xfs_buf_ioerror(bp, -EFSCORRUPTED);
301 xfs_verifier_error(bp);
302 return;
303 }
304
305 if (!xfs_sb_version_hascrc(&mp->m_sb))
306 return;
307
308 if (bip)
309 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
310
311 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF);
312 }
313
314 /*
315 * leaf/node format detection on trees is sketchy, so a node read can be done on
316 * leaf level blocks when detection identifies the tree as a node format tree
317 * incorrectly. In this case, we need to swap the verifier to match the correct
318 * format of the block being read.
319 */
320 static void
321 xfs_attr3_leaf_read_verify(
322 struct xfs_buf *bp)
323 {
324 struct xfs_mount *mp = bp->b_target->bt_mount;
325
326 if (xfs_sb_version_hascrc(&mp->m_sb) &&
327 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF))
328 xfs_buf_ioerror(bp, -EFSBADCRC);
329 else if (!xfs_attr3_leaf_verify(bp))
330 xfs_buf_ioerror(bp, -EFSCORRUPTED);
331
332 if (bp->b_error)
333 xfs_verifier_error(bp);
334 }
335
336 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
337 .name = "xfs_attr3_leaf",
338 .verify_read = xfs_attr3_leaf_read_verify,
339 .verify_write = xfs_attr3_leaf_write_verify,
340 };
341
342 int
343 xfs_attr3_leaf_read(
344 struct xfs_trans *tp,
345 struct xfs_inode *dp,
346 xfs_dablk_t bno,
347 xfs_daddr_t mappedbno,
348 struct xfs_buf **bpp)
349 {
350 int err;
351
352 err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp,
353 XFS_ATTR_FORK, &xfs_attr3_leaf_buf_ops);
354 if (!err && tp && *bpp)
355 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
356 return err;
357 }
358
359 /*========================================================================
360 * Namespace helper routines
361 *========================================================================*/
362
363 /*
364 * If namespace bits don't match return 0.
365 * If all match then return 1.
366 */
367 STATIC int
368 xfs_attr_namesp_match(int arg_flags, int ondisk_flags)
369 {
370 return XFS_ATTR_NSP_ONDISK(ondisk_flags) == XFS_ATTR_NSP_ARGS_TO_ONDISK(arg_flags);
371 }
372
373
374 /*========================================================================
375 * External routines when attribute fork size < XFS_LITINO(mp).
376 *========================================================================*/
377
378 /*
379 * Query whether the requested number of additional bytes of extended
380 * attribute space will be able to fit inline.
381 *
382 * Returns zero if not, else the di_forkoff fork offset to be used in the
383 * literal area for attribute data once the new bytes have been added.
384 *
385 * di_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
386 * special case for dev/uuid inodes, they have fixed size data forks.
387 */
388 int
389 xfs_attr_shortform_bytesfit(xfs_inode_t *dp, int bytes)
390 {
391 int offset;
392 int minforkoff; /* lower limit on valid forkoff locations */
393 int maxforkoff; /* upper limit on valid forkoff locations */
394 int dsize;
395 xfs_mount_t *mp = dp->i_mount;
396
397 /* rounded down */
398 offset = (XFS_LITINO(mp, dp->i_d.di_version) - bytes) >> 3;
399
400 if (dp->i_d.di_format == XFS_DINODE_FMT_DEV) {
401 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
402 return (offset >= minforkoff) ? minforkoff : 0;
403 }
404
405 /*
406 * If the requested numbers of bytes is smaller or equal to the
407 * current attribute fork size we can always proceed.
408 *
409 * Note that if_bytes in the data fork might actually be larger than
410 * the current data fork size is due to delalloc extents. In that
411 * case either the extent count will go down when they are converted
412 * to real extents, or the delalloc conversion will take care of the
413 * literal area rebalancing.
414 */
415 if (bytes <= XFS_IFORK_ASIZE(dp))
416 return dp->i_d.di_forkoff;
417
418 /*
419 * For attr2 we can try to move the forkoff if there is space in the
420 * literal area, but for the old format we are done if there is no
421 * space in the fixed attribute fork.
422 */
423 if (!(mp->m_flags & XFS_MOUNT_ATTR2))
424 return 0;
425
426 dsize = dp->i_df.if_bytes;
427
428 switch (dp->i_d.di_format) {
429 case XFS_DINODE_FMT_EXTENTS:
430 /*
431 * If there is no attr fork and the data fork is extents,
432 * determine if creating the default attr fork will result
433 * in the extents form migrating to btree. If so, the
434 * minimum offset only needs to be the space required for
435 * the btree root.
436 */
437 if (!dp->i_d.di_forkoff && dp->i_df.if_bytes >
438 xfs_default_attroffset(dp))
439 dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
440 break;
441 case XFS_DINODE_FMT_BTREE:
442 /*
443 * If we have a data btree then keep forkoff if we have one,
444 * otherwise we are adding a new attr, so then we set
445 * minforkoff to where the btree root can finish so we have
446 * plenty of room for attrs
447 */
448 if (dp->i_d.di_forkoff) {
449 if (offset < dp->i_d.di_forkoff)
450 return 0;
451 return dp->i_d.di_forkoff;
452 }
453 dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot);
454 break;
455 }
456
457 /*
458 * A data fork btree root must have space for at least
459 * MINDBTPTRS key/ptr pairs if the data fork is small or empty.
460 */
461 minforkoff = MAX(dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
462 minforkoff = roundup(minforkoff, 8) >> 3;
463
464 /* attr fork btree root can have at least this many key/ptr pairs */
465 maxforkoff = XFS_LITINO(mp, dp->i_d.di_version) -
466 XFS_BMDR_SPACE_CALC(MINABTPTRS);
467 maxforkoff = maxforkoff >> 3; /* rounded down */
468
469 if (offset >= maxforkoff)
470 return maxforkoff;
471 if (offset >= minforkoff)
472 return offset;
473 return 0;
474 }
475
476 /*
477 * Switch on the ATTR2 superblock bit (implies also FEATURES2)
478 */
479 STATIC void
480 xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp)
481 {
482 if ((mp->m_flags & XFS_MOUNT_ATTR2) &&
483 !(xfs_sb_version_hasattr2(&mp->m_sb))) {
484 spin_lock(&mp->m_sb_lock);
485 if (!xfs_sb_version_hasattr2(&mp->m_sb)) {
486 xfs_sb_version_addattr2(&mp->m_sb);
487 spin_unlock(&mp->m_sb_lock);
488 xfs_log_sb(tp);
489 } else
490 spin_unlock(&mp->m_sb_lock);
491 }
492 }
493
494 /*
495 * Create the initial contents of a shortform attribute list.
496 */
497 void
498 xfs_attr_shortform_create(xfs_da_args_t *args)
499 {
500 xfs_attr_sf_hdr_t *hdr;
501 xfs_inode_t *dp;
502 xfs_ifork_t *ifp;
503
504 trace_xfs_attr_sf_create(args);
505
506 dp = args->dp;
507 ASSERT(dp != NULL);
508 ifp = dp->i_afp;
509 ASSERT(ifp != NULL);
510 ASSERT(ifp->if_bytes == 0);
511 if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) {
512 ifp->if_flags &= ~XFS_IFEXTENTS; /* just in case */
513 dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL;
514 ifp->if_flags |= XFS_IFINLINE;
515 } else {
516 ASSERT(ifp->if_flags & XFS_IFINLINE);
517 }
518 xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
519 hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data;
520 hdr->count = 0;
521 hdr->totsize = cpu_to_be16(sizeof(*hdr));
522 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
523 }
524
525 /*
526 * Add a name/value pair to the shortform attribute list.
527 * Overflow from the inode has already been checked for.
528 */
529 void
530 xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff)
531 {
532 xfs_attr_shortform_t *sf;
533 xfs_attr_sf_entry_t *sfe;
534 int i, offset, size;
535 xfs_mount_t *mp;
536 xfs_inode_t *dp;
537 xfs_ifork_t *ifp;
538
539 trace_xfs_attr_sf_add(args);
540
541 dp = args->dp;
542 mp = dp->i_mount;
543 dp->i_d.di_forkoff = forkoff;
544
545 ifp = dp->i_afp;
546 ASSERT(ifp->if_flags & XFS_IFINLINE);
547 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
548 sfe = &sf->list[0];
549 for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
550 #ifdef DEBUG
551 if (sfe->namelen != args->namelen)
552 continue;
553 if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
554 continue;
555 if (!xfs_attr_namesp_match(args->flags, sfe->flags))
556 continue;
557 ASSERT(0);
558 #endif
559 }
560
561 offset = (char *)sfe - (char *)sf;
562 size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen);
563 xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
564 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
565 sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset);
566
567 sfe->namelen = args->namelen;
568 sfe->valuelen = args->valuelen;
569 sfe->flags = XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
570 memcpy(sfe->nameval, args->name, args->namelen);
571 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
572 sf->hdr.count++;
573 be16_add_cpu(&sf->hdr.totsize, size);
574 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
575
576 xfs_sbversion_add_attr2(mp, args->trans);
577 }
578
579 /*
580 * After the last attribute is removed revert to original inode format,
581 * making all literal area available to the data fork once more.
582 */
583 void
584 xfs_attr_fork_remove(
585 struct xfs_inode *ip,
586 struct xfs_trans *tp)
587 {
588 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
589 ip->i_d.di_forkoff = 0;
590 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
591
592 ASSERT(ip->i_d.di_anextents == 0);
593 ASSERT(ip->i_afp == NULL);
594
595 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
596 }
597
598 /*
599 * Remove an attribute from the shortform attribute list structure.
600 */
601 int
602 xfs_attr_shortform_remove(xfs_da_args_t *args)
603 {
604 xfs_attr_shortform_t *sf;
605 xfs_attr_sf_entry_t *sfe;
606 int base, size=0, end, totsize, i;
607 xfs_mount_t *mp;
608 xfs_inode_t *dp;
609
610 trace_xfs_attr_sf_remove(args);
611
612 dp = args->dp;
613 mp = dp->i_mount;
614 base = sizeof(xfs_attr_sf_hdr_t);
615 sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data;
616 sfe = &sf->list[0];
617 end = sf->hdr.count;
618 for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe),
619 base += size, i++) {
620 size = XFS_ATTR_SF_ENTSIZE(sfe);
621 if (sfe->namelen != args->namelen)
622 continue;
623 if (memcmp(sfe->nameval, args->name, args->namelen) != 0)
624 continue;
625 if (!xfs_attr_namesp_match(args->flags, sfe->flags))
626 continue;
627 break;
628 }
629 if (i == end)
630 return -ENOATTR;
631
632 /*
633 * Fix up the attribute fork data, covering the hole
634 */
635 end = base + size;
636 totsize = be16_to_cpu(sf->hdr.totsize);
637 if (end != totsize)
638 memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end);
639 sf->hdr.count--;
640 be16_add_cpu(&sf->hdr.totsize, -size);
641
642 /*
643 * Fix up the start offset of the attribute fork
644 */
645 totsize -= size;
646 if (totsize == sizeof(xfs_attr_sf_hdr_t) &&
647 (mp->m_flags & XFS_MOUNT_ATTR2) &&
648 (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
649 !(args->op_flags & XFS_DA_OP_ADDNAME)) {
650 xfs_attr_fork_remove(dp, args->trans);
651 } else {
652 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
653 dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
654 ASSERT(dp->i_d.di_forkoff);
655 ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) ||
656 (args->op_flags & XFS_DA_OP_ADDNAME) ||
657 !(mp->m_flags & XFS_MOUNT_ATTR2) ||
658 dp->i_d.di_format == XFS_DINODE_FMT_BTREE);
659 xfs_trans_log_inode(args->trans, dp,
660 XFS_ILOG_CORE | XFS_ILOG_ADATA);
661 }
662
663 xfs_sbversion_add_attr2(mp, args->trans);
664
665 return 0;
666 }
667
668 /*
669 * Look up a name in a shortform attribute list structure.
670 */
671 /*ARGSUSED*/
672 int
673 xfs_attr_shortform_lookup(xfs_da_args_t *args)
674 {
675 xfs_attr_shortform_t *sf;
676 xfs_attr_sf_entry_t *sfe;
677 int i;
678 xfs_ifork_t *ifp;
679
680 trace_xfs_attr_sf_lookup(args);
681
682 ifp = args->dp->i_afp;
683 ASSERT(ifp->if_flags & XFS_IFINLINE);
684 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
685 sfe = &sf->list[0];
686 for (i = 0; i < sf->hdr.count;
687 sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
688 if (sfe->namelen != args->namelen)
689 continue;
690 if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
691 continue;
692 if (!xfs_attr_namesp_match(args->flags, sfe->flags))
693 continue;
694 return -EEXIST;
695 }
696 return -ENOATTR;
697 }
698
699 /*
700 * Look up a name in a shortform attribute list structure.
701 */
702 /*ARGSUSED*/
703 int
704 xfs_attr_shortform_getvalue(xfs_da_args_t *args)
705 {
706 xfs_attr_shortform_t *sf;
707 xfs_attr_sf_entry_t *sfe;
708 int i;
709
710 ASSERT(args->dp->i_afp->if_flags == XFS_IFINLINE);
711 sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data;
712 sfe = &sf->list[0];
713 for (i = 0; i < sf->hdr.count;
714 sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
715 if (sfe->namelen != args->namelen)
716 continue;
717 if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
718 continue;
719 if (!xfs_attr_namesp_match(args->flags, sfe->flags))
720 continue;
721 if (args->flags & ATTR_KERNOVAL) {
722 args->valuelen = sfe->valuelen;
723 return -EEXIST;
724 }
725 if (args->valuelen < sfe->valuelen) {
726 args->valuelen = sfe->valuelen;
727 return -ERANGE;
728 }
729 args->valuelen = sfe->valuelen;
730 memcpy(args->value, &sfe->nameval[args->namelen],
731 args->valuelen);
732 return -EEXIST;
733 }
734 return -ENOATTR;
735 }
736
737 /*
738 * Convert from using the shortform to the leaf. On success, return the
739 * buffer so that we can keep it locked until we're totally done with it.
740 */
741 int
742 xfs_attr_shortform_to_leaf(
743 struct xfs_da_args *args,
744 struct xfs_buf **leaf_bp)
745 {
746 xfs_inode_t *dp;
747 xfs_attr_shortform_t *sf;
748 xfs_attr_sf_entry_t *sfe;
749 xfs_da_args_t nargs;
750 char *tmpbuffer;
751 int error, i, size;
752 xfs_dablk_t blkno;
753 struct xfs_buf *bp;
754 xfs_ifork_t *ifp;
755
756 trace_xfs_attr_sf_to_leaf(args);
757
758 dp = args->dp;
759 ifp = dp->i_afp;
760 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
761 size = be16_to_cpu(sf->hdr.totsize);
762 tmpbuffer = kmem_alloc(size, KM_SLEEP);
763 ASSERT(tmpbuffer != NULL);
764 memcpy(tmpbuffer, ifp->if_u1.if_data, size);
765 sf = (xfs_attr_shortform_t *)tmpbuffer;
766
767 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
768 xfs_bmap_local_to_extents_empty(dp, XFS_ATTR_FORK);
769
770 bp = NULL;
771 error = xfs_da_grow_inode(args, &blkno);
772 if (error) {
773 /*
774 * If we hit an IO error middle of the transaction inside
775 * grow_inode(), we may have inconsistent data. Bail out.
776 */
777 if (error == -EIO)
778 goto out;
779 xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */
780 memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */
781 goto out;
782 }
783
784 ASSERT(blkno == 0);
785 error = xfs_attr3_leaf_create(args, blkno, &bp);
786 if (error) {
787 error = xfs_da_shrink_inode(args, 0, bp);
788 bp = NULL;
789 if (error)
790 goto out;
791 xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */
792 memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */
793 goto out;
794 }
795
796 memset((char *)&nargs, 0, sizeof(nargs));
797 nargs.dp = dp;
798 nargs.geo = args->geo;
799 nargs.firstblock = args->firstblock;
800 nargs.dfops = args->dfops;
801 nargs.total = args->total;
802 nargs.whichfork = XFS_ATTR_FORK;
803 nargs.trans = args->trans;
804 nargs.op_flags = XFS_DA_OP_OKNOENT;
805
806 sfe = &sf->list[0];
807 for (i = 0; i < sf->hdr.count; i++) {
808 nargs.name = sfe->nameval;
809 nargs.namelen = sfe->namelen;
810 nargs.value = &sfe->nameval[nargs.namelen];
811 nargs.valuelen = sfe->valuelen;
812 nargs.hashval = xfs_da_hashname(sfe->nameval,
813 sfe->namelen);
814 nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(sfe->flags);
815 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
816 ASSERT(error == -ENOATTR);
817 error = xfs_attr3_leaf_add(bp, &nargs);
818 ASSERT(error != -ENOSPC);
819 if (error)
820 goto out;
821 sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
822 }
823 error = 0;
824 *leaf_bp = bp;
825 out:
826 kmem_free(tmpbuffer);
827 return error;
828 }
829
830 /*
831 * Check a leaf attribute block to see if all the entries would fit into
832 * a shortform attribute list.
833 */
834 int
835 xfs_attr_shortform_allfit(
836 struct xfs_buf *bp,
837 struct xfs_inode *dp)
838 {
839 struct xfs_attr_leafblock *leaf;
840 struct xfs_attr_leaf_entry *entry;
841 xfs_attr_leaf_name_local_t *name_loc;
842 struct xfs_attr3_icleaf_hdr leafhdr;
843 int bytes;
844 int i;
845 struct xfs_mount *mp = bp->b_target->bt_mount;
846
847 leaf = bp->b_addr;
848 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf);
849 entry = xfs_attr3_leaf_entryp(leaf);
850
851 bytes = sizeof(struct xfs_attr_sf_hdr);
852 for (i = 0; i < leafhdr.count; entry++, i++) {
853 if (entry->flags & XFS_ATTR_INCOMPLETE)
854 continue; /* don't copy partial entries */
855 if (!(entry->flags & XFS_ATTR_LOCAL))
856 return 0;
857 name_loc = xfs_attr3_leaf_name_local(leaf, i);
858 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
859 return 0;
860 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
861 return 0;
862 bytes += sizeof(struct xfs_attr_sf_entry) - 1
863 + name_loc->namelen
864 + be16_to_cpu(name_loc->valuelen);
865 }
866 if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) &&
867 (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
868 (bytes == sizeof(struct xfs_attr_sf_hdr)))
869 return -1;
870 return xfs_attr_shortform_bytesfit(dp, bytes);
871 }
872
873 /*
874 * Convert a leaf attribute list to shortform attribute list
875 */
876 int
877 xfs_attr3_leaf_to_shortform(
878 struct xfs_buf *bp,
879 struct xfs_da_args *args,
880 int forkoff)
881 {
882 struct xfs_attr_leafblock *leaf;
883 struct xfs_attr3_icleaf_hdr ichdr;
884 struct xfs_attr_leaf_entry *entry;
885 struct xfs_attr_leaf_name_local *name_loc;
886 struct xfs_da_args nargs;
887 struct xfs_inode *dp = args->dp;
888 char *tmpbuffer;
889 int error;
890 int i;
891
892 trace_xfs_attr_leaf_to_sf(args);
893
894 tmpbuffer = kmem_alloc(args->geo->blksize, KM_SLEEP);
895 if (!tmpbuffer)
896 return -ENOMEM;
897
898 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
899
900 leaf = (xfs_attr_leafblock_t *)tmpbuffer;
901 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
902 entry = xfs_attr3_leaf_entryp(leaf);
903
904 /* XXX (dgc): buffer is about to be marked stale - why zero it? */
905 memset(bp->b_addr, 0, args->geo->blksize);
906
907 /*
908 * Clean out the prior contents of the attribute list.
909 */
910 error = xfs_da_shrink_inode(args, 0, bp);
911 if (error)
912 goto out;
913
914 if (forkoff == -1) {
915 ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2);
916 ASSERT(dp->i_d.di_format != XFS_DINODE_FMT_BTREE);
917 xfs_attr_fork_remove(dp, args->trans);
918 goto out;
919 }
920
921 xfs_attr_shortform_create(args);
922
923 /*
924 * Copy the attributes
925 */
926 memset((char *)&nargs, 0, sizeof(nargs));
927 nargs.geo = args->geo;
928 nargs.dp = dp;
929 nargs.firstblock = args->firstblock;
930 nargs.dfops = args->dfops;
931 nargs.total = args->total;
932 nargs.whichfork = XFS_ATTR_FORK;
933 nargs.trans = args->trans;
934 nargs.op_flags = XFS_DA_OP_OKNOENT;
935
936 for (i = 0; i < ichdr.count; entry++, i++) {
937 if (entry->flags & XFS_ATTR_INCOMPLETE)
938 continue; /* don't copy partial entries */
939 if (!entry->nameidx)
940 continue;
941 ASSERT(entry->flags & XFS_ATTR_LOCAL);
942 name_loc = xfs_attr3_leaf_name_local(leaf, i);
943 nargs.name = name_loc->nameval;
944 nargs.namelen = name_loc->namelen;
945 nargs.value = &name_loc->nameval[nargs.namelen];
946 nargs.valuelen = be16_to_cpu(name_loc->valuelen);
947 nargs.hashval = be32_to_cpu(entry->hashval);
948 nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(entry->flags);
949 xfs_attr_shortform_add(&nargs, forkoff);
950 }
951 error = 0;
952
953 out:
954 kmem_free(tmpbuffer);
955 return error;
956 }
957
958 /*
959 * Convert from using a single leaf to a root node and a leaf.
960 */
961 int
962 xfs_attr3_leaf_to_node(
963 struct xfs_da_args *args)
964 {
965 struct xfs_attr_leafblock *leaf;
966 struct xfs_attr3_icleaf_hdr icleafhdr;
967 struct xfs_attr_leaf_entry *entries;
968 struct xfs_da_node_entry *btree;
969 struct xfs_da3_icnode_hdr icnodehdr;
970 struct xfs_da_intnode *node;
971 struct xfs_inode *dp = args->dp;
972 struct xfs_mount *mp = dp->i_mount;
973 struct xfs_buf *bp1 = NULL;
974 struct xfs_buf *bp2 = NULL;
975 xfs_dablk_t blkno;
976 int error;
977
978 trace_xfs_attr_leaf_to_node(args);
979
980 error = xfs_da_grow_inode(args, &blkno);
981 if (error)
982 goto out;
983 error = xfs_attr3_leaf_read(args->trans, dp, 0, -1, &bp1);
984 if (error)
985 goto out;
986
987 error = xfs_da_get_buf(args->trans, dp, blkno, -1, &bp2, XFS_ATTR_FORK);
988 if (error)
989 goto out;
990
991 /* copy leaf to new buffer, update identifiers */
992 xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF);
993 bp2->b_ops = bp1->b_ops;
994 memcpy(bp2->b_addr, bp1->b_addr, args->geo->blksize);
995 if (xfs_sb_version_hascrc(&mp->m_sb)) {
996 struct xfs_da3_blkinfo *hdr3 = bp2->b_addr;
997 hdr3->blkno = cpu_to_be64(bp2->b_bn);
998 }
999 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1);
1000
1001 /*
1002 * Set up the new root node.
1003 */
1004 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
1005 if (error)
1006 goto out;
1007 node = bp1->b_addr;
1008 dp->d_ops->node_hdr_from_disk(&icnodehdr, node);
1009 btree = dp->d_ops->node_tree_p(node);
1010
1011 leaf = bp2->b_addr;
1012 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf);
1013 entries = xfs_attr3_leaf_entryp(leaf);
1014
1015 /* both on-disk, don't endian-flip twice */
1016 btree[0].hashval = entries[icleafhdr.count - 1].hashval;
1017 btree[0].before = cpu_to_be32(blkno);
1018 icnodehdr.count = 1;
1019 dp->d_ops->node_hdr_to_disk(node, &icnodehdr);
1020 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1);
1021 error = 0;
1022 out:
1023 return error;
1024 }
1025
1026 /*========================================================================
1027 * Routines used for growing the Btree.
1028 *========================================================================*/
1029
1030 /*
1031 * Create the initial contents of a leaf attribute list
1032 * or a leaf in a node attribute list.
1033 */
1034 STATIC int
1035 xfs_attr3_leaf_create(
1036 struct xfs_da_args *args,
1037 xfs_dablk_t blkno,
1038 struct xfs_buf **bpp)
1039 {
1040 struct xfs_attr_leafblock *leaf;
1041 struct xfs_attr3_icleaf_hdr ichdr;
1042 struct xfs_inode *dp = args->dp;
1043 struct xfs_mount *mp = dp->i_mount;
1044 struct xfs_buf *bp;
1045 int error;
1046
1047 trace_xfs_attr_leaf_create(args);
1048
1049 error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp,
1050 XFS_ATTR_FORK);
1051 if (error)
1052 return error;
1053 bp->b_ops = &xfs_attr3_leaf_buf_ops;
1054 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
1055 leaf = bp->b_addr;
1056 memset(leaf, 0, args->geo->blksize);
1057
1058 memset(&ichdr, 0, sizeof(ichdr));
1059 ichdr.firstused = args->geo->blksize;
1060
1061 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1062 struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
1063
1064 ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
1065
1066 hdr3->blkno = cpu_to_be64(bp->b_bn);
1067 hdr3->owner = cpu_to_be64(dp->i_ino);
1068 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid);
1069
1070 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
1071 } else {
1072 ichdr.magic = XFS_ATTR_LEAF_MAGIC;
1073 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
1074 }
1075 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
1076
1077 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1078 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1);
1079
1080 *bpp = bp;
1081 return 0;
1082 }
1083
1084 /*
1085 * Split the leaf node, rebalance, then add the new entry.
1086 */
1087 int
1088 xfs_attr3_leaf_split(
1089 struct xfs_da_state *state,
1090 struct xfs_da_state_blk *oldblk,
1091 struct xfs_da_state_blk *newblk)
1092 {
1093 xfs_dablk_t blkno;
1094 int error;
1095
1096 trace_xfs_attr_leaf_split(state->args);
1097
1098 /*
1099 * Allocate space for a new leaf node.
1100 */
1101 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
1102 error = xfs_da_grow_inode(state->args, &blkno);
1103 if (error)
1104 return error;
1105 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
1106 if (error)
1107 return error;
1108 newblk->blkno = blkno;
1109 newblk->magic = XFS_ATTR_LEAF_MAGIC;
1110
1111 /*
1112 * Rebalance the entries across the two leaves.
1113 * NOTE: rebalance() currently depends on the 2nd block being empty.
1114 */
1115 xfs_attr3_leaf_rebalance(state, oldblk, newblk);
1116 error = xfs_da3_blk_link(state, oldblk, newblk);
1117 if (error)
1118 return error;
1119
1120 /*
1121 * Save info on "old" attribute for "atomic rename" ops, leaf_add()
1122 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
1123 * "new" attrs info. Will need the "old" info to remove it later.
1124 *
1125 * Insert the "new" entry in the correct block.
1126 */
1127 if (state->inleaf) {
1128 trace_xfs_attr_leaf_add_old(state->args);
1129 error = xfs_attr3_leaf_add(oldblk->bp, state->args);
1130 } else {
1131 trace_xfs_attr_leaf_add_new(state->args);
1132 error = xfs_attr3_leaf_add(newblk->bp, state->args);
1133 }
1134
1135 /*
1136 * Update last hashval in each block since we added the name.
1137 */
1138 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
1139 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
1140 return error;
1141 }
1142
1143 /*
1144 * Add a name to the leaf attribute list structure.
1145 */
1146 int
1147 xfs_attr3_leaf_add(
1148 struct xfs_buf *bp,
1149 struct xfs_da_args *args)
1150 {
1151 struct xfs_attr_leafblock *leaf;
1152 struct xfs_attr3_icleaf_hdr ichdr;
1153 int tablesize;
1154 int entsize;
1155 int sum;
1156 int tmp;
1157 int i;
1158
1159 trace_xfs_attr_leaf_add(args);
1160
1161 leaf = bp->b_addr;
1162 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1163 ASSERT(args->index >= 0 && args->index <= ichdr.count);
1164 entsize = xfs_attr_leaf_newentsize(args, NULL);
1165
1166 /*
1167 * Search through freemap for first-fit on new name length.
1168 * (may need to figure in size of entry struct too)
1169 */
1170 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
1171 + xfs_attr3_leaf_hdr_size(leaf);
1172 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
1173 if (tablesize > ichdr.firstused) {
1174 sum += ichdr.freemap[i].size;
1175 continue;
1176 }
1177 if (!ichdr.freemap[i].size)
1178 continue; /* no space in this map */
1179 tmp = entsize;
1180 if (ichdr.freemap[i].base < ichdr.firstused)
1181 tmp += sizeof(xfs_attr_leaf_entry_t);
1182 if (ichdr.freemap[i].size >= tmp) {
1183 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
1184 goto out_log_hdr;
1185 }
1186 sum += ichdr.freemap[i].size;
1187 }
1188
1189 /*
1190 * If there are no holes in the address space of the block,
1191 * and we don't have enough freespace, then compaction will do us
1192 * no good and we should just give up.
1193 */
1194 if (!ichdr.holes && sum < entsize)
1195 return -ENOSPC;
1196
1197 /*
1198 * Compact the entries to coalesce free space.
1199 * This may change the hdr->count via dropping INCOMPLETE entries.
1200 */
1201 xfs_attr3_leaf_compact(args, &ichdr, bp);
1202
1203 /*
1204 * After compaction, the block is guaranteed to have only one
1205 * free region, in freemap[0]. If it is not big enough, give up.
1206 */
1207 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
1208 tmp = -ENOSPC;
1209 goto out_log_hdr;
1210 }
1211
1212 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
1213
1214 out_log_hdr:
1215 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1216 xfs_trans_log_buf(args->trans, bp,
1217 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
1218 xfs_attr3_leaf_hdr_size(leaf)));
1219 return tmp;
1220 }
1221
1222 /*
1223 * Add a name to a leaf attribute list structure.
1224 */
1225 STATIC int
1226 xfs_attr3_leaf_add_work(
1227 struct xfs_buf *bp,
1228 struct xfs_attr3_icleaf_hdr *ichdr,
1229 struct xfs_da_args *args,
1230 int mapindex)
1231 {
1232 struct xfs_attr_leafblock *leaf;
1233 struct xfs_attr_leaf_entry *entry;
1234 struct xfs_attr_leaf_name_local *name_loc;
1235 struct xfs_attr_leaf_name_remote *name_rmt;
1236 struct xfs_mount *mp;
1237 int tmp;
1238 int i;
1239
1240 trace_xfs_attr_leaf_add_work(args);
1241
1242 leaf = bp->b_addr;
1243 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
1244 ASSERT(args->index >= 0 && args->index <= ichdr->count);
1245
1246 /*
1247 * Force open some space in the entry array and fill it in.
1248 */
1249 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
1250 if (args->index < ichdr->count) {
1251 tmp = ichdr->count - args->index;
1252 tmp *= sizeof(xfs_attr_leaf_entry_t);
1253 memmove(entry + 1, entry, tmp);
1254 xfs_trans_log_buf(args->trans, bp,
1255 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
1256 }
1257 ichdr->count++;
1258
1259 /*
1260 * Allocate space for the new string (at the end of the run).
1261 */
1262 mp = args->trans->t_mountp;
1263 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize);
1264 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
1265 ASSERT(ichdr->freemap[mapindex].size >=
1266 xfs_attr_leaf_newentsize(args, NULL));
1267 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize);
1268 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
1269
1270 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp);
1271
1272 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
1273 ichdr->freemap[mapindex].size);
1274 entry->hashval = cpu_to_be32(args->hashval);
1275 entry->flags = tmp ? XFS_ATTR_LOCAL : 0;
1276 entry->flags |= XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
1277 if (args->op_flags & XFS_DA_OP_RENAME) {
1278 entry->flags |= XFS_ATTR_INCOMPLETE;
1279 if ((args->blkno2 == args->blkno) &&
1280 (args->index2 <= args->index)) {
1281 args->index2++;
1282 }
1283 }
1284 xfs_trans_log_buf(args->trans, bp,
1285 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
1286 ASSERT((args->index == 0) ||
1287 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
1288 ASSERT((args->index == ichdr->count - 1) ||
1289 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
1290
1291 /*
1292 * For "remote" attribute values, simply note that we need to
1293 * allocate space for the "remote" value. We can't actually
1294 * allocate the extents in this transaction, and we can't decide
1295 * which blocks they should be as we might allocate more blocks
1296 * as part of this transaction (a split operation for example).
1297 */
1298 if (entry->flags & XFS_ATTR_LOCAL) {
1299 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
1300 name_loc->namelen = args->namelen;
1301 name_loc->valuelen = cpu_to_be16(args->valuelen);
1302 memcpy((char *)name_loc->nameval, args->name, args->namelen);
1303 memcpy((char *)&name_loc->nameval[args->namelen], args->value,
1304 be16_to_cpu(name_loc->valuelen));
1305 } else {
1306 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
1307 name_rmt->namelen = args->namelen;
1308 memcpy((char *)name_rmt->name, args->name, args->namelen);
1309 entry->flags |= XFS_ATTR_INCOMPLETE;
1310 /* just in case */
1311 name_rmt->valuelen = 0;
1312 name_rmt->valueblk = 0;
1313 args->rmtblkno = 1;
1314 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen);
1315 args->rmtvaluelen = args->valuelen;
1316 }
1317 xfs_trans_log_buf(args->trans, bp,
1318 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
1319 xfs_attr_leaf_entsize(leaf, args->index)));
1320
1321 /*
1322 * Update the control info for this leaf node
1323 */
1324 if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
1325 ichdr->firstused = be16_to_cpu(entry->nameidx);
1326
1327 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
1328 + xfs_attr3_leaf_hdr_size(leaf));
1329 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
1330 + xfs_attr3_leaf_hdr_size(leaf);
1331
1332 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
1333 if (ichdr->freemap[i].base == tmp) {
1334 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
1335 ichdr->freemap[i].size -= sizeof(xfs_attr_leaf_entry_t);
1336 }
1337 }
1338 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
1339 return 0;
1340 }
1341
1342 /*
1343 * Garbage collect a leaf attribute list block by copying it to a new buffer.
1344 */
1345 STATIC void
1346 xfs_attr3_leaf_compact(
1347 struct xfs_da_args *args,
1348 struct xfs_attr3_icleaf_hdr *ichdr_dst,
1349 struct xfs_buf *bp)
1350 {
1351 struct xfs_attr_leafblock *leaf_src;
1352 struct xfs_attr_leafblock *leaf_dst;
1353 struct xfs_attr3_icleaf_hdr ichdr_src;
1354 struct xfs_trans *trans = args->trans;
1355 char *tmpbuffer;
1356
1357 trace_xfs_attr_leaf_compact(args);
1358
1359 tmpbuffer = kmem_alloc(args->geo->blksize, KM_SLEEP);
1360 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1361 memset(bp->b_addr, 0, args->geo->blksize);
1362 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer;
1363 leaf_dst = bp->b_addr;
1364
1365 /*
1366 * Copy the on-disk header back into the destination buffer to ensure
1367 * all the information in the header that is not part of the incore
1368 * header structure is preserved.
1369 */
1370 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src));
1371
1372 /* Initialise the incore headers */
1373 ichdr_src = *ichdr_dst; /* struct copy */
1374 ichdr_dst->firstused = args->geo->blksize;
1375 ichdr_dst->usedbytes = 0;
1376 ichdr_dst->count = 0;
1377 ichdr_dst->holes = 0;
1378 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src);
1379 ichdr_dst->freemap[0].size = ichdr_dst->firstused -
1380 ichdr_dst->freemap[0].base;
1381
1382 /* write the header back to initialise the underlying buffer */
1383 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst);
1384
1385 /*
1386 * Copy all entry's in the same (sorted) order,
1387 * but allocate name/value pairs packed and in sequence.
1388 */
1389 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0,
1390 leaf_dst, ichdr_dst, 0, ichdr_src.count);
1391 /*
1392 * this logs the entire buffer, but the caller must write the header
1393 * back to the buffer when it is finished modifying it.
1394 */
1395 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1);
1396
1397 kmem_free(tmpbuffer);
1398 }
1399
1400 /*
1401 * Compare two leaf blocks "order".
1402 * Return 0 unless leaf2 should go before leaf1.
1403 */
1404 static int
1405 xfs_attr3_leaf_order(
1406 struct xfs_buf *leaf1_bp,
1407 struct xfs_attr3_icleaf_hdr *leaf1hdr,
1408 struct xfs_buf *leaf2_bp,
1409 struct xfs_attr3_icleaf_hdr *leaf2hdr)
1410 {
1411 struct xfs_attr_leaf_entry *entries1;
1412 struct xfs_attr_leaf_entry *entries2;
1413
1414 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
1415 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
1416 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
1417 ((be32_to_cpu(entries2[0].hashval) <
1418 be32_to_cpu(entries1[0].hashval)) ||
1419 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
1420 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
1421 return 1;
1422 }
1423 return 0;
1424 }
1425
1426 int
1427 xfs_attr_leaf_order(
1428 struct xfs_buf *leaf1_bp,
1429 struct xfs_buf *leaf2_bp)
1430 {
1431 struct xfs_attr3_icleaf_hdr ichdr1;
1432 struct xfs_attr3_icleaf_hdr ichdr2;
1433 struct xfs_mount *mp = leaf1_bp->b_target->bt_mount;
1434
1435 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr);
1436 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr);
1437 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
1438 }
1439
1440 /*
1441 * Redistribute the attribute list entries between two leaf nodes,
1442 * taking into account the size of the new entry.
1443 *
1444 * NOTE: if new block is empty, then it will get the upper half of the
1445 * old block. At present, all (one) callers pass in an empty second block.
1446 *
1447 * This code adjusts the args->index/blkno and args->index2/blkno2 fields
1448 * to match what it is doing in splitting the attribute leaf block. Those
1449 * values are used in "atomic rename" operations on attributes. Note that
1450 * the "new" and "old" values can end up in different blocks.
1451 */
1452 STATIC void
1453 xfs_attr3_leaf_rebalance(
1454 struct xfs_da_state *state,
1455 struct xfs_da_state_blk *blk1,
1456 struct xfs_da_state_blk *blk2)
1457 {
1458 struct xfs_da_args *args;
1459 struct xfs_attr_leafblock *leaf1;
1460 struct xfs_attr_leafblock *leaf2;
1461 struct xfs_attr3_icleaf_hdr ichdr1;
1462 struct xfs_attr3_icleaf_hdr ichdr2;
1463 struct xfs_attr_leaf_entry *entries1;
1464 struct xfs_attr_leaf_entry *entries2;
1465 int count;
1466 int totallen;
1467 int max;
1468 int space;
1469 int swap;
1470
1471 /*
1472 * Set up environment.
1473 */
1474 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
1475 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
1476 leaf1 = blk1->bp->b_addr;
1477 leaf2 = blk2->bp->b_addr;
1478 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1);
1479 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2);
1480 ASSERT(ichdr2.count == 0);
1481 args = state->args;
1482
1483 trace_xfs_attr_leaf_rebalance(args);
1484
1485 /*
1486 * Check ordering of blocks, reverse if it makes things simpler.
1487 *
1488 * NOTE: Given that all (current) callers pass in an empty
1489 * second block, this code should never set "swap".
1490 */
1491 swap = 0;
1492 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
1493 struct xfs_da_state_blk *tmp_blk;
1494 struct xfs_attr3_icleaf_hdr tmp_ichdr;
1495
1496 tmp_blk = blk1;
1497 blk1 = blk2;
1498 blk2 = tmp_blk;
1499
1500 /* struct copies to swap them rather than reconverting */
1501 tmp_ichdr = ichdr1;
1502 ichdr1 = ichdr2;
1503 ichdr2 = tmp_ichdr;
1504
1505 leaf1 = blk1->bp->b_addr;
1506 leaf2 = blk2->bp->b_addr;
1507 swap = 1;
1508 }
1509
1510 /*
1511 * Examine entries until we reduce the absolute difference in
1512 * byte usage between the two blocks to a minimum. Then get
1513 * the direction to copy and the number of elements to move.
1514 *
1515 * "inleaf" is true if the new entry should be inserted into blk1.
1516 * If "swap" is also true, then reverse the sense of "inleaf".
1517 */
1518 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
1519 blk2, &ichdr2,
1520 &count, &totallen);
1521 if (swap)
1522 state->inleaf = !state->inleaf;
1523
1524 /*
1525 * Move any entries required from leaf to leaf:
1526 */
1527 if (count < ichdr1.count) {
1528 /*
1529 * Figure the total bytes to be added to the destination leaf.
1530 */
1531 /* number entries being moved */
1532 count = ichdr1.count - count;
1533 space = ichdr1.usedbytes - totallen;
1534 space += count * sizeof(xfs_attr_leaf_entry_t);
1535
1536 /*
1537 * leaf2 is the destination, compact it if it looks tight.
1538 */
1539 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1540 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
1541 if (space > max)
1542 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
1543
1544 /*
1545 * Move high entries from leaf1 to low end of leaf2.
1546 */
1547 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1,
1548 ichdr1.count - count, leaf2, &ichdr2, 0, count);
1549
1550 } else if (count > ichdr1.count) {
1551 /*
1552 * I assert that since all callers pass in an empty
1553 * second buffer, this code should never execute.
1554 */
1555 ASSERT(0);
1556
1557 /*
1558 * Figure the total bytes to be added to the destination leaf.
1559 */
1560 /* number entries being moved */
1561 count -= ichdr1.count;
1562 space = totallen - ichdr1.usedbytes;
1563 space += count * sizeof(xfs_attr_leaf_entry_t);
1564
1565 /*
1566 * leaf1 is the destination, compact it if it looks tight.
1567 */
1568 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1569 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
1570 if (space > max)
1571 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
1572
1573 /*
1574 * Move low entries from leaf2 to high end of leaf1.
1575 */
1576 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1,
1577 ichdr1.count, count);
1578 }
1579
1580 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1);
1581 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2);
1582 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1);
1583 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1);
1584
1585 /*
1586 * Copy out last hashval in each block for B-tree code.
1587 */
1588 entries1 = xfs_attr3_leaf_entryp(leaf1);
1589 entries2 = xfs_attr3_leaf_entryp(leaf2);
1590 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
1591 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
1592
1593 /*
1594 * Adjust the expected index for insertion.
1595 * NOTE: this code depends on the (current) situation that the
1596 * second block was originally empty.
1597 *
1598 * If the insertion point moved to the 2nd block, we must adjust
1599 * the index. We must also track the entry just following the
1600 * new entry for use in an "atomic rename" operation, that entry
1601 * is always the "old" entry and the "new" entry is what we are
1602 * inserting. The index/blkno fields refer to the "old" entry,
1603 * while the index2/blkno2 fields refer to the "new" entry.
1604 */
1605 if (blk1->index > ichdr1.count) {
1606 ASSERT(state->inleaf == 0);
1607 blk2->index = blk1->index - ichdr1.count;
1608 args->index = args->index2 = blk2->index;
1609 args->blkno = args->blkno2 = blk2->blkno;
1610 } else if (blk1->index == ichdr1.count) {
1611 if (state->inleaf) {
1612 args->index = blk1->index;
1613 args->blkno = blk1->blkno;
1614 args->index2 = 0;
1615 args->blkno2 = blk2->blkno;
1616 } else {
1617 /*
1618 * On a double leaf split, the original attr location
1619 * is already stored in blkno2/index2, so don't
1620 * overwrite it overwise we corrupt the tree.
1621 */
1622 blk2->index = blk1->index - ichdr1.count;
1623 args->index = blk2->index;
1624 args->blkno = blk2->blkno;
1625 if (!state->extravalid) {
1626 /*
1627 * set the new attr location to match the old
1628 * one and let the higher level split code
1629 * decide where in the leaf to place it.
1630 */
1631 args->index2 = blk2->index;
1632 args->blkno2 = blk2->blkno;
1633 }
1634 }
1635 } else {
1636 ASSERT(state->inleaf == 1);
1637 args->index = args->index2 = blk1->index;
1638 args->blkno = args->blkno2 = blk1->blkno;
1639 }
1640 }
1641
1642 /*
1643 * Examine entries until we reduce the absolute difference in
1644 * byte usage between the two blocks to a minimum.
1645 * GROT: Is this really necessary? With other than a 512 byte blocksize,
1646 * GROT: there will always be enough room in either block for a new entry.
1647 * GROT: Do a double-split for this case?
1648 */
1649 STATIC int
1650 xfs_attr3_leaf_figure_balance(
1651 struct xfs_da_state *state,
1652 struct xfs_da_state_blk *blk1,
1653 struct xfs_attr3_icleaf_hdr *ichdr1,
1654 struct xfs_da_state_blk *blk2,
1655 struct xfs_attr3_icleaf_hdr *ichdr2,
1656 int *countarg,
1657 int *usedbytesarg)
1658 {
1659 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr;
1660 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr;
1661 struct xfs_attr_leaf_entry *entry;
1662 int count;
1663 int max;
1664 int index;
1665 int totallen = 0;
1666 int half;
1667 int lastdelta;
1668 int foundit = 0;
1669 int tmp;
1670
1671 /*
1672 * Examine entries until we reduce the absolute difference in
1673 * byte usage between the two blocks to a minimum.
1674 */
1675 max = ichdr1->count + ichdr2->count;
1676 half = (max + 1) * sizeof(*entry);
1677 half += ichdr1->usedbytes + ichdr2->usedbytes +
1678 xfs_attr_leaf_newentsize(state->args, NULL);
1679 half /= 2;
1680 lastdelta = state->args->geo->blksize;
1681 entry = xfs_attr3_leaf_entryp(leaf1);
1682 for (count = index = 0; count < max; entry++, index++, count++) {
1683
1684 #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
1685 /*
1686 * The new entry is in the first block, account for it.
1687 */
1688 if (count == blk1->index) {
1689 tmp = totallen + sizeof(*entry) +
1690 xfs_attr_leaf_newentsize(state->args, NULL);
1691 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1692 break;
1693 lastdelta = XFS_ATTR_ABS(half - tmp);
1694 totallen = tmp;
1695 foundit = 1;
1696 }
1697
1698 /*
1699 * Wrap around into the second block if necessary.
1700 */
1701 if (count == ichdr1->count) {
1702 leaf1 = leaf2;
1703 entry = xfs_attr3_leaf_entryp(leaf1);
1704 index = 0;
1705 }
1706
1707 /*
1708 * Figure out if next leaf entry would be too much.
1709 */
1710 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
1711 index);
1712 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1713 break;
1714 lastdelta = XFS_ATTR_ABS(half - tmp);
1715 totallen = tmp;
1716 #undef XFS_ATTR_ABS
1717 }
1718
1719 /*
1720 * Calculate the number of usedbytes that will end up in lower block.
1721 * If new entry not in lower block, fix up the count.
1722 */
1723 totallen -= count * sizeof(*entry);
1724 if (foundit) {
1725 totallen -= sizeof(*entry) +
1726 xfs_attr_leaf_newentsize(state->args, NULL);
1727 }
1728
1729 *countarg = count;
1730 *usedbytesarg = totallen;
1731 return foundit;
1732 }
1733
1734 /*========================================================================
1735 * Routines used for shrinking the Btree.
1736 *========================================================================*/
1737
1738 /*
1739 * Check a leaf block and its neighbors to see if the block should be
1740 * collapsed into one or the other neighbor. Always keep the block
1741 * with the smaller block number.
1742 * If the current block is over 50% full, don't try to join it, return 0.
1743 * If the block is empty, fill in the state structure and return 2.
1744 * If it can be collapsed, fill in the state structure and return 1.
1745 * If nothing can be done, return 0.
1746 *
1747 * GROT: allow for INCOMPLETE entries in calculation.
1748 */
1749 int
1750 xfs_attr3_leaf_toosmall(
1751 struct xfs_da_state *state,
1752 int *action)
1753 {
1754 struct xfs_attr_leafblock *leaf;
1755 struct xfs_da_state_blk *blk;
1756 struct xfs_attr3_icleaf_hdr ichdr;
1757 struct xfs_buf *bp;
1758 xfs_dablk_t blkno;
1759 int bytes;
1760 int forward;
1761 int error;
1762 int retval;
1763 int i;
1764
1765 trace_xfs_attr_leaf_toosmall(state->args);
1766
1767 /*
1768 * Check for the degenerate case of the block being over 50% full.
1769 * If so, it's not worth even looking to see if we might be able
1770 * to coalesce with a sibling.
1771 */
1772 blk = &state->path.blk[ state->path.active-1 ];
1773 leaf = blk->bp->b_addr;
1774 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf);
1775 bytes = xfs_attr3_leaf_hdr_size(leaf) +
1776 ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
1777 ichdr.usedbytes;
1778 if (bytes > (state->args->geo->blksize >> 1)) {
1779 *action = 0; /* blk over 50%, don't try to join */
1780 return 0;
1781 }
1782
1783 /*
1784 * Check for the degenerate case of the block being empty.
1785 * If the block is empty, we'll simply delete it, no need to
1786 * coalesce it with a sibling block. We choose (arbitrarily)
1787 * to merge with the forward block unless it is NULL.
1788 */
1789 if (ichdr.count == 0) {
1790 /*
1791 * Make altpath point to the block we want to keep and
1792 * path point to the block we want to drop (this one).
1793 */
1794 forward = (ichdr.forw != 0);
1795 memcpy(&state->altpath, &state->path, sizeof(state->path));
1796 error = xfs_da3_path_shift(state, &state->altpath, forward,
1797 0, &retval);
1798 if (error)
1799 return error;
1800 if (retval) {
1801 *action = 0;
1802 } else {
1803 *action = 2;
1804 }
1805 return 0;
1806 }
1807
1808 /*
1809 * Examine each sibling block to see if we can coalesce with
1810 * at least 25% free space to spare. We need to figure out
1811 * whether to merge with the forward or the backward block.
1812 * We prefer coalescing with the lower numbered sibling so as
1813 * to shrink an attribute list over time.
1814 */
1815 /* start with smaller blk num */
1816 forward = ichdr.forw < ichdr.back;
1817 for (i = 0; i < 2; forward = !forward, i++) {
1818 struct xfs_attr3_icleaf_hdr ichdr2;
1819 if (forward)
1820 blkno = ichdr.forw;
1821 else
1822 blkno = ichdr.back;
1823 if (blkno == 0)
1824 continue;
1825 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
1826 blkno, -1, &bp);
1827 if (error)
1828 return error;
1829
1830 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr);
1831
1832 bytes = state->args->geo->blksize -
1833 (state->args->geo->blksize >> 2) -
1834 ichdr.usedbytes - ichdr2.usedbytes -
1835 ((ichdr.count + ichdr2.count) *
1836 sizeof(xfs_attr_leaf_entry_t)) -
1837 xfs_attr3_leaf_hdr_size(leaf);
1838
1839 xfs_trans_brelse(state->args->trans, bp);
1840 if (bytes >= 0)
1841 break; /* fits with at least 25% to spare */
1842 }
1843 if (i >= 2) {
1844 *action = 0;
1845 return 0;
1846 }
1847
1848 /*
1849 * Make altpath point to the block we want to keep (the lower
1850 * numbered block) and path point to the block we want to drop.
1851 */
1852 memcpy(&state->altpath, &state->path, sizeof(state->path));
1853 if (blkno < blk->blkno) {
1854 error = xfs_da3_path_shift(state, &state->altpath, forward,
1855 0, &retval);
1856 } else {
1857 error = xfs_da3_path_shift(state, &state->path, forward,
1858 0, &retval);
1859 }
1860 if (error)
1861 return error;
1862 if (retval) {
1863 *action = 0;
1864 } else {
1865 *action = 1;
1866 }
1867 return 0;
1868 }
1869
1870 /*
1871 * Remove a name from the leaf attribute list structure.
1872 *
1873 * Return 1 if leaf is less than 37% full, 0 if >= 37% full.
1874 * If two leaves are 37% full, when combined they will leave 25% free.
1875 */
1876 int
1877 xfs_attr3_leaf_remove(
1878 struct xfs_buf *bp,
1879 struct xfs_da_args *args)
1880 {
1881 struct xfs_attr_leafblock *leaf;
1882 struct xfs_attr3_icleaf_hdr ichdr;
1883 struct xfs_attr_leaf_entry *entry;
1884 int before;
1885 int after;
1886 int smallest;
1887 int entsize;
1888 int tablesize;
1889 int tmp;
1890 int i;
1891
1892 trace_xfs_attr_leaf_remove(args);
1893
1894 leaf = bp->b_addr;
1895 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1896
1897 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8);
1898 ASSERT(args->index >= 0 && args->index < ichdr.count);
1899 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
1900 xfs_attr3_leaf_hdr_size(leaf));
1901
1902 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
1903
1904 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
1905 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
1906
1907 /*
1908 * Scan through free region table:
1909 * check for adjacency of free'd entry with an existing one,
1910 * find smallest free region in case we need to replace it,
1911 * adjust any map that borders the entry table,
1912 */
1913 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
1914 + xfs_attr3_leaf_hdr_size(leaf);
1915 tmp = ichdr.freemap[0].size;
1916 before = after = -1;
1917 smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
1918 entsize = xfs_attr_leaf_entsize(leaf, args->index);
1919 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
1920 ASSERT(ichdr.freemap[i].base < args->geo->blksize);
1921 ASSERT(ichdr.freemap[i].size < args->geo->blksize);
1922 if (ichdr.freemap[i].base == tablesize) {
1923 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
1924 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
1925 }
1926
1927 if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
1928 be16_to_cpu(entry->nameidx)) {
1929 before = i;
1930 } else if (ichdr.freemap[i].base ==
1931 (be16_to_cpu(entry->nameidx) + entsize)) {
1932 after = i;
1933 } else if (ichdr.freemap[i].size < tmp) {
1934 tmp = ichdr.freemap[i].size;
1935 smallest = i;
1936 }
1937 }
1938
1939 /*
1940 * Coalesce adjacent freemap regions,
1941 * or replace the smallest region.
1942 */
1943 if ((before >= 0) || (after >= 0)) {
1944 if ((before >= 0) && (after >= 0)) {
1945 ichdr.freemap[before].size += entsize;
1946 ichdr.freemap[before].size += ichdr.freemap[after].size;
1947 ichdr.freemap[after].base = 0;
1948 ichdr.freemap[after].size = 0;
1949 } else if (before >= 0) {
1950 ichdr.freemap[before].size += entsize;
1951 } else {
1952 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
1953 ichdr.freemap[after].size += entsize;
1954 }
1955 } else {
1956 /*
1957 * Replace smallest region (if it is smaller than free'd entry)
1958 */
1959 if (ichdr.freemap[smallest].size < entsize) {
1960 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
1961 ichdr.freemap[smallest].size = entsize;
1962 }
1963 }
1964
1965 /*
1966 * Did we remove the first entry?
1967 */
1968 if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
1969 smallest = 1;
1970 else
1971 smallest = 0;
1972
1973 /*
1974 * Compress the remaining entries and zero out the removed stuff.
1975 */
1976 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
1977 ichdr.usedbytes -= entsize;
1978 xfs_trans_log_buf(args->trans, bp,
1979 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
1980 entsize));
1981
1982 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
1983 memmove(entry, entry + 1, tmp);
1984 ichdr.count--;
1985 xfs_trans_log_buf(args->trans, bp,
1986 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
1987
1988 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
1989 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
1990
1991 /*
1992 * If we removed the first entry, re-find the first used byte
1993 * in the name area. Note that if the entry was the "firstused",
1994 * then we don't have a "hole" in our block resulting from
1995 * removing the name.
1996 */
1997 if (smallest) {
1998 tmp = args->geo->blksize;
1999 entry = xfs_attr3_leaf_entryp(leaf);
2000 for (i = ichdr.count - 1; i >= 0; entry++, i--) {
2001 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2002 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2003
2004 if (be16_to_cpu(entry->nameidx) < tmp)
2005 tmp = be16_to_cpu(entry->nameidx);
2006 }
2007 ichdr.firstused = tmp;
2008 ASSERT(ichdr.firstused != 0);
2009 } else {
2010 ichdr.holes = 1; /* mark as needing compaction */
2011 }
2012 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
2013 xfs_trans_log_buf(args->trans, bp,
2014 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
2015 xfs_attr3_leaf_hdr_size(leaf)));
2016
2017 /*
2018 * Check if leaf is less than 50% full, caller may want to
2019 * "join" the leaf with a sibling if so.
2020 */
2021 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
2022 ichdr.count * sizeof(xfs_attr_leaf_entry_t);
2023
2024 return tmp < args->geo->magicpct; /* leaf is < 37% full */
2025 }
2026
2027 /*
2028 * Move all the attribute list entries from drop_leaf into save_leaf.
2029 */
2030 void
2031 xfs_attr3_leaf_unbalance(
2032 struct xfs_da_state *state,
2033 struct xfs_da_state_blk *drop_blk,
2034 struct xfs_da_state_blk *save_blk)
2035 {
2036 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
2037 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
2038 struct xfs_attr3_icleaf_hdr drophdr;
2039 struct xfs_attr3_icleaf_hdr savehdr;
2040 struct xfs_attr_leaf_entry *entry;
2041
2042 trace_xfs_attr_leaf_unbalance(state->args);
2043
2044 drop_leaf = drop_blk->bp->b_addr;
2045 save_leaf = save_blk->bp->b_addr;
2046 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf);
2047 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf);
2048 entry = xfs_attr3_leaf_entryp(drop_leaf);
2049
2050 /*
2051 * Save last hashval from dying block for later Btree fixup.
2052 */
2053 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
2054
2055 /*
2056 * Check if we need a temp buffer, or can we do it in place.
2057 * Note that we don't check "leaf" for holes because we will
2058 * always be dropping it, toosmall() decided that for us already.
2059 */
2060 if (savehdr.holes == 0) {
2061 /*
2062 * dest leaf has no holes, so we add there. May need
2063 * to make some room in the entry array.
2064 */
2065 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2066 drop_blk->bp, &drophdr)) {
2067 xfs_attr3_leaf_moveents(state->args,
2068 drop_leaf, &drophdr, 0,
2069 save_leaf, &savehdr, 0,
2070 drophdr.count);
2071 } else {
2072 xfs_attr3_leaf_moveents(state->args,
2073 drop_leaf, &drophdr, 0,
2074 save_leaf, &savehdr,
2075 savehdr.count, drophdr.count);
2076 }
2077 } else {
2078 /*
2079 * Destination has holes, so we make a temporary copy
2080 * of the leaf and add them both to that.
2081 */
2082 struct xfs_attr_leafblock *tmp_leaf;
2083 struct xfs_attr3_icleaf_hdr tmphdr;
2084
2085 tmp_leaf = kmem_zalloc(state->args->geo->blksize, KM_SLEEP);
2086
2087 /*
2088 * Copy the header into the temp leaf so that all the stuff
2089 * not in the incore header is present and gets copied back in
2090 * once we've moved all the entries.
2091 */
2092 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf));
2093
2094 memset(&tmphdr, 0, sizeof(tmphdr));
2095 tmphdr.magic = savehdr.magic;
2096 tmphdr.forw = savehdr.forw;
2097 tmphdr.back = savehdr.back;
2098 tmphdr.firstused = state->args->geo->blksize;
2099
2100 /* write the header to the temp buffer to initialise it */
2101 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr);
2102
2103 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2104 drop_blk->bp, &drophdr)) {
2105 xfs_attr3_leaf_moveents(state->args,
2106 drop_leaf, &drophdr, 0,
2107 tmp_leaf, &tmphdr, 0,
2108 drophdr.count);
2109 xfs_attr3_leaf_moveents(state->args,
2110 save_leaf, &savehdr, 0,
2111 tmp_leaf, &tmphdr, tmphdr.count,
2112 savehdr.count);
2113 } else {
2114 xfs_attr3_leaf_moveents(state->args,
2115 save_leaf, &savehdr, 0,
2116 tmp_leaf, &tmphdr, 0,
2117 savehdr.count);
2118 xfs_attr3_leaf_moveents(state->args,
2119 drop_leaf, &drophdr, 0,
2120 tmp_leaf, &tmphdr, tmphdr.count,
2121 drophdr.count);
2122 }
2123 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize);
2124 savehdr = tmphdr; /* struct copy */
2125 kmem_free(tmp_leaf);
2126 }
2127
2128 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr);
2129 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
2130 state->args->geo->blksize - 1);
2131
2132 /*
2133 * Copy out last hashval in each block for B-tree code.
2134 */
2135 entry = xfs_attr3_leaf_entryp(save_leaf);
2136 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
2137 }
2138
2139 /*========================================================================
2140 * Routines used for finding things in the Btree.
2141 *========================================================================*/
2142
2143 /*
2144 * Look up a name in a leaf attribute list structure.
2145 * This is the internal routine, it uses the caller's buffer.
2146 *
2147 * Note that duplicate keys are allowed, but only check within the
2148 * current leaf node. The Btree code must check in adjacent leaf nodes.
2149 *
2150 * Return in args->index the index into the entry[] array of either
2151 * the found entry, or where the entry should have been (insert before
2152 * that entry).
2153 *
2154 * Don't change the args->value unless we find the attribute.
2155 */
2156 int
2157 xfs_attr3_leaf_lookup_int(
2158 struct xfs_buf *bp,
2159 struct xfs_da_args *args)
2160 {
2161 struct xfs_attr_leafblock *leaf;
2162 struct xfs_attr3_icleaf_hdr ichdr;
2163 struct xfs_attr_leaf_entry *entry;
2164 struct xfs_attr_leaf_entry *entries;
2165 struct xfs_attr_leaf_name_local *name_loc;
2166 struct xfs_attr_leaf_name_remote *name_rmt;
2167 xfs_dahash_t hashval;
2168 int probe;
2169 int span;
2170
2171 trace_xfs_attr_leaf_lookup(args);
2172
2173 leaf = bp->b_addr;
2174 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2175 entries = xfs_attr3_leaf_entryp(leaf);
2176 ASSERT(ichdr.count < args->geo->blksize / 8);
2177
2178 /*
2179 * Binary search. (note: small blocks will skip this loop)
2180 */
2181 hashval = args->hashval;
2182 probe = span = ichdr.count / 2;
2183 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
2184 span /= 2;
2185 if (be32_to_cpu(entry->hashval) < hashval)
2186 probe += span;
2187 else if (be32_to_cpu(entry->hashval) > hashval)
2188 probe -= span;
2189 else
2190 break;
2191 }
2192 ASSERT(probe >= 0 && (!ichdr.count || probe < ichdr.count));
2193 ASSERT(span <= 4 || be32_to_cpu(entry->hashval) == hashval);
2194
2195 /*
2196 * Since we may have duplicate hashval's, find the first matching
2197 * hashval in the leaf.
2198 */
2199 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
2200 entry--;
2201 probe--;
2202 }
2203 while (probe < ichdr.count &&
2204 be32_to_cpu(entry->hashval) < hashval) {
2205 entry++;
2206 probe++;
2207 }
2208 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
2209 args->index = probe;
2210 return -ENOATTR;
2211 }
2212
2213 /*
2214 * Duplicate keys may be present, so search all of them for a match.
2215 */
2216 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
2217 entry++, probe++) {
2218 /*
2219 * GROT: Add code to remove incomplete entries.
2220 */
2221 /*
2222 * If we are looking for INCOMPLETE entries, show only those.
2223 * If we are looking for complete entries, show only those.
2224 */
2225 if ((args->flags & XFS_ATTR_INCOMPLETE) !=
2226 (entry->flags & XFS_ATTR_INCOMPLETE)) {
2227 continue;
2228 }
2229 if (entry->flags & XFS_ATTR_LOCAL) {
2230 name_loc = xfs_attr3_leaf_name_local(leaf, probe);
2231 if (name_loc->namelen != args->namelen)
2232 continue;
2233 if (memcmp(args->name, name_loc->nameval,
2234 args->namelen) != 0)
2235 continue;
2236 if (!xfs_attr_namesp_match(args->flags, entry->flags))
2237 continue;
2238 args->index = probe;
2239 return -EEXIST;
2240 } else {
2241 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
2242 if (name_rmt->namelen != args->namelen)
2243 continue;
2244 if (memcmp(args->name, name_rmt->name,
2245 args->namelen) != 0)
2246 continue;
2247 if (!xfs_attr_namesp_match(args->flags, entry->flags))
2248 continue;
2249 args->index = probe;
2250 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2251 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2252 args->rmtblkcnt = xfs_attr3_rmt_blocks(
2253 args->dp->i_mount,
2254 args->rmtvaluelen);
2255 return -EEXIST;
2256 }
2257 }
2258 args->index = probe;
2259 return -ENOATTR;
2260 }
2261
2262 /*
2263 * Get the value associated with an attribute name from a leaf attribute
2264 * list structure.
2265 */
2266 int
2267 xfs_attr3_leaf_getvalue(
2268 struct xfs_buf *bp,
2269 struct xfs_da_args *args)
2270 {
2271 struct xfs_attr_leafblock *leaf;
2272 struct xfs_attr3_icleaf_hdr ichdr;
2273 struct xfs_attr_leaf_entry *entry;
2274 struct xfs_attr_leaf_name_local *name_loc;
2275 struct xfs_attr_leaf_name_remote *name_rmt;
2276 int valuelen;
2277
2278 leaf = bp->b_addr;
2279 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2280 ASSERT(ichdr.count < args->geo->blksize / 8);
2281 ASSERT(args->index < ichdr.count);
2282
2283 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2284 if (entry->flags & XFS_ATTR_LOCAL) {
2285 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2286 ASSERT(name_loc->namelen == args->namelen);
2287 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
2288 valuelen = be16_to_cpu(name_loc->valuelen);
2289 if (args->flags & ATTR_KERNOVAL) {
2290 args->valuelen = valuelen;
2291 return 0;
2292 }
2293 if (args->valuelen < valuelen) {
2294 args->valuelen = valuelen;
2295 return -ERANGE;
2296 }
2297 args->valuelen = valuelen;
2298 memcpy(args->value, &name_loc->nameval[args->namelen], valuelen);
2299 } else {
2300 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2301 ASSERT(name_rmt->namelen == args->namelen);
2302 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
2303 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2304 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2305 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount,
2306 args->rmtvaluelen);
2307 if (args->flags & ATTR_KERNOVAL) {
2308 args->valuelen = args->rmtvaluelen;
2309 return 0;
2310 }
2311 if (args->valuelen < args->rmtvaluelen) {
2312 args->valuelen = args->rmtvaluelen;
2313 return -ERANGE;
2314 }
2315 args->valuelen = args->rmtvaluelen;
2316 }
2317 return 0;
2318 }
2319
2320 /*========================================================================
2321 * Utility routines.
2322 *========================================================================*/
2323
2324 /*
2325 * Move the indicated entries from one leaf to another.
2326 * NOTE: this routine modifies both source and destination leaves.
2327 */
2328 /*ARGSUSED*/
2329 STATIC void
2330 xfs_attr3_leaf_moveents(
2331 struct xfs_da_args *args,
2332 struct xfs_attr_leafblock *leaf_s,
2333 struct xfs_attr3_icleaf_hdr *ichdr_s,
2334 int start_s,
2335 struct xfs_attr_leafblock *leaf_d,
2336 struct xfs_attr3_icleaf_hdr *ichdr_d,
2337 int start_d,
2338 int count)
2339 {
2340 struct xfs_attr_leaf_entry *entry_s;
2341 struct xfs_attr_leaf_entry *entry_d;
2342 int desti;
2343 int tmp;
2344 int i;
2345
2346 /*
2347 * Check for nothing to do.
2348 */
2349 if (count == 0)
2350 return;
2351
2352 /*
2353 * Set up environment.
2354 */
2355 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
2356 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
2357 ASSERT(ichdr_s->magic == ichdr_d->magic);
2358 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8);
2359 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
2360 + xfs_attr3_leaf_hdr_size(leaf_s));
2361 ASSERT(ichdr_d->count < args->geo->blksize / 8);
2362 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
2363 + xfs_attr3_leaf_hdr_size(leaf_d));
2364
2365 ASSERT(start_s < ichdr_s->count);
2366 ASSERT(start_d <= ichdr_d->count);
2367 ASSERT(count <= ichdr_s->count);
2368
2369
2370 /*
2371 * Move the entries in the destination leaf up to make a hole?
2372 */
2373 if (start_d < ichdr_d->count) {
2374 tmp = ichdr_d->count - start_d;
2375 tmp *= sizeof(xfs_attr_leaf_entry_t);
2376 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2377 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
2378 memmove(entry_d, entry_s, tmp);
2379 }
2380
2381 /*
2382 * Copy all entry's in the same (sorted) order,
2383 * but allocate attribute info packed and in sequence.
2384 */
2385 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2386 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2387 desti = start_d;
2388 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
2389 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
2390 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
2391 #ifdef GROT
2392 /*
2393 * Code to drop INCOMPLETE entries. Difficult to use as we
2394 * may also need to change the insertion index. Code turned
2395 * off for 6.2, should be revisited later.
2396 */
2397 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
2398 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2399 ichdr_s->usedbytes -= tmp;
2400 ichdr_s->count -= 1;
2401 entry_d--; /* to compensate for ++ in loop hdr */
2402 desti--;
2403 if ((start_s + i) < offset)
2404 result++; /* insertion index adjustment */
2405 } else {
2406 #endif /* GROT */
2407 ichdr_d->firstused -= tmp;
2408 /* both on-disk, don't endian flip twice */
2409 entry_d->hashval = entry_s->hashval;
2410 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
2411 entry_d->flags = entry_s->flags;
2412 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
2413 <= args->geo->blksize);
2414 memmove(xfs_attr3_leaf_name(leaf_d, desti),
2415 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
2416 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
2417 <= args->geo->blksize);
2418 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2419 ichdr_s->usedbytes -= tmp;
2420 ichdr_d->usedbytes += tmp;
2421 ichdr_s->count -= 1;
2422 ichdr_d->count += 1;
2423 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
2424 + xfs_attr3_leaf_hdr_size(leaf_d);
2425 ASSERT(ichdr_d->firstused >= tmp);
2426 #ifdef GROT
2427 }
2428 #endif /* GROT */
2429 }
2430
2431 /*
2432 * Zero out the entries we just copied.
2433 */
2434 if (start_s == ichdr_s->count) {
2435 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2436 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2437 ASSERT(((char *)entry_s + tmp) <=
2438 ((char *)leaf_s + args->geo->blksize));
2439 memset(entry_s, 0, tmp);
2440 } else {
2441 /*
2442 * Move the remaining entries down to fill the hole,
2443 * then zero the entries at the top.
2444 */
2445 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
2446 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
2447 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2448 memmove(entry_d, entry_s, tmp);
2449
2450 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2451 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
2452 ASSERT(((char *)entry_s + tmp) <=
2453 ((char *)leaf_s + args->geo->blksize));
2454 memset(entry_s, 0, tmp);
2455 }
2456
2457 /*
2458 * Fill in the freemap information
2459 */
2460 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
2461 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
2462 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
2463 ichdr_d->freemap[1].base = 0;
2464 ichdr_d->freemap[2].base = 0;
2465 ichdr_d->freemap[1].size = 0;
2466 ichdr_d->freemap[2].size = 0;
2467 ichdr_s->holes = 1; /* leaf may not be compact */
2468 }
2469
2470 /*
2471 * Pick up the last hashvalue from a leaf block.
2472 */
2473 xfs_dahash_t
2474 xfs_attr_leaf_lasthash(
2475 struct xfs_buf *bp,
2476 int *count)
2477 {
2478 struct xfs_attr3_icleaf_hdr ichdr;
2479 struct xfs_attr_leaf_entry *entries;
2480 struct xfs_mount *mp = bp->b_target->bt_mount;
2481
2482 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr);
2483 entries = xfs_attr3_leaf_entryp(bp->b_addr);
2484 if (count)
2485 *count = ichdr.count;
2486 if (!ichdr.count)
2487 return 0;
2488 return be32_to_cpu(entries[ichdr.count - 1].hashval);
2489 }
2490
2491 /*
2492 * Calculate the number of bytes used to store the indicated attribute
2493 * (whether local or remote only calculate bytes in this block).
2494 */
2495 STATIC int
2496 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
2497 {
2498 struct xfs_attr_leaf_entry *entries;
2499 xfs_attr_leaf_name_local_t *name_loc;
2500 xfs_attr_leaf_name_remote_t *name_rmt;
2501 int size;
2502
2503 entries = xfs_attr3_leaf_entryp(leaf);
2504 if (entries[index].flags & XFS_ATTR_LOCAL) {
2505 name_loc = xfs_attr3_leaf_name_local(leaf, index);
2506 size = xfs_attr_leaf_entsize_local(name_loc->namelen,
2507 be16_to_cpu(name_loc->valuelen));
2508 } else {
2509 name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
2510 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
2511 }
2512 return size;
2513 }
2514
2515 /*
2516 * Calculate the number of bytes that would be required to store the new
2517 * attribute (whether local or remote only calculate bytes in this block).
2518 * This routine decides as a side effect whether the attribute will be
2519 * a "local" or a "remote" attribute.
2520 */
2521 int
2522 xfs_attr_leaf_newentsize(
2523 struct xfs_da_args *args,
2524 int *local)
2525 {
2526 int size;
2527
2528 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen);
2529 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) {
2530 if (local)
2531 *local = 1;
2532 return size;
2533 }
2534 if (local)
2535 *local = 0;
2536 return xfs_attr_leaf_entsize_remote(args->namelen);
2537 }
2538
2539
2540 /*========================================================================
2541 * Manage the INCOMPLETE flag in a leaf entry
2542 *========================================================================*/
2543
2544 /*
2545 * Clear the INCOMPLETE flag on an entry in a leaf block.
2546 */
2547 int
2548 xfs_attr3_leaf_clearflag(
2549 struct xfs_da_args *args)
2550 {
2551 struct xfs_attr_leafblock *leaf;
2552 struct xfs_attr_leaf_entry *entry;
2553 struct xfs_attr_leaf_name_remote *name_rmt;
2554 struct xfs_buf *bp;
2555 int error;
2556 #ifdef DEBUG
2557 struct xfs_attr3_icleaf_hdr ichdr;
2558 xfs_attr_leaf_name_local_t *name_loc;
2559 int namelen;
2560 char *name;
2561 #endif /* DEBUG */
2562
2563 trace_xfs_attr_leaf_clearflag(args);
2564 /*
2565 * Set up the operation.
2566 */
2567 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp);
2568 if (error)
2569 return error;
2570
2571 leaf = bp->b_addr;
2572 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2573 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
2574
2575 #ifdef DEBUG
2576 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2577 ASSERT(args->index < ichdr.count);
2578 ASSERT(args->index >= 0);
2579
2580 if (entry->flags & XFS_ATTR_LOCAL) {
2581 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2582 namelen = name_loc->namelen;
2583 name = (char *)name_loc->nameval;
2584 } else {
2585 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2586 namelen = name_rmt->namelen;
2587 name = (char *)name_rmt->name;
2588 }
2589 ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
2590 ASSERT(namelen == args->namelen);
2591 ASSERT(memcmp(name, args->name, namelen) == 0);
2592 #endif /* DEBUG */
2593
2594 entry->flags &= ~XFS_ATTR_INCOMPLETE;
2595 xfs_trans_log_buf(args->trans, bp,
2596 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2597
2598 if (args->rmtblkno) {
2599 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
2600 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2601 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2602 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2603 xfs_trans_log_buf(args->trans, bp,
2604 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2605 }
2606
2607 /*
2608 * Commit the flag value change and start the next trans in series.
2609 */
2610 return xfs_trans_roll_inode(&args->trans, args->dp);
2611 }
2612
2613 /*
2614 * Set the INCOMPLETE flag on an entry in a leaf block.
2615 */
2616 int
2617 xfs_attr3_leaf_setflag(
2618 struct xfs_da_args *args)
2619 {
2620 struct xfs_attr_leafblock *leaf;
2621 struct xfs_attr_leaf_entry *entry;
2622 struct xfs_attr_leaf_name_remote *name_rmt;
2623 struct xfs_buf *bp;
2624 int error;
2625 #ifdef DEBUG
2626 struct xfs_attr3_icleaf_hdr ichdr;
2627 #endif
2628
2629 trace_xfs_attr_leaf_setflag(args);
2630
2631 /*
2632 * Set up the operation.
2633 */
2634 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp);
2635 if (error)
2636 return error;
2637
2638 leaf = bp->b_addr;
2639 #ifdef DEBUG
2640 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2641 ASSERT(args->index < ichdr.count);
2642 ASSERT(args->index >= 0);
2643 #endif
2644 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2645
2646 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
2647 entry->flags |= XFS_ATTR_INCOMPLETE;
2648 xfs_trans_log_buf(args->trans, bp,
2649 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2650 if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
2651 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2652 name_rmt->valueblk = 0;
2653 name_rmt->valuelen = 0;
2654 xfs_trans_log_buf(args->trans, bp,
2655 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2656 }
2657
2658 /*
2659 * Commit the flag value change and start the next trans in series.
2660 */
2661 return xfs_trans_roll_inode(&args->trans, args->dp);
2662 }
2663
2664 /*
2665 * In a single transaction, clear the INCOMPLETE flag on the leaf entry
2666 * given by args->blkno/index and set the INCOMPLETE flag on the leaf
2667 * entry given by args->blkno2/index2.
2668 *
2669 * Note that they could be in different blocks, or in the same block.
2670 */
2671 int
2672 xfs_attr3_leaf_flipflags(
2673 struct xfs_da_args *args)
2674 {
2675 struct xfs_attr_leafblock *leaf1;
2676 struct xfs_attr_leafblock *leaf2;
2677 struct xfs_attr_leaf_entry *entry1;
2678 struct xfs_attr_leaf_entry *entry2;
2679 struct xfs_attr_leaf_name_remote *name_rmt;
2680 struct xfs_buf *bp1;
2681 struct xfs_buf *bp2;
2682 int error;
2683 #ifdef DEBUG
2684 struct xfs_attr3_icleaf_hdr ichdr1;
2685 struct xfs_attr3_icleaf_hdr ichdr2;
2686 xfs_attr_leaf_name_local_t *name_loc;
2687 int namelen1, namelen2;
2688 char *name1, *name2;
2689 #endif /* DEBUG */
2690
2691 trace_xfs_attr_leaf_flipflags(args);
2692
2693 /*
2694 * Read the block containing the "old" attr
2695 */
2696 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp1);
2697 if (error)
2698 return error;
2699
2700 /*
2701 * Read the block containing the "new" attr, if it is different
2702 */
2703 if (args->blkno2 != args->blkno) {
2704 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2,
2705 -1, &bp2);
2706 if (error)
2707 return error;
2708 } else {
2709 bp2 = bp1;
2710 }
2711
2712 leaf1 = bp1->b_addr;
2713 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
2714
2715 leaf2 = bp2->b_addr;
2716 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
2717
2718 #ifdef DEBUG
2719 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1);
2720 ASSERT(args->index < ichdr1.count);
2721 ASSERT(args->index >= 0);
2722
2723 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2);
2724 ASSERT(args->index2 < ichdr2.count);
2725 ASSERT(args->index2 >= 0);
2726
2727 if (entry1->flags & XFS_ATTR_LOCAL) {
2728 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
2729 namelen1 = name_loc->namelen;
2730 name1 = (char *)name_loc->nameval;
2731 } else {
2732 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2733 namelen1 = name_rmt->namelen;
2734 name1 = (char *)name_rmt->name;
2735 }
2736 if (entry2->flags & XFS_ATTR_LOCAL) {
2737 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
2738 namelen2 = name_loc->namelen;
2739 name2 = (char *)name_loc->nameval;
2740 } else {
2741 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2742 namelen2 = name_rmt->namelen;
2743 name2 = (char *)name_rmt->name;
2744 }
2745 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
2746 ASSERT(namelen1 == namelen2);
2747 ASSERT(memcmp(name1, name2, namelen1) == 0);
2748 #endif /* DEBUG */
2749
2750 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
2751 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
2752
2753 entry1->flags &= ~XFS_ATTR_INCOMPLETE;
2754 xfs_trans_log_buf(args->trans, bp1,
2755 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
2756 if (args->rmtblkno) {
2757 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
2758 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2759 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2760 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2761 xfs_trans_log_buf(args->trans, bp1,
2762 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
2763 }
2764
2765 entry2->flags |= XFS_ATTR_INCOMPLETE;
2766 xfs_trans_log_buf(args->trans, bp2,
2767 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
2768 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
2769 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2770 name_rmt->valueblk = 0;
2771 name_rmt->valuelen = 0;
2772 xfs_trans_log_buf(args->trans, bp2,
2773 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
2774 }
2775
2776 /*
2777 * Commit the flag value change and start the next trans in series.
2778 */
2779 error = xfs_trans_roll_inode(&args->trans, args->dp);
2780
2781 return error;
2782 }