]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/xfs/libxfs/xfs_bmap_btree.c
Merge branch 'WIP.x86/boot' into x86/boot, to pick up ready branch
[mirror_ubuntu-focal-kernel.git] / fs / xfs / libxfs / xfs_bmap_btree.c
1 /*
2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_alloc.h"
31 #include "xfs_btree.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_bmap.h"
34 #include "xfs_error.h"
35 #include "xfs_quota.h"
36 #include "xfs_trace.h"
37 #include "xfs_cksum.h"
38 #include "xfs_rmap.h"
39
40 /*
41 * Determine the extent state.
42 */
43 /* ARGSUSED */
44 STATIC xfs_exntst_t
45 xfs_extent_state(
46 xfs_filblks_t blks,
47 int extent_flag)
48 {
49 if (extent_flag) {
50 ASSERT(blks != 0); /* saved for DMIG */
51 return XFS_EXT_UNWRITTEN;
52 }
53 return XFS_EXT_NORM;
54 }
55
56 /*
57 * Convert on-disk form of btree root to in-memory form.
58 */
59 void
60 xfs_bmdr_to_bmbt(
61 struct xfs_inode *ip,
62 xfs_bmdr_block_t *dblock,
63 int dblocklen,
64 struct xfs_btree_block *rblock,
65 int rblocklen)
66 {
67 struct xfs_mount *mp = ip->i_mount;
68 int dmxr;
69 xfs_bmbt_key_t *fkp;
70 __be64 *fpp;
71 xfs_bmbt_key_t *tkp;
72 __be64 *tpp;
73
74 xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL,
75 XFS_BTNUM_BMAP, 0, 0, ip->i_ino,
76 XFS_BTREE_LONG_PTRS);
77 rblock->bb_level = dblock->bb_level;
78 ASSERT(be16_to_cpu(rblock->bb_level) > 0);
79 rblock->bb_numrecs = dblock->bb_numrecs;
80 dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
81 fkp = XFS_BMDR_KEY_ADDR(dblock, 1);
82 tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
83 fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
84 tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
85 dmxr = be16_to_cpu(dblock->bb_numrecs);
86 memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
87 memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
88 }
89
90 /*
91 * Convert a compressed bmap extent record to an uncompressed form.
92 * This code must be in sync with the routines xfs_bmbt_get_startoff,
93 * xfs_bmbt_get_startblock, xfs_bmbt_get_blockcount and xfs_bmbt_get_state.
94 */
95 STATIC void
96 __xfs_bmbt_get_all(
97 __uint64_t l0,
98 __uint64_t l1,
99 xfs_bmbt_irec_t *s)
100 {
101 int ext_flag;
102 xfs_exntst_t st;
103
104 ext_flag = (int)(l0 >> (64 - BMBT_EXNTFLAG_BITLEN));
105 s->br_startoff = ((xfs_fileoff_t)l0 &
106 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
107 s->br_startblock = (((xfs_fsblock_t)l0 & xfs_mask64lo(9)) << 43) |
108 (((xfs_fsblock_t)l1) >> 21);
109 s->br_blockcount = (xfs_filblks_t)(l1 & xfs_mask64lo(21));
110 /* This is xfs_extent_state() in-line */
111 if (ext_flag) {
112 ASSERT(s->br_blockcount != 0); /* saved for DMIG */
113 st = XFS_EXT_UNWRITTEN;
114 } else
115 st = XFS_EXT_NORM;
116 s->br_state = st;
117 }
118
119 void
120 xfs_bmbt_get_all(
121 xfs_bmbt_rec_host_t *r,
122 xfs_bmbt_irec_t *s)
123 {
124 __xfs_bmbt_get_all(r->l0, r->l1, s);
125 }
126
127 /*
128 * Extract the blockcount field from an in memory bmap extent record.
129 */
130 xfs_filblks_t
131 xfs_bmbt_get_blockcount(
132 xfs_bmbt_rec_host_t *r)
133 {
134 return (xfs_filblks_t)(r->l1 & xfs_mask64lo(21));
135 }
136
137 /*
138 * Extract the startblock field from an in memory bmap extent record.
139 */
140 xfs_fsblock_t
141 xfs_bmbt_get_startblock(
142 xfs_bmbt_rec_host_t *r)
143 {
144 return (((xfs_fsblock_t)r->l0 & xfs_mask64lo(9)) << 43) |
145 (((xfs_fsblock_t)r->l1) >> 21);
146 }
147
148 /*
149 * Extract the startoff field from an in memory bmap extent record.
150 */
151 xfs_fileoff_t
152 xfs_bmbt_get_startoff(
153 xfs_bmbt_rec_host_t *r)
154 {
155 return ((xfs_fileoff_t)r->l0 &
156 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
157 }
158
159 xfs_exntst_t
160 xfs_bmbt_get_state(
161 xfs_bmbt_rec_host_t *r)
162 {
163 int ext_flag;
164
165 ext_flag = (int)((r->l0) >> (64 - BMBT_EXNTFLAG_BITLEN));
166 return xfs_extent_state(xfs_bmbt_get_blockcount(r),
167 ext_flag);
168 }
169
170 /*
171 * Extract the blockcount field from an on disk bmap extent record.
172 */
173 xfs_filblks_t
174 xfs_bmbt_disk_get_blockcount(
175 xfs_bmbt_rec_t *r)
176 {
177 return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21));
178 }
179
180 /*
181 * Extract the startoff field from a disk format bmap extent record.
182 */
183 xfs_fileoff_t
184 xfs_bmbt_disk_get_startoff(
185 xfs_bmbt_rec_t *r)
186 {
187 return ((xfs_fileoff_t)be64_to_cpu(r->l0) &
188 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
189 }
190
191
192 /*
193 * Set all the fields in a bmap extent record from the arguments.
194 */
195 void
196 xfs_bmbt_set_allf(
197 xfs_bmbt_rec_host_t *r,
198 xfs_fileoff_t startoff,
199 xfs_fsblock_t startblock,
200 xfs_filblks_t blockcount,
201 xfs_exntst_t state)
202 {
203 int extent_flag = (state == XFS_EXT_NORM) ? 0 : 1;
204
205 ASSERT(state == XFS_EXT_NORM || state == XFS_EXT_UNWRITTEN);
206 ASSERT((startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)) == 0);
207 ASSERT((blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)) == 0);
208
209 ASSERT((startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)) == 0);
210
211 r->l0 = ((xfs_bmbt_rec_base_t)extent_flag << 63) |
212 ((xfs_bmbt_rec_base_t)startoff << 9) |
213 ((xfs_bmbt_rec_base_t)startblock >> 43);
214 r->l1 = ((xfs_bmbt_rec_base_t)startblock << 21) |
215 ((xfs_bmbt_rec_base_t)blockcount &
216 (xfs_bmbt_rec_base_t)xfs_mask64lo(21));
217 }
218
219 /*
220 * Set all the fields in a bmap extent record from the uncompressed form.
221 */
222 void
223 xfs_bmbt_set_all(
224 xfs_bmbt_rec_host_t *r,
225 xfs_bmbt_irec_t *s)
226 {
227 xfs_bmbt_set_allf(r, s->br_startoff, s->br_startblock,
228 s->br_blockcount, s->br_state);
229 }
230
231
232 /*
233 * Set all the fields in a disk format bmap extent record from the arguments.
234 */
235 void
236 xfs_bmbt_disk_set_allf(
237 xfs_bmbt_rec_t *r,
238 xfs_fileoff_t startoff,
239 xfs_fsblock_t startblock,
240 xfs_filblks_t blockcount,
241 xfs_exntst_t state)
242 {
243 int extent_flag = (state == XFS_EXT_NORM) ? 0 : 1;
244
245 ASSERT(state == XFS_EXT_NORM || state == XFS_EXT_UNWRITTEN);
246 ASSERT((startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)) == 0);
247 ASSERT((blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)) == 0);
248 ASSERT((startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)) == 0);
249
250 r->l0 = cpu_to_be64(
251 ((xfs_bmbt_rec_base_t)extent_flag << 63) |
252 ((xfs_bmbt_rec_base_t)startoff << 9) |
253 ((xfs_bmbt_rec_base_t)startblock >> 43));
254 r->l1 = cpu_to_be64(
255 ((xfs_bmbt_rec_base_t)startblock << 21) |
256 ((xfs_bmbt_rec_base_t)blockcount &
257 (xfs_bmbt_rec_base_t)xfs_mask64lo(21)));
258 }
259
260 /*
261 * Set all the fields in a bmap extent record from the uncompressed form.
262 */
263 STATIC void
264 xfs_bmbt_disk_set_all(
265 xfs_bmbt_rec_t *r,
266 xfs_bmbt_irec_t *s)
267 {
268 xfs_bmbt_disk_set_allf(r, s->br_startoff, s->br_startblock,
269 s->br_blockcount, s->br_state);
270 }
271
272 /*
273 * Set the blockcount field in a bmap extent record.
274 */
275 void
276 xfs_bmbt_set_blockcount(
277 xfs_bmbt_rec_host_t *r,
278 xfs_filblks_t v)
279 {
280 ASSERT((v & xfs_mask64hi(43)) == 0);
281 r->l1 = (r->l1 & (xfs_bmbt_rec_base_t)xfs_mask64hi(43)) |
282 (xfs_bmbt_rec_base_t)(v & xfs_mask64lo(21));
283 }
284
285 /*
286 * Set the startblock field in a bmap extent record.
287 */
288 void
289 xfs_bmbt_set_startblock(
290 xfs_bmbt_rec_host_t *r,
291 xfs_fsblock_t v)
292 {
293 ASSERT((v & xfs_mask64hi(12)) == 0);
294 r->l0 = (r->l0 & (xfs_bmbt_rec_base_t)xfs_mask64hi(55)) |
295 (xfs_bmbt_rec_base_t)(v >> 43);
296 r->l1 = (r->l1 & (xfs_bmbt_rec_base_t)xfs_mask64lo(21)) |
297 (xfs_bmbt_rec_base_t)(v << 21);
298 }
299
300 /*
301 * Set the startoff field in a bmap extent record.
302 */
303 void
304 xfs_bmbt_set_startoff(
305 xfs_bmbt_rec_host_t *r,
306 xfs_fileoff_t v)
307 {
308 ASSERT((v & xfs_mask64hi(9)) == 0);
309 r->l0 = (r->l0 & (xfs_bmbt_rec_base_t) xfs_mask64hi(1)) |
310 ((xfs_bmbt_rec_base_t)v << 9) |
311 (r->l0 & (xfs_bmbt_rec_base_t)xfs_mask64lo(9));
312 }
313
314 /*
315 * Set the extent state field in a bmap extent record.
316 */
317 void
318 xfs_bmbt_set_state(
319 xfs_bmbt_rec_host_t *r,
320 xfs_exntst_t v)
321 {
322 ASSERT(v == XFS_EXT_NORM || v == XFS_EXT_UNWRITTEN);
323 if (v == XFS_EXT_NORM)
324 r->l0 &= xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN);
325 else
326 r->l0 |= xfs_mask64hi(BMBT_EXNTFLAG_BITLEN);
327 }
328
329 /*
330 * Convert in-memory form of btree root to on-disk form.
331 */
332 void
333 xfs_bmbt_to_bmdr(
334 struct xfs_mount *mp,
335 struct xfs_btree_block *rblock,
336 int rblocklen,
337 xfs_bmdr_block_t *dblock,
338 int dblocklen)
339 {
340 int dmxr;
341 xfs_bmbt_key_t *fkp;
342 __be64 *fpp;
343 xfs_bmbt_key_t *tkp;
344 __be64 *tpp;
345
346 if (xfs_sb_version_hascrc(&mp->m_sb)) {
347 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC));
348 ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid,
349 &mp->m_sb.sb_meta_uuid));
350 ASSERT(rblock->bb_u.l.bb_blkno ==
351 cpu_to_be64(XFS_BUF_DADDR_NULL));
352 } else
353 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC));
354 ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
355 ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
356 ASSERT(rblock->bb_level != 0);
357 dblock->bb_level = rblock->bb_level;
358 dblock->bb_numrecs = rblock->bb_numrecs;
359 dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
360 fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
361 tkp = XFS_BMDR_KEY_ADDR(dblock, 1);
362 fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
363 tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
364 dmxr = be16_to_cpu(dblock->bb_numrecs);
365 memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
366 memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
367 }
368
369 /*
370 * Check extent records, which have just been read, for
371 * any bit in the extent flag field. ASSERT on debug
372 * kernels, as this condition should not occur.
373 * Return an error condition (1) if any flags found,
374 * otherwise return 0.
375 */
376
377 int
378 xfs_check_nostate_extents(
379 xfs_ifork_t *ifp,
380 xfs_extnum_t idx,
381 xfs_extnum_t num)
382 {
383 for (; num > 0; num--, idx++) {
384 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, idx);
385 if ((ep->l0 >>
386 (64 - BMBT_EXNTFLAG_BITLEN)) != 0) {
387 ASSERT(0);
388 return 1;
389 }
390 }
391 return 0;
392 }
393
394
395 STATIC struct xfs_btree_cur *
396 xfs_bmbt_dup_cursor(
397 struct xfs_btree_cur *cur)
398 {
399 struct xfs_btree_cur *new;
400
401 new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp,
402 cur->bc_private.b.ip, cur->bc_private.b.whichfork);
403
404 /*
405 * Copy the firstblock, dfops, and flags values,
406 * since init cursor doesn't get them.
407 */
408 new->bc_private.b.firstblock = cur->bc_private.b.firstblock;
409 new->bc_private.b.dfops = cur->bc_private.b.dfops;
410 new->bc_private.b.flags = cur->bc_private.b.flags;
411
412 return new;
413 }
414
415 STATIC void
416 xfs_bmbt_update_cursor(
417 struct xfs_btree_cur *src,
418 struct xfs_btree_cur *dst)
419 {
420 ASSERT((dst->bc_private.b.firstblock != NULLFSBLOCK) ||
421 (dst->bc_private.b.ip->i_d.di_flags & XFS_DIFLAG_REALTIME));
422 ASSERT(dst->bc_private.b.dfops == src->bc_private.b.dfops);
423
424 dst->bc_private.b.allocated += src->bc_private.b.allocated;
425 dst->bc_private.b.firstblock = src->bc_private.b.firstblock;
426
427 src->bc_private.b.allocated = 0;
428 }
429
430 STATIC int
431 xfs_bmbt_alloc_block(
432 struct xfs_btree_cur *cur,
433 union xfs_btree_ptr *start,
434 union xfs_btree_ptr *new,
435 int *stat)
436 {
437 xfs_alloc_arg_t args; /* block allocation args */
438 int error; /* error return value */
439
440 memset(&args, 0, sizeof(args));
441 args.tp = cur->bc_tp;
442 args.mp = cur->bc_mp;
443 args.fsbno = cur->bc_private.b.firstblock;
444 args.firstblock = args.fsbno;
445 xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_private.b.ip->i_ino,
446 cur->bc_private.b.whichfork);
447
448 if (args.fsbno == NULLFSBLOCK) {
449 args.fsbno = be64_to_cpu(start->l);
450 try_another_ag:
451 args.type = XFS_ALLOCTYPE_START_BNO;
452 /*
453 * Make sure there is sufficient room left in the AG to
454 * complete a full tree split for an extent insert. If
455 * we are converting the middle part of an extent then
456 * we may need space for two tree splits.
457 *
458 * We are relying on the caller to make the correct block
459 * reservation for this operation to succeed. If the
460 * reservation amount is insufficient then we may fail a
461 * block allocation here and corrupt the filesystem.
462 */
463 args.minleft = args.tp->t_blk_res;
464 } else if (cur->bc_private.b.dfops->dop_low) {
465 args.type = XFS_ALLOCTYPE_START_BNO;
466 } else {
467 args.type = XFS_ALLOCTYPE_NEAR_BNO;
468 }
469
470 args.minlen = args.maxlen = args.prod = 1;
471 args.wasdel = cur->bc_private.b.flags & XFS_BTCUR_BPRV_WASDEL;
472 if (!args.wasdel && args.tp->t_blk_res == 0) {
473 error = -ENOSPC;
474 goto error0;
475 }
476 error = xfs_alloc_vextent(&args);
477 if (error)
478 goto error0;
479
480 /*
481 * During a CoW operation, the allocation and bmbt updates occur in
482 * different transactions. The mapping code tries to put new bmbt
483 * blocks near extents being mapped, but the only way to guarantee this
484 * is if the alloc and the mapping happen in a single transaction that
485 * has a block reservation. That isn't the case here, so if we run out
486 * of space we'll try again with another AG.
487 */
488 if (xfs_sb_version_hasreflink(&cur->bc_mp->m_sb) &&
489 args.fsbno == NULLFSBLOCK &&
490 args.type == XFS_ALLOCTYPE_NEAR_BNO) {
491 cur->bc_private.b.dfops->dop_low = true;
492 args.fsbno = cur->bc_private.b.firstblock;
493 goto try_another_ag;
494 }
495
496 if (args.fsbno == NULLFSBLOCK && args.minleft) {
497 /*
498 * Could not find an AG with enough free space to satisfy
499 * a full btree split. Try again and if
500 * successful activate the lowspace algorithm.
501 */
502 args.fsbno = 0;
503 args.type = XFS_ALLOCTYPE_FIRST_AG;
504 error = xfs_alloc_vextent(&args);
505 if (error)
506 goto error0;
507 cur->bc_private.b.dfops->dop_low = true;
508 }
509 if (args.fsbno == NULLFSBLOCK) {
510 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
511 *stat = 0;
512 return 0;
513 }
514 ASSERT(args.len == 1);
515 cur->bc_private.b.firstblock = args.fsbno;
516 cur->bc_private.b.allocated++;
517 cur->bc_private.b.ip->i_d.di_nblocks++;
518 xfs_trans_log_inode(args.tp, cur->bc_private.b.ip, XFS_ILOG_CORE);
519 xfs_trans_mod_dquot_byino(args.tp, cur->bc_private.b.ip,
520 XFS_TRANS_DQ_BCOUNT, 1L);
521
522 new->l = cpu_to_be64(args.fsbno);
523
524 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
525 *stat = 1;
526 return 0;
527
528 error0:
529 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
530 return error;
531 }
532
533 STATIC int
534 xfs_bmbt_free_block(
535 struct xfs_btree_cur *cur,
536 struct xfs_buf *bp)
537 {
538 struct xfs_mount *mp = cur->bc_mp;
539 struct xfs_inode *ip = cur->bc_private.b.ip;
540 struct xfs_trans *tp = cur->bc_tp;
541 xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, XFS_BUF_ADDR(bp));
542 struct xfs_owner_info oinfo;
543
544 xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_private.b.whichfork);
545 xfs_bmap_add_free(mp, cur->bc_private.b.dfops, fsbno, 1, &oinfo);
546 ip->i_d.di_nblocks--;
547
548 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
549 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L);
550 return 0;
551 }
552
553 STATIC int
554 xfs_bmbt_get_minrecs(
555 struct xfs_btree_cur *cur,
556 int level)
557 {
558 if (level == cur->bc_nlevels - 1) {
559 struct xfs_ifork *ifp;
560
561 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip,
562 cur->bc_private.b.whichfork);
563
564 return xfs_bmbt_maxrecs(cur->bc_mp,
565 ifp->if_broot_bytes, level == 0) / 2;
566 }
567
568 return cur->bc_mp->m_bmap_dmnr[level != 0];
569 }
570
571 int
572 xfs_bmbt_get_maxrecs(
573 struct xfs_btree_cur *cur,
574 int level)
575 {
576 if (level == cur->bc_nlevels - 1) {
577 struct xfs_ifork *ifp;
578
579 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip,
580 cur->bc_private.b.whichfork);
581
582 return xfs_bmbt_maxrecs(cur->bc_mp,
583 ifp->if_broot_bytes, level == 0);
584 }
585
586 return cur->bc_mp->m_bmap_dmxr[level != 0];
587
588 }
589
590 /*
591 * Get the maximum records we could store in the on-disk format.
592 *
593 * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but
594 * for the root node this checks the available space in the dinode fork
595 * so that we can resize the in-memory buffer to match it. After a
596 * resize to the maximum size this function returns the same value
597 * as xfs_bmbt_get_maxrecs for the root node, too.
598 */
599 STATIC int
600 xfs_bmbt_get_dmaxrecs(
601 struct xfs_btree_cur *cur,
602 int level)
603 {
604 if (level != cur->bc_nlevels - 1)
605 return cur->bc_mp->m_bmap_dmxr[level != 0];
606 return xfs_bmdr_maxrecs(cur->bc_private.b.forksize, level == 0);
607 }
608
609 STATIC void
610 xfs_bmbt_init_key_from_rec(
611 union xfs_btree_key *key,
612 union xfs_btree_rec *rec)
613 {
614 key->bmbt.br_startoff =
615 cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt));
616 }
617
618 STATIC void
619 xfs_bmbt_init_rec_from_cur(
620 struct xfs_btree_cur *cur,
621 union xfs_btree_rec *rec)
622 {
623 xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b);
624 }
625
626 STATIC void
627 xfs_bmbt_init_ptr_from_cur(
628 struct xfs_btree_cur *cur,
629 union xfs_btree_ptr *ptr)
630 {
631 ptr->l = 0;
632 }
633
634 STATIC __int64_t
635 xfs_bmbt_key_diff(
636 struct xfs_btree_cur *cur,
637 union xfs_btree_key *key)
638 {
639 return (__int64_t)be64_to_cpu(key->bmbt.br_startoff) -
640 cur->bc_rec.b.br_startoff;
641 }
642
643 static bool
644 xfs_bmbt_verify(
645 struct xfs_buf *bp)
646 {
647 struct xfs_mount *mp = bp->b_target->bt_mount;
648 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
649 unsigned int level;
650
651 switch (block->bb_magic) {
652 case cpu_to_be32(XFS_BMAP_CRC_MAGIC):
653 if (!xfs_sb_version_hascrc(&mp->m_sb))
654 return false;
655 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
656 return false;
657 if (be64_to_cpu(block->bb_u.l.bb_blkno) != bp->b_bn)
658 return false;
659 /*
660 * XXX: need a better way of verifying the owner here. Right now
661 * just make sure there has been one set.
662 */
663 if (be64_to_cpu(block->bb_u.l.bb_owner) == 0)
664 return false;
665 /* fall through */
666 case cpu_to_be32(XFS_BMAP_MAGIC):
667 break;
668 default:
669 return false;
670 }
671
672 /*
673 * numrecs and level verification.
674 *
675 * We don't know what fork we belong to, so just verify that the level
676 * is less than the maximum of the two. Later checks will be more
677 * precise.
678 */
679 level = be16_to_cpu(block->bb_level);
680 if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1]))
681 return false;
682 if (be16_to_cpu(block->bb_numrecs) > mp->m_bmap_dmxr[level != 0])
683 return false;
684
685 /* sibling pointer verification */
686 if (!block->bb_u.l.bb_leftsib ||
687 (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
688 !XFS_FSB_SANITY_CHECK(mp, be64_to_cpu(block->bb_u.l.bb_leftsib))))
689 return false;
690 if (!block->bb_u.l.bb_rightsib ||
691 (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
692 !XFS_FSB_SANITY_CHECK(mp, be64_to_cpu(block->bb_u.l.bb_rightsib))))
693 return false;
694
695 return true;
696 }
697
698 static void
699 xfs_bmbt_read_verify(
700 struct xfs_buf *bp)
701 {
702 if (!xfs_btree_lblock_verify_crc(bp))
703 xfs_buf_ioerror(bp, -EFSBADCRC);
704 else if (!xfs_bmbt_verify(bp))
705 xfs_buf_ioerror(bp, -EFSCORRUPTED);
706
707 if (bp->b_error) {
708 trace_xfs_btree_corrupt(bp, _RET_IP_);
709 xfs_verifier_error(bp);
710 }
711 }
712
713 static void
714 xfs_bmbt_write_verify(
715 struct xfs_buf *bp)
716 {
717 if (!xfs_bmbt_verify(bp)) {
718 trace_xfs_btree_corrupt(bp, _RET_IP_);
719 xfs_buf_ioerror(bp, -EFSCORRUPTED);
720 xfs_verifier_error(bp);
721 return;
722 }
723 xfs_btree_lblock_calc_crc(bp);
724 }
725
726 const struct xfs_buf_ops xfs_bmbt_buf_ops = {
727 .name = "xfs_bmbt",
728 .verify_read = xfs_bmbt_read_verify,
729 .verify_write = xfs_bmbt_write_verify,
730 };
731
732
733 #if defined(DEBUG) || defined(XFS_WARN)
734 STATIC int
735 xfs_bmbt_keys_inorder(
736 struct xfs_btree_cur *cur,
737 union xfs_btree_key *k1,
738 union xfs_btree_key *k2)
739 {
740 return be64_to_cpu(k1->bmbt.br_startoff) <
741 be64_to_cpu(k2->bmbt.br_startoff);
742 }
743
744 STATIC int
745 xfs_bmbt_recs_inorder(
746 struct xfs_btree_cur *cur,
747 union xfs_btree_rec *r1,
748 union xfs_btree_rec *r2)
749 {
750 return xfs_bmbt_disk_get_startoff(&r1->bmbt) +
751 xfs_bmbt_disk_get_blockcount(&r1->bmbt) <=
752 xfs_bmbt_disk_get_startoff(&r2->bmbt);
753 }
754 #endif /* DEBUG */
755
756 static const struct xfs_btree_ops xfs_bmbt_ops = {
757 .rec_len = sizeof(xfs_bmbt_rec_t),
758 .key_len = sizeof(xfs_bmbt_key_t),
759
760 .dup_cursor = xfs_bmbt_dup_cursor,
761 .update_cursor = xfs_bmbt_update_cursor,
762 .alloc_block = xfs_bmbt_alloc_block,
763 .free_block = xfs_bmbt_free_block,
764 .get_maxrecs = xfs_bmbt_get_maxrecs,
765 .get_minrecs = xfs_bmbt_get_minrecs,
766 .get_dmaxrecs = xfs_bmbt_get_dmaxrecs,
767 .init_key_from_rec = xfs_bmbt_init_key_from_rec,
768 .init_rec_from_cur = xfs_bmbt_init_rec_from_cur,
769 .init_ptr_from_cur = xfs_bmbt_init_ptr_from_cur,
770 .key_diff = xfs_bmbt_key_diff,
771 .buf_ops = &xfs_bmbt_buf_ops,
772 #if defined(DEBUG) || defined(XFS_WARN)
773 .keys_inorder = xfs_bmbt_keys_inorder,
774 .recs_inorder = xfs_bmbt_recs_inorder,
775 #endif
776 };
777
778 /*
779 * Allocate a new bmap btree cursor.
780 */
781 struct xfs_btree_cur * /* new bmap btree cursor */
782 xfs_bmbt_init_cursor(
783 struct xfs_mount *mp, /* file system mount point */
784 struct xfs_trans *tp, /* transaction pointer */
785 struct xfs_inode *ip, /* inode owning the btree */
786 int whichfork) /* data or attr fork */
787 {
788 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
789 struct xfs_btree_cur *cur;
790 ASSERT(whichfork != XFS_COW_FORK);
791
792 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
793
794 cur->bc_tp = tp;
795 cur->bc_mp = mp;
796 cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1;
797 cur->bc_btnum = XFS_BTNUM_BMAP;
798 cur->bc_blocklog = mp->m_sb.sb_blocklog;
799 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2);
800
801 cur->bc_ops = &xfs_bmbt_ops;
802 cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE;
803 if (xfs_sb_version_hascrc(&mp->m_sb))
804 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
805
806 cur->bc_private.b.forksize = XFS_IFORK_SIZE(ip, whichfork);
807 cur->bc_private.b.ip = ip;
808 cur->bc_private.b.firstblock = NULLFSBLOCK;
809 cur->bc_private.b.dfops = NULL;
810 cur->bc_private.b.allocated = 0;
811 cur->bc_private.b.flags = 0;
812 cur->bc_private.b.whichfork = whichfork;
813
814 return cur;
815 }
816
817 /*
818 * Calculate number of records in a bmap btree block.
819 */
820 int
821 xfs_bmbt_maxrecs(
822 struct xfs_mount *mp,
823 int blocklen,
824 int leaf)
825 {
826 blocklen -= XFS_BMBT_BLOCK_LEN(mp);
827
828 if (leaf)
829 return blocklen / sizeof(xfs_bmbt_rec_t);
830 return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t));
831 }
832
833 /*
834 * Calculate number of records in a bmap btree inode root.
835 */
836 int
837 xfs_bmdr_maxrecs(
838 int blocklen,
839 int leaf)
840 {
841 blocklen -= sizeof(xfs_bmdr_block_t);
842
843 if (leaf)
844 return blocklen / sizeof(xfs_bmdr_rec_t);
845 return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t));
846 }
847
848 /*
849 * Change the owner of a btree format fork fo the inode passed in. Change it to
850 * the owner of that is passed in so that we can change owners before or after
851 * we switch forks between inodes. The operation that the caller is doing will
852 * determine whether is needs to change owner before or after the switch.
853 *
854 * For demand paged transactional modification, the fork switch should be done
855 * after reading in all the blocks, modifying them and pinning them in the
856 * transaction. For modification when the buffers are already pinned in memory,
857 * the fork switch can be done before changing the owner as we won't need to
858 * validate the owner until the btree buffers are unpinned and writes can occur
859 * again.
860 *
861 * For recovery based ownership change, there is no transactional context and
862 * so a buffer list must be supplied so that we can record the buffers that we
863 * modified for the caller to issue IO on.
864 */
865 int
866 xfs_bmbt_change_owner(
867 struct xfs_trans *tp,
868 struct xfs_inode *ip,
869 int whichfork,
870 xfs_ino_t new_owner,
871 struct list_head *buffer_list)
872 {
873 struct xfs_btree_cur *cur;
874 int error;
875
876 ASSERT(tp || buffer_list);
877 ASSERT(!(tp && buffer_list));
878 if (whichfork == XFS_DATA_FORK)
879 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_BTREE);
880 else
881 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE);
882
883 cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork);
884 if (!cur)
885 return -ENOMEM;
886
887 error = xfs_btree_change_owner(cur, new_owner, buffer_list);
888 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
889 return error;
890 }