]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/libxfs/xfs_btree.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / libxfs / xfs_btree.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_btree.h"
32 #include "xfs_error.h"
33 #include "xfs_trace.h"
34 #include "xfs_cksum.h"
35 #include "xfs_alloc.h"
36 #include "xfs_log.h"
37
38 /*
39 * Cursor allocation zone.
40 */
41 kmem_zone_t *xfs_btree_cur_zone;
42
43 /*
44 * Btree magic numbers.
45 */
46 static const __uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
47 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
48 XFS_FIBT_MAGIC },
49 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
50 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC }
51 };
52 #define xfs_btree_magic(cur) \
53 xfs_magics[!!((cur)->bc_flags & XFS_BTREE_CRC_BLOCKS)][cur->bc_btnum]
54
55 STATIC int /* error (0 or EFSCORRUPTED) */
56 xfs_btree_check_lblock(
57 struct xfs_btree_cur *cur, /* btree cursor */
58 struct xfs_btree_block *block, /* btree long form block pointer */
59 int level, /* level of the btree block */
60 struct xfs_buf *bp) /* buffer for block, if any */
61 {
62 int lblock_ok = 1; /* block passes checks */
63 struct xfs_mount *mp; /* file system mount point */
64
65 mp = cur->bc_mp;
66
67 if (xfs_sb_version_hascrc(&mp->m_sb)) {
68 lblock_ok = lblock_ok &&
69 uuid_equal(&block->bb_u.l.bb_uuid,
70 &mp->m_sb.sb_meta_uuid) &&
71 block->bb_u.l.bb_blkno == cpu_to_be64(
72 bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
73 }
74
75 lblock_ok = lblock_ok &&
76 be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
77 be16_to_cpu(block->bb_level) == level &&
78 be16_to_cpu(block->bb_numrecs) <=
79 cur->bc_ops->get_maxrecs(cur, level) &&
80 block->bb_u.l.bb_leftsib &&
81 (block->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK) ||
82 XFS_FSB_SANITY_CHECK(mp,
83 be64_to_cpu(block->bb_u.l.bb_leftsib))) &&
84 block->bb_u.l.bb_rightsib &&
85 (block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK) ||
86 XFS_FSB_SANITY_CHECK(mp,
87 be64_to_cpu(block->bb_u.l.bb_rightsib)));
88
89 if (unlikely(XFS_TEST_ERROR(!lblock_ok, mp,
90 XFS_ERRTAG_BTREE_CHECK_LBLOCK,
91 XFS_RANDOM_BTREE_CHECK_LBLOCK))) {
92 if (bp)
93 trace_xfs_btree_corrupt(bp, _RET_IP_);
94 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
95 return -EFSCORRUPTED;
96 }
97 return 0;
98 }
99
100 STATIC int /* error (0 or EFSCORRUPTED) */
101 xfs_btree_check_sblock(
102 struct xfs_btree_cur *cur, /* btree cursor */
103 struct xfs_btree_block *block, /* btree short form block pointer */
104 int level, /* level of the btree block */
105 struct xfs_buf *bp) /* buffer containing block */
106 {
107 struct xfs_mount *mp; /* file system mount point */
108 struct xfs_buf *agbp; /* buffer for ag. freespace struct */
109 struct xfs_agf *agf; /* ag. freespace structure */
110 xfs_agblock_t agflen; /* native ag. freespace length */
111 int sblock_ok = 1; /* block passes checks */
112
113 mp = cur->bc_mp;
114 agbp = cur->bc_private.a.agbp;
115 agf = XFS_BUF_TO_AGF(agbp);
116 agflen = be32_to_cpu(agf->agf_length);
117
118 if (xfs_sb_version_hascrc(&mp->m_sb)) {
119 sblock_ok = sblock_ok &&
120 uuid_equal(&block->bb_u.s.bb_uuid,
121 &mp->m_sb.sb_meta_uuid) &&
122 block->bb_u.s.bb_blkno == cpu_to_be64(
123 bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
124 }
125
126 sblock_ok = sblock_ok &&
127 be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
128 be16_to_cpu(block->bb_level) == level &&
129 be16_to_cpu(block->bb_numrecs) <=
130 cur->bc_ops->get_maxrecs(cur, level) &&
131 (block->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) ||
132 be32_to_cpu(block->bb_u.s.bb_leftsib) < agflen) &&
133 block->bb_u.s.bb_leftsib &&
134 (block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK) ||
135 be32_to_cpu(block->bb_u.s.bb_rightsib) < agflen) &&
136 block->bb_u.s.bb_rightsib;
137
138 if (unlikely(XFS_TEST_ERROR(!sblock_ok, mp,
139 XFS_ERRTAG_BTREE_CHECK_SBLOCK,
140 XFS_RANDOM_BTREE_CHECK_SBLOCK))) {
141 if (bp)
142 trace_xfs_btree_corrupt(bp, _RET_IP_);
143 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
144 return -EFSCORRUPTED;
145 }
146 return 0;
147 }
148
149 /*
150 * Debug routine: check that block header is ok.
151 */
152 int
153 xfs_btree_check_block(
154 struct xfs_btree_cur *cur, /* btree cursor */
155 struct xfs_btree_block *block, /* generic btree block pointer */
156 int level, /* level of the btree block */
157 struct xfs_buf *bp) /* buffer containing block, if any */
158 {
159 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
160 return xfs_btree_check_lblock(cur, block, level, bp);
161 else
162 return xfs_btree_check_sblock(cur, block, level, bp);
163 }
164
165 /*
166 * Check that (long) pointer is ok.
167 */
168 int /* error (0 or EFSCORRUPTED) */
169 xfs_btree_check_lptr(
170 struct xfs_btree_cur *cur, /* btree cursor */
171 xfs_fsblock_t bno, /* btree block disk address */
172 int level) /* btree block level */
173 {
174 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
175 level > 0 &&
176 bno != NULLFSBLOCK &&
177 XFS_FSB_SANITY_CHECK(cur->bc_mp, bno));
178 return 0;
179 }
180
181 #ifdef DEBUG
182 /*
183 * Check that (short) pointer is ok.
184 */
185 STATIC int /* error (0 or EFSCORRUPTED) */
186 xfs_btree_check_sptr(
187 struct xfs_btree_cur *cur, /* btree cursor */
188 xfs_agblock_t bno, /* btree block disk address */
189 int level) /* btree block level */
190 {
191 xfs_agblock_t agblocks = cur->bc_mp->m_sb.sb_agblocks;
192
193 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
194 level > 0 &&
195 bno != NULLAGBLOCK &&
196 bno != 0 &&
197 bno < agblocks);
198 return 0;
199 }
200
201 /*
202 * Check that block ptr is ok.
203 */
204 STATIC int /* error (0 or EFSCORRUPTED) */
205 xfs_btree_check_ptr(
206 struct xfs_btree_cur *cur, /* btree cursor */
207 union xfs_btree_ptr *ptr, /* btree block disk address */
208 int index, /* offset from ptr to check */
209 int level) /* btree block level */
210 {
211 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
212 return xfs_btree_check_lptr(cur,
213 be64_to_cpu((&ptr->l)[index]), level);
214 } else {
215 return xfs_btree_check_sptr(cur,
216 be32_to_cpu((&ptr->s)[index]), level);
217 }
218 }
219 #endif
220
221 /*
222 * Calculate CRC on the whole btree block and stuff it into the
223 * long-form btree header.
224 *
225 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
226 * it into the buffer so recovery knows what the last modification was that made
227 * it to disk.
228 */
229 void
230 xfs_btree_lblock_calc_crc(
231 struct xfs_buf *bp)
232 {
233 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
234 struct xfs_buf_log_item *bip = bp->b_fspriv;
235
236 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
237 return;
238 if (bip)
239 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
240 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
241 }
242
243 bool
244 xfs_btree_lblock_verify_crc(
245 struct xfs_buf *bp)
246 {
247 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
248 struct xfs_mount *mp = bp->b_target->bt_mount;
249
250 if (xfs_sb_version_hascrc(&mp->m_sb)) {
251 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
252 return false;
253 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
254 }
255
256 return true;
257 }
258
259 /*
260 * Calculate CRC on the whole btree block and stuff it into the
261 * short-form btree header.
262 *
263 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
264 * it into the buffer so recovery knows what the last modification was that made
265 * it to disk.
266 */
267 void
268 xfs_btree_sblock_calc_crc(
269 struct xfs_buf *bp)
270 {
271 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
272 struct xfs_buf_log_item *bip = bp->b_fspriv;
273
274 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
275 return;
276 if (bip)
277 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
278 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
279 }
280
281 bool
282 xfs_btree_sblock_verify_crc(
283 struct xfs_buf *bp)
284 {
285 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
286 struct xfs_mount *mp = bp->b_target->bt_mount;
287
288 if (xfs_sb_version_hascrc(&mp->m_sb)) {
289 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
290 return false;
291 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
292 }
293
294 return true;
295 }
296
297 static int
298 xfs_btree_free_block(
299 struct xfs_btree_cur *cur,
300 struct xfs_buf *bp)
301 {
302 int error;
303
304 error = cur->bc_ops->free_block(cur, bp);
305 if (!error) {
306 xfs_trans_binval(cur->bc_tp, bp);
307 XFS_BTREE_STATS_INC(cur, free);
308 }
309 return error;
310 }
311
312 /*
313 * Delete the btree cursor.
314 */
315 void
316 xfs_btree_del_cursor(
317 xfs_btree_cur_t *cur, /* btree cursor */
318 int error) /* del because of error */
319 {
320 int i; /* btree level */
321
322 /*
323 * Clear the buffer pointers, and release the buffers.
324 * If we're doing this in the face of an error, we
325 * need to make sure to inspect all of the entries
326 * in the bc_bufs array for buffers to be unlocked.
327 * This is because some of the btree code works from
328 * level n down to 0, and if we get an error along
329 * the way we won't have initialized all the entries
330 * down to 0.
331 */
332 for (i = 0; i < cur->bc_nlevels; i++) {
333 if (cur->bc_bufs[i])
334 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
335 else if (!error)
336 break;
337 }
338 /*
339 * Can't free a bmap cursor without having dealt with the
340 * allocated indirect blocks' accounting.
341 */
342 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
343 cur->bc_private.b.allocated == 0);
344 /*
345 * Free the cursor.
346 */
347 kmem_zone_free(xfs_btree_cur_zone, cur);
348 }
349
350 /*
351 * Duplicate the btree cursor.
352 * Allocate a new one, copy the record, re-get the buffers.
353 */
354 int /* error */
355 xfs_btree_dup_cursor(
356 xfs_btree_cur_t *cur, /* input cursor */
357 xfs_btree_cur_t **ncur) /* output cursor */
358 {
359 xfs_buf_t *bp; /* btree block's buffer pointer */
360 int error; /* error return value */
361 int i; /* level number of btree block */
362 xfs_mount_t *mp; /* mount structure for filesystem */
363 xfs_btree_cur_t *new; /* new cursor value */
364 xfs_trans_t *tp; /* transaction pointer, can be NULL */
365
366 tp = cur->bc_tp;
367 mp = cur->bc_mp;
368
369 /*
370 * Allocate a new cursor like the old one.
371 */
372 new = cur->bc_ops->dup_cursor(cur);
373
374 /*
375 * Copy the record currently in the cursor.
376 */
377 new->bc_rec = cur->bc_rec;
378
379 /*
380 * For each level current, re-get the buffer and copy the ptr value.
381 */
382 for (i = 0; i < new->bc_nlevels; i++) {
383 new->bc_ptrs[i] = cur->bc_ptrs[i];
384 new->bc_ra[i] = cur->bc_ra[i];
385 bp = cur->bc_bufs[i];
386 if (bp) {
387 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
388 XFS_BUF_ADDR(bp), mp->m_bsize,
389 0, &bp,
390 cur->bc_ops->buf_ops);
391 if (error) {
392 xfs_btree_del_cursor(new, error);
393 *ncur = NULL;
394 return error;
395 }
396 }
397 new->bc_bufs[i] = bp;
398 }
399 *ncur = new;
400 return 0;
401 }
402
403 /*
404 * XFS btree block layout and addressing:
405 *
406 * There are two types of blocks in the btree: leaf and non-leaf blocks.
407 *
408 * The leaf record start with a header then followed by records containing
409 * the values. A non-leaf block also starts with the same header, and
410 * then first contains lookup keys followed by an equal number of pointers
411 * to the btree blocks at the previous level.
412 *
413 * +--------+-------+-------+-------+-------+-------+-------+
414 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
415 * +--------+-------+-------+-------+-------+-------+-------+
416 *
417 * +--------+-------+-------+-------+-------+-------+-------+
418 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
419 * +--------+-------+-------+-------+-------+-------+-------+
420 *
421 * The header is called struct xfs_btree_block for reasons better left unknown
422 * and comes in different versions for short (32bit) and long (64bit) block
423 * pointers. The record and key structures are defined by the btree instances
424 * and opaque to the btree core. The block pointers are simple disk endian
425 * integers, available in a short (32bit) and long (64bit) variant.
426 *
427 * The helpers below calculate the offset of a given record, key or pointer
428 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
429 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
430 * inside the btree block is done using indices starting at one, not zero!
431 *
432 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
433 * overlapping intervals. In such a tree, records are still sorted lowest to
434 * highest and indexed by the smallest key value that refers to the record.
435 * However, nodes are different: each pointer has two associated keys -- one
436 * indexing the lowest key available in the block(s) below (the same behavior
437 * as the key in a regular btree) and another indexing the highest key
438 * available in the block(s) below. Because records are /not/ sorted by the
439 * highest key, all leaf block updates require us to compute the highest key
440 * that matches any record in the leaf and to recursively update the high keys
441 * in the nodes going further up in the tree, if necessary. Nodes look like
442 * this:
443 *
444 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
445 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
446 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
447 *
448 * To perform an interval query on an overlapped tree, perform the usual
449 * depth-first search and use the low and high keys to decide if we can skip
450 * that particular node. If a leaf node is reached, return the records that
451 * intersect the interval. Note that an interval query may return numerous
452 * entries. For a non-overlapped tree, simply search for the record associated
453 * with the lowest key and iterate forward until a non-matching record is
454 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
455 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
456 * more detail.
457 *
458 * Why do we care about overlapping intervals? Let's say you have a bunch of
459 * reverse mapping records on a reflink filesystem:
460 *
461 * 1: +- file A startblock B offset C length D -----------+
462 * 2: +- file E startblock F offset G length H --------------+
463 * 3: +- file I startblock F offset J length K --+
464 * 4: +- file L... --+
465 *
466 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
467 * we'd simply increment the length of record 1. But how do we find the record
468 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
469 * record 3 because the keys are ordered first by startblock. An interval
470 * query would return records 1 and 2 because they both overlap (B+D-1), and
471 * from that we can pick out record 1 as the appropriate left neighbor.
472 *
473 * In the non-overlapped case you can do a LE lookup and decrement the cursor
474 * because a record's interval must end before the next record.
475 */
476
477 /*
478 * Return size of the btree block header for this btree instance.
479 */
480 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
481 {
482 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
483 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
484 return XFS_BTREE_LBLOCK_CRC_LEN;
485 return XFS_BTREE_LBLOCK_LEN;
486 }
487 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
488 return XFS_BTREE_SBLOCK_CRC_LEN;
489 return XFS_BTREE_SBLOCK_LEN;
490 }
491
492 /*
493 * Return size of btree block pointers for this btree instance.
494 */
495 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
496 {
497 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
498 sizeof(__be64) : sizeof(__be32);
499 }
500
501 /*
502 * Calculate offset of the n-th record in a btree block.
503 */
504 STATIC size_t
505 xfs_btree_rec_offset(
506 struct xfs_btree_cur *cur,
507 int n)
508 {
509 return xfs_btree_block_len(cur) +
510 (n - 1) * cur->bc_ops->rec_len;
511 }
512
513 /*
514 * Calculate offset of the n-th key in a btree block.
515 */
516 STATIC size_t
517 xfs_btree_key_offset(
518 struct xfs_btree_cur *cur,
519 int n)
520 {
521 return xfs_btree_block_len(cur) +
522 (n - 1) * cur->bc_ops->key_len;
523 }
524
525 /*
526 * Calculate offset of the n-th high key in a btree block.
527 */
528 STATIC size_t
529 xfs_btree_high_key_offset(
530 struct xfs_btree_cur *cur,
531 int n)
532 {
533 return xfs_btree_block_len(cur) +
534 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
535 }
536
537 /*
538 * Calculate offset of the n-th block pointer in a btree block.
539 */
540 STATIC size_t
541 xfs_btree_ptr_offset(
542 struct xfs_btree_cur *cur,
543 int n,
544 int level)
545 {
546 return xfs_btree_block_len(cur) +
547 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
548 (n - 1) * xfs_btree_ptr_len(cur);
549 }
550
551 /*
552 * Return a pointer to the n-th record in the btree block.
553 */
554 STATIC union xfs_btree_rec *
555 xfs_btree_rec_addr(
556 struct xfs_btree_cur *cur,
557 int n,
558 struct xfs_btree_block *block)
559 {
560 return (union xfs_btree_rec *)
561 ((char *)block + xfs_btree_rec_offset(cur, n));
562 }
563
564 /*
565 * Return a pointer to the n-th key in the btree block.
566 */
567 STATIC union xfs_btree_key *
568 xfs_btree_key_addr(
569 struct xfs_btree_cur *cur,
570 int n,
571 struct xfs_btree_block *block)
572 {
573 return (union xfs_btree_key *)
574 ((char *)block + xfs_btree_key_offset(cur, n));
575 }
576
577 /*
578 * Return a pointer to the n-th high key in the btree block.
579 */
580 STATIC union xfs_btree_key *
581 xfs_btree_high_key_addr(
582 struct xfs_btree_cur *cur,
583 int n,
584 struct xfs_btree_block *block)
585 {
586 return (union xfs_btree_key *)
587 ((char *)block + xfs_btree_high_key_offset(cur, n));
588 }
589
590 /*
591 * Return a pointer to the n-th block pointer in the btree block.
592 */
593 STATIC union xfs_btree_ptr *
594 xfs_btree_ptr_addr(
595 struct xfs_btree_cur *cur,
596 int n,
597 struct xfs_btree_block *block)
598 {
599 int level = xfs_btree_get_level(block);
600
601 ASSERT(block->bb_level != 0);
602
603 return (union xfs_btree_ptr *)
604 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
605 }
606
607 /*
608 * Get the root block which is stored in the inode.
609 *
610 * For now this btree implementation assumes the btree root is always
611 * stored in the if_broot field of an inode fork.
612 */
613 STATIC struct xfs_btree_block *
614 xfs_btree_get_iroot(
615 struct xfs_btree_cur *cur)
616 {
617 struct xfs_ifork *ifp;
618
619 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
620 return (struct xfs_btree_block *)ifp->if_broot;
621 }
622
623 /*
624 * Retrieve the block pointer from the cursor at the given level.
625 * This may be an inode btree root or from a buffer.
626 */
627 STATIC struct xfs_btree_block * /* generic btree block pointer */
628 xfs_btree_get_block(
629 struct xfs_btree_cur *cur, /* btree cursor */
630 int level, /* level in btree */
631 struct xfs_buf **bpp) /* buffer containing the block */
632 {
633 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
634 (level == cur->bc_nlevels - 1)) {
635 *bpp = NULL;
636 return xfs_btree_get_iroot(cur);
637 }
638
639 *bpp = cur->bc_bufs[level];
640 return XFS_BUF_TO_BLOCK(*bpp);
641 }
642
643 /*
644 * Get a buffer for the block, return it with no data read.
645 * Long-form addressing.
646 */
647 xfs_buf_t * /* buffer for fsbno */
648 xfs_btree_get_bufl(
649 xfs_mount_t *mp, /* file system mount point */
650 xfs_trans_t *tp, /* transaction pointer */
651 xfs_fsblock_t fsbno, /* file system block number */
652 uint lock) /* lock flags for get_buf */
653 {
654 xfs_daddr_t d; /* real disk block address */
655
656 ASSERT(fsbno != NULLFSBLOCK);
657 d = XFS_FSB_TO_DADDR(mp, fsbno);
658 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
659 }
660
661 /*
662 * Get a buffer for the block, return it with no data read.
663 * Short-form addressing.
664 */
665 xfs_buf_t * /* buffer for agno/agbno */
666 xfs_btree_get_bufs(
667 xfs_mount_t *mp, /* file system mount point */
668 xfs_trans_t *tp, /* transaction pointer */
669 xfs_agnumber_t agno, /* allocation group number */
670 xfs_agblock_t agbno, /* allocation group block number */
671 uint lock) /* lock flags for get_buf */
672 {
673 xfs_daddr_t d; /* real disk block address */
674
675 ASSERT(agno != NULLAGNUMBER);
676 ASSERT(agbno != NULLAGBLOCK);
677 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
678 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
679 }
680
681 /*
682 * Check for the cursor referring to the last block at the given level.
683 */
684 int /* 1=is last block, 0=not last block */
685 xfs_btree_islastblock(
686 xfs_btree_cur_t *cur, /* btree cursor */
687 int level) /* level to check */
688 {
689 struct xfs_btree_block *block; /* generic btree block pointer */
690 xfs_buf_t *bp; /* buffer containing block */
691
692 block = xfs_btree_get_block(cur, level, &bp);
693 xfs_btree_check_block(cur, block, level, bp);
694 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
695 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
696 else
697 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
698 }
699
700 /*
701 * Change the cursor to point to the first record at the given level.
702 * Other levels are unaffected.
703 */
704 STATIC int /* success=1, failure=0 */
705 xfs_btree_firstrec(
706 xfs_btree_cur_t *cur, /* btree cursor */
707 int level) /* level to change */
708 {
709 struct xfs_btree_block *block; /* generic btree block pointer */
710 xfs_buf_t *bp; /* buffer containing block */
711
712 /*
713 * Get the block pointer for this level.
714 */
715 block = xfs_btree_get_block(cur, level, &bp);
716 xfs_btree_check_block(cur, block, level, bp);
717 /*
718 * It's empty, there is no such record.
719 */
720 if (!block->bb_numrecs)
721 return 0;
722 /*
723 * Set the ptr value to 1, that's the first record/key.
724 */
725 cur->bc_ptrs[level] = 1;
726 return 1;
727 }
728
729 /*
730 * Change the cursor to point to the last record in the current block
731 * at the given level. Other levels are unaffected.
732 */
733 STATIC int /* success=1, failure=0 */
734 xfs_btree_lastrec(
735 xfs_btree_cur_t *cur, /* btree cursor */
736 int level) /* level to change */
737 {
738 struct xfs_btree_block *block; /* generic btree block pointer */
739 xfs_buf_t *bp; /* buffer containing block */
740
741 /*
742 * Get the block pointer for this level.
743 */
744 block = xfs_btree_get_block(cur, level, &bp);
745 xfs_btree_check_block(cur, block, level, bp);
746 /*
747 * It's empty, there is no such record.
748 */
749 if (!block->bb_numrecs)
750 return 0;
751 /*
752 * Set the ptr value to numrecs, that's the last record/key.
753 */
754 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
755 return 1;
756 }
757
758 /*
759 * Compute first and last byte offsets for the fields given.
760 * Interprets the offsets table, which contains struct field offsets.
761 */
762 void
763 xfs_btree_offsets(
764 __int64_t fields, /* bitmask of fields */
765 const short *offsets, /* table of field offsets */
766 int nbits, /* number of bits to inspect */
767 int *first, /* output: first byte offset */
768 int *last) /* output: last byte offset */
769 {
770 int i; /* current bit number */
771 __int64_t imask; /* mask for current bit number */
772
773 ASSERT(fields != 0);
774 /*
775 * Find the lowest bit, so the first byte offset.
776 */
777 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
778 if (imask & fields) {
779 *first = offsets[i];
780 break;
781 }
782 }
783 /*
784 * Find the highest bit, so the last byte offset.
785 */
786 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
787 if (imask & fields) {
788 *last = offsets[i + 1] - 1;
789 break;
790 }
791 }
792 }
793
794 /*
795 * Get a buffer for the block, return it read in.
796 * Long-form addressing.
797 */
798 int
799 xfs_btree_read_bufl(
800 struct xfs_mount *mp, /* file system mount point */
801 struct xfs_trans *tp, /* transaction pointer */
802 xfs_fsblock_t fsbno, /* file system block number */
803 uint lock, /* lock flags for read_buf */
804 struct xfs_buf **bpp, /* buffer for fsbno */
805 int refval, /* ref count value for buffer */
806 const struct xfs_buf_ops *ops)
807 {
808 struct xfs_buf *bp; /* return value */
809 xfs_daddr_t d; /* real disk block address */
810 int error;
811
812 ASSERT(fsbno != NULLFSBLOCK);
813 d = XFS_FSB_TO_DADDR(mp, fsbno);
814 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
815 mp->m_bsize, lock, &bp, ops);
816 if (error)
817 return error;
818 if (bp)
819 xfs_buf_set_ref(bp, refval);
820 *bpp = bp;
821 return 0;
822 }
823
824 /*
825 * Read-ahead the block, don't wait for it, don't return a buffer.
826 * Long-form addressing.
827 */
828 /* ARGSUSED */
829 void
830 xfs_btree_reada_bufl(
831 struct xfs_mount *mp, /* file system mount point */
832 xfs_fsblock_t fsbno, /* file system block number */
833 xfs_extlen_t count, /* count of filesystem blocks */
834 const struct xfs_buf_ops *ops)
835 {
836 xfs_daddr_t d;
837
838 ASSERT(fsbno != NULLFSBLOCK);
839 d = XFS_FSB_TO_DADDR(mp, fsbno);
840 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
841 }
842
843 /*
844 * Read-ahead the block, don't wait for it, don't return a buffer.
845 * Short-form addressing.
846 */
847 /* ARGSUSED */
848 void
849 xfs_btree_reada_bufs(
850 struct xfs_mount *mp, /* file system mount point */
851 xfs_agnumber_t agno, /* allocation group number */
852 xfs_agblock_t agbno, /* allocation group block number */
853 xfs_extlen_t count, /* count of filesystem blocks */
854 const struct xfs_buf_ops *ops)
855 {
856 xfs_daddr_t d;
857
858 ASSERT(agno != NULLAGNUMBER);
859 ASSERT(agbno != NULLAGBLOCK);
860 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
861 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
862 }
863
864 STATIC int
865 xfs_btree_readahead_lblock(
866 struct xfs_btree_cur *cur,
867 int lr,
868 struct xfs_btree_block *block)
869 {
870 int rval = 0;
871 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
872 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
873
874 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
875 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
876 cur->bc_ops->buf_ops);
877 rval++;
878 }
879
880 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
881 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
882 cur->bc_ops->buf_ops);
883 rval++;
884 }
885
886 return rval;
887 }
888
889 STATIC int
890 xfs_btree_readahead_sblock(
891 struct xfs_btree_cur *cur,
892 int lr,
893 struct xfs_btree_block *block)
894 {
895 int rval = 0;
896 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
897 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
898
899
900 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
901 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
902 left, 1, cur->bc_ops->buf_ops);
903 rval++;
904 }
905
906 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
907 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
908 right, 1, cur->bc_ops->buf_ops);
909 rval++;
910 }
911
912 return rval;
913 }
914
915 /*
916 * Read-ahead btree blocks, at the given level.
917 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
918 */
919 STATIC int
920 xfs_btree_readahead(
921 struct xfs_btree_cur *cur, /* btree cursor */
922 int lev, /* level in btree */
923 int lr) /* left/right bits */
924 {
925 struct xfs_btree_block *block;
926
927 /*
928 * No readahead needed if we are at the root level and the
929 * btree root is stored in the inode.
930 */
931 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
932 (lev == cur->bc_nlevels - 1))
933 return 0;
934
935 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
936 return 0;
937
938 cur->bc_ra[lev] |= lr;
939 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
940
941 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
942 return xfs_btree_readahead_lblock(cur, lr, block);
943 return xfs_btree_readahead_sblock(cur, lr, block);
944 }
945
946 STATIC xfs_daddr_t
947 xfs_btree_ptr_to_daddr(
948 struct xfs_btree_cur *cur,
949 union xfs_btree_ptr *ptr)
950 {
951 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
952 ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
953
954 return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
955 } else {
956 ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
957 ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
958
959 return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
960 be32_to_cpu(ptr->s));
961 }
962 }
963
964 /*
965 * Readahead @count btree blocks at the given @ptr location.
966 *
967 * We don't need to care about long or short form btrees here as we have a
968 * method of converting the ptr directly to a daddr available to us.
969 */
970 STATIC void
971 xfs_btree_readahead_ptr(
972 struct xfs_btree_cur *cur,
973 union xfs_btree_ptr *ptr,
974 xfs_extlen_t count)
975 {
976 xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
977 xfs_btree_ptr_to_daddr(cur, ptr),
978 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
979 }
980
981 /*
982 * Set the buffer for level "lev" in the cursor to bp, releasing
983 * any previous buffer.
984 */
985 STATIC void
986 xfs_btree_setbuf(
987 xfs_btree_cur_t *cur, /* btree cursor */
988 int lev, /* level in btree */
989 xfs_buf_t *bp) /* new buffer to set */
990 {
991 struct xfs_btree_block *b; /* btree block */
992
993 if (cur->bc_bufs[lev])
994 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
995 cur->bc_bufs[lev] = bp;
996 cur->bc_ra[lev] = 0;
997
998 b = XFS_BUF_TO_BLOCK(bp);
999 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1000 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1001 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1002 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1003 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1004 } else {
1005 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1006 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1007 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1008 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1009 }
1010 }
1011
1012 STATIC int
1013 xfs_btree_ptr_is_null(
1014 struct xfs_btree_cur *cur,
1015 union xfs_btree_ptr *ptr)
1016 {
1017 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1018 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1019 else
1020 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1021 }
1022
1023 STATIC void
1024 xfs_btree_set_ptr_null(
1025 struct xfs_btree_cur *cur,
1026 union xfs_btree_ptr *ptr)
1027 {
1028 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1029 ptr->l = cpu_to_be64(NULLFSBLOCK);
1030 else
1031 ptr->s = cpu_to_be32(NULLAGBLOCK);
1032 }
1033
1034 /*
1035 * Get/set/init sibling pointers
1036 */
1037 STATIC void
1038 xfs_btree_get_sibling(
1039 struct xfs_btree_cur *cur,
1040 struct xfs_btree_block *block,
1041 union xfs_btree_ptr *ptr,
1042 int lr)
1043 {
1044 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1045
1046 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1047 if (lr == XFS_BB_RIGHTSIB)
1048 ptr->l = block->bb_u.l.bb_rightsib;
1049 else
1050 ptr->l = block->bb_u.l.bb_leftsib;
1051 } else {
1052 if (lr == XFS_BB_RIGHTSIB)
1053 ptr->s = block->bb_u.s.bb_rightsib;
1054 else
1055 ptr->s = block->bb_u.s.bb_leftsib;
1056 }
1057 }
1058
1059 STATIC void
1060 xfs_btree_set_sibling(
1061 struct xfs_btree_cur *cur,
1062 struct xfs_btree_block *block,
1063 union xfs_btree_ptr *ptr,
1064 int lr)
1065 {
1066 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1067
1068 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1069 if (lr == XFS_BB_RIGHTSIB)
1070 block->bb_u.l.bb_rightsib = ptr->l;
1071 else
1072 block->bb_u.l.bb_leftsib = ptr->l;
1073 } else {
1074 if (lr == XFS_BB_RIGHTSIB)
1075 block->bb_u.s.bb_rightsib = ptr->s;
1076 else
1077 block->bb_u.s.bb_leftsib = ptr->s;
1078 }
1079 }
1080
1081 void
1082 xfs_btree_init_block_int(
1083 struct xfs_mount *mp,
1084 struct xfs_btree_block *buf,
1085 xfs_daddr_t blkno,
1086 __u32 magic,
1087 __u16 level,
1088 __u16 numrecs,
1089 __u64 owner,
1090 unsigned int flags)
1091 {
1092 buf->bb_magic = cpu_to_be32(magic);
1093 buf->bb_level = cpu_to_be16(level);
1094 buf->bb_numrecs = cpu_to_be16(numrecs);
1095
1096 if (flags & XFS_BTREE_LONG_PTRS) {
1097 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1098 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1099 if (flags & XFS_BTREE_CRC_BLOCKS) {
1100 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1101 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1102 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1103 buf->bb_u.l.bb_pad = 0;
1104 buf->bb_u.l.bb_lsn = 0;
1105 }
1106 } else {
1107 /* owner is a 32 bit value on short blocks */
1108 __u32 __owner = (__u32)owner;
1109
1110 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1111 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1112 if (flags & XFS_BTREE_CRC_BLOCKS) {
1113 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1114 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1115 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1116 buf->bb_u.s.bb_lsn = 0;
1117 }
1118 }
1119 }
1120
1121 void
1122 xfs_btree_init_block(
1123 struct xfs_mount *mp,
1124 struct xfs_buf *bp,
1125 __u32 magic,
1126 __u16 level,
1127 __u16 numrecs,
1128 __u64 owner,
1129 unsigned int flags)
1130 {
1131 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1132 magic, level, numrecs, owner, flags);
1133 }
1134
1135 STATIC void
1136 xfs_btree_init_block_cur(
1137 struct xfs_btree_cur *cur,
1138 struct xfs_buf *bp,
1139 int level,
1140 int numrecs)
1141 {
1142 __u64 owner;
1143
1144 /*
1145 * we can pull the owner from the cursor right now as the different
1146 * owners align directly with the pointer size of the btree. This may
1147 * change in future, but is safe for current users of the generic btree
1148 * code.
1149 */
1150 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1151 owner = cur->bc_private.b.ip->i_ino;
1152 else
1153 owner = cur->bc_private.a.agno;
1154
1155 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1156 xfs_btree_magic(cur), level, numrecs,
1157 owner, cur->bc_flags);
1158 }
1159
1160 /*
1161 * Return true if ptr is the last record in the btree and
1162 * we need to track updates to this record. The decision
1163 * will be further refined in the update_lastrec method.
1164 */
1165 STATIC int
1166 xfs_btree_is_lastrec(
1167 struct xfs_btree_cur *cur,
1168 struct xfs_btree_block *block,
1169 int level)
1170 {
1171 union xfs_btree_ptr ptr;
1172
1173 if (level > 0)
1174 return 0;
1175 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1176 return 0;
1177
1178 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1179 if (!xfs_btree_ptr_is_null(cur, &ptr))
1180 return 0;
1181 return 1;
1182 }
1183
1184 STATIC void
1185 xfs_btree_buf_to_ptr(
1186 struct xfs_btree_cur *cur,
1187 struct xfs_buf *bp,
1188 union xfs_btree_ptr *ptr)
1189 {
1190 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1191 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1192 XFS_BUF_ADDR(bp)));
1193 else {
1194 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1195 XFS_BUF_ADDR(bp)));
1196 }
1197 }
1198
1199 STATIC void
1200 xfs_btree_set_refs(
1201 struct xfs_btree_cur *cur,
1202 struct xfs_buf *bp)
1203 {
1204 switch (cur->bc_btnum) {
1205 case XFS_BTNUM_BNO:
1206 case XFS_BTNUM_CNT:
1207 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1208 break;
1209 case XFS_BTNUM_INO:
1210 case XFS_BTNUM_FINO:
1211 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1212 break;
1213 case XFS_BTNUM_BMAP:
1214 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1215 break;
1216 case XFS_BTNUM_RMAP:
1217 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1218 break;
1219 default:
1220 ASSERT(0);
1221 }
1222 }
1223
1224 STATIC int
1225 xfs_btree_get_buf_block(
1226 struct xfs_btree_cur *cur,
1227 union xfs_btree_ptr *ptr,
1228 int flags,
1229 struct xfs_btree_block **block,
1230 struct xfs_buf **bpp)
1231 {
1232 struct xfs_mount *mp = cur->bc_mp;
1233 xfs_daddr_t d;
1234
1235 /* need to sort out how callers deal with failures first */
1236 ASSERT(!(flags & XBF_TRYLOCK));
1237
1238 d = xfs_btree_ptr_to_daddr(cur, ptr);
1239 *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1240 mp->m_bsize, flags);
1241
1242 if (!*bpp)
1243 return -ENOMEM;
1244
1245 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1246 *block = XFS_BUF_TO_BLOCK(*bpp);
1247 return 0;
1248 }
1249
1250 /*
1251 * Read in the buffer at the given ptr and return the buffer and
1252 * the block pointer within the buffer.
1253 */
1254 STATIC int
1255 xfs_btree_read_buf_block(
1256 struct xfs_btree_cur *cur,
1257 union xfs_btree_ptr *ptr,
1258 int flags,
1259 struct xfs_btree_block **block,
1260 struct xfs_buf **bpp)
1261 {
1262 struct xfs_mount *mp = cur->bc_mp;
1263 xfs_daddr_t d;
1264 int error;
1265
1266 /* need to sort out how callers deal with failures first */
1267 ASSERT(!(flags & XBF_TRYLOCK));
1268
1269 d = xfs_btree_ptr_to_daddr(cur, ptr);
1270 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1271 mp->m_bsize, flags, bpp,
1272 cur->bc_ops->buf_ops);
1273 if (error)
1274 return error;
1275
1276 xfs_btree_set_refs(cur, *bpp);
1277 *block = XFS_BUF_TO_BLOCK(*bpp);
1278 return 0;
1279 }
1280
1281 /*
1282 * Copy keys from one btree block to another.
1283 */
1284 STATIC void
1285 xfs_btree_copy_keys(
1286 struct xfs_btree_cur *cur,
1287 union xfs_btree_key *dst_key,
1288 union xfs_btree_key *src_key,
1289 int numkeys)
1290 {
1291 ASSERT(numkeys >= 0);
1292 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1293 }
1294
1295 /*
1296 * Copy records from one btree block to another.
1297 */
1298 STATIC void
1299 xfs_btree_copy_recs(
1300 struct xfs_btree_cur *cur,
1301 union xfs_btree_rec *dst_rec,
1302 union xfs_btree_rec *src_rec,
1303 int numrecs)
1304 {
1305 ASSERT(numrecs >= 0);
1306 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1307 }
1308
1309 /*
1310 * Copy block pointers from one btree block to another.
1311 */
1312 STATIC void
1313 xfs_btree_copy_ptrs(
1314 struct xfs_btree_cur *cur,
1315 union xfs_btree_ptr *dst_ptr,
1316 union xfs_btree_ptr *src_ptr,
1317 int numptrs)
1318 {
1319 ASSERT(numptrs >= 0);
1320 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1321 }
1322
1323 /*
1324 * Shift keys one index left/right inside a single btree block.
1325 */
1326 STATIC void
1327 xfs_btree_shift_keys(
1328 struct xfs_btree_cur *cur,
1329 union xfs_btree_key *key,
1330 int dir,
1331 int numkeys)
1332 {
1333 char *dst_key;
1334
1335 ASSERT(numkeys >= 0);
1336 ASSERT(dir == 1 || dir == -1);
1337
1338 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1339 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1340 }
1341
1342 /*
1343 * Shift records one index left/right inside a single btree block.
1344 */
1345 STATIC void
1346 xfs_btree_shift_recs(
1347 struct xfs_btree_cur *cur,
1348 union xfs_btree_rec *rec,
1349 int dir,
1350 int numrecs)
1351 {
1352 char *dst_rec;
1353
1354 ASSERT(numrecs >= 0);
1355 ASSERT(dir == 1 || dir == -1);
1356
1357 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1358 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1359 }
1360
1361 /*
1362 * Shift block pointers one index left/right inside a single btree block.
1363 */
1364 STATIC void
1365 xfs_btree_shift_ptrs(
1366 struct xfs_btree_cur *cur,
1367 union xfs_btree_ptr *ptr,
1368 int dir,
1369 int numptrs)
1370 {
1371 char *dst_ptr;
1372
1373 ASSERT(numptrs >= 0);
1374 ASSERT(dir == 1 || dir == -1);
1375
1376 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1377 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1378 }
1379
1380 /*
1381 * Log key values from the btree block.
1382 */
1383 STATIC void
1384 xfs_btree_log_keys(
1385 struct xfs_btree_cur *cur,
1386 struct xfs_buf *bp,
1387 int first,
1388 int last)
1389 {
1390 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1391 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1392
1393 if (bp) {
1394 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1395 xfs_trans_log_buf(cur->bc_tp, bp,
1396 xfs_btree_key_offset(cur, first),
1397 xfs_btree_key_offset(cur, last + 1) - 1);
1398 } else {
1399 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1400 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1401 }
1402
1403 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1404 }
1405
1406 /*
1407 * Log record values from the btree block.
1408 */
1409 void
1410 xfs_btree_log_recs(
1411 struct xfs_btree_cur *cur,
1412 struct xfs_buf *bp,
1413 int first,
1414 int last)
1415 {
1416 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1417 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1418
1419 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1420 xfs_trans_log_buf(cur->bc_tp, bp,
1421 xfs_btree_rec_offset(cur, first),
1422 xfs_btree_rec_offset(cur, last + 1) - 1);
1423
1424 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1425 }
1426
1427 /*
1428 * Log block pointer fields from a btree block (nonleaf).
1429 */
1430 STATIC void
1431 xfs_btree_log_ptrs(
1432 struct xfs_btree_cur *cur, /* btree cursor */
1433 struct xfs_buf *bp, /* buffer containing btree block */
1434 int first, /* index of first pointer to log */
1435 int last) /* index of last pointer to log */
1436 {
1437 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1438 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1439
1440 if (bp) {
1441 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1442 int level = xfs_btree_get_level(block);
1443
1444 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1445 xfs_trans_log_buf(cur->bc_tp, bp,
1446 xfs_btree_ptr_offset(cur, first, level),
1447 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1448 } else {
1449 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1450 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1451 }
1452
1453 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1454 }
1455
1456 /*
1457 * Log fields from a btree block header.
1458 */
1459 void
1460 xfs_btree_log_block(
1461 struct xfs_btree_cur *cur, /* btree cursor */
1462 struct xfs_buf *bp, /* buffer containing btree block */
1463 int fields) /* mask of fields: XFS_BB_... */
1464 {
1465 int first; /* first byte offset logged */
1466 int last; /* last byte offset logged */
1467 static const short soffsets[] = { /* table of offsets (short) */
1468 offsetof(struct xfs_btree_block, bb_magic),
1469 offsetof(struct xfs_btree_block, bb_level),
1470 offsetof(struct xfs_btree_block, bb_numrecs),
1471 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1472 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1473 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1474 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1475 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1476 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1477 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1478 XFS_BTREE_SBLOCK_CRC_LEN
1479 };
1480 static const short loffsets[] = { /* table of offsets (long) */
1481 offsetof(struct xfs_btree_block, bb_magic),
1482 offsetof(struct xfs_btree_block, bb_level),
1483 offsetof(struct xfs_btree_block, bb_numrecs),
1484 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1485 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1486 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1487 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1488 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1489 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1490 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1491 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1492 XFS_BTREE_LBLOCK_CRC_LEN
1493 };
1494
1495 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1496 XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
1497
1498 if (bp) {
1499 int nbits;
1500
1501 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1502 /*
1503 * We don't log the CRC when updating a btree
1504 * block but instead recreate it during log
1505 * recovery. As the log buffers have checksums
1506 * of their own this is safe and avoids logging a crc
1507 * update in a lot of places.
1508 */
1509 if (fields == XFS_BB_ALL_BITS)
1510 fields = XFS_BB_ALL_BITS_CRC;
1511 nbits = XFS_BB_NUM_BITS_CRC;
1512 } else {
1513 nbits = XFS_BB_NUM_BITS;
1514 }
1515 xfs_btree_offsets(fields,
1516 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1517 loffsets : soffsets,
1518 nbits, &first, &last);
1519 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1520 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1521 } else {
1522 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1523 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1524 }
1525
1526 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1527 }
1528
1529 /*
1530 * Increment cursor by one record at the level.
1531 * For nonzero levels the leaf-ward information is untouched.
1532 */
1533 int /* error */
1534 xfs_btree_increment(
1535 struct xfs_btree_cur *cur,
1536 int level,
1537 int *stat) /* success/failure */
1538 {
1539 struct xfs_btree_block *block;
1540 union xfs_btree_ptr ptr;
1541 struct xfs_buf *bp;
1542 int error; /* error return value */
1543 int lev;
1544
1545 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1546 XFS_BTREE_TRACE_ARGI(cur, level);
1547
1548 ASSERT(level < cur->bc_nlevels);
1549
1550 /* Read-ahead to the right at this level. */
1551 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1552
1553 /* Get a pointer to the btree block. */
1554 block = xfs_btree_get_block(cur, level, &bp);
1555
1556 #ifdef DEBUG
1557 error = xfs_btree_check_block(cur, block, level, bp);
1558 if (error)
1559 goto error0;
1560 #endif
1561
1562 /* We're done if we remain in the block after the increment. */
1563 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1564 goto out1;
1565
1566 /* Fail if we just went off the right edge of the tree. */
1567 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1568 if (xfs_btree_ptr_is_null(cur, &ptr))
1569 goto out0;
1570
1571 XFS_BTREE_STATS_INC(cur, increment);
1572
1573 /*
1574 * March up the tree incrementing pointers.
1575 * Stop when we don't go off the right edge of a block.
1576 */
1577 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1578 block = xfs_btree_get_block(cur, lev, &bp);
1579
1580 #ifdef DEBUG
1581 error = xfs_btree_check_block(cur, block, lev, bp);
1582 if (error)
1583 goto error0;
1584 #endif
1585
1586 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1587 break;
1588
1589 /* Read-ahead the right block for the next loop. */
1590 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1591 }
1592
1593 /*
1594 * If we went off the root then we are either seriously
1595 * confused or have the tree root in an inode.
1596 */
1597 if (lev == cur->bc_nlevels) {
1598 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1599 goto out0;
1600 ASSERT(0);
1601 error = -EFSCORRUPTED;
1602 goto error0;
1603 }
1604 ASSERT(lev < cur->bc_nlevels);
1605
1606 /*
1607 * Now walk back down the tree, fixing up the cursor's buffer
1608 * pointers and key numbers.
1609 */
1610 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1611 union xfs_btree_ptr *ptrp;
1612
1613 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1614 --lev;
1615 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1616 if (error)
1617 goto error0;
1618
1619 xfs_btree_setbuf(cur, lev, bp);
1620 cur->bc_ptrs[lev] = 1;
1621 }
1622 out1:
1623 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1624 *stat = 1;
1625 return 0;
1626
1627 out0:
1628 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1629 *stat = 0;
1630 return 0;
1631
1632 error0:
1633 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1634 return error;
1635 }
1636
1637 /*
1638 * Decrement cursor by one record at the level.
1639 * For nonzero levels the leaf-ward information is untouched.
1640 */
1641 int /* error */
1642 xfs_btree_decrement(
1643 struct xfs_btree_cur *cur,
1644 int level,
1645 int *stat) /* success/failure */
1646 {
1647 struct xfs_btree_block *block;
1648 xfs_buf_t *bp;
1649 int error; /* error return value */
1650 int lev;
1651 union xfs_btree_ptr ptr;
1652
1653 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1654 XFS_BTREE_TRACE_ARGI(cur, level);
1655
1656 ASSERT(level < cur->bc_nlevels);
1657
1658 /* Read-ahead to the left at this level. */
1659 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1660
1661 /* We're done if we remain in the block after the decrement. */
1662 if (--cur->bc_ptrs[level] > 0)
1663 goto out1;
1664
1665 /* Get a pointer to the btree block. */
1666 block = xfs_btree_get_block(cur, level, &bp);
1667
1668 #ifdef DEBUG
1669 error = xfs_btree_check_block(cur, block, level, bp);
1670 if (error)
1671 goto error0;
1672 #endif
1673
1674 /* Fail if we just went off the left edge of the tree. */
1675 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1676 if (xfs_btree_ptr_is_null(cur, &ptr))
1677 goto out0;
1678
1679 XFS_BTREE_STATS_INC(cur, decrement);
1680
1681 /*
1682 * March up the tree decrementing pointers.
1683 * Stop when we don't go off the left edge of a block.
1684 */
1685 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1686 if (--cur->bc_ptrs[lev] > 0)
1687 break;
1688 /* Read-ahead the left block for the next loop. */
1689 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1690 }
1691
1692 /*
1693 * If we went off the root then we are seriously confused.
1694 * or the root of the tree is in an inode.
1695 */
1696 if (lev == cur->bc_nlevels) {
1697 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1698 goto out0;
1699 ASSERT(0);
1700 error = -EFSCORRUPTED;
1701 goto error0;
1702 }
1703 ASSERT(lev < cur->bc_nlevels);
1704
1705 /*
1706 * Now walk back down the tree, fixing up the cursor's buffer
1707 * pointers and key numbers.
1708 */
1709 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1710 union xfs_btree_ptr *ptrp;
1711
1712 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1713 --lev;
1714 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1715 if (error)
1716 goto error0;
1717 xfs_btree_setbuf(cur, lev, bp);
1718 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1719 }
1720 out1:
1721 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1722 *stat = 1;
1723 return 0;
1724
1725 out0:
1726 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1727 *stat = 0;
1728 return 0;
1729
1730 error0:
1731 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1732 return error;
1733 }
1734
1735 STATIC int
1736 xfs_btree_lookup_get_block(
1737 struct xfs_btree_cur *cur, /* btree cursor */
1738 int level, /* level in the btree */
1739 union xfs_btree_ptr *pp, /* ptr to btree block */
1740 struct xfs_btree_block **blkp) /* return btree block */
1741 {
1742 struct xfs_buf *bp; /* buffer pointer for btree block */
1743 int error = 0;
1744
1745 /* special case the root block if in an inode */
1746 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1747 (level == cur->bc_nlevels - 1)) {
1748 *blkp = xfs_btree_get_iroot(cur);
1749 return 0;
1750 }
1751
1752 /*
1753 * If the old buffer at this level for the disk address we are
1754 * looking for re-use it.
1755 *
1756 * Otherwise throw it away and get a new one.
1757 */
1758 bp = cur->bc_bufs[level];
1759 if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1760 *blkp = XFS_BUF_TO_BLOCK(bp);
1761 return 0;
1762 }
1763
1764 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1765 if (error)
1766 return error;
1767
1768 xfs_btree_setbuf(cur, level, bp);
1769 return 0;
1770 }
1771
1772 /*
1773 * Get current search key. For level 0 we don't actually have a key
1774 * structure so we make one up from the record. For all other levels
1775 * we just return the right key.
1776 */
1777 STATIC union xfs_btree_key *
1778 xfs_lookup_get_search_key(
1779 struct xfs_btree_cur *cur,
1780 int level,
1781 int keyno,
1782 struct xfs_btree_block *block,
1783 union xfs_btree_key *kp)
1784 {
1785 if (level == 0) {
1786 cur->bc_ops->init_key_from_rec(kp,
1787 xfs_btree_rec_addr(cur, keyno, block));
1788 return kp;
1789 }
1790
1791 return xfs_btree_key_addr(cur, keyno, block);
1792 }
1793
1794 /*
1795 * Lookup the record. The cursor is made to point to it, based on dir.
1796 * stat is set to 0 if can't find any such record, 1 for success.
1797 */
1798 int /* error */
1799 xfs_btree_lookup(
1800 struct xfs_btree_cur *cur, /* btree cursor */
1801 xfs_lookup_t dir, /* <=, ==, or >= */
1802 int *stat) /* success/failure */
1803 {
1804 struct xfs_btree_block *block; /* current btree block */
1805 __int64_t diff; /* difference for the current key */
1806 int error; /* error return value */
1807 int keyno; /* current key number */
1808 int level; /* level in the btree */
1809 union xfs_btree_ptr *pp; /* ptr to btree block */
1810 union xfs_btree_ptr ptr; /* ptr to btree block */
1811
1812 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1813 XFS_BTREE_TRACE_ARGI(cur, dir);
1814
1815 XFS_BTREE_STATS_INC(cur, lookup);
1816
1817 block = NULL;
1818 keyno = 0;
1819
1820 /* initialise start pointer from cursor */
1821 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1822 pp = &ptr;
1823
1824 /*
1825 * Iterate over each level in the btree, starting at the root.
1826 * For each level above the leaves, find the key we need, based
1827 * on the lookup record, then follow the corresponding block
1828 * pointer down to the next level.
1829 */
1830 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1831 /* Get the block we need to do the lookup on. */
1832 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1833 if (error)
1834 goto error0;
1835
1836 if (diff == 0) {
1837 /*
1838 * If we already had a key match at a higher level, we
1839 * know we need to use the first entry in this block.
1840 */
1841 keyno = 1;
1842 } else {
1843 /* Otherwise search this block. Do a binary search. */
1844
1845 int high; /* high entry number */
1846 int low; /* low entry number */
1847
1848 /* Set low and high entry numbers, 1-based. */
1849 low = 1;
1850 high = xfs_btree_get_numrecs(block);
1851 if (!high) {
1852 /* Block is empty, must be an empty leaf. */
1853 ASSERT(level == 0 && cur->bc_nlevels == 1);
1854
1855 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1856 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1857 *stat = 0;
1858 return 0;
1859 }
1860
1861 /* Binary search the block. */
1862 while (low <= high) {
1863 union xfs_btree_key key;
1864 union xfs_btree_key *kp;
1865
1866 XFS_BTREE_STATS_INC(cur, compare);
1867
1868 /* keyno is average of low and high. */
1869 keyno = (low + high) >> 1;
1870
1871 /* Get current search key */
1872 kp = xfs_lookup_get_search_key(cur, level,
1873 keyno, block, &key);
1874
1875 /*
1876 * Compute difference to get next direction:
1877 * - less than, move right
1878 * - greater than, move left
1879 * - equal, we're done
1880 */
1881 diff = cur->bc_ops->key_diff(cur, kp);
1882 if (diff < 0)
1883 low = keyno + 1;
1884 else if (diff > 0)
1885 high = keyno - 1;
1886 else
1887 break;
1888 }
1889 }
1890
1891 /*
1892 * If there are more levels, set up for the next level
1893 * by getting the block number and filling in the cursor.
1894 */
1895 if (level > 0) {
1896 /*
1897 * If we moved left, need the previous key number,
1898 * unless there isn't one.
1899 */
1900 if (diff > 0 && --keyno < 1)
1901 keyno = 1;
1902 pp = xfs_btree_ptr_addr(cur, keyno, block);
1903
1904 #ifdef DEBUG
1905 error = xfs_btree_check_ptr(cur, pp, 0, level);
1906 if (error)
1907 goto error0;
1908 #endif
1909 cur->bc_ptrs[level] = keyno;
1910 }
1911 }
1912
1913 /* Done with the search. See if we need to adjust the results. */
1914 if (dir != XFS_LOOKUP_LE && diff < 0) {
1915 keyno++;
1916 /*
1917 * If ge search and we went off the end of the block, but it's
1918 * not the last block, we're in the wrong block.
1919 */
1920 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1921 if (dir == XFS_LOOKUP_GE &&
1922 keyno > xfs_btree_get_numrecs(block) &&
1923 !xfs_btree_ptr_is_null(cur, &ptr)) {
1924 int i;
1925
1926 cur->bc_ptrs[0] = keyno;
1927 error = xfs_btree_increment(cur, 0, &i);
1928 if (error)
1929 goto error0;
1930 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1931 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1932 *stat = 1;
1933 return 0;
1934 }
1935 } else if (dir == XFS_LOOKUP_LE && diff > 0)
1936 keyno--;
1937 cur->bc_ptrs[0] = keyno;
1938
1939 /* Return if we succeeded or not. */
1940 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1941 *stat = 0;
1942 else if (dir != XFS_LOOKUP_EQ || diff == 0)
1943 *stat = 1;
1944 else
1945 *stat = 0;
1946 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1947 return 0;
1948
1949 error0:
1950 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1951 return error;
1952 }
1953
1954 /* Find the high key storage area from a regular key. */
1955 STATIC union xfs_btree_key *
1956 xfs_btree_high_key_from_key(
1957 struct xfs_btree_cur *cur,
1958 union xfs_btree_key *key)
1959 {
1960 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1961 return (union xfs_btree_key *)((char *)key +
1962 (cur->bc_ops->key_len / 2));
1963 }
1964
1965 /* Determine the low (and high if overlapped) keys of a leaf block */
1966 STATIC void
1967 xfs_btree_get_leaf_keys(
1968 struct xfs_btree_cur *cur,
1969 struct xfs_btree_block *block,
1970 union xfs_btree_key *key)
1971 {
1972 union xfs_btree_key max_hkey;
1973 union xfs_btree_key hkey;
1974 union xfs_btree_rec *rec;
1975 union xfs_btree_key *high;
1976 int n;
1977
1978 rec = xfs_btree_rec_addr(cur, 1, block);
1979 cur->bc_ops->init_key_from_rec(key, rec);
1980
1981 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1982
1983 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1984 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1985 rec = xfs_btree_rec_addr(cur, n, block);
1986 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
1987 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
1988 > 0)
1989 max_hkey = hkey;
1990 }
1991
1992 high = xfs_btree_high_key_from_key(cur, key);
1993 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
1994 }
1995 }
1996
1997 /* Determine the low (and high if overlapped) keys of a node block */
1998 STATIC void
1999 xfs_btree_get_node_keys(
2000 struct xfs_btree_cur *cur,
2001 struct xfs_btree_block *block,
2002 union xfs_btree_key *key)
2003 {
2004 union xfs_btree_key *hkey;
2005 union xfs_btree_key *max_hkey;
2006 union xfs_btree_key *high;
2007 int n;
2008
2009 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2010 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2011 cur->bc_ops->key_len / 2);
2012
2013 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2014 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2015 hkey = xfs_btree_high_key_addr(cur, n, block);
2016 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2017 max_hkey = hkey;
2018 }
2019
2020 high = xfs_btree_high_key_from_key(cur, key);
2021 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2022 } else {
2023 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2024 cur->bc_ops->key_len);
2025 }
2026 }
2027
2028 /* Derive the keys for any btree block. */
2029 STATIC void
2030 xfs_btree_get_keys(
2031 struct xfs_btree_cur *cur,
2032 struct xfs_btree_block *block,
2033 union xfs_btree_key *key)
2034 {
2035 if (be16_to_cpu(block->bb_level) == 0)
2036 xfs_btree_get_leaf_keys(cur, block, key);
2037 else
2038 xfs_btree_get_node_keys(cur, block, key);
2039 }
2040
2041 /*
2042 * Decide if we need to update the parent keys of a btree block. For
2043 * a standard btree this is only necessary if we're updating the first
2044 * record/key. For an overlapping btree, we must always update the
2045 * keys because the highest key can be in any of the records or keys
2046 * in the block.
2047 */
2048 static inline bool
2049 xfs_btree_needs_key_update(
2050 struct xfs_btree_cur *cur,
2051 int ptr)
2052 {
2053 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2054 }
2055
2056 /*
2057 * Update the low and high parent keys of the given level, progressing
2058 * towards the root. If force_all is false, stop if the keys for a given
2059 * level do not need updating.
2060 */
2061 STATIC int
2062 __xfs_btree_updkeys(
2063 struct xfs_btree_cur *cur,
2064 int level,
2065 struct xfs_btree_block *block,
2066 struct xfs_buf *bp0,
2067 bool force_all)
2068 {
2069 union xfs_btree_bigkey key; /* keys from current level */
2070 union xfs_btree_key *lkey; /* keys from the next level up */
2071 union xfs_btree_key *hkey;
2072 union xfs_btree_key *nlkey; /* keys from the next level up */
2073 union xfs_btree_key *nhkey;
2074 struct xfs_buf *bp;
2075 int ptr;
2076
2077 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2078
2079 /* Exit if there aren't any parent levels to update. */
2080 if (level + 1 >= cur->bc_nlevels)
2081 return 0;
2082
2083 trace_xfs_btree_updkeys(cur, level, bp0);
2084
2085 lkey = (union xfs_btree_key *)&key;
2086 hkey = xfs_btree_high_key_from_key(cur, lkey);
2087 xfs_btree_get_keys(cur, block, lkey);
2088 for (level++; level < cur->bc_nlevels; level++) {
2089 #ifdef DEBUG
2090 int error;
2091 #endif
2092 block = xfs_btree_get_block(cur, level, &bp);
2093 trace_xfs_btree_updkeys(cur, level, bp);
2094 #ifdef DEBUG
2095 error = xfs_btree_check_block(cur, block, level, bp);
2096 if (error) {
2097 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2098 return error;
2099 }
2100 #endif
2101 ptr = cur->bc_ptrs[level];
2102 nlkey = xfs_btree_key_addr(cur, ptr, block);
2103 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2104 if (!force_all &&
2105 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2106 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2107 break;
2108 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2109 xfs_btree_log_keys(cur, bp, ptr, ptr);
2110 if (level + 1 >= cur->bc_nlevels)
2111 break;
2112 xfs_btree_get_node_keys(cur, block, lkey);
2113 }
2114
2115 return 0;
2116 }
2117
2118 /* Update all the keys from some level in cursor back to the root. */
2119 STATIC int
2120 xfs_btree_updkeys_force(
2121 struct xfs_btree_cur *cur,
2122 int level)
2123 {
2124 struct xfs_buf *bp;
2125 struct xfs_btree_block *block;
2126
2127 block = xfs_btree_get_block(cur, level, &bp);
2128 return __xfs_btree_updkeys(cur, level, block, bp, true);
2129 }
2130
2131 /*
2132 * Update the parent keys of the given level, progressing towards the root.
2133 */
2134 STATIC int
2135 xfs_btree_update_keys(
2136 struct xfs_btree_cur *cur,
2137 int level)
2138 {
2139 struct xfs_btree_block *block;
2140 struct xfs_buf *bp;
2141 union xfs_btree_key *kp;
2142 union xfs_btree_key key;
2143 int ptr;
2144
2145 ASSERT(level >= 0);
2146
2147 block = xfs_btree_get_block(cur, level, &bp);
2148 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2149 return __xfs_btree_updkeys(cur, level, block, bp, false);
2150
2151 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2152 XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
2153
2154 /*
2155 * Go up the tree from this level toward the root.
2156 * At each level, update the key value to the value input.
2157 * Stop when we reach a level where the cursor isn't pointing
2158 * at the first entry in the block.
2159 */
2160 xfs_btree_get_keys(cur, block, &key);
2161 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2162 #ifdef DEBUG
2163 int error;
2164 #endif
2165 block = xfs_btree_get_block(cur, level, &bp);
2166 #ifdef DEBUG
2167 error = xfs_btree_check_block(cur, block, level, bp);
2168 if (error) {
2169 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2170 return error;
2171 }
2172 #endif
2173 ptr = cur->bc_ptrs[level];
2174 kp = xfs_btree_key_addr(cur, ptr, block);
2175 xfs_btree_copy_keys(cur, kp, &key, 1);
2176 xfs_btree_log_keys(cur, bp, ptr, ptr);
2177 }
2178
2179 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2180 return 0;
2181 }
2182
2183 /*
2184 * Update the record referred to by cur to the value in the
2185 * given record. This either works (return 0) or gets an
2186 * EFSCORRUPTED error.
2187 */
2188 int
2189 xfs_btree_update(
2190 struct xfs_btree_cur *cur,
2191 union xfs_btree_rec *rec)
2192 {
2193 struct xfs_btree_block *block;
2194 struct xfs_buf *bp;
2195 int error;
2196 int ptr;
2197 union xfs_btree_rec *rp;
2198
2199 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2200 XFS_BTREE_TRACE_ARGR(cur, rec);
2201
2202 /* Pick up the current block. */
2203 block = xfs_btree_get_block(cur, 0, &bp);
2204
2205 #ifdef DEBUG
2206 error = xfs_btree_check_block(cur, block, 0, bp);
2207 if (error)
2208 goto error0;
2209 #endif
2210 /* Get the address of the rec to be updated. */
2211 ptr = cur->bc_ptrs[0];
2212 rp = xfs_btree_rec_addr(cur, ptr, block);
2213
2214 /* Fill in the new contents and log them. */
2215 xfs_btree_copy_recs(cur, rp, rec, 1);
2216 xfs_btree_log_recs(cur, bp, ptr, ptr);
2217
2218 /*
2219 * If we are tracking the last record in the tree and
2220 * we are at the far right edge of the tree, update it.
2221 */
2222 if (xfs_btree_is_lastrec(cur, block, 0)) {
2223 cur->bc_ops->update_lastrec(cur, block, rec,
2224 ptr, LASTREC_UPDATE);
2225 }
2226
2227 /* Pass new key value up to our parent. */
2228 if (xfs_btree_needs_key_update(cur, ptr)) {
2229 error = xfs_btree_update_keys(cur, 0);
2230 if (error)
2231 goto error0;
2232 }
2233
2234 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2235 return 0;
2236
2237 error0:
2238 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2239 return error;
2240 }
2241
2242 /*
2243 * Move 1 record left from cur/level if possible.
2244 * Update cur to reflect the new path.
2245 */
2246 STATIC int /* error */
2247 xfs_btree_lshift(
2248 struct xfs_btree_cur *cur,
2249 int level,
2250 int *stat) /* success/failure */
2251 {
2252 struct xfs_buf *lbp; /* left buffer pointer */
2253 struct xfs_btree_block *left; /* left btree block */
2254 int lrecs; /* left record count */
2255 struct xfs_buf *rbp; /* right buffer pointer */
2256 struct xfs_btree_block *right; /* right btree block */
2257 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2258 int rrecs; /* right record count */
2259 union xfs_btree_ptr lptr; /* left btree pointer */
2260 union xfs_btree_key *rkp = NULL; /* right btree key */
2261 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2262 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2263 int error; /* error return value */
2264 int i;
2265
2266 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2267 XFS_BTREE_TRACE_ARGI(cur, level);
2268
2269 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2270 level == cur->bc_nlevels - 1)
2271 goto out0;
2272
2273 /* Set up variables for this block as "right". */
2274 right = xfs_btree_get_block(cur, level, &rbp);
2275
2276 #ifdef DEBUG
2277 error = xfs_btree_check_block(cur, right, level, rbp);
2278 if (error)
2279 goto error0;
2280 #endif
2281
2282 /* If we've got no left sibling then we can't shift an entry left. */
2283 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2284 if (xfs_btree_ptr_is_null(cur, &lptr))
2285 goto out0;
2286
2287 /*
2288 * If the cursor entry is the one that would be moved, don't
2289 * do it... it's too complicated.
2290 */
2291 if (cur->bc_ptrs[level] <= 1)
2292 goto out0;
2293
2294 /* Set up the left neighbor as "left". */
2295 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2296 if (error)
2297 goto error0;
2298
2299 /* If it's full, it can't take another entry. */
2300 lrecs = xfs_btree_get_numrecs(left);
2301 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2302 goto out0;
2303
2304 rrecs = xfs_btree_get_numrecs(right);
2305
2306 /*
2307 * We add one entry to the left side and remove one for the right side.
2308 * Account for it here, the changes will be updated on disk and logged
2309 * later.
2310 */
2311 lrecs++;
2312 rrecs--;
2313
2314 XFS_BTREE_STATS_INC(cur, lshift);
2315 XFS_BTREE_STATS_ADD(cur, moves, 1);
2316
2317 /*
2318 * If non-leaf, copy a key and a ptr to the left block.
2319 * Log the changes to the left block.
2320 */
2321 if (level > 0) {
2322 /* It's a non-leaf. Move keys and pointers. */
2323 union xfs_btree_key *lkp; /* left btree key */
2324 union xfs_btree_ptr *lpp; /* left address pointer */
2325
2326 lkp = xfs_btree_key_addr(cur, lrecs, left);
2327 rkp = xfs_btree_key_addr(cur, 1, right);
2328
2329 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2330 rpp = xfs_btree_ptr_addr(cur, 1, right);
2331 #ifdef DEBUG
2332 error = xfs_btree_check_ptr(cur, rpp, 0, level);
2333 if (error)
2334 goto error0;
2335 #endif
2336 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2337 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2338
2339 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2340 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2341
2342 ASSERT(cur->bc_ops->keys_inorder(cur,
2343 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2344 } else {
2345 /* It's a leaf. Move records. */
2346 union xfs_btree_rec *lrp; /* left record pointer */
2347
2348 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2349 rrp = xfs_btree_rec_addr(cur, 1, right);
2350
2351 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2352 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2353
2354 ASSERT(cur->bc_ops->recs_inorder(cur,
2355 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2356 }
2357
2358 xfs_btree_set_numrecs(left, lrecs);
2359 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2360
2361 xfs_btree_set_numrecs(right, rrecs);
2362 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2363
2364 /*
2365 * Slide the contents of right down one entry.
2366 */
2367 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2368 if (level > 0) {
2369 /* It's a nonleaf. operate on keys and ptrs */
2370 #ifdef DEBUG
2371 int i; /* loop index */
2372
2373 for (i = 0; i < rrecs; i++) {
2374 error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2375 if (error)
2376 goto error0;
2377 }
2378 #endif
2379 xfs_btree_shift_keys(cur,
2380 xfs_btree_key_addr(cur, 2, right),
2381 -1, rrecs);
2382 xfs_btree_shift_ptrs(cur,
2383 xfs_btree_ptr_addr(cur, 2, right),
2384 -1, rrecs);
2385
2386 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2387 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2388 } else {
2389 /* It's a leaf. operate on records */
2390 xfs_btree_shift_recs(cur,
2391 xfs_btree_rec_addr(cur, 2, right),
2392 -1, rrecs);
2393 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2394 }
2395
2396 /*
2397 * Using a temporary cursor, update the parent key values of the
2398 * block on the left.
2399 */
2400 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2401 error = xfs_btree_dup_cursor(cur, &tcur);
2402 if (error)
2403 goto error0;
2404 i = xfs_btree_firstrec(tcur, level);
2405 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2406
2407 error = xfs_btree_decrement(tcur, level, &i);
2408 if (error)
2409 goto error1;
2410
2411 /* Update the parent high keys of the left block, if needed. */
2412 error = xfs_btree_update_keys(tcur, level);
2413 if (error)
2414 goto error1;
2415
2416 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2417 }
2418
2419 /* Update the parent keys of the right block. */
2420 error = xfs_btree_update_keys(cur, level);
2421 if (error)
2422 goto error0;
2423
2424 /* Slide the cursor value left one. */
2425 cur->bc_ptrs[level]--;
2426
2427 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2428 *stat = 1;
2429 return 0;
2430
2431 out0:
2432 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2433 *stat = 0;
2434 return 0;
2435
2436 error0:
2437 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2438 return error;
2439
2440 error1:
2441 XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2442 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2443 return error;
2444 }
2445
2446 /*
2447 * Move 1 record right from cur/level if possible.
2448 * Update cur to reflect the new path.
2449 */
2450 STATIC int /* error */
2451 xfs_btree_rshift(
2452 struct xfs_btree_cur *cur,
2453 int level,
2454 int *stat) /* success/failure */
2455 {
2456 struct xfs_buf *lbp; /* left buffer pointer */
2457 struct xfs_btree_block *left; /* left btree block */
2458 struct xfs_buf *rbp; /* right buffer pointer */
2459 struct xfs_btree_block *right; /* right btree block */
2460 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2461 union xfs_btree_ptr rptr; /* right block pointer */
2462 union xfs_btree_key *rkp; /* right btree key */
2463 int rrecs; /* right record count */
2464 int lrecs; /* left record count */
2465 int error; /* error return value */
2466 int i; /* loop counter */
2467
2468 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2469 XFS_BTREE_TRACE_ARGI(cur, level);
2470
2471 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2472 (level == cur->bc_nlevels - 1))
2473 goto out0;
2474
2475 /* Set up variables for this block as "left". */
2476 left = xfs_btree_get_block(cur, level, &lbp);
2477
2478 #ifdef DEBUG
2479 error = xfs_btree_check_block(cur, left, level, lbp);
2480 if (error)
2481 goto error0;
2482 #endif
2483
2484 /* If we've got no right sibling then we can't shift an entry right. */
2485 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2486 if (xfs_btree_ptr_is_null(cur, &rptr))
2487 goto out0;
2488
2489 /*
2490 * If the cursor entry is the one that would be moved, don't
2491 * do it... it's too complicated.
2492 */
2493 lrecs = xfs_btree_get_numrecs(left);
2494 if (cur->bc_ptrs[level] >= lrecs)
2495 goto out0;
2496
2497 /* Set up the right neighbor as "right". */
2498 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2499 if (error)
2500 goto error0;
2501
2502 /* If it's full, it can't take another entry. */
2503 rrecs = xfs_btree_get_numrecs(right);
2504 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2505 goto out0;
2506
2507 XFS_BTREE_STATS_INC(cur, rshift);
2508 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2509
2510 /*
2511 * Make a hole at the start of the right neighbor block, then
2512 * copy the last left block entry to the hole.
2513 */
2514 if (level > 0) {
2515 /* It's a nonleaf. make a hole in the keys and ptrs */
2516 union xfs_btree_key *lkp;
2517 union xfs_btree_ptr *lpp;
2518 union xfs_btree_ptr *rpp;
2519
2520 lkp = xfs_btree_key_addr(cur, lrecs, left);
2521 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2522 rkp = xfs_btree_key_addr(cur, 1, right);
2523 rpp = xfs_btree_ptr_addr(cur, 1, right);
2524
2525 #ifdef DEBUG
2526 for (i = rrecs - 1; i >= 0; i--) {
2527 error = xfs_btree_check_ptr(cur, rpp, i, level);
2528 if (error)
2529 goto error0;
2530 }
2531 #endif
2532
2533 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2534 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2535
2536 #ifdef DEBUG
2537 error = xfs_btree_check_ptr(cur, lpp, 0, level);
2538 if (error)
2539 goto error0;
2540 #endif
2541
2542 /* Now put the new data in, and log it. */
2543 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2544 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2545
2546 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2547 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2548
2549 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2550 xfs_btree_key_addr(cur, 2, right)));
2551 } else {
2552 /* It's a leaf. make a hole in the records */
2553 union xfs_btree_rec *lrp;
2554 union xfs_btree_rec *rrp;
2555
2556 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2557 rrp = xfs_btree_rec_addr(cur, 1, right);
2558
2559 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2560
2561 /* Now put the new data in, and log it. */
2562 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2563 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2564 }
2565
2566 /*
2567 * Decrement and log left's numrecs, bump and log right's numrecs.
2568 */
2569 xfs_btree_set_numrecs(left, --lrecs);
2570 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2571
2572 xfs_btree_set_numrecs(right, ++rrecs);
2573 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2574
2575 /*
2576 * Using a temporary cursor, update the parent key values of the
2577 * block on the right.
2578 */
2579 error = xfs_btree_dup_cursor(cur, &tcur);
2580 if (error)
2581 goto error0;
2582 i = xfs_btree_lastrec(tcur, level);
2583 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2584
2585 error = xfs_btree_increment(tcur, level, &i);
2586 if (error)
2587 goto error1;
2588
2589 /* Update the parent high keys of the left block, if needed. */
2590 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2591 error = xfs_btree_update_keys(cur, level);
2592 if (error)
2593 goto error1;
2594 }
2595
2596 /* Update the parent keys of the right block. */
2597 error = xfs_btree_update_keys(tcur, level);
2598 if (error)
2599 goto error1;
2600
2601 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2602
2603 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2604 *stat = 1;
2605 return 0;
2606
2607 out0:
2608 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2609 *stat = 0;
2610 return 0;
2611
2612 error0:
2613 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2614 return error;
2615
2616 error1:
2617 XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2618 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2619 return error;
2620 }
2621
2622 /*
2623 * Split cur/level block in half.
2624 * Return new block number and the key to its first
2625 * record (to be inserted into parent).
2626 */
2627 STATIC int /* error */
2628 __xfs_btree_split(
2629 struct xfs_btree_cur *cur,
2630 int level,
2631 union xfs_btree_ptr *ptrp,
2632 union xfs_btree_key *key,
2633 struct xfs_btree_cur **curp,
2634 int *stat) /* success/failure */
2635 {
2636 union xfs_btree_ptr lptr; /* left sibling block ptr */
2637 struct xfs_buf *lbp; /* left buffer pointer */
2638 struct xfs_btree_block *left; /* left btree block */
2639 union xfs_btree_ptr rptr; /* right sibling block ptr */
2640 struct xfs_buf *rbp; /* right buffer pointer */
2641 struct xfs_btree_block *right; /* right btree block */
2642 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2643 struct xfs_buf *rrbp; /* right-right buffer pointer */
2644 struct xfs_btree_block *rrblock; /* right-right btree block */
2645 int lrecs;
2646 int rrecs;
2647 int src_index;
2648 int error; /* error return value */
2649 #ifdef DEBUG
2650 int i;
2651 #endif
2652
2653 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2654 XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
2655
2656 XFS_BTREE_STATS_INC(cur, split);
2657
2658 /* Set up left block (current one). */
2659 left = xfs_btree_get_block(cur, level, &lbp);
2660
2661 #ifdef DEBUG
2662 error = xfs_btree_check_block(cur, left, level, lbp);
2663 if (error)
2664 goto error0;
2665 #endif
2666
2667 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2668
2669 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2670 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2671 if (error)
2672 goto error0;
2673 if (*stat == 0)
2674 goto out0;
2675 XFS_BTREE_STATS_INC(cur, alloc);
2676
2677 /* Set up the new block as "right". */
2678 error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2679 if (error)
2680 goto error0;
2681
2682 /* Fill in the btree header for the new right block. */
2683 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2684
2685 /*
2686 * Split the entries between the old and the new block evenly.
2687 * Make sure that if there's an odd number of entries now, that
2688 * each new block will have the same number of entries.
2689 */
2690 lrecs = xfs_btree_get_numrecs(left);
2691 rrecs = lrecs / 2;
2692 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2693 rrecs++;
2694 src_index = (lrecs - rrecs + 1);
2695
2696 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2697
2698 /* Adjust numrecs for the later get_*_keys() calls. */
2699 lrecs -= rrecs;
2700 xfs_btree_set_numrecs(left, lrecs);
2701 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2702
2703 /*
2704 * Copy btree block entries from the left block over to the
2705 * new block, the right. Update the right block and log the
2706 * changes.
2707 */
2708 if (level > 0) {
2709 /* It's a non-leaf. Move keys and pointers. */
2710 union xfs_btree_key *lkp; /* left btree key */
2711 union xfs_btree_ptr *lpp; /* left address pointer */
2712 union xfs_btree_key *rkp; /* right btree key */
2713 union xfs_btree_ptr *rpp; /* right address pointer */
2714
2715 lkp = xfs_btree_key_addr(cur, src_index, left);
2716 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2717 rkp = xfs_btree_key_addr(cur, 1, right);
2718 rpp = xfs_btree_ptr_addr(cur, 1, right);
2719
2720 #ifdef DEBUG
2721 for (i = src_index; i < rrecs; i++) {
2722 error = xfs_btree_check_ptr(cur, lpp, i, level);
2723 if (error)
2724 goto error0;
2725 }
2726 #endif
2727
2728 /* Copy the keys & pointers to the new block. */
2729 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2730 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2731
2732 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2733 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2734
2735 /* Stash the keys of the new block for later insertion. */
2736 xfs_btree_get_node_keys(cur, right, key);
2737 } else {
2738 /* It's a leaf. Move records. */
2739 union xfs_btree_rec *lrp; /* left record pointer */
2740 union xfs_btree_rec *rrp; /* right record pointer */
2741
2742 lrp = xfs_btree_rec_addr(cur, src_index, left);
2743 rrp = xfs_btree_rec_addr(cur, 1, right);
2744
2745 /* Copy records to the new block. */
2746 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2747 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2748
2749 /* Stash the keys of the new block for later insertion. */
2750 xfs_btree_get_leaf_keys(cur, right, key);
2751 }
2752
2753 /*
2754 * Find the left block number by looking in the buffer.
2755 * Adjust sibling pointers.
2756 */
2757 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2758 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2759 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2760 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2761
2762 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2763 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2764
2765 /*
2766 * If there's a block to the new block's right, make that block
2767 * point back to right instead of to left.
2768 */
2769 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2770 error = xfs_btree_read_buf_block(cur, &rrptr,
2771 0, &rrblock, &rrbp);
2772 if (error)
2773 goto error0;
2774 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2775 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2776 }
2777
2778 /* Update the parent high keys of the left block, if needed. */
2779 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2780 error = xfs_btree_update_keys(cur, level);
2781 if (error)
2782 goto error0;
2783 }
2784
2785 /*
2786 * If the cursor is really in the right block, move it there.
2787 * If it's just pointing past the last entry in left, then we'll
2788 * insert there, so don't change anything in that case.
2789 */
2790 if (cur->bc_ptrs[level] > lrecs + 1) {
2791 xfs_btree_setbuf(cur, level, rbp);
2792 cur->bc_ptrs[level] -= lrecs;
2793 }
2794 /*
2795 * If there are more levels, we'll need another cursor which refers
2796 * the right block, no matter where this cursor was.
2797 */
2798 if (level + 1 < cur->bc_nlevels) {
2799 error = xfs_btree_dup_cursor(cur, curp);
2800 if (error)
2801 goto error0;
2802 (*curp)->bc_ptrs[level + 1]++;
2803 }
2804 *ptrp = rptr;
2805 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2806 *stat = 1;
2807 return 0;
2808 out0:
2809 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2810 *stat = 0;
2811 return 0;
2812
2813 error0:
2814 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2815 return error;
2816 }
2817
2818 struct xfs_btree_split_args {
2819 struct xfs_btree_cur *cur;
2820 int level;
2821 union xfs_btree_ptr *ptrp;
2822 union xfs_btree_key *key;
2823 struct xfs_btree_cur **curp;
2824 int *stat; /* success/failure */
2825 int result;
2826 bool kswapd; /* allocation in kswapd context */
2827 struct completion *done;
2828 struct work_struct work;
2829 };
2830
2831 /*
2832 * Stack switching interfaces for allocation
2833 */
2834 static void
2835 xfs_btree_split_worker(
2836 struct work_struct *work)
2837 {
2838 struct xfs_btree_split_args *args = container_of(work,
2839 struct xfs_btree_split_args, work);
2840 unsigned long pflags;
2841 unsigned long new_pflags = PF_FSTRANS;
2842
2843 /*
2844 * we are in a transaction context here, but may also be doing work
2845 * in kswapd context, and hence we may need to inherit that state
2846 * temporarily to ensure that we don't block waiting for memory reclaim
2847 * in any way.
2848 */
2849 if (args->kswapd)
2850 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2851
2852 current_set_flags_nested(&pflags, new_pflags);
2853
2854 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2855 args->key, args->curp, args->stat);
2856 complete(args->done);
2857
2858 current_restore_flags_nested(&pflags, new_pflags);
2859 }
2860
2861 /*
2862 * BMBT split requests often come in with little stack to work on. Push
2863 * them off to a worker thread so there is lots of stack to use. For the other
2864 * btree types, just call directly to avoid the context switch overhead here.
2865 */
2866 STATIC int /* error */
2867 xfs_btree_split(
2868 struct xfs_btree_cur *cur,
2869 int level,
2870 union xfs_btree_ptr *ptrp,
2871 union xfs_btree_key *key,
2872 struct xfs_btree_cur **curp,
2873 int *stat) /* success/failure */
2874 {
2875 struct xfs_btree_split_args args;
2876 DECLARE_COMPLETION_ONSTACK(done);
2877
2878 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2879 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2880
2881 args.cur = cur;
2882 args.level = level;
2883 args.ptrp = ptrp;
2884 args.key = key;
2885 args.curp = curp;
2886 args.stat = stat;
2887 args.done = &done;
2888 args.kswapd = current_is_kswapd();
2889 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2890 queue_work(xfs_alloc_wq, &args.work);
2891 wait_for_completion(&done);
2892 destroy_work_on_stack(&args.work);
2893 return args.result;
2894 }
2895
2896
2897 /*
2898 * Copy the old inode root contents into a real block and make the
2899 * broot point to it.
2900 */
2901 int /* error */
2902 xfs_btree_new_iroot(
2903 struct xfs_btree_cur *cur, /* btree cursor */
2904 int *logflags, /* logging flags for inode */
2905 int *stat) /* return status - 0 fail */
2906 {
2907 struct xfs_buf *cbp; /* buffer for cblock */
2908 struct xfs_btree_block *block; /* btree block */
2909 struct xfs_btree_block *cblock; /* child btree block */
2910 union xfs_btree_key *ckp; /* child key pointer */
2911 union xfs_btree_ptr *cpp; /* child ptr pointer */
2912 union xfs_btree_key *kp; /* pointer to btree key */
2913 union xfs_btree_ptr *pp; /* pointer to block addr */
2914 union xfs_btree_ptr nptr; /* new block addr */
2915 int level; /* btree level */
2916 int error; /* error return code */
2917 #ifdef DEBUG
2918 int i; /* loop counter */
2919 #endif
2920
2921 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2922 XFS_BTREE_STATS_INC(cur, newroot);
2923
2924 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2925
2926 level = cur->bc_nlevels - 1;
2927
2928 block = xfs_btree_get_iroot(cur);
2929 pp = xfs_btree_ptr_addr(cur, 1, block);
2930
2931 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2932 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2933 if (error)
2934 goto error0;
2935 if (*stat == 0) {
2936 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2937 return 0;
2938 }
2939 XFS_BTREE_STATS_INC(cur, alloc);
2940
2941 /* Copy the root into a real block. */
2942 error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2943 if (error)
2944 goto error0;
2945
2946 /*
2947 * we can't just memcpy() the root in for CRC enabled btree blocks.
2948 * In that case have to also ensure the blkno remains correct
2949 */
2950 memcpy(cblock, block, xfs_btree_block_len(cur));
2951 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2952 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2953 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2954 else
2955 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2956 }
2957
2958 be16_add_cpu(&block->bb_level, 1);
2959 xfs_btree_set_numrecs(block, 1);
2960 cur->bc_nlevels++;
2961 cur->bc_ptrs[level + 1] = 1;
2962
2963 kp = xfs_btree_key_addr(cur, 1, block);
2964 ckp = xfs_btree_key_addr(cur, 1, cblock);
2965 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2966
2967 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2968 #ifdef DEBUG
2969 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2970 error = xfs_btree_check_ptr(cur, pp, i, level);
2971 if (error)
2972 goto error0;
2973 }
2974 #endif
2975 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2976
2977 #ifdef DEBUG
2978 error = xfs_btree_check_ptr(cur, &nptr, 0, level);
2979 if (error)
2980 goto error0;
2981 #endif
2982 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2983
2984 xfs_iroot_realloc(cur->bc_private.b.ip,
2985 1 - xfs_btree_get_numrecs(cblock),
2986 cur->bc_private.b.whichfork);
2987
2988 xfs_btree_setbuf(cur, level, cbp);
2989
2990 /*
2991 * Do all this logging at the end so that
2992 * the root is at the right level.
2993 */
2994 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2995 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2996 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2997
2998 *logflags |=
2999 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3000 *stat = 1;
3001 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3002 return 0;
3003 error0:
3004 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3005 return error;
3006 }
3007
3008 /*
3009 * Allocate a new root block, fill it in.
3010 */
3011 STATIC int /* error */
3012 xfs_btree_new_root(
3013 struct xfs_btree_cur *cur, /* btree cursor */
3014 int *stat) /* success/failure */
3015 {
3016 struct xfs_btree_block *block; /* one half of the old root block */
3017 struct xfs_buf *bp; /* buffer containing block */
3018 int error; /* error return value */
3019 struct xfs_buf *lbp; /* left buffer pointer */
3020 struct xfs_btree_block *left; /* left btree block */
3021 struct xfs_buf *nbp; /* new (root) buffer */
3022 struct xfs_btree_block *new; /* new (root) btree block */
3023 int nptr; /* new value for key index, 1 or 2 */
3024 struct xfs_buf *rbp; /* right buffer pointer */
3025 struct xfs_btree_block *right; /* right btree block */
3026 union xfs_btree_ptr rptr;
3027 union xfs_btree_ptr lptr;
3028
3029 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3030 XFS_BTREE_STATS_INC(cur, newroot);
3031
3032 /* initialise our start point from the cursor */
3033 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3034
3035 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3036 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3037 if (error)
3038 goto error0;
3039 if (*stat == 0)
3040 goto out0;
3041 XFS_BTREE_STATS_INC(cur, alloc);
3042
3043 /* Set up the new block. */
3044 error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3045 if (error)
3046 goto error0;
3047
3048 /* Set the root in the holding structure increasing the level by 1. */
3049 cur->bc_ops->set_root(cur, &lptr, 1);
3050
3051 /*
3052 * At the previous root level there are now two blocks: the old root,
3053 * and the new block generated when it was split. We don't know which
3054 * one the cursor is pointing at, so we set up variables "left" and
3055 * "right" for each case.
3056 */
3057 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3058
3059 #ifdef DEBUG
3060 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3061 if (error)
3062 goto error0;
3063 #endif
3064
3065 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3066 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3067 /* Our block is left, pick up the right block. */
3068 lbp = bp;
3069 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3070 left = block;
3071 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3072 if (error)
3073 goto error0;
3074 bp = rbp;
3075 nptr = 1;
3076 } else {
3077 /* Our block is right, pick up the left block. */
3078 rbp = bp;
3079 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3080 right = block;
3081 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3082 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3083 if (error)
3084 goto error0;
3085 bp = lbp;
3086 nptr = 2;
3087 }
3088
3089 /* Fill in the new block's btree header and log it. */
3090 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3091 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3092 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3093 !xfs_btree_ptr_is_null(cur, &rptr));
3094
3095 /* Fill in the key data in the new root. */
3096 if (xfs_btree_get_level(left) > 0) {
3097 /*
3098 * Get the keys for the left block's keys and put them directly
3099 * in the parent block. Do the same for the right block.
3100 */
3101 xfs_btree_get_node_keys(cur, left,
3102 xfs_btree_key_addr(cur, 1, new));
3103 xfs_btree_get_node_keys(cur, right,
3104 xfs_btree_key_addr(cur, 2, new));
3105 } else {
3106 /*
3107 * Get the keys for the left block's records and put them
3108 * directly in the parent block. Do the same for the right
3109 * block.
3110 */
3111 xfs_btree_get_leaf_keys(cur, left,
3112 xfs_btree_key_addr(cur, 1, new));
3113 xfs_btree_get_leaf_keys(cur, right,
3114 xfs_btree_key_addr(cur, 2, new));
3115 }
3116 xfs_btree_log_keys(cur, nbp, 1, 2);
3117
3118 /* Fill in the pointer data in the new root. */
3119 xfs_btree_copy_ptrs(cur,
3120 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3121 xfs_btree_copy_ptrs(cur,
3122 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3123 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3124
3125 /* Fix up the cursor. */
3126 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3127 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3128 cur->bc_nlevels++;
3129 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3130 *stat = 1;
3131 return 0;
3132 error0:
3133 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3134 return error;
3135 out0:
3136 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3137 *stat = 0;
3138 return 0;
3139 }
3140
3141 STATIC int
3142 xfs_btree_make_block_unfull(
3143 struct xfs_btree_cur *cur, /* btree cursor */
3144 int level, /* btree level */
3145 int numrecs,/* # of recs in block */
3146 int *oindex,/* old tree index */
3147 int *index, /* new tree index */
3148 union xfs_btree_ptr *nptr, /* new btree ptr */
3149 struct xfs_btree_cur **ncur, /* new btree cursor */
3150 union xfs_btree_key *key, /* key of new block */
3151 int *stat)
3152 {
3153 int error = 0;
3154
3155 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3156 level == cur->bc_nlevels - 1) {
3157 struct xfs_inode *ip = cur->bc_private.b.ip;
3158
3159 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3160 /* A root block that can be made bigger. */
3161 xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3162 *stat = 1;
3163 } else {
3164 /* A root block that needs replacing */
3165 int logflags = 0;
3166
3167 error = xfs_btree_new_iroot(cur, &logflags, stat);
3168 if (error || *stat == 0)
3169 return error;
3170
3171 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3172 }
3173
3174 return 0;
3175 }
3176
3177 /* First, try shifting an entry to the right neighbor. */
3178 error = xfs_btree_rshift(cur, level, stat);
3179 if (error || *stat)
3180 return error;
3181
3182 /* Next, try shifting an entry to the left neighbor. */
3183 error = xfs_btree_lshift(cur, level, stat);
3184 if (error)
3185 return error;
3186
3187 if (*stat) {
3188 *oindex = *index = cur->bc_ptrs[level];
3189 return 0;
3190 }
3191
3192 /*
3193 * Next, try splitting the current block in half.
3194 *
3195 * If this works we have to re-set our variables because we
3196 * could be in a different block now.
3197 */
3198 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3199 if (error || *stat == 0)
3200 return error;
3201
3202
3203 *index = cur->bc_ptrs[level];
3204 return 0;
3205 }
3206
3207 /*
3208 * Insert one record/level. Return information to the caller
3209 * allowing the next level up to proceed if necessary.
3210 */
3211 STATIC int
3212 xfs_btree_insrec(
3213 struct xfs_btree_cur *cur, /* btree cursor */
3214 int level, /* level to insert record at */
3215 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3216 union xfs_btree_rec *rec, /* record to insert */
3217 union xfs_btree_key *key, /* i/o: block key for ptrp */
3218 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3219 int *stat) /* success/failure */
3220 {
3221 struct xfs_btree_block *block; /* btree block */
3222 struct xfs_buf *bp; /* buffer for block */
3223 union xfs_btree_ptr nptr; /* new block ptr */
3224 struct xfs_btree_cur *ncur; /* new btree cursor */
3225 union xfs_btree_bigkey nkey; /* new block key */
3226 union xfs_btree_key *lkey;
3227 int optr; /* old key/record index */
3228 int ptr; /* key/record index */
3229 int numrecs;/* number of records */
3230 int error; /* error return value */
3231 #ifdef DEBUG
3232 int i;
3233 #endif
3234 xfs_daddr_t old_bn;
3235
3236 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3237 XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
3238
3239 ncur = NULL;
3240 lkey = (union xfs_btree_key *)&nkey;
3241
3242 /*
3243 * If we have an external root pointer, and we've made it to the
3244 * root level, allocate a new root block and we're done.
3245 */
3246 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3247 (level >= cur->bc_nlevels)) {
3248 error = xfs_btree_new_root(cur, stat);
3249 xfs_btree_set_ptr_null(cur, ptrp);
3250
3251 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3252 return error;
3253 }
3254
3255 /* If we're off the left edge, return failure. */
3256 ptr = cur->bc_ptrs[level];
3257 if (ptr == 0) {
3258 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3259 *stat = 0;
3260 return 0;
3261 }
3262
3263 optr = ptr;
3264
3265 XFS_BTREE_STATS_INC(cur, insrec);
3266
3267 /* Get pointers to the btree buffer and block. */
3268 block = xfs_btree_get_block(cur, level, &bp);
3269 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3270 numrecs = xfs_btree_get_numrecs(block);
3271
3272 #ifdef DEBUG
3273 error = xfs_btree_check_block(cur, block, level, bp);
3274 if (error)
3275 goto error0;
3276
3277 /* Check that the new entry is being inserted in the right place. */
3278 if (ptr <= numrecs) {
3279 if (level == 0) {
3280 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3281 xfs_btree_rec_addr(cur, ptr, block)));
3282 } else {
3283 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3284 xfs_btree_key_addr(cur, ptr, block)));
3285 }
3286 }
3287 #endif
3288
3289 /*
3290 * If the block is full, we can't insert the new entry until we
3291 * make the block un-full.
3292 */
3293 xfs_btree_set_ptr_null(cur, &nptr);
3294 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3295 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3296 &optr, &ptr, &nptr, &ncur, lkey, stat);
3297 if (error || *stat == 0)
3298 goto error0;
3299 }
3300
3301 /*
3302 * The current block may have changed if the block was
3303 * previously full and we have just made space in it.
3304 */
3305 block = xfs_btree_get_block(cur, level, &bp);
3306 numrecs = xfs_btree_get_numrecs(block);
3307
3308 #ifdef DEBUG
3309 error = xfs_btree_check_block(cur, block, level, bp);
3310 if (error)
3311 return error;
3312 #endif
3313
3314 /*
3315 * At this point we know there's room for our new entry in the block
3316 * we're pointing at.
3317 */
3318 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3319
3320 if (level > 0) {
3321 /* It's a nonleaf. make a hole in the keys and ptrs */
3322 union xfs_btree_key *kp;
3323 union xfs_btree_ptr *pp;
3324
3325 kp = xfs_btree_key_addr(cur, ptr, block);
3326 pp = xfs_btree_ptr_addr(cur, ptr, block);
3327
3328 #ifdef DEBUG
3329 for (i = numrecs - ptr; i >= 0; i--) {
3330 error = xfs_btree_check_ptr(cur, pp, i, level);
3331 if (error)
3332 return error;
3333 }
3334 #endif
3335
3336 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3337 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3338
3339 #ifdef DEBUG
3340 error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3341 if (error)
3342 goto error0;
3343 #endif
3344
3345 /* Now put the new data in, bump numrecs and log it. */
3346 xfs_btree_copy_keys(cur, kp, key, 1);
3347 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3348 numrecs++;
3349 xfs_btree_set_numrecs(block, numrecs);
3350 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3351 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3352 #ifdef DEBUG
3353 if (ptr < numrecs) {
3354 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3355 xfs_btree_key_addr(cur, ptr + 1, block)));
3356 }
3357 #endif
3358 } else {
3359 /* It's a leaf. make a hole in the records */
3360 union xfs_btree_rec *rp;
3361
3362 rp = xfs_btree_rec_addr(cur, ptr, block);
3363
3364 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3365
3366 /* Now put the new data in, bump numrecs and log it. */
3367 xfs_btree_copy_recs(cur, rp, rec, 1);
3368 xfs_btree_set_numrecs(block, ++numrecs);
3369 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3370 #ifdef DEBUG
3371 if (ptr < numrecs) {
3372 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3373 xfs_btree_rec_addr(cur, ptr + 1, block)));
3374 }
3375 #endif
3376 }
3377
3378 /* Log the new number of records in the btree header. */
3379 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3380
3381 /*
3382 * If we just inserted into a new tree block, we have to
3383 * recalculate nkey here because nkey is out of date.
3384 *
3385 * Otherwise we're just updating an existing block (having shoved
3386 * some records into the new tree block), so use the regular key
3387 * update mechanism.
3388 */
3389 if (bp && bp->b_bn != old_bn) {
3390 xfs_btree_get_keys(cur, block, lkey);
3391 } else if (xfs_btree_needs_key_update(cur, optr)) {
3392 error = xfs_btree_update_keys(cur, level);
3393 if (error)
3394 goto error0;
3395 }
3396
3397 /*
3398 * If we are tracking the last record in the tree and
3399 * we are at the far right edge of the tree, update it.
3400 */
3401 if (xfs_btree_is_lastrec(cur, block, level)) {
3402 cur->bc_ops->update_lastrec(cur, block, rec,
3403 ptr, LASTREC_INSREC);
3404 }
3405
3406 /*
3407 * Return the new block number, if any.
3408 * If there is one, give back a record value and a cursor too.
3409 */
3410 *ptrp = nptr;
3411 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3412 xfs_btree_copy_keys(cur, key, lkey, 1);
3413 *curp = ncur;
3414 }
3415
3416 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3417 *stat = 1;
3418 return 0;
3419
3420 error0:
3421 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3422 return error;
3423 }
3424
3425 /*
3426 * Insert the record at the point referenced by cur.
3427 *
3428 * A multi-level split of the tree on insert will invalidate the original
3429 * cursor. All callers of this function should assume that the cursor is
3430 * no longer valid and revalidate it.
3431 */
3432 int
3433 xfs_btree_insert(
3434 struct xfs_btree_cur *cur,
3435 int *stat)
3436 {
3437 int error; /* error return value */
3438 int i; /* result value, 0 for failure */
3439 int level; /* current level number in btree */
3440 union xfs_btree_ptr nptr; /* new block number (split result) */
3441 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3442 struct xfs_btree_cur *pcur; /* previous level's cursor */
3443 union xfs_btree_bigkey bkey; /* key of block to insert */
3444 union xfs_btree_key *key;
3445 union xfs_btree_rec rec; /* record to insert */
3446
3447 level = 0;
3448 ncur = NULL;
3449 pcur = cur;
3450 key = (union xfs_btree_key *)&bkey;
3451
3452 xfs_btree_set_ptr_null(cur, &nptr);
3453
3454 /* Make a key out of the record data to be inserted, and save it. */
3455 cur->bc_ops->init_rec_from_cur(cur, &rec);
3456 cur->bc_ops->init_key_from_rec(key, &rec);
3457
3458 /*
3459 * Loop going up the tree, starting at the leaf level.
3460 * Stop when we don't get a split block, that must mean that
3461 * the insert is finished with this level.
3462 */
3463 do {
3464 /*
3465 * Insert nrec/nptr into this level of the tree.
3466 * Note if we fail, nptr will be null.
3467 */
3468 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3469 &ncur, &i);
3470 if (error) {
3471 if (pcur != cur)
3472 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3473 goto error0;
3474 }
3475
3476 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3477 level++;
3478
3479 /*
3480 * See if the cursor we just used is trash.
3481 * Can't trash the caller's cursor, but otherwise we should
3482 * if ncur is a new cursor or we're about to be done.
3483 */
3484 if (pcur != cur &&
3485 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3486 /* Save the state from the cursor before we trash it */
3487 if (cur->bc_ops->update_cursor)
3488 cur->bc_ops->update_cursor(pcur, cur);
3489 cur->bc_nlevels = pcur->bc_nlevels;
3490 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3491 }
3492 /* If we got a new cursor, switch to it. */
3493 if (ncur) {
3494 pcur = ncur;
3495 ncur = NULL;
3496 }
3497 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3498
3499 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3500 *stat = i;
3501 return 0;
3502 error0:
3503 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3504 return error;
3505 }
3506
3507 /*
3508 * Try to merge a non-leaf block back into the inode root.
3509 *
3510 * Note: the killroot names comes from the fact that we're effectively
3511 * killing the old root block. But because we can't just delete the
3512 * inode we have to copy the single block it was pointing to into the
3513 * inode.
3514 */
3515 STATIC int
3516 xfs_btree_kill_iroot(
3517 struct xfs_btree_cur *cur)
3518 {
3519 int whichfork = cur->bc_private.b.whichfork;
3520 struct xfs_inode *ip = cur->bc_private.b.ip;
3521 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3522 struct xfs_btree_block *block;
3523 struct xfs_btree_block *cblock;
3524 union xfs_btree_key *kp;
3525 union xfs_btree_key *ckp;
3526 union xfs_btree_ptr *pp;
3527 union xfs_btree_ptr *cpp;
3528 struct xfs_buf *cbp;
3529 int level;
3530 int index;
3531 int numrecs;
3532 int error;
3533 #ifdef DEBUG
3534 union xfs_btree_ptr ptr;
3535 int i;
3536 #endif
3537
3538 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3539
3540 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3541 ASSERT(cur->bc_nlevels > 1);
3542
3543 /*
3544 * Don't deal with the root block needs to be a leaf case.
3545 * We're just going to turn the thing back into extents anyway.
3546 */
3547 level = cur->bc_nlevels - 1;
3548 if (level == 1)
3549 goto out0;
3550
3551 /*
3552 * Give up if the root has multiple children.
3553 */
3554 block = xfs_btree_get_iroot(cur);
3555 if (xfs_btree_get_numrecs(block) != 1)
3556 goto out0;
3557
3558 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3559 numrecs = xfs_btree_get_numrecs(cblock);
3560
3561 /*
3562 * Only do this if the next level will fit.
3563 * Then the data must be copied up to the inode,
3564 * instead of freeing the root you free the next level.
3565 */
3566 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3567 goto out0;
3568
3569 XFS_BTREE_STATS_INC(cur, killroot);
3570
3571 #ifdef DEBUG
3572 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3573 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3574 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3575 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3576 #endif
3577
3578 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3579 if (index) {
3580 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3581 cur->bc_private.b.whichfork);
3582 block = ifp->if_broot;
3583 }
3584
3585 be16_add_cpu(&block->bb_numrecs, index);
3586 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3587
3588 kp = xfs_btree_key_addr(cur, 1, block);
3589 ckp = xfs_btree_key_addr(cur, 1, cblock);
3590 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3591
3592 pp = xfs_btree_ptr_addr(cur, 1, block);
3593 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3594 #ifdef DEBUG
3595 for (i = 0; i < numrecs; i++) {
3596 error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3597 if (error) {
3598 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3599 return error;
3600 }
3601 }
3602 #endif
3603 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3604
3605 error = xfs_btree_free_block(cur, cbp);
3606 if (error) {
3607 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3608 return error;
3609 }
3610
3611 cur->bc_bufs[level - 1] = NULL;
3612 be16_add_cpu(&block->bb_level, -1);
3613 xfs_trans_log_inode(cur->bc_tp, ip,
3614 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3615 cur->bc_nlevels--;
3616 out0:
3617 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3618 return 0;
3619 }
3620
3621 /*
3622 * Kill the current root node, and replace it with it's only child node.
3623 */
3624 STATIC int
3625 xfs_btree_kill_root(
3626 struct xfs_btree_cur *cur,
3627 struct xfs_buf *bp,
3628 int level,
3629 union xfs_btree_ptr *newroot)
3630 {
3631 int error;
3632
3633 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3634 XFS_BTREE_STATS_INC(cur, killroot);
3635
3636 /*
3637 * Update the root pointer, decreasing the level by 1 and then
3638 * free the old root.
3639 */
3640 cur->bc_ops->set_root(cur, newroot, -1);
3641
3642 error = xfs_btree_free_block(cur, bp);
3643 if (error) {
3644 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3645 return error;
3646 }
3647
3648 cur->bc_bufs[level] = NULL;
3649 cur->bc_ra[level] = 0;
3650 cur->bc_nlevels--;
3651
3652 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3653 return 0;
3654 }
3655
3656 STATIC int
3657 xfs_btree_dec_cursor(
3658 struct xfs_btree_cur *cur,
3659 int level,
3660 int *stat)
3661 {
3662 int error;
3663 int i;
3664
3665 if (level > 0) {
3666 error = xfs_btree_decrement(cur, level, &i);
3667 if (error)
3668 return error;
3669 }
3670
3671 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3672 *stat = 1;
3673 return 0;
3674 }
3675
3676 /*
3677 * Single level of the btree record deletion routine.
3678 * Delete record pointed to by cur/level.
3679 * Remove the record from its block then rebalance the tree.
3680 * Return 0 for error, 1 for done, 2 to go on to the next level.
3681 */
3682 STATIC int /* error */
3683 xfs_btree_delrec(
3684 struct xfs_btree_cur *cur, /* btree cursor */
3685 int level, /* level removing record from */
3686 int *stat) /* fail/done/go-on */
3687 {
3688 struct xfs_btree_block *block; /* btree block */
3689 union xfs_btree_ptr cptr; /* current block ptr */
3690 struct xfs_buf *bp; /* buffer for block */
3691 int error; /* error return value */
3692 int i; /* loop counter */
3693 union xfs_btree_ptr lptr; /* left sibling block ptr */
3694 struct xfs_buf *lbp; /* left buffer pointer */
3695 struct xfs_btree_block *left; /* left btree block */
3696 int lrecs = 0; /* left record count */
3697 int ptr; /* key/record index */
3698 union xfs_btree_ptr rptr; /* right sibling block ptr */
3699 struct xfs_buf *rbp; /* right buffer pointer */
3700 struct xfs_btree_block *right; /* right btree block */
3701 struct xfs_btree_block *rrblock; /* right-right btree block */
3702 struct xfs_buf *rrbp; /* right-right buffer pointer */
3703 int rrecs = 0; /* right record count */
3704 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3705 int numrecs; /* temporary numrec count */
3706
3707 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3708 XFS_BTREE_TRACE_ARGI(cur, level);
3709
3710 tcur = NULL;
3711
3712 /* Get the index of the entry being deleted, check for nothing there. */
3713 ptr = cur->bc_ptrs[level];
3714 if (ptr == 0) {
3715 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3716 *stat = 0;
3717 return 0;
3718 }
3719
3720 /* Get the buffer & block containing the record or key/ptr. */
3721 block = xfs_btree_get_block(cur, level, &bp);
3722 numrecs = xfs_btree_get_numrecs(block);
3723
3724 #ifdef DEBUG
3725 error = xfs_btree_check_block(cur, block, level, bp);
3726 if (error)
3727 goto error0;
3728 #endif
3729
3730 /* Fail if we're off the end of the block. */
3731 if (ptr > numrecs) {
3732 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3733 *stat = 0;
3734 return 0;
3735 }
3736
3737 XFS_BTREE_STATS_INC(cur, delrec);
3738 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3739
3740 /* Excise the entries being deleted. */
3741 if (level > 0) {
3742 /* It's a nonleaf. operate on keys and ptrs */
3743 union xfs_btree_key *lkp;
3744 union xfs_btree_ptr *lpp;
3745
3746 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3747 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3748
3749 #ifdef DEBUG
3750 for (i = 0; i < numrecs - ptr; i++) {
3751 error = xfs_btree_check_ptr(cur, lpp, i, level);
3752 if (error)
3753 goto error0;
3754 }
3755 #endif
3756
3757 if (ptr < numrecs) {
3758 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3759 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3760 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3761 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3762 }
3763 } else {
3764 /* It's a leaf. operate on records */
3765 if (ptr < numrecs) {
3766 xfs_btree_shift_recs(cur,
3767 xfs_btree_rec_addr(cur, ptr + 1, block),
3768 -1, numrecs - ptr);
3769 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3770 }
3771 }
3772
3773 /*
3774 * Decrement and log the number of entries in the block.
3775 */
3776 xfs_btree_set_numrecs(block, --numrecs);
3777 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3778
3779 /*
3780 * If we are tracking the last record in the tree and
3781 * we are at the far right edge of the tree, update it.
3782 */
3783 if (xfs_btree_is_lastrec(cur, block, level)) {
3784 cur->bc_ops->update_lastrec(cur, block, NULL,
3785 ptr, LASTREC_DELREC);
3786 }
3787
3788 /*
3789 * We're at the root level. First, shrink the root block in-memory.
3790 * Try to get rid of the next level down. If we can't then there's
3791 * nothing left to do.
3792 */
3793 if (level == cur->bc_nlevels - 1) {
3794 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3795 xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3796 cur->bc_private.b.whichfork);
3797
3798 error = xfs_btree_kill_iroot(cur);
3799 if (error)
3800 goto error0;
3801
3802 error = xfs_btree_dec_cursor(cur, level, stat);
3803 if (error)
3804 goto error0;
3805 *stat = 1;
3806 return 0;
3807 }
3808
3809 /*
3810 * If this is the root level, and there's only one entry left,
3811 * and it's NOT the leaf level, then we can get rid of this
3812 * level.
3813 */
3814 if (numrecs == 1 && level > 0) {
3815 union xfs_btree_ptr *pp;
3816 /*
3817 * pp is still set to the first pointer in the block.
3818 * Make it the new root of the btree.
3819 */
3820 pp = xfs_btree_ptr_addr(cur, 1, block);
3821 error = xfs_btree_kill_root(cur, bp, level, pp);
3822 if (error)
3823 goto error0;
3824 } else if (level > 0) {
3825 error = xfs_btree_dec_cursor(cur, level, stat);
3826 if (error)
3827 goto error0;
3828 }
3829 *stat = 1;
3830 return 0;
3831 }
3832
3833 /*
3834 * If we deleted the leftmost entry in the block, update the
3835 * key values above us in the tree.
3836 */
3837 if (xfs_btree_needs_key_update(cur, ptr)) {
3838 error = xfs_btree_update_keys(cur, level);
3839 if (error)
3840 goto error0;
3841 }
3842
3843 /*
3844 * If the number of records remaining in the block is at least
3845 * the minimum, we're done.
3846 */
3847 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3848 error = xfs_btree_dec_cursor(cur, level, stat);
3849 if (error)
3850 goto error0;
3851 return 0;
3852 }
3853
3854 /*
3855 * Otherwise, we have to move some records around to keep the
3856 * tree balanced. Look at the left and right sibling blocks to
3857 * see if we can re-balance by moving only one record.
3858 */
3859 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3860 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3861
3862 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3863 /*
3864 * One child of root, need to get a chance to copy its contents
3865 * into the root and delete it. Can't go up to next level,
3866 * there's nothing to delete there.
3867 */
3868 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3869 xfs_btree_ptr_is_null(cur, &lptr) &&
3870 level == cur->bc_nlevels - 2) {
3871 error = xfs_btree_kill_iroot(cur);
3872 if (!error)
3873 error = xfs_btree_dec_cursor(cur, level, stat);
3874 if (error)
3875 goto error0;
3876 return 0;
3877 }
3878 }
3879
3880 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3881 !xfs_btree_ptr_is_null(cur, &lptr));
3882
3883 /*
3884 * Duplicate the cursor so our btree manipulations here won't
3885 * disrupt the next level up.
3886 */
3887 error = xfs_btree_dup_cursor(cur, &tcur);
3888 if (error)
3889 goto error0;
3890
3891 /*
3892 * If there's a right sibling, see if it's ok to shift an entry
3893 * out of it.
3894 */
3895 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3896 /*
3897 * Move the temp cursor to the last entry in the next block.
3898 * Actually any entry but the first would suffice.
3899 */
3900 i = xfs_btree_lastrec(tcur, level);
3901 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3902
3903 error = xfs_btree_increment(tcur, level, &i);
3904 if (error)
3905 goto error0;
3906 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3907
3908 i = xfs_btree_lastrec(tcur, level);
3909 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3910
3911 /* Grab a pointer to the block. */
3912 right = xfs_btree_get_block(tcur, level, &rbp);
3913 #ifdef DEBUG
3914 error = xfs_btree_check_block(tcur, right, level, rbp);
3915 if (error)
3916 goto error0;
3917 #endif
3918 /* Grab the current block number, for future use. */
3919 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3920
3921 /*
3922 * If right block is full enough so that removing one entry
3923 * won't make it too empty, and left-shifting an entry out
3924 * of right to us works, we're done.
3925 */
3926 if (xfs_btree_get_numrecs(right) - 1 >=
3927 cur->bc_ops->get_minrecs(tcur, level)) {
3928 error = xfs_btree_lshift(tcur, level, &i);
3929 if (error)
3930 goto error0;
3931 if (i) {
3932 ASSERT(xfs_btree_get_numrecs(block) >=
3933 cur->bc_ops->get_minrecs(tcur, level));
3934
3935 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3936 tcur = NULL;
3937
3938 error = xfs_btree_dec_cursor(cur, level, stat);
3939 if (error)
3940 goto error0;
3941 return 0;
3942 }
3943 }
3944
3945 /*
3946 * Otherwise, grab the number of records in right for
3947 * future reference, and fix up the temp cursor to point
3948 * to our block again (last record).
3949 */
3950 rrecs = xfs_btree_get_numrecs(right);
3951 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3952 i = xfs_btree_firstrec(tcur, level);
3953 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3954
3955 error = xfs_btree_decrement(tcur, level, &i);
3956 if (error)
3957 goto error0;
3958 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3959 }
3960 }
3961
3962 /*
3963 * If there's a left sibling, see if it's ok to shift an entry
3964 * out of it.
3965 */
3966 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3967 /*
3968 * Move the temp cursor to the first entry in the
3969 * previous block.
3970 */
3971 i = xfs_btree_firstrec(tcur, level);
3972 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3973
3974 error = xfs_btree_decrement(tcur, level, &i);
3975 if (error)
3976 goto error0;
3977 i = xfs_btree_firstrec(tcur, level);
3978 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3979
3980 /* Grab a pointer to the block. */
3981 left = xfs_btree_get_block(tcur, level, &lbp);
3982 #ifdef DEBUG
3983 error = xfs_btree_check_block(cur, left, level, lbp);
3984 if (error)
3985 goto error0;
3986 #endif
3987 /* Grab the current block number, for future use. */
3988 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3989
3990 /*
3991 * If left block is full enough so that removing one entry
3992 * won't make it too empty, and right-shifting an entry out
3993 * of left to us works, we're done.
3994 */
3995 if (xfs_btree_get_numrecs(left) - 1 >=
3996 cur->bc_ops->get_minrecs(tcur, level)) {
3997 error = xfs_btree_rshift(tcur, level, &i);
3998 if (error)
3999 goto error0;
4000 if (i) {
4001 ASSERT(xfs_btree_get_numrecs(block) >=
4002 cur->bc_ops->get_minrecs(tcur, level));
4003 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4004 tcur = NULL;
4005 if (level == 0)
4006 cur->bc_ptrs[0]++;
4007 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4008 *stat = 1;
4009 return 0;
4010 }
4011 }
4012
4013 /*
4014 * Otherwise, grab the number of records in right for
4015 * future reference.
4016 */
4017 lrecs = xfs_btree_get_numrecs(left);
4018 }
4019
4020 /* Delete the temp cursor, we're done with it. */
4021 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4022 tcur = NULL;
4023
4024 /* If here, we need to do a join to keep the tree balanced. */
4025 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4026
4027 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4028 lrecs + xfs_btree_get_numrecs(block) <=
4029 cur->bc_ops->get_maxrecs(cur, level)) {
4030 /*
4031 * Set "right" to be the starting block,
4032 * "left" to be the left neighbor.
4033 */
4034 rptr = cptr;
4035 right = block;
4036 rbp = bp;
4037 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4038 if (error)
4039 goto error0;
4040
4041 /*
4042 * If that won't work, see if we can join with the right neighbor block.
4043 */
4044 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4045 rrecs + xfs_btree_get_numrecs(block) <=
4046 cur->bc_ops->get_maxrecs(cur, level)) {
4047 /*
4048 * Set "left" to be the starting block,
4049 * "right" to be the right neighbor.
4050 */
4051 lptr = cptr;
4052 left = block;
4053 lbp = bp;
4054 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4055 if (error)
4056 goto error0;
4057
4058 /*
4059 * Otherwise, we can't fix the imbalance.
4060 * Just return. This is probably a logic error, but it's not fatal.
4061 */
4062 } else {
4063 error = xfs_btree_dec_cursor(cur, level, stat);
4064 if (error)
4065 goto error0;
4066 return 0;
4067 }
4068
4069 rrecs = xfs_btree_get_numrecs(right);
4070 lrecs = xfs_btree_get_numrecs(left);
4071
4072 /*
4073 * We're now going to join "left" and "right" by moving all the stuff
4074 * in "right" to "left" and deleting "right".
4075 */
4076 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4077 if (level > 0) {
4078 /* It's a non-leaf. Move keys and pointers. */
4079 union xfs_btree_key *lkp; /* left btree key */
4080 union xfs_btree_ptr *lpp; /* left address pointer */
4081 union xfs_btree_key *rkp; /* right btree key */
4082 union xfs_btree_ptr *rpp; /* right address pointer */
4083
4084 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4085 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4086 rkp = xfs_btree_key_addr(cur, 1, right);
4087 rpp = xfs_btree_ptr_addr(cur, 1, right);
4088 #ifdef DEBUG
4089 for (i = 1; i < rrecs; i++) {
4090 error = xfs_btree_check_ptr(cur, rpp, i, level);
4091 if (error)
4092 goto error0;
4093 }
4094 #endif
4095 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4096 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4097
4098 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4099 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4100 } else {
4101 /* It's a leaf. Move records. */
4102 union xfs_btree_rec *lrp; /* left record pointer */
4103 union xfs_btree_rec *rrp; /* right record pointer */
4104
4105 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4106 rrp = xfs_btree_rec_addr(cur, 1, right);
4107
4108 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4109 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4110 }
4111
4112 XFS_BTREE_STATS_INC(cur, join);
4113
4114 /*
4115 * Fix up the number of records and right block pointer in the
4116 * surviving block, and log it.
4117 */
4118 xfs_btree_set_numrecs(left, lrecs + rrecs);
4119 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4120 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4121 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4122
4123 /* If there is a right sibling, point it to the remaining block. */
4124 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4125 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4126 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4127 if (error)
4128 goto error0;
4129 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4130 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4131 }
4132
4133 /* Free the deleted block. */
4134 error = xfs_btree_free_block(cur, rbp);
4135 if (error)
4136 goto error0;
4137
4138 /*
4139 * If we joined with the left neighbor, set the buffer in the
4140 * cursor to the left block, and fix up the index.
4141 */
4142 if (bp != lbp) {
4143 cur->bc_bufs[level] = lbp;
4144 cur->bc_ptrs[level] += lrecs;
4145 cur->bc_ra[level] = 0;
4146 }
4147 /*
4148 * If we joined with the right neighbor and there's a level above
4149 * us, increment the cursor at that level.
4150 */
4151 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4152 (level + 1 < cur->bc_nlevels)) {
4153 error = xfs_btree_increment(cur, level + 1, &i);
4154 if (error)
4155 goto error0;
4156 }
4157
4158 /*
4159 * Readjust the ptr at this level if it's not a leaf, since it's
4160 * still pointing at the deletion point, which makes the cursor
4161 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4162 * We can't use decrement because it would change the next level up.
4163 */
4164 if (level > 0)
4165 cur->bc_ptrs[level]--;
4166
4167 /*
4168 * We combined blocks, so we have to update the parent keys if the
4169 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4170 * points to the old block so that the caller knows which record to
4171 * delete. Therefore, the caller must be savvy enough to call updkeys
4172 * for us if we return stat == 2. The other exit points from this
4173 * function don't require deletions further up the tree, so they can
4174 * call updkeys directly.
4175 */
4176
4177 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4178 /* Return value means the next level up has something to do. */
4179 *stat = 2;
4180 return 0;
4181
4182 error0:
4183 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4184 if (tcur)
4185 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4186 return error;
4187 }
4188
4189 /*
4190 * Delete the record pointed to by cur.
4191 * The cursor refers to the place where the record was (could be inserted)
4192 * when the operation returns.
4193 */
4194 int /* error */
4195 xfs_btree_delete(
4196 struct xfs_btree_cur *cur,
4197 int *stat) /* success/failure */
4198 {
4199 int error; /* error return value */
4200 int level;
4201 int i;
4202 bool joined = false;
4203
4204 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
4205
4206 /*
4207 * Go up the tree, starting at leaf level.
4208 *
4209 * If 2 is returned then a join was done; go to the next level.
4210 * Otherwise we are done.
4211 */
4212 for (level = 0, i = 2; i == 2; level++) {
4213 error = xfs_btree_delrec(cur, level, &i);
4214 if (error)
4215 goto error0;
4216 if (i == 2)
4217 joined = true;
4218 }
4219
4220 /*
4221 * If we combined blocks as part of deleting the record, delrec won't
4222 * have updated the parent high keys so we have to do that here.
4223 */
4224 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4225 error = xfs_btree_updkeys_force(cur, 0);
4226 if (error)
4227 goto error0;
4228 }
4229
4230 if (i == 0) {
4231 for (level = 1; level < cur->bc_nlevels; level++) {
4232 if (cur->bc_ptrs[level] == 0) {
4233 error = xfs_btree_decrement(cur, level, &i);
4234 if (error)
4235 goto error0;
4236 break;
4237 }
4238 }
4239 }
4240
4241 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4242 *stat = i;
4243 return 0;
4244 error0:
4245 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4246 return error;
4247 }
4248
4249 /*
4250 * Get the data from the pointed-to record.
4251 */
4252 int /* error */
4253 xfs_btree_get_rec(
4254 struct xfs_btree_cur *cur, /* btree cursor */
4255 union xfs_btree_rec **recp, /* output: btree record */
4256 int *stat) /* output: success/failure */
4257 {
4258 struct xfs_btree_block *block; /* btree block */
4259 struct xfs_buf *bp; /* buffer pointer */
4260 int ptr; /* record number */
4261 #ifdef DEBUG
4262 int error; /* error return value */
4263 #endif
4264
4265 ptr = cur->bc_ptrs[0];
4266 block = xfs_btree_get_block(cur, 0, &bp);
4267
4268 #ifdef DEBUG
4269 error = xfs_btree_check_block(cur, block, 0, bp);
4270 if (error)
4271 return error;
4272 #endif
4273
4274 /*
4275 * Off the right end or left end, return failure.
4276 */
4277 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4278 *stat = 0;
4279 return 0;
4280 }
4281
4282 /*
4283 * Point to the record and extract its data.
4284 */
4285 *recp = xfs_btree_rec_addr(cur, ptr, block);
4286 *stat = 1;
4287 return 0;
4288 }
4289
4290 /* Visit a block in a btree. */
4291 STATIC int
4292 xfs_btree_visit_block(
4293 struct xfs_btree_cur *cur,
4294 int level,
4295 xfs_btree_visit_blocks_fn fn,
4296 void *data)
4297 {
4298 struct xfs_btree_block *block;
4299 struct xfs_buf *bp;
4300 union xfs_btree_ptr rptr;
4301 int error;
4302
4303 /* do right sibling readahead */
4304 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4305 block = xfs_btree_get_block(cur, level, &bp);
4306
4307 /* process the block */
4308 error = fn(cur, level, data);
4309 if (error)
4310 return error;
4311
4312 /* now read rh sibling block for next iteration */
4313 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4314 if (xfs_btree_ptr_is_null(cur, &rptr))
4315 return -ENOENT;
4316
4317 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4318 }
4319
4320
4321 /* Visit every block in a btree. */
4322 int
4323 xfs_btree_visit_blocks(
4324 struct xfs_btree_cur *cur,
4325 xfs_btree_visit_blocks_fn fn,
4326 void *data)
4327 {
4328 union xfs_btree_ptr lptr;
4329 int level;
4330 struct xfs_btree_block *block = NULL;
4331 int error = 0;
4332
4333 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4334
4335 /* for each level */
4336 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4337 /* grab the left hand block */
4338 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4339 if (error)
4340 return error;
4341
4342 /* readahead the left most block for the next level down */
4343 if (level > 0) {
4344 union xfs_btree_ptr *ptr;
4345
4346 ptr = xfs_btree_ptr_addr(cur, 1, block);
4347 xfs_btree_readahead_ptr(cur, ptr, 1);
4348
4349 /* save for the next iteration of the loop */
4350 lptr = *ptr;
4351 }
4352
4353 /* for each buffer in the level */
4354 do {
4355 error = xfs_btree_visit_block(cur, level, fn, data);
4356 } while (!error);
4357
4358 if (error != -ENOENT)
4359 return error;
4360 }
4361
4362 return 0;
4363 }
4364
4365 /*
4366 * Change the owner of a btree.
4367 *
4368 * The mechanism we use here is ordered buffer logging. Because we don't know
4369 * how many buffers were are going to need to modify, we don't really want to
4370 * have to make transaction reservations for the worst case of every buffer in a
4371 * full size btree as that may be more space that we can fit in the log....
4372 *
4373 * We do the btree walk in the most optimal manner possible - we have sibling
4374 * pointers so we can just walk all the blocks on each level from left to right
4375 * in a single pass, and then move to the next level and do the same. We can
4376 * also do readahead on the sibling pointers to get IO moving more quickly,
4377 * though for slow disks this is unlikely to make much difference to performance
4378 * as the amount of CPU work we have to do before moving to the next block is
4379 * relatively small.
4380 *
4381 * For each btree block that we load, modify the owner appropriately, set the
4382 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4383 * we mark the region we change dirty so that if the buffer is relogged in
4384 * a subsequent transaction the changes we make here as an ordered buffer are
4385 * correctly relogged in that transaction. If we are in recovery context, then
4386 * just queue the modified buffer as delayed write buffer so the transaction
4387 * recovery completion writes the changes to disk.
4388 */
4389 struct xfs_btree_block_change_owner_info {
4390 __uint64_t new_owner;
4391 struct list_head *buffer_list;
4392 };
4393
4394 static int
4395 xfs_btree_block_change_owner(
4396 struct xfs_btree_cur *cur,
4397 int level,
4398 void *data)
4399 {
4400 struct xfs_btree_block_change_owner_info *bbcoi = data;
4401 struct xfs_btree_block *block;
4402 struct xfs_buf *bp;
4403
4404 /* modify the owner */
4405 block = xfs_btree_get_block(cur, level, &bp);
4406 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4407 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4408 else
4409 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4410
4411 /*
4412 * If the block is a root block hosted in an inode, we might not have a
4413 * buffer pointer here and we shouldn't attempt to log the change as the
4414 * information is already held in the inode and discarded when the root
4415 * block is formatted into the on-disk inode fork. We still change it,
4416 * though, so everything is consistent in memory.
4417 */
4418 if (bp) {
4419 if (cur->bc_tp) {
4420 xfs_trans_ordered_buf(cur->bc_tp, bp);
4421 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4422 } else {
4423 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4424 }
4425 } else {
4426 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4427 ASSERT(level == cur->bc_nlevels - 1);
4428 }
4429
4430 return 0;
4431 }
4432
4433 int
4434 xfs_btree_change_owner(
4435 struct xfs_btree_cur *cur,
4436 __uint64_t new_owner,
4437 struct list_head *buffer_list)
4438 {
4439 struct xfs_btree_block_change_owner_info bbcoi;
4440
4441 bbcoi.new_owner = new_owner;
4442 bbcoi.buffer_list = buffer_list;
4443
4444 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4445 &bbcoi);
4446 }
4447
4448 /**
4449 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4450 * btree block
4451 *
4452 * @bp: buffer containing the btree block
4453 * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4454 * @pag_max_level: pointer to the per-ag max level field
4455 */
4456 bool
4457 xfs_btree_sblock_v5hdr_verify(
4458 struct xfs_buf *bp)
4459 {
4460 struct xfs_mount *mp = bp->b_target->bt_mount;
4461 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4462 struct xfs_perag *pag = bp->b_pag;
4463
4464 if (!xfs_sb_version_hascrc(&mp->m_sb))
4465 return false;
4466 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4467 return false;
4468 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4469 return false;
4470 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4471 return false;
4472 return true;
4473 }
4474
4475 /**
4476 * xfs_btree_sblock_verify() -- verify a short-format btree block
4477 *
4478 * @bp: buffer containing the btree block
4479 * @max_recs: maximum records allowed in this btree node
4480 */
4481 bool
4482 xfs_btree_sblock_verify(
4483 struct xfs_buf *bp,
4484 unsigned int max_recs)
4485 {
4486 struct xfs_mount *mp = bp->b_target->bt_mount;
4487 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4488
4489 /* numrecs verification */
4490 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4491 return false;
4492
4493 /* sibling pointer verification */
4494 if (!block->bb_u.s.bb_leftsib ||
4495 (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
4496 block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
4497 return false;
4498 if (!block->bb_u.s.bb_rightsib ||
4499 (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
4500 block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
4501 return false;
4502
4503 return true;
4504 }
4505
4506 /*
4507 * Calculate the number of btree levels needed to store a given number of
4508 * records in a short-format btree.
4509 */
4510 uint
4511 xfs_btree_compute_maxlevels(
4512 struct xfs_mount *mp,
4513 uint *limits,
4514 unsigned long len)
4515 {
4516 uint level;
4517 unsigned long maxblocks;
4518
4519 maxblocks = (len + limits[0] - 1) / limits[0];
4520 for (level = 1; maxblocks > 1; level++)
4521 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4522 return level;
4523 }
4524
4525 /*
4526 * Query a regular btree for all records overlapping a given interval.
4527 * Start with a LE lookup of the key of low_rec and return all records
4528 * until we find a record with a key greater than the key of high_rec.
4529 */
4530 STATIC int
4531 xfs_btree_simple_query_range(
4532 struct xfs_btree_cur *cur,
4533 union xfs_btree_key *low_key,
4534 union xfs_btree_key *high_key,
4535 xfs_btree_query_range_fn fn,
4536 void *priv)
4537 {
4538 union xfs_btree_rec *recp;
4539 union xfs_btree_key rec_key;
4540 __int64_t diff;
4541 int stat;
4542 bool firstrec = true;
4543 int error;
4544
4545 ASSERT(cur->bc_ops->init_high_key_from_rec);
4546 ASSERT(cur->bc_ops->diff_two_keys);
4547
4548 /*
4549 * Find the leftmost record. The btree cursor must be set
4550 * to the low record used to generate low_key.
4551 */
4552 stat = 0;
4553 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4554 if (error)
4555 goto out;
4556
4557 while (stat) {
4558 /* Find the record. */
4559 error = xfs_btree_get_rec(cur, &recp, &stat);
4560 if (error || !stat)
4561 break;
4562 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4563
4564 /* Skip if high_key(rec) < low_key. */
4565 if (firstrec) {
4566 firstrec = false;
4567 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4568 &rec_key);
4569 if (diff > 0)
4570 goto advloop;
4571 }
4572
4573 /* Stop if high_key < low_key(rec). */
4574 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4575 if (diff > 0)
4576 break;
4577
4578 /* Callback */
4579 error = fn(cur, recp, priv);
4580 if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4581 break;
4582
4583 advloop:
4584 /* Move on to the next record. */
4585 error = xfs_btree_increment(cur, 0, &stat);
4586 if (error)
4587 break;
4588 }
4589
4590 out:
4591 return error;
4592 }
4593
4594 /*
4595 * Query an overlapped interval btree for all records overlapping a given
4596 * interval. This function roughly follows the algorithm given in
4597 * "Interval Trees" of _Introduction to Algorithms_, which is section
4598 * 14.3 in the 2nd and 3rd editions.
4599 *
4600 * First, generate keys for the low and high records passed in.
4601 *
4602 * For any leaf node, generate the high and low keys for the record.
4603 * If the record keys overlap with the query low/high keys, pass the
4604 * record to the function iterator.
4605 *
4606 * For any internal node, compare the low and high keys of each
4607 * pointer against the query low/high keys. If there's an overlap,
4608 * follow the pointer.
4609 *
4610 * As an optimization, we stop scanning a block when we find a low key
4611 * that is greater than the query's high key.
4612 */
4613 STATIC int
4614 xfs_btree_overlapped_query_range(
4615 struct xfs_btree_cur *cur,
4616 union xfs_btree_key *low_key,
4617 union xfs_btree_key *high_key,
4618 xfs_btree_query_range_fn fn,
4619 void *priv)
4620 {
4621 union xfs_btree_ptr ptr;
4622 union xfs_btree_ptr *pp;
4623 union xfs_btree_key rec_key;
4624 union xfs_btree_key rec_hkey;
4625 union xfs_btree_key *lkp;
4626 union xfs_btree_key *hkp;
4627 union xfs_btree_rec *recp;
4628 struct xfs_btree_block *block;
4629 __int64_t ldiff;
4630 __int64_t hdiff;
4631 int level;
4632 struct xfs_buf *bp;
4633 int i;
4634 int error;
4635
4636 /* Load the root of the btree. */
4637 level = cur->bc_nlevels - 1;
4638 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4639 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4640 if (error)
4641 return error;
4642 xfs_btree_get_block(cur, level, &bp);
4643 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4644 #ifdef DEBUG
4645 error = xfs_btree_check_block(cur, block, level, bp);
4646 if (error)
4647 goto out;
4648 #endif
4649 cur->bc_ptrs[level] = 1;
4650
4651 while (level < cur->bc_nlevels) {
4652 block = xfs_btree_get_block(cur, level, &bp);
4653
4654 /* End of node, pop back towards the root. */
4655 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4656 pop_up:
4657 if (level < cur->bc_nlevels - 1)
4658 cur->bc_ptrs[level + 1]++;
4659 level++;
4660 continue;
4661 }
4662
4663 if (level == 0) {
4664 /* Handle a leaf node. */
4665 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4666
4667 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4668 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4669 low_key);
4670
4671 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4672 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4673 &rec_key);
4674
4675 /*
4676 * If (record's high key >= query's low key) and
4677 * (query's high key >= record's low key), then
4678 * this record overlaps the query range; callback.
4679 */
4680 if (ldiff >= 0 && hdiff >= 0) {
4681 error = fn(cur, recp, priv);
4682 if (error < 0 ||
4683 error == XFS_BTREE_QUERY_RANGE_ABORT)
4684 break;
4685 } else if (hdiff < 0) {
4686 /* Record is larger than high key; pop. */
4687 goto pop_up;
4688 }
4689 cur->bc_ptrs[level]++;
4690 continue;
4691 }
4692
4693 /* Handle an internal node. */
4694 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4695 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4696 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4697
4698 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4699 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4700
4701 /*
4702 * If (pointer's high key >= query's low key) and
4703 * (query's high key >= pointer's low key), then
4704 * this record overlaps the query range; follow pointer.
4705 */
4706 if (ldiff >= 0 && hdiff >= 0) {
4707 level--;
4708 error = xfs_btree_lookup_get_block(cur, level, pp,
4709 &block);
4710 if (error)
4711 goto out;
4712 xfs_btree_get_block(cur, level, &bp);
4713 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4714 #ifdef DEBUG
4715 error = xfs_btree_check_block(cur, block, level, bp);
4716 if (error)
4717 goto out;
4718 #endif
4719 cur->bc_ptrs[level] = 1;
4720 continue;
4721 } else if (hdiff < 0) {
4722 /* The low key is larger than the upper range; pop. */
4723 goto pop_up;
4724 }
4725 cur->bc_ptrs[level]++;
4726 }
4727
4728 out:
4729 /*
4730 * If we don't end this function with the cursor pointing at a record
4731 * block, a subsequent non-error cursor deletion will not release
4732 * node-level buffers, causing a buffer leak. This is quite possible
4733 * with a zero-results range query, so release the buffers if we
4734 * failed to return any results.
4735 */
4736 if (cur->bc_bufs[0] == NULL) {
4737 for (i = 0; i < cur->bc_nlevels; i++) {
4738 if (cur->bc_bufs[i]) {
4739 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4740 cur->bc_bufs[i] = NULL;
4741 cur->bc_ptrs[i] = 0;
4742 cur->bc_ra[i] = 0;
4743 }
4744 }
4745 }
4746
4747 return error;
4748 }
4749
4750 /*
4751 * Query a btree for all records overlapping a given interval of keys. The
4752 * supplied function will be called with each record found; return one of the
4753 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4754 * code. This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4755 * negative error code.
4756 */
4757 int
4758 xfs_btree_query_range(
4759 struct xfs_btree_cur *cur,
4760 union xfs_btree_irec *low_rec,
4761 union xfs_btree_irec *high_rec,
4762 xfs_btree_query_range_fn fn,
4763 void *priv)
4764 {
4765 union xfs_btree_rec rec;
4766 union xfs_btree_key low_key;
4767 union xfs_btree_key high_key;
4768
4769 /* Find the keys of both ends of the interval. */
4770 cur->bc_rec = *high_rec;
4771 cur->bc_ops->init_rec_from_cur(cur, &rec);
4772 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4773
4774 cur->bc_rec = *low_rec;
4775 cur->bc_ops->init_rec_from_cur(cur, &rec);
4776 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4777
4778 /* Enforce low key < high key. */
4779 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4780 return -EINVAL;
4781
4782 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4783 return xfs_btree_simple_query_range(cur, &low_key,
4784 &high_key, fn, priv);
4785 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4786 fn, priv);
4787 }