]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/libxfs/xfs_btree.c
Merge tag 'dmaengine-fix-4.9-rc6' of git://git.infradead.org/users/vkoul/slave-dma
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / libxfs / xfs_btree.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_btree.h"
32 #include "xfs_error.h"
33 #include "xfs_trace.h"
34 #include "xfs_cksum.h"
35 #include "xfs_alloc.h"
36 #include "xfs_log.h"
37
38 /*
39 * Cursor allocation zone.
40 */
41 kmem_zone_t *xfs_btree_cur_zone;
42
43 /*
44 * Btree magic numbers.
45 */
46 static const __uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
47 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
48 XFS_FIBT_MAGIC, 0 },
49 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
50 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
51 XFS_REFC_CRC_MAGIC }
52 };
53 #define xfs_btree_magic(cur) \
54 xfs_magics[!!((cur)->bc_flags & XFS_BTREE_CRC_BLOCKS)][cur->bc_btnum]
55
56 STATIC int /* error (0 or EFSCORRUPTED) */
57 xfs_btree_check_lblock(
58 struct xfs_btree_cur *cur, /* btree cursor */
59 struct xfs_btree_block *block, /* btree long form block pointer */
60 int level, /* level of the btree block */
61 struct xfs_buf *bp) /* buffer for block, if any */
62 {
63 int lblock_ok = 1; /* block passes checks */
64 struct xfs_mount *mp; /* file system mount point */
65
66 mp = cur->bc_mp;
67
68 if (xfs_sb_version_hascrc(&mp->m_sb)) {
69 lblock_ok = lblock_ok &&
70 uuid_equal(&block->bb_u.l.bb_uuid,
71 &mp->m_sb.sb_meta_uuid) &&
72 block->bb_u.l.bb_blkno == cpu_to_be64(
73 bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
74 }
75
76 lblock_ok = lblock_ok &&
77 be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
78 be16_to_cpu(block->bb_level) == level &&
79 be16_to_cpu(block->bb_numrecs) <=
80 cur->bc_ops->get_maxrecs(cur, level) &&
81 block->bb_u.l.bb_leftsib &&
82 (block->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK) ||
83 XFS_FSB_SANITY_CHECK(mp,
84 be64_to_cpu(block->bb_u.l.bb_leftsib))) &&
85 block->bb_u.l.bb_rightsib &&
86 (block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK) ||
87 XFS_FSB_SANITY_CHECK(mp,
88 be64_to_cpu(block->bb_u.l.bb_rightsib)));
89
90 if (unlikely(XFS_TEST_ERROR(!lblock_ok, mp,
91 XFS_ERRTAG_BTREE_CHECK_LBLOCK,
92 XFS_RANDOM_BTREE_CHECK_LBLOCK))) {
93 if (bp)
94 trace_xfs_btree_corrupt(bp, _RET_IP_);
95 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
96 return -EFSCORRUPTED;
97 }
98 return 0;
99 }
100
101 STATIC int /* error (0 or EFSCORRUPTED) */
102 xfs_btree_check_sblock(
103 struct xfs_btree_cur *cur, /* btree cursor */
104 struct xfs_btree_block *block, /* btree short form block pointer */
105 int level, /* level of the btree block */
106 struct xfs_buf *bp) /* buffer containing block */
107 {
108 struct xfs_mount *mp; /* file system mount point */
109 struct xfs_buf *agbp; /* buffer for ag. freespace struct */
110 struct xfs_agf *agf; /* ag. freespace structure */
111 xfs_agblock_t agflen; /* native ag. freespace length */
112 int sblock_ok = 1; /* block passes checks */
113
114 mp = cur->bc_mp;
115 agbp = cur->bc_private.a.agbp;
116 agf = XFS_BUF_TO_AGF(agbp);
117 agflen = be32_to_cpu(agf->agf_length);
118
119 if (xfs_sb_version_hascrc(&mp->m_sb)) {
120 sblock_ok = sblock_ok &&
121 uuid_equal(&block->bb_u.s.bb_uuid,
122 &mp->m_sb.sb_meta_uuid) &&
123 block->bb_u.s.bb_blkno == cpu_to_be64(
124 bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
125 }
126
127 sblock_ok = sblock_ok &&
128 be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
129 be16_to_cpu(block->bb_level) == level &&
130 be16_to_cpu(block->bb_numrecs) <=
131 cur->bc_ops->get_maxrecs(cur, level) &&
132 (block->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) ||
133 be32_to_cpu(block->bb_u.s.bb_leftsib) < agflen) &&
134 block->bb_u.s.bb_leftsib &&
135 (block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK) ||
136 be32_to_cpu(block->bb_u.s.bb_rightsib) < agflen) &&
137 block->bb_u.s.bb_rightsib;
138
139 if (unlikely(XFS_TEST_ERROR(!sblock_ok, mp,
140 XFS_ERRTAG_BTREE_CHECK_SBLOCK,
141 XFS_RANDOM_BTREE_CHECK_SBLOCK))) {
142 if (bp)
143 trace_xfs_btree_corrupt(bp, _RET_IP_);
144 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
145 return -EFSCORRUPTED;
146 }
147 return 0;
148 }
149
150 /*
151 * Debug routine: check that block header is ok.
152 */
153 int
154 xfs_btree_check_block(
155 struct xfs_btree_cur *cur, /* btree cursor */
156 struct xfs_btree_block *block, /* generic btree block pointer */
157 int level, /* level of the btree block */
158 struct xfs_buf *bp) /* buffer containing block, if any */
159 {
160 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
161 return xfs_btree_check_lblock(cur, block, level, bp);
162 else
163 return xfs_btree_check_sblock(cur, block, level, bp);
164 }
165
166 /*
167 * Check that (long) pointer is ok.
168 */
169 int /* error (0 or EFSCORRUPTED) */
170 xfs_btree_check_lptr(
171 struct xfs_btree_cur *cur, /* btree cursor */
172 xfs_fsblock_t bno, /* btree block disk address */
173 int level) /* btree block level */
174 {
175 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
176 level > 0 &&
177 bno != NULLFSBLOCK &&
178 XFS_FSB_SANITY_CHECK(cur->bc_mp, bno));
179 return 0;
180 }
181
182 #ifdef DEBUG
183 /*
184 * Check that (short) pointer is ok.
185 */
186 STATIC int /* error (0 or EFSCORRUPTED) */
187 xfs_btree_check_sptr(
188 struct xfs_btree_cur *cur, /* btree cursor */
189 xfs_agblock_t bno, /* btree block disk address */
190 int level) /* btree block level */
191 {
192 xfs_agblock_t agblocks = cur->bc_mp->m_sb.sb_agblocks;
193
194 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
195 level > 0 &&
196 bno != NULLAGBLOCK &&
197 bno != 0 &&
198 bno < agblocks);
199 return 0;
200 }
201
202 /*
203 * Check that block ptr is ok.
204 */
205 STATIC int /* error (0 or EFSCORRUPTED) */
206 xfs_btree_check_ptr(
207 struct xfs_btree_cur *cur, /* btree cursor */
208 union xfs_btree_ptr *ptr, /* btree block disk address */
209 int index, /* offset from ptr to check */
210 int level) /* btree block level */
211 {
212 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
213 return xfs_btree_check_lptr(cur,
214 be64_to_cpu((&ptr->l)[index]), level);
215 } else {
216 return xfs_btree_check_sptr(cur,
217 be32_to_cpu((&ptr->s)[index]), level);
218 }
219 }
220 #endif
221
222 /*
223 * Calculate CRC on the whole btree block and stuff it into the
224 * long-form btree header.
225 *
226 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
227 * it into the buffer so recovery knows what the last modification was that made
228 * it to disk.
229 */
230 void
231 xfs_btree_lblock_calc_crc(
232 struct xfs_buf *bp)
233 {
234 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
235 struct xfs_buf_log_item *bip = bp->b_fspriv;
236
237 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
238 return;
239 if (bip)
240 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
241 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
242 }
243
244 bool
245 xfs_btree_lblock_verify_crc(
246 struct xfs_buf *bp)
247 {
248 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
249 struct xfs_mount *mp = bp->b_target->bt_mount;
250
251 if (xfs_sb_version_hascrc(&mp->m_sb)) {
252 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
253 return false;
254 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
255 }
256
257 return true;
258 }
259
260 /*
261 * Calculate CRC on the whole btree block and stuff it into the
262 * short-form btree header.
263 *
264 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
265 * it into the buffer so recovery knows what the last modification was that made
266 * it to disk.
267 */
268 void
269 xfs_btree_sblock_calc_crc(
270 struct xfs_buf *bp)
271 {
272 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
273 struct xfs_buf_log_item *bip = bp->b_fspriv;
274
275 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
276 return;
277 if (bip)
278 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
279 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
280 }
281
282 bool
283 xfs_btree_sblock_verify_crc(
284 struct xfs_buf *bp)
285 {
286 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
287 struct xfs_mount *mp = bp->b_target->bt_mount;
288
289 if (xfs_sb_version_hascrc(&mp->m_sb)) {
290 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
291 return false;
292 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
293 }
294
295 return true;
296 }
297
298 static int
299 xfs_btree_free_block(
300 struct xfs_btree_cur *cur,
301 struct xfs_buf *bp)
302 {
303 int error;
304
305 error = cur->bc_ops->free_block(cur, bp);
306 if (!error) {
307 xfs_trans_binval(cur->bc_tp, bp);
308 XFS_BTREE_STATS_INC(cur, free);
309 }
310 return error;
311 }
312
313 /*
314 * Delete the btree cursor.
315 */
316 void
317 xfs_btree_del_cursor(
318 xfs_btree_cur_t *cur, /* btree cursor */
319 int error) /* del because of error */
320 {
321 int i; /* btree level */
322
323 /*
324 * Clear the buffer pointers, and release the buffers.
325 * If we're doing this in the face of an error, we
326 * need to make sure to inspect all of the entries
327 * in the bc_bufs array for buffers to be unlocked.
328 * This is because some of the btree code works from
329 * level n down to 0, and if we get an error along
330 * the way we won't have initialized all the entries
331 * down to 0.
332 */
333 for (i = 0; i < cur->bc_nlevels; i++) {
334 if (cur->bc_bufs[i])
335 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
336 else if (!error)
337 break;
338 }
339 /*
340 * Can't free a bmap cursor without having dealt with the
341 * allocated indirect blocks' accounting.
342 */
343 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
344 cur->bc_private.b.allocated == 0);
345 /*
346 * Free the cursor.
347 */
348 kmem_zone_free(xfs_btree_cur_zone, cur);
349 }
350
351 /*
352 * Duplicate the btree cursor.
353 * Allocate a new one, copy the record, re-get the buffers.
354 */
355 int /* error */
356 xfs_btree_dup_cursor(
357 xfs_btree_cur_t *cur, /* input cursor */
358 xfs_btree_cur_t **ncur) /* output cursor */
359 {
360 xfs_buf_t *bp; /* btree block's buffer pointer */
361 int error; /* error return value */
362 int i; /* level number of btree block */
363 xfs_mount_t *mp; /* mount structure for filesystem */
364 xfs_btree_cur_t *new; /* new cursor value */
365 xfs_trans_t *tp; /* transaction pointer, can be NULL */
366
367 tp = cur->bc_tp;
368 mp = cur->bc_mp;
369
370 /*
371 * Allocate a new cursor like the old one.
372 */
373 new = cur->bc_ops->dup_cursor(cur);
374
375 /*
376 * Copy the record currently in the cursor.
377 */
378 new->bc_rec = cur->bc_rec;
379
380 /*
381 * For each level current, re-get the buffer and copy the ptr value.
382 */
383 for (i = 0; i < new->bc_nlevels; i++) {
384 new->bc_ptrs[i] = cur->bc_ptrs[i];
385 new->bc_ra[i] = cur->bc_ra[i];
386 bp = cur->bc_bufs[i];
387 if (bp) {
388 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
389 XFS_BUF_ADDR(bp), mp->m_bsize,
390 0, &bp,
391 cur->bc_ops->buf_ops);
392 if (error) {
393 xfs_btree_del_cursor(new, error);
394 *ncur = NULL;
395 return error;
396 }
397 }
398 new->bc_bufs[i] = bp;
399 }
400 *ncur = new;
401 return 0;
402 }
403
404 /*
405 * XFS btree block layout and addressing:
406 *
407 * There are two types of blocks in the btree: leaf and non-leaf blocks.
408 *
409 * The leaf record start with a header then followed by records containing
410 * the values. A non-leaf block also starts with the same header, and
411 * then first contains lookup keys followed by an equal number of pointers
412 * to the btree blocks at the previous level.
413 *
414 * +--------+-------+-------+-------+-------+-------+-------+
415 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
416 * +--------+-------+-------+-------+-------+-------+-------+
417 *
418 * +--------+-------+-------+-------+-------+-------+-------+
419 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
420 * +--------+-------+-------+-------+-------+-------+-------+
421 *
422 * The header is called struct xfs_btree_block for reasons better left unknown
423 * and comes in different versions for short (32bit) and long (64bit) block
424 * pointers. The record and key structures are defined by the btree instances
425 * and opaque to the btree core. The block pointers are simple disk endian
426 * integers, available in a short (32bit) and long (64bit) variant.
427 *
428 * The helpers below calculate the offset of a given record, key or pointer
429 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
430 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
431 * inside the btree block is done using indices starting at one, not zero!
432 *
433 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
434 * overlapping intervals. In such a tree, records are still sorted lowest to
435 * highest and indexed by the smallest key value that refers to the record.
436 * However, nodes are different: each pointer has two associated keys -- one
437 * indexing the lowest key available in the block(s) below (the same behavior
438 * as the key in a regular btree) and another indexing the highest key
439 * available in the block(s) below. Because records are /not/ sorted by the
440 * highest key, all leaf block updates require us to compute the highest key
441 * that matches any record in the leaf and to recursively update the high keys
442 * in the nodes going further up in the tree, if necessary. Nodes look like
443 * this:
444 *
445 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
446 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
447 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
448 *
449 * To perform an interval query on an overlapped tree, perform the usual
450 * depth-first search and use the low and high keys to decide if we can skip
451 * that particular node. If a leaf node is reached, return the records that
452 * intersect the interval. Note that an interval query may return numerous
453 * entries. For a non-overlapped tree, simply search for the record associated
454 * with the lowest key and iterate forward until a non-matching record is
455 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
456 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
457 * more detail.
458 *
459 * Why do we care about overlapping intervals? Let's say you have a bunch of
460 * reverse mapping records on a reflink filesystem:
461 *
462 * 1: +- file A startblock B offset C length D -----------+
463 * 2: +- file E startblock F offset G length H --------------+
464 * 3: +- file I startblock F offset J length K --+
465 * 4: +- file L... --+
466 *
467 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
468 * we'd simply increment the length of record 1. But how do we find the record
469 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
470 * record 3 because the keys are ordered first by startblock. An interval
471 * query would return records 1 and 2 because they both overlap (B+D-1), and
472 * from that we can pick out record 1 as the appropriate left neighbor.
473 *
474 * In the non-overlapped case you can do a LE lookup and decrement the cursor
475 * because a record's interval must end before the next record.
476 */
477
478 /*
479 * Return size of the btree block header for this btree instance.
480 */
481 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
482 {
483 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
484 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
485 return XFS_BTREE_LBLOCK_CRC_LEN;
486 return XFS_BTREE_LBLOCK_LEN;
487 }
488 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
489 return XFS_BTREE_SBLOCK_CRC_LEN;
490 return XFS_BTREE_SBLOCK_LEN;
491 }
492
493 /*
494 * Return size of btree block pointers for this btree instance.
495 */
496 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
497 {
498 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
499 sizeof(__be64) : sizeof(__be32);
500 }
501
502 /*
503 * Calculate offset of the n-th record in a btree block.
504 */
505 STATIC size_t
506 xfs_btree_rec_offset(
507 struct xfs_btree_cur *cur,
508 int n)
509 {
510 return xfs_btree_block_len(cur) +
511 (n - 1) * cur->bc_ops->rec_len;
512 }
513
514 /*
515 * Calculate offset of the n-th key in a btree block.
516 */
517 STATIC size_t
518 xfs_btree_key_offset(
519 struct xfs_btree_cur *cur,
520 int n)
521 {
522 return xfs_btree_block_len(cur) +
523 (n - 1) * cur->bc_ops->key_len;
524 }
525
526 /*
527 * Calculate offset of the n-th high key in a btree block.
528 */
529 STATIC size_t
530 xfs_btree_high_key_offset(
531 struct xfs_btree_cur *cur,
532 int n)
533 {
534 return xfs_btree_block_len(cur) +
535 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
536 }
537
538 /*
539 * Calculate offset of the n-th block pointer in a btree block.
540 */
541 STATIC size_t
542 xfs_btree_ptr_offset(
543 struct xfs_btree_cur *cur,
544 int n,
545 int level)
546 {
547 return xfs_btree_block_len(cur) +
548 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
549 (n - 1) * xfs_btree_ptr_len(cur);
550 }
551
552 /*
553 * Return a pointer to the n-th record in the btree block.
554 */
555 STATIC union xfs_btree_rec *
556 xfs_btree_rec_addr(
557 struct xfs_btree_cur *cur,
558 int n,
559 struct xfs_btree_block *block)
560 {
561 return (union xfs_btree_rec *)
562 ((char *)block + xfs_btree_rec_offset(cur, n));
563 }
564
565 /*
566 * Return a pointer to the n-th key in the btree block.
567 */
568 STATIC union xfs_btree_key *
569 xfs_btree_key_addr(
570 struct xfs_btree_cur *cur,
571 int n,
572 struct xfs_btree_block *block)
573 {
574 return (union xfs_btree_key *)
575 ((char *)block + xfs_btree_key_offset(cur, n));
576 }
577
578 /*
579 * Return a pointer to the n-th high key in the btree block.
580 */
581 STATIC union xfs_btree_key *
582 xfs_btree_high_key_addr(
583 struct xfs_btree_cur *cur,
584 int n,
585 struct xfs_btree_block *block)
586 {
587 return (union xfs_btree_key *)
588 ((char *)block + xfs_btree_high_key_offset(cur, n));
589 }
590
591 /*
592 * Return a pointer to the n-th block pointer in the btree block.
593 */
594 STATIC union xfs_btree_ptr *
595 xfs_btree_ptr_addr(
596 struct xfs_btree_cur *cur,
597 int n,
598 struct xfs_btree_block *block)
599 {
600 int level = xfs_btree_get_level(block);
601
602 ASSERT(block->bb_level != 0);
603
604 return (union xfs_btree_ptr *)
605 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
606 }
607
608 /*
609 * Get the root block which is stored in the inode.
610 *
611 * For now this btree implementation assumes the btree root is always
612 * stored in the if_broot field of an inode fork.
613 */
614 STATIC struct xfs_btree_block *
615 xfs_btree_get_iroot(
616 struct xfs_btree_cur *cur)
617 {
618 struct xfs_ifork *ifp;
619
620 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
621 return (struct xfs_btree_block *)ifp->if_broot;
622 }
623
624 /*
625 * Retrieve the block pointer from the cursor at the given level.
626 * This may be an inode btree root or from a buffer.
627 */
628 STATIC struct xfs_btree_block * /* generic btree block pointer */
629 xfs_btree_get_block(
630 struct xfs_btree_cur *cur, /* btree cursor */
631 int level, /* level in btree */
632 struct xfs_buf **bpp) /* buffer containing the block */
633 {
634 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
635 (level == cur->bc_nlevels - 1)) {
636 *bpp = NULL;
637 return xfs_btree_get_iroot(cur);
638 }
639
640 *bpp = cur->bc_bufs[level];
641 return XFS_BUF_TO_BLOCK(*bpp);
642 }
643
644 /*
645 * Get a buffer for the block, return it with no data read.
646 * Long-form addressing.
647 */
648 xfs_buf_t * /* buffer for fsbno */
649 xfs_btree_get_bufl(
650 xfs_mount_t *mp, /* file system mount point */
651 xfs_trans_t *tp, /* transaction pointer */
652 xfs_fsblock_t fsbno, /* file system block number */
653 uint lock) /* lock flags for get_buf */
654 {
655 xfs_daddr_t d; /* real disk block address */
656
657 ASSERT(fsbno != NULLFSBLOCK);
658 d = XFS_FSB_TO_DADDR(mp, fsbno);
659 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
660 }
661
662 /*
663 * Get a buffer for the block, return it with no data read.
664 * Short-form addressing.
665 */
666 xfs_buf_t * /* buffer for agno/agbno */
667 xfs_btree_get_bufs(
668 xfs_mount_t *mp, /* file system mount point */
669 xfs_trans_t *tp, /* transaction pointer */
670 xfs_agnumber_t agno, /* allocation group number */
671 xfs_agblock_t agbno, /* allocation group block number */
672 uint lock) /* lock flags for get_buf */
673 {
674 xfs_daddr_t d; /* real disk block address */
675
676 ASSERT(agno != NULLAGNUMBER);
677 ASSERT(agbno != NULLAGBLOCK);
678 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
679 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
680 }
681
682 /*
683 * Check for the cursor referring to the last block at the given level.
684 */
685 int /* 1=is last block, 0=not last block */
686 xfs_btree_islastblock(
687 xfs_btree_cur_t *cur, /* btree cursor */
688 int level) /* level to check */
689 {
690 struct xfs_btree_block *block; /* generic btree block pointer */
691 xfs_buf_t *bp; /* buffer containing block */
692
693 block = xfs_btree_get_block(cur, level, &bp);
694 xfs_btree_check_block(cur, block, level, bp);
695 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
696 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
697 else
698 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
699 }
700
701 /*
702 * Change the cursor to point to the first record at the given level.
703 * Other levels are unaffected.
704 */
705 STATIC int /* success=1, failure=0 */
706 xfs_btree_firstrec(
707 xfs_btree_cur_t *cur, /* btree cursor */
708 int level) /* level to change */
709 {
710 struct xfs_btree_block *block; /* generic btree block pointer */
711 xfs_buf_t *bp; /* buffer containing block */
712
713 /*
714 * Get the block pointer for this level.
715 */
716 block = xfs_btree_get_block(cur, level, &bp);
717 xfs_btree_check_block(cur, block, level, bp);
718 /*
719 * It's empty, there is no such record.
720 */
721 if (!block->bb_numrecs)
722 return 0;
723 /*
724 * Set the ptr value to 1, that's the first record/key.
725 */
726 cur->bc_ptrs[level] = 1;
727 return 1;
728 }
729
730 /*
731 * Change the cursor to point to the last record in the current block
732 * at the given level. Other levels are unaffected.
733 */
734 STATIC int /* success=1, failure=0 */
735 xfs_btree_lastrec(
736 xfs_btree_cur_t *cur, /* btree cursor */
737 int level) /* level to change */
738 {
739 struct xfs_btree_block *block; /* generic btree block pointer */
740 xfs_buf_t *bp; /* buffer containing block */
741
742 /*
743 * Get the block pointer for this level.
744 */
745 block = xfs_btree_get_block(cur, level, &bp);
746 xfs_btree_check_block(cur, block, level, bp);
747 /*
748 * It's empty, there is no such record.
749 */
750 if (!block->bb_numrecs)
751 return 0;
752 /*
753 * Set the ptr value to numrecs, that's the last record/key.
754 */
755 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
756 return 1;
757 }
758
759 /*
760 * Compute first and last byte offsets for the fields given.
761 * Interprets the offsets table, which contains struct field offsets.
762 */
763 void
764 xfs_btree_offsets(
765 __int64_t fields, /* bitmask of fields */
766 const short *offsets, /* table of field offsets */
767 int nbits, /* number of bits to inspect */
768 int *first, /* output: first byte offset */
769 int *last) /* output: last byte offset */
770 {
771 int i; /* current bit number */
772 __int64_t imask; /* mask for current bit number */
773
774 ASSERT(fields != 0);
775 /*
776 * Find the lowest bit, so the first byte offset.
777 */
778 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
779 if (imask & fields) {
780 *first = offsets[i];
781 break;
782 }
783 }
784 /*
785 * Find the highest bit, so the last byte offset.
786 */
787 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
788 if (imask & fields) {
789 *last = offsets[i + 1] - 1;
790 break;
791 }
792 }
793 }
794
795 /*
796 * Get a buffer for the block, return it read in.
797 * Long-form addressing.
798 */
799 int
800 xfs_btree_read_bufl(
801 struct xfs_mount *mp, /* file system mount point */
802 struct xfs_trans *tp, /* transaction pointer */
803 xfs_fsblock_t fsbno, /* file system block number */
804 uint lock, /* lock flags for read_buf */
805 struct xfs_buf **bpp, /* buffer for fsbno */
806 int refval, /* ref count value for buffer */
807 const struct xfs_buf_ops *ops)
808 {
809 struct xfs_buf *bp; /* return value */
810 xfs_daddr_t d; /* real disk block address */
811 int error;
812
813 ASSERT(fsbno != NULLFSBLOCK);
814 d = XFS_FSB_TO_DADDR(mp, fsbno);
815 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
816 mp->m_bsize, lock, &bp, ops);
817 if (error)
818 return error;
819 if (bp)
820 xfs_buf_set_ref(bp, refval);
821 *bpp = bp;
822 return 0;
823 }
824
825 /*
826 * Read-ahead the block, don't wait for it, don't return a buffer.
827 * Long-form addressing.
828 */
829 /* ARGSUSED */
830 void
831 xfs_btree_reada_bufl(
832 struct xfs_mount *mp, /* file system mount point */
833 xfs_fsblock_t fsbno, /* file system block number */
834 xfs_extlen_t count, /* count of filesystem blocks */
835 const struct xfs_buf_ops *ops)
836 {
837 xfs_daddr_t d;
838
839 ASSERT(fsbno != NULLFSBLOCK);
840 d = XFS_FSB_TO_DADDR(mp, fsbno);
841 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
842 }
843
844 /*
845 * Read-ahead the block, don't wait for it, don't return a buffer.
846 * Short-form addressing.
847 */
848 /* ARGSUSED */
849 void
850 xfs_btree_reada_bufs(
851 struct xfs_mount *mp, /* file system mount point */
852 xfs_agnumber_t agno, /* allocation group number */
853 xfs_agblock_t agbno, /* allocation group block number */
854 xfs_extlen_t count, /* count of filesystem blocks */
855 const struct xfs_buf_ops *ops)
856 {
857 xfs_daddr_t d;
858
859 ASSERT(agno != NULLAGNUMBER);
860 ASSERT(agbno != NULLAGBLOCK);
861 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
862 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
863 }
864
865 STATIC int
866 xfs_btree_readahead_lblock(
867 struct xfs_btree_cur *cur,
868 int lr,
869 struct xfs_btree_block *block)
870 {
871 int rval = 0;
872 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
873 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
874
875 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
876 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
877 cur->bc_ops->buf_ops);
878 rval++;
879 }
880
881 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
882 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
883 cur->bc_ops->buf_ops);
884 rval++;
885 }
886
887 return rval;
888 }
889
890 STATIC int
891 xfs_btree_readahead_sblock(
892 struct xfs_btree_cur *cur,
893 int lr,
894 struct xfs_btree_block *block)
895 {
896 int rval = 0;
897 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
898 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
899
900
901 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
902 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
903 left, 1, cur->bc_ops->buf_ops);
904 rval++;
905 }
906
907 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
908 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
909 right, 1, cur->bc_ops->buf_ops);
910 rval++;
911 }
912
913 return rval;
914 }
915
916 /*
917 * Read-ahead btree blocks, at the given level.
918 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
919 */
920 STATIC int
921 xfs_btree_readahead(
922 struct xfs_btree_cur *cur, /* btree cursor */
923 int lev, /* level in btree */
924 int lr) /* left/right bits */
925 {
926 struct xfs_btree_block *block;
927
928 /*
929 * No readahead needed if we are at the root level and the
930 * btree root is stored in the inode.
931 */
932 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
933 (lev == cur->bc_nlevels - 1))
934 return 0;
935
936 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
937 return 0;
938
939 cur->bc_ra[lev] |= lr;
940 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
941
942 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
943 return xfs_btree_readahead_lblock(cur, lr, block);
944 return xfs_btree_readahead_sblock(cur, lr, block);
945 }
946
947 STATIC xfs_daddr_t
948 xfs_btree_ptr_to_daddr(
949 struct xfs_btree_cur *cur,
950 union xfs_btree_ptr *ptr)
951 {
952 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
953 ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
954
955 return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
956 } else {
957 ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
958 ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
959
960 return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
961 be32_to_cpu(ptr->s));
962 }
963 }
964
965 /*
966 * Readahead @count btree blocks at the given @ptr location.
967 *
968 * We don't need to care about long or short form btrees here as we have a
969 * method of converting the ptr directly to a daddr available to us.
970 */
971 STATIC void
972 xfs_btree_readahead_ptr(
973 struct xfs_btree_cur *cur,
974 union xfs_btree_ptr *ptr,
975 xfs_extlen_t count)
976 {
977 xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
978 xfs_btree_ptr_to_daddr(cur, ptr),
979 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
980 }
981
982 /*
983 * Set the buffer for level "lev" in the cursor to bp, releasing
984 * any previous buffer.
985 */
986 STATIC void
987 xfs_btree_setbuf(
988 xfs_btree_cur_t *cur, /* btree cursor */
989 int lev, /* level in btree */
990 xfs_buf_t *bp) /* new buffer to set */
991 {
992 struct xfs_btree_block *b; /* btree block */
993
994 if (cur->bc_bufs[lev])
995 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
996 cur->bc_bufs[lev] = bp;
997 cur->bc_ra[lev] = 0;
998
999 b = XFS_BUF_TO_BLOCK(bp);
1000 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1001 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1002 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1003 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1004 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1005 } else {
1006 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1007 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1008 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1009 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1010 }
1011 }
1012
1013 STATIC int
1014 xfs_btree_ptr_is_null(
1015 struct xfs_btree_cur *cur,
1016 union xfs_btree_ptr *ptr)
1017 {
1018 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1019 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1020 else
1021 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1022 }
1023
1024 STATIC void
1025 xfs_btree_set_ptr_null(
1026 struct xfs_btree_cur *cur,
1027 union xfs_btree_ptr *ptr)
1028 {
1029 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1030 ptr->l = cpu_to_be64(NULLFSBLOCK);
1031 else
1032 ptr->s = cpu_to_be32(NULLAGBLOCK);
1033 }
1034
1035 /*
1036 * Get/set/init sibling pointers
1037 */
1038 STATIC void
1039 xfs_btree_get_sibling(
1040 struct xfs_btree_cur *cur,
1041 struct xfs_btree_block *block,
1042 union xfs_btree_ptr *ptr,
1043 int lr)
1044 {
1045 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1046
1047 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1048 if (lr == XFS_BB_RIGHTSIB)
1049 ptr->l = block->bb_u.l.bb_rightsib;
1050 else
1051 ptr->l = block->bb_u.l.bb_leftsib;
1052 } else {
1053 if (lr == XFS_BB_RIGHTSIB)
1054 ptr->s = block->bb_u.s.bb_rightsib;
1055 else
1056 ptr->s = block->bb_u.s.bb_leftsib;
1057 }
1058 }
1059
1060 STATIC void
1061 xfs_btree_set_sibling(
1062 struct xfs_btree_cur *cur,
1063 struct xfs_btree_block *block,
1064 union xfs_btree_ptr *ptr,
1065 int lr)
1066 {
1067 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1068
1069 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1070 if (lr == XFS_BB_RIGHTSIB)
1071 block->bb_u.l.bb_rightsib = ptr->l;
1072 else
1073 block->bb_u.l.bb_leftsib = ptr->l;
1074 } else {
1075 if (lr == XFS_BB_RIGHTSIB)
1076 block->bb_u.s.bb_rightsib = ptr->s;
1077 else
1078 block->bb_u.s.bb_leftsib = ptr->s;
1079 }
1080 }
1081
1082 void
1083 xfs_btree_init_block_int(
1084 struct xfs_mount *mp,
1085 struct xfs_btree_block *buf,
1086 xfs_daddr_t blkno,
1087 __u32 magic,
1088 __u16 level,
1089 __u16 numrecs,
1090 __u64 owner,
1091 unsigned int flags)
1092 {
1093 buf->bb_magic = cpu_to_be32(magic);
1094 buf->bb_level = cpu_to_be16(level);
1095 buf->bb_numrecs = cpu_to_be16(numrecs);
1096
1097 if (flags & XFS_BTREE_LONG_PTRS) {
1098 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1099 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1100 if (flags & XFS_BTREE_CRC_BLOCKS) {
1101 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1102 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1103 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1104 buf->bb_u.l.bb_pad = 0;
1105 buf->bb_u.l.bb_lsn = 0;
1106 }
1107 } else {
1108 /* owner is a 32 bit value on short blocks */
1109 __u32 __owner = (__u32)owner;
1110
1111 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1112 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1113 if (flags & XFS_BTREE_CRC_BLOCKS) {
1114 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1115 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1116 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1117 buf->bb_u.s.bb_lsn = 0;
1118 }
1119 }
1120 }
1121
1122 void
1123 xfs_btree_init_block(
1124 struct xfs_mount *mp,
1125 struct xfs_buf *bp,
1126 __u32 magic,
1127 __u16 level,
1128 __u16 numrecs,
1129 __u64 owner,
1130 unsigned int flags)
1131 {
1132 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1133 magic, level, numrecs, owner, flags);
1134 }
1135
1136 STATIC void
1137 xfs_btree_init_block_cur(
1138 struct xfs_btree_cur *cur,
1139 struct xfs_buf *bp,
1140 int level,
1141 int numrecs)
1142 {
1143 __u64 owner;
1144
1145 /*
1146 * we can pull the owner from the cursor right now as the different
1147 * owners align directly with the pointer size of the btree. This may
1148 * change in future, but is safe for current users of the generic btree
1149 * code.
1150 */
1151 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1152 owner = cur->bc_private.b.ip->i_ino;
1153 else
1154 owner = cur->bc_private.a.agno;
1155
1156 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1157 xfs_btree_magic(cur), level, numrecs,
1158 owner, cur->bc_flags);
1159 }
1160
1161 /*
1162 * Return true if ptr is the last record in the btree and
1163 * we need to track updates to this record. The decision
1164 * will be further refined in the update_lastrec method.
1165 */
1166 STATIC int
1167 xfs_btree_is_lastrec(
1168 struct xfs_btree_cur *cur,
1169 struct xfs_btree_block *block,
1170 int level)
1171 {
1172 union xfs_btree_ptr ptr;
1173
1174 if (level > 0)
1175 return 0;
1176 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1177 return 0;
1178
1179 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1180 if (!xfs_btree_ptr_is_null(cur, &ptr))
1181 return 0;
1182 return 1;
1183 }
1184
1185 STATIC void
1186 xfs_btree_buf_to_ptr(
1187 struct xfs_btree_cur *cur,
1188 struct xfs_buf *bp,
1189 union xfs_btree_ptr *ptr)
1190 {
1191 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1192 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1193 XFS_BUF_ADDR(bp)));
1194 else {
1195 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1196 XFS_BUF_ADDR(bp)));
1197 }
1198 }
1199
1200 STATIC void
1201 xfs_btree_set_refs(
1202 struct xfs_btree_cur *cur,
1203 struct xfs_buf *bp)
1204 {
1205 switch (cur->bc_btnum) {
1206 case XFS_BTNUM_BNO:
1207 case XFS_BTNUM_CNT:
1208 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1209 break;
1210 case XFS_BTNUM_INO:
1211 case XFS_BTNUM_FINO:
1212 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1213 break;
1214 case XFS_BTNUM_BMAP:
1215 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1216 break;
1217 case XFS_BTNUM_RMAP:
1218 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1219 break;
1220 case XFS_BTNUM_REFC:
1221 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1222 break;
1223 default:
1224 ASSERT(0);
1225 }
1226 }
1227
1228 STATIC int
1229 xfs_btree_get_buf_block(
1230 struct xfs_btree_cur *cur,
1231 union xfs_btree_ptr *ptr,
1232 int flags,
1233 struct xfs_btree_block **block,
1234 struct xfs_buf **bpp)
1235 {
1236 struct xfs_mount *mp = cur->bc_mp;
1237 xfs_daddr_t d;
1238
1239 /* need to sort out how callers deal with failures first */
1240 ASSERT(!(flags & XBF_TRYLOCK));
1241
1242 d = xfs_btree_ptr_to_daddr(cur, ptr);
1243 *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1244 mp->m_bsize, flags);
1245
1246 if (!*bpp)
1247 return -ENOMEM;
1248
1249 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1250 *block = XFS_BUF_TO_BLOCK(*bpp);
1251 return 0;
1252 }
1253
1254 /*
1255 * Read in the buffer at the given ptr and return the buffer and
1256 * the block pointer within the buffer.
1257 */
1258 STATIC int
1259 xfs_btree_read_buf_block(
1260 struct xfs_btree_cur *cur,
1261 union xfs_btree_ptr *ptr,
1262 int flags,
1263 struct xfs_btree_block **block,
1264 struct xfs_buf **bpp)
1265 {
1266 struct xfs_mount *mp = cur->bc_mp;
1267 xfs_daddr_t d;
1268 int error;
1269
1270 /* need to sort out how callers deal with failures first */
1271 ASSERT(!(flags & XBF_TRYLOCK));
1272
1273 d = xfs_btree_ptr_to_daddr(cur, ptr);
1274 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1275 mp->m_bsize, flags, bpp,
1276 cur->bc_ops->buf_ops);
1277 if (error)
1278 return error;
1279
1280 xfs_btree_set_refs(cur, *bpp);
1281 *block = XFS_BUF_TO_BLOCK(*bpp);
1282 return 0;
1283 }
1284
1285 /*
1286 * Copy keys from one btree block to another.
1287 */
1288 STATIC void
1289 xfs_btree_copy_keys(
1290 struct xfs_btree_cur *cur,
1291 union xfs_btree_key *dst_key,
1292 union xfs_btree_key *src_key,
1293 int numkeys)
1294 {
1295 ASSERT(numkeys >= 0);
1296 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1297 }
1298
1299 /*
1300 * Copy records from one btree block to another.
1301 */
1302 STATIC void
1303 xfs_btree_copy_recs(
1304 struct xfs_btree_cur *cur,
1305 union xfs_btree_rec *dst_rec,
1306 union xfs_btree_rec *src_rec,
1307 int numrecs)
1308 {
1309 ASSERT(numrecs >= 0);
1310 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1311 }
1312
1313 /*
1314 * Copy block pointers from one btree block to another.
1315 */
1316 STATIC void
1317 xfs_btree_copy_ptrs(
1318 struct xfs_btree_cur *cur,
1319 union xfs_btree_ptr *dst_ptr,
1320 union xfs_btree_ptr *src_ptr,
1321 int numptrs)
1322 {
1323 ASSERT(numptrs >= 0);
1324 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1325 }
1326
1327 /*
1328 * Shift keys one index left/right inside a single btree block.
1329 */
1330 STATIC void
1331 xfs_btree_shift_keys(
1332 struct xfs_btree_cur *cur,
1333 union xfs_btree_key *key,
1334 int dir,
1335 int numkeys)
1336 {
1337 char *dst_key;
1338
1339 ASSERT(numkeys >= 0);
1340 ASSERT(dir == 1 || dir == -1);
1341
1342 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1343 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1344 }
1345
1346 /*
1347 * Shift records one index left/right inside a single btree block.
1348 */
1349 STATIC void
1350 xfs_btree_shift_recs(
1351 struct xfs_btree_cur *cur,
1352 union xfs_btree_rec *rec,
1353 int dir,
1354 int numrecs)
1355 {
1356 char *dst_rec;
1357
1358 ASSERT(numrecs >= 0);
1359 ASSERT(dir == 1 || dir == -1);
1360
1361 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1362 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1363 }
1364
1365 /*
1366 * Shift block pointers one index left/right inside a single btree block.
1367 */
1368 STATIC void
1369 xfs_btree_shift_ptrs(
1370 struct xfs_btree_cur *cur,
1371 union xfs_btree_ptr *ptr,
1372 int dir,
1373 int numptrs)
1374 {
1375 char *dst_ptr;
1376
1377 ASSERT(numptrs >= 0);
1378 ASSERT(dir == 1 || dir == -1);
1379
1380 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1381 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1382 }
1383
1384 /*
1385 * Log key values from the btree block.
1386 */
1387 STATIC void
1388 xfs_btree_log_keys(
1389 struct xfs_btree_cur *cur,
1390 struct xfs_buf *bp,
1391 int first,
1392 int last)
1393 {
1394 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1395 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1396
1397 if (bp) {
1398 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1399 xfs_trans_log_buf(cur->bc_tp, bp,
1400 xfs_btree_key_offset(cur, first),
1401 xfs_btree_key_offset(cur, last + 1) - 1);
1402 } else {
1403 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1404 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1405 }
1406
1407 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1408 }
1409
1410 /*
1411 * Log record values from the btree block.
1412 */
1413 void
1414 xfs_btree_log_recs(
1415 struct xfs_btree_cur *cur,
1416 struct xfs_buf *bp,
1417 int first,
1418 int last)
1419 {
1420 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1421 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1422
1423 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1424 xfs_trans_log_buf(cur->bc_tp, bp,
1425 xfs_btree_rec_offset(cur, first),
1426 xfs_btree_rec_offset(cur, last + 1) - 1);
1427
1428 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1429 }
1430
1431 /*
1432 * Log block pointer fields from a btree block (nonleaf).
1433 */
1434 STATIC void
1435 xfs_btree_log_ptrs(
1436 struct xfs_btree_cur *cur, /* btree cursor */
1437 struct xfs_buf *bp, /* buffer containing btree block */
1438 int first, /* index of first pointer to log */
1439 int last) /* index of last pointer to log */
1440 {
1441 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1442 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1443
1444 if (bp) {
1445 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1446 int level = xfs_btree_get_level(block);
1447
1448 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1449 xfs_trans_log_buf(cur->bc_tp, bp,
1450 xfs_btree_ptr_offset(cur, first, level),
1451 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1452 } else {
1453 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1454 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1455 }
1456
1457 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1458 }
1459
1460 /*
1461 * Log fields from a btree block header.
1462 */
1463 void
1464 xfs_btree_log_block(
1465 struct xfs_btree_cur *cur, /* btree cursor */
1466 struct xfs_buf *bp, /* buffer containing btree block */
1467 int fields) /* mask of fields: XFS_BB_... */
1468 {
1469 int first; /* first byte offset logged */
1470 int last; /* last byte offset logged */
1471 static const short soffsets[] = { /* table of offsets (short) */
1472 offsetof(struct xfs_btree_block, bb_magic),
1473 offsetof(struct xfs_btree_block, bb_level),
1474 offsetof(struct xfs_btree_block, bb_numrecs),
1475 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1476 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1477 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1478 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1479 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1480 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1481 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1482 XFS_BTREE_SBLOCK_CRC_LEN
1483 };
1484 static const short loffsets[] = { /* table of offsets (long) */
1485 offsetof(struct xfs_btree_block, bb_magic),
1486 offsetof(struct xfs_btree_block, bb_level),
1487 offsetof(struct xfs_btree_block, bb_numrecs),
1488 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1489 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1490 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1491 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1492 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1493 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1494 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1495 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1496 XFS_BTREE_LBLOCK_CRC_LEN
1497 };
1498
1499 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1500 XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
1501
1502 if (bp) {
1503 int nbits;
1504
1505 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1506 /*
1507 * We don't log the CRC when updating a btree
1508 * block but instead recreate it during log
1509 * recovery. As the log buffers have checksums
1510 * of their own this is safe and avoids logging a crc
1511 * update in a lot of places.
1512 */
1513 if (fields == XFS_BB_ALL_BITS)
1514 fields = XFS_BB_ALL_BITS_CRC;
1515 nbits = XFS_BB_NUM_BITS_CRC;
1516 } else {
1517 nbits = XFS_BB_NUM_BITS;
1518 }
1519 xfs_btree_offsets(fields,
1520 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1521 loffsets : soffsets,
1522 nbits, &first, &last);
1523 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1524 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1525 } else {
1526 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1527 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1528 }
1529
1530 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1531 }
1532
1533 /*
1534 * Increment cursor by one record at the level.
1535 * For nonzero levels the leaf-ward information is untouched.
1536 */
1537 int /* error */
1538 xfs_btree_increment(
1539 struct xfs_btree_cur *cur,
1540 int level,
1541 int *stat) /* success/failure */
1542 {
1543 struct xfs_btree_block *block;
1544 union xfs_btree_ptr ptr;
1545 struct xfs_buf *bp;
1546 int error; /* error return value */
1547 int lev;
1548
1549 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1550 XFS_BTREE_TRACE_ARGI(cur, level);
1551
1552 ASSERT(level < cur->bc_nlevels);
1553
1554 /* Read-ahead to the right at this level. */
1555 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1556
1557 /* Get a pointer to the btree block. */
1558 block = xfs_btree_get_block(cur, level, &bp);
1559
1560 #ifdef DEBUG
1561 error = xfs_btree_check_block(cur, block, level, bp);
1562 if (error)
1563 goto error0;
1564 #endif
1565
1566 /* We're done if we remain in the block after the increment. */
1567 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1568 goto out1;
1569
1570 /* Fail if we just went off the right edge of the tree. */
1571 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1572 if (xfs_btree_ptr_is_null(cur, &ptr))
1573 goto out0;
1574
1575 XFS_BTREE_STATS_INC(cur, increment);
1576
1577 /*
1578 * March up the tree incrementing pointers.
1579 * Stop when we don't go off the right edge of a block.
1580 */
1581 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1582 block = xfs_btree_get_block(cur, lev, &bp);
1583
1584 #ifdef DEBUG
1585 error = xfs_btree_check_block(cur, block, lev, bp);
1586 if (error)
1587 goto error0;
1588 #endif
1589
1590 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1591 break;
1592
1593 /* Read-ahead the right block for the next loop. */
1594 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1595 }
1596
1597 /*
1598 * If we went off the root then we are either seriously
1599 * confused or have the tree root in an inode.
1600 */
1601 if (lev == cur->bc_nlevels) {
1602 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1603 goto out0;
1604 ASSERT(0);
1605 error = -EFSCORRUPTED;
1606 goto error0;
1607 }
1608 ASSERT(lev < cur->bc_nlevels);
1609
1610 /*
1611 * Now walk back down the tree, fixing up the cursor's buffer
1612 * pointers and key numbers.
1613 */
1614 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1615 union xfs_btree_ptr *ptrp;
1616
1617 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1618 --lev;
1619 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1620 if (error)
1621 goto error0;
1622
1623 xfs_btree_setbuf(cur, lev, bp);
1624 cur->bc_ptrs[lev] = 1;
1625 }
1626 out1:
1627 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1628 *stat = 1;
1629 return 0;
1630
1631 out0:
1632 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1633 *stat = 0;
1634 return 0;
1635
1636 error0:
1637 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1638 return error;
1639 }
1640
1641 /*
1642 * Decrement cursor by one record at the level.
1643 * For nonzero levels the leaf-ward information is untouched.
1644 */
1645 int /* error */
1646 xfs_btree_decrement(
1647 struct xfs_btree_cur *cur,
1648 int level,
1649 int *stat) /* success/failure */
1650 {
1651 struct xfs_btree_block *block;
1652 xfs_buf_t *bp;
1653 int error; /* error return value */
1654 int lev;
1655 union xfs_btree_ptr ptr;
1656
1657 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1658 XFS_BTREE_TRACE_ARGI(cur, level);
1659
1660 ASSERT(level < cur->bc_nlevels);
1661
1662 /* Read-ahead to the left at this level. */
1663 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1664
1665 /* We're done if we remain in the block after the decrement. */
1666 if (--cur->bc_ptrs[level] > 0)
1667 goto out1;
1668
1669 /* Get a pointer to the btree block. */
1670 block = xfs_btree_get_block(cur, level, &bp);
1671
1672 #ifdef DEBUG
1673 error = xfs_btree_check_block(cur, block, level, bp);
1674 if (error)
1675 goto error0;
1676 #endif
1677
1678 /* Fail if we just went off the left edge of the tree. */
1679 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1680 if (xfs_btree_ptr_is_null(cur, &ptr))
1681 goto out0;
1682
1683 XFS_BTREE_STATS_INC(cur, decrement);
1684
1685 /*
1686 * March up the tree decrementing pointers.
1687 * Stop when we don't go off the left edge of a block.
1688 */
1689 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1690 if (--cur->bc_ptrs[lev] > 0)
1691 break;
1692 /* Read-ahead the left block for the next loop. */
1693 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1694 }
1695
1696 /*
1697 * If we went off the root then we are seriously confused.
1698 * or the root of the tree is in an inode.
1699 */
1700 if (lev == cur->bc_nlevels) {
1701 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1702 goto out0;
1703 ASSERT(0);
1704 error = -EFSCORRUPTED;
1705 goto error0;
1706 }
1707 ASSERT(lev < cur->bc_nlevels);
1708
1709 /*
1710 * Now walk back down the tree, fixing up the cursor's buffer
1711 * pointers and key numbers.
1712 */
1713 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1714 union xfs_btree_ptr *ptrp;
1715
1716 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1717 --lev;
1718 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1719 if (error)
1720 goto error0;
1721 xfs_btree_setbuf(cur, lev, bp);
1722 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1723 }
1724 out1:
1725 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1726 *stat = 1;
1727 return 0;
1728
1729 out0:
1730 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1731 *stat = 0;
1732 return 0;
1733
1734 error0:
1735 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1736 return error;
1737 }
1738
1739 STATIC int
1740 xfs_btree_lookup_get_block(
1741 struct xfs_btree_cur *cur, /* btree cursor */
1742 int level, /* level in the btree */
1743 union xfs_btree_ptr *pp, /* ptr to btree block */
1744 struct xfs_btree_block **blkp) /* return btree block */
1745 {
1746 struct xfs_buf *bp; /* buffer pointer for btree block */
1747 int error = 0;
1748
1749 /* special case the root block if in an inode */
1750 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1751 (level == cur->bc_nlevels - 1)) {
1752 *blkp = xfs_btree_get_iroot(cur);
1753 return 0;
1754 }
1755
1756 /*
1757 * If the old buffer at this level for the disk address we are
1758 * looking for re-use it.
1759 *
1760 * Otherwise throw it away and get a new one.
1761 */
1762 bp = cur->bc_bufs[level];
1763 if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1764 *blkp = XFS_BUF_TO_BLOCK(bp);
1765 return 0;
1766 }
1767
1768 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1769 if (error)
1770 return error;
1771
1772 xfs_btree_setbuf(cur, level, bp);
1773 return 0;
1774 }
1775
1776 /*
1777 * Get current search key. For level 0 we don't actually have a key
1778 * structure so we make one up from the record. For all other levels
1779 * we just return the right key.
1780 */
1781 STATIC union xfs_btree_key *
1782 xfs_lookup_get_search_key(
1783 struct xfs_btree_cur *cur,
1784 int level,
1785 int keyno,
1786 struct xfs_btree_block *block,
1787 union xfs_btree_key *kp)
1788 {
1789 if (level == 0) {
1790 cur->bc_ops->init_key_from_rec(kp,
1791 xfs_btree_rec_addr(cur, keyno, block));
1792 return kp;
1793 }
1794
1795 return xfs_btree_key_addr(cur, keyno, block);
1796 }
1797
1798 /*
1799 * Lookup the record. The cursor is made to point to it, based on dir.
1800 * stat is set to 0 if can't find any such record, 1 for success.
1801 */
1802 int /* error */
1803 xfs_btree_lookup(
1804 struct xfs_btree_cur *cur, /* btree cursor */
1805 xfs_lookup_t dir, /* <=, ==, or >= */
1806 int *stat) /* success/failure */
1807 {
1808 struct xfs_btree_block *block; /* current btree block */
1809 __int64_t diff; /* difference for the current key */
1810 int error; /* error return value */
1811 int keyno; /* current key number */
1812 int level; /* level in the btree */
1813 union xfs_btree_ptr *pp; /* ptr to btree block */
1814 union xfs_btree_ptr ptr; /* ptr to btree block */
1815
1816 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1817 XFS_BTREE_TRACE_ARGI(cur, dir);
1818
1819 XFS_BTREE_STATS_INC(cur, lookup);
1820
1821 /* No such thing as a zero-level tree. */
1822 if (cur->bc_nlevels == 0)
1823 return -EFSCORRUPTED;
1824
1825 block = NULL;
1826 keyno = 0;
1827
1828 /* initialise start pointer from cursor */
1829 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1830 pp = &ptr;
1831
1832 /*
1833 * Iterate over each level in the btree, starting at the root.
1834 * For each level above the leaves, find the key we need, based
1835 * on the lookup record, then follow the corresponding block
1836 * pointer down to the next level.
1837 */
1838 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1839 /* Get the block we need to do the lookup on. */
1840 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1841 if (error)
1842 goto error0;
1843
1844 if (diff == 0) {
1845 /*
1846 * If we already had a key match at a higher level, we
1847 * know we need to use the first entry in this block.
1848 */
1849 keyno = 1;
1850 } else {
1851 /* Otherwise search this block. Do a binary search. */
1852
1853 int high; /* high entry number */
1854 int low; /* low entry number */
1855
1856 /* Set low and high entry numbers, 1-based. */
1857 low = 1;
1858 high = xfs_btree_get_numrecs(block);
1859 if (!high) {
1860 /* Block is empty, must be an empty leaf. */
1861 ASSERT(level == 0 && cur->bc_nlevels == 1);
1862
1863 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1864 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1865 *stat = 0;
1866 return 0;
1867 }
1868
1869 /* Binary search the block. */
1870 while (low <= high) {
1871 union xfs_btree_key key;
1872 union xfs_btree_key *kp;
1873
1874 XFS_BTREE_STATS_INC(cur, compare);
1875
1876 /* keyno is average of low and high. */
1877 keyno = (low + high) >> 1;
1878
1879 /* Get current search key */
1880 kp = xfs_lookup_get_search_key(cur, level,
1881 keyno, block, &key);
1882
1883 /*
1884 * Compute difference to get next direction:
1885 * - less than, move right
1886 * - greater than, move left
1887 * - equal, we're done
1888 */
1889 diff = cur->bc_ops->key_diff(cur, kp);
1890 if (diff < 0)
1891 low = keyno + 1;
1892 else if (diff > 0)
1893 high = keyno - 1;
1894 else
1895 break;
1896 }
1897 }
1898
1899 /*
1900 * If there are more levels, set up for the next level
1901 * by getting the block number and filling in the cursor.
1902 */
1903 if (level > 0) {
1904 /*
1905 * If we moved left, need the previous key number,
1906 * unless there isn't one.
1907 */
1908 if (diff > 0 && --keyno < 1)
1909 keyno = 1;
1910 pp = xfs_btree_ptr_addr(cur, keyno, block);
1911
1912 #ifdef DEBUG
1913 error = xfs_btree_check_ptr(cur, pp, 0, level);
1914 if (error)
1915 goto error0;
1916 #endif
1917 cur->bc_ptrs[level] = keyno;
1918 }
1919 }
1920
1921 /* Done with the search. See if we need to adjust the results. */
1922 if (dir != XFS_LOOKUP_LE && diff < 0) {
1923 keyno++;
1924 /*
1925 * If ge search and we went off the end of the block, but it's
1926 * not the last block, we're in the wrong block.
1927 */
1928 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1929 if (dir == XFS_LOOKUP_GE &&
1930 keyno > xfs_btree_get_numrecs(block) &&
1931 !xfs_btree_ptr_is_null(cur, &ptr)) {
1932 int i;
1933
1934 cur->bc_ptrs[0] = keyno;
1935 error = xfs_btree_increment(cur, 0, &i);
1936 if (error)
1937 goto error0;
1938 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1939 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1940 *stat = 1;
1941 return 0;
1942 }
1943 } else if (dir == XFS_LOOKUP_LE && diff > 0)
1944 keyno--;
1945 cur->bc_ptrs[0] = keyno;
1946
1947 /* Return if we succeeded or not. */
1948 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1949 *stat = 0;
1950 else if (dir != XFS_LOOKUP_EQ || diff == 0)
1951 *stat = 1;
1952 else
1953 *stat = 0;
1954 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1955 return 0;
1956
1957 error0:
1958 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1959 return error;
1960 }
1961
1962 /* Find the high key storage area from a regular key. */
1963 STATIC union xfs_btree_key *
1964 xfs_btree_high_key_from_key(
1965 struct xfs_btree_cur *cur,
1966 union xfs_btree_key *key)
1967 {
1968 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1969 return (union xfs_btree_key *)((char *)key +
1970 (cur->bc_ops->key_len / 2));
1971 }
1972
1973 /* Determine the low (and high if overlapped) keys of a leaf block */
1974 STATIC void
1975 xfs_btree_get_leaf_keys(
1976 struct xfs_btree_cur *cur,
1977 struct xfs_btree_block *block,
1978 union xfs_btree_key *key)
1979 {
1980 union xfs_btree_key max_hkey;
1981 union xfs_btree_key hkey;
1982 union xfs_btree_rec *rec;
1983 union xfs_btree_key *high;
1984 int n;
1985
1986 rec = xfs_btree_rec_addr(cur, 1, block);
1987 cur->bc_ops->init_key_from_rec(key, rec);
1988
1989 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1990
1991 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1992 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1993 rec = xfs_btree_rec_addr(cur, n, block);
1994 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
1995 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
1996 > 0)
1997 max_hkey = hkey;
1998 }
1999
2000 high = xfs_btree_high_key_from_key(cur, key);
2001 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2002 }
2003 }
2004
2005 /* Determine the low (and high if overlapped) keys of a node block */
2006 STATIC void
2007 xfs_btree_get_node_keys(
2008 struct xfs_btree_cur *cur,
2009 struct xfs_btree_block *block,
2010 union xfs_btree_key *key)
2011 {
2012 union xfs_btree_key *hkey;
2013 union xfs_btree_key *max_hkey;
2014 union xfs_btree_key *high;
2015 int n;
2016
2017 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2018 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2019 cur->bc_ops->key_len / 2);
2020
2021 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2022 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2023 hkey = xfs_btree_high_key_addr(cur, n, block);
2024 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2025 max_hkey = hkey;
2026 }
2027
2028 high = xfs_btree_high_key_from_key(cur, key);
2029 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2030 } else {
2031 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2032 cur->bc_ops->key_len);
2033 }
2034 }
2035
2036 /* Derive the keys for any btree block. */
2037 STATIC void
2038 xfs_btree_get_keys(
2039 struct xfs_btree_cur *cur,
2040 struct xfs_btree_block *block,
2041 union xfs_btree_key *key)
2042 {
2043 if (be16_to_cpu(block->bb_level) == 0)
2044 xfs_btree_get_leaf_keys(cur, block, key);
2045 else
2046 xfs_btree_get_node_keys(cur, block, key);
2047 }
2048
2049 /*
2050 * Decide if we need to update the parent keys of a btree block. For
2051 * a standard btree this is only necessary if we're updating the first
2052 * record/key. For an overlapping btree, we must always update the
2053 * keys because the highest key can be in any of the records or keys
2054 * in the block.
2055 */
2056 static inline bool
2057 xfs_btree_needs_key_update(
2058 struct xfs_btree_cur *cur,
2059 int ptr)
2060 {
2061 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2062 }
2063
2064 /*
2065 * Update the low and high parent keys of the given level, progressing
2066 * towards the root. If force_all is false, stop if the keys for a given
2067 * level do not need updating.
2068 */
2069 STATIC int
2070 __xfs_btree_updkeys(
2071 struct xfs_btree_cur *cur,
2072 int level,
2073 struct xfs_btree_block *block,
2074 struct xfs_buf *bp0,
2075 bool force_all)
2076 {
2077 union xfs_btree_key key; /* keys from current level */
2078 union xfs_btree_key *lkey; /* keys from the next level up */
2079 union xfs_btree_key *hkey;
2080 union xfs_btree_key *nlkey; /* keys from the next level up */
2081 union xfs_btree_key *nhkey;
2082 struct xfs_buf *bp;
2083 int ptr;
2084
2085 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2086
2087 /* Exit if there aren't any parent levels to update. */
2088 if (level + 1 >= cur->bc_nlevels)
2089 return 0;
2090
2091 trace_xfs_btree_updkeys(cur, level, bp0);
2092
2093 lkey = &key;
2094 hkey = xfs_btree_high_key_from_key(cur, lkey);
2095 xfs_btree_get_keys(cur, block, lkey);
2096 for (level++; level < cur->bc_nlevels; level++) {
2097 #ifdef DEBUG
2098 int error;
2099 #endif
2100 block = xfs_btree_get_block(cur, level, &bp);
2101 trace_xfs_btree_updkeys(cur, level, bp);
2102 #ifdef DEBUG
2103 error = xfs_btree_check_block(cur, block, level, bp);
2104 if (error) {
2105 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2106 return error;
2107 }
2108 #endif
2109 ptr = cur->bc_ptrs[level];
2110 nlkey = xfs_btree_key_addr(cur, ptr, block);
2111 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2112 if (!force_all &&
2113 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2114 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2115 break;
2116 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2117 xfs_btree_log_keys(cur, bp, ptr, ptr);
2118 if (level + 1 >= cur->bc_nlevels)
2119 break;
2120 xfs_btree_get_node_keys(cur, block, lkey);
2121 }
2122
2123 return 0;
2124 }
2125
2126 /* Update all the keys from some level in cursor back to the root. */
2127 STATIC int
2128 xfs_btree_updkeys_force(
2129 struct xfs_btree_cur *cur,
2130 int level)
2131 {
2132 struct xfs_buf *bp;
2133 struct xfs_btree_block *block;
2134
2135 block = xfs_btree_get_block(cur, level, &bp);
2136 return __xfs_btree_updkeys(cur, level, block, bp, true);
2137 }
2138
2139 /*
2140 * Update the parent keys of the given level, progressing towards the root.
2141 */
2142 STATIC int
2143 xfs_btree_update_keys(
2144 struct xfs_btree_cur *cur,
2145 int level)
2146 {
2147 struct xfs_btree_block *block;
2148 struct xfs_buf *bp;
2149 union xfs_btree_key *kp;
2150 union xfs_btree_key key;
2151 int ptr;
2152
2153 ASSERT(level >= 0);
2154
2155 block = xfs_btree_get_block(cur, level, &bp);
2156 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2157 return __xfs_btree_updkeys(cur, level, block, bp, false);
2158
2159 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2160 XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
2161
2162 /*
2163 * Go up the tree from this level toward the root.
2164 * At each level, update the key value to the value input.
2165 * Stop when we reach a level where the cursor isn't pointing
2166 * at the first entry in the block.
2167 */
2168 xfs_btree_get_keys(cur, block, &key);
2169 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2170 #ifdef DEBUG
2171 int error;
2172 #endif
2173 block = xfs_btree_get_block(cur, level, &bp);
2174 #ifdef DEBUG
2175 error = xfs_btree_check_block(cur, block, level, bp);
2176 if (error) {
2177 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2178 return error;
2179 }
2180 #endif
2181 ptr = cur->bc_ptrs[level];
2182 kp = xfs_btree_key_addr(cur, ptr, block);
2183 xfs_btree_copy_keys(cur, kp, &key, 1);
2184 xfs_btree_log_keys(cur, bp, ptr, ptr);
2185 }
2186
2187 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2188 return 0;
2189 }
2190
2191 /*
2192 * Update the record referred to by cur to the value in the
2193 * given record. This either works (return 0) or gets an
2194 * EFSCORRUPTED error.
2195 */
2196 int
2197 xfs_btree_update(
2198 struct xfs_btree_cur *cur,
2199 union xfs_btree_rec *rec)
2200 {
2201 struct xfs_btree_block *block;
2202 struct xfs_buf *bp;
2203 int error;
2204 int ptr;
2205 union xfs_btree_rec *rp;
2206
2207 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2208 XFS_BTREE_TRACE_ARGR(cur, rec);
2209
2210 /* Pick up the current block. */
2211 block = xfs_btree_get_block(cur, 0, &bp);
2212
2213 #ifdef DEBUG
2214 error = xfs_btree_check_block(cur, block, 0, bp);
2215 if (error)
2216 goto error0;
2217 #endif
2218 /* Get the address of the rec to be updated. */
2219 ptr = cur->bc_ptrs[0];
2220 rp = xfs_btree_rec_addr(cur, ptr, block);
2221
2222 /* Fill in the new contents and log them. */
2223 xfs_btree_copy_recs(cur, rp, rec, 1);
2224 xfs_btree_log_recs(cur, bp, ptr, ptr);
2225
2226 /*
2227 * If we are tracking the last record in the tree and
2228 * we are at the far right edge of the tree, update it.
2229 */
2230 if (xfs_btree_is_lastrec(cur, block, 0)) {
2231 cur->bc_ops->update_lastrec(cur, block, rec,
2232 ptr, LASTREC_UPDATE);
2233 }
2234
2235 /* Pass new key value up to our parent. */
2236 if (xfs_btree_needs_key_update(cur, ptr)) {
2237 error = xfs_btree_update_keys(cur, 0);
2238 if (error)
2239 goto error0;
2240 }
2241
2242 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2243 return 0;
2244
2245 error0:
2246 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2247 return error;
2248 }
2249
2250 /*
2251 * Move 1 record left from cur/level if possible.
2252 * Update cur to reflect the new path.
2253 */
2254 STATIC int /* error */
2255 xfs_btree_lshift(
2256 struct xfs_btree_cur *cur,
2257 int level,
2258 int *stat) /* success/failure */
2259 {
2260 struct xfs_buf *lbp; /* left buffer pointer */
2261 struct xfs_btree_block *left; /* left btree block */
2262 int lrecs; /* left record count */
2263 struct xfs_buf *rbp; /* right buffer pointer */
2264 struct xfs_btree_block *right; /* right btree block */
2265 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2266 int rrecs; /* right record count */
2267 union xfs_btree_ptr lptr; /* left btree pointer */
2268 union xfs_btree_key *rkp = NULL; /* right btree key */
2269 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2270 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2271 int error; /* error return value */
2272 int i;
2273
2274 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2275 XFS_BTREE_TRACE_ARGI(cur, level);
2276
2277 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2278 level == cur->bc_nlevels - 1)
2279 goto out0;
2280
2281 /* Set up variables for this block as "right". */
2282 right = xfs_btree_get_block(cur, level, &rbp);
2283
2284 #ifdef DEBUG
2285 error = xfs_btree_check_block(cur, right, level, rbp);
2286 if (error)
2287 goto error0;
2288 #endif
2289
2290 /* If we've got no left sibling then we can't shift an entry left. */
2291 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2292 if (xfs_btree_ptr_is_null(cur, &lptr))
2293 goto out0;
2294
2295 /*
2296 * If the cursor entry is the one that would be moved, don't
2297 * do it... it's too complicated.
2298 */
2299 if (cur->bc_ptrs[level] <= 1)
2300 goto out0;
2301
2302 /* Set up the left neighbor as "left". */
2303 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2304 if (error)
2305 goto error0;
2306
2307 /* If it's full, it can't take another entry. */
2308 lrecs = xfs_btree_get_numrecs(left);
2309 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2310 goto out0;
2311
2312 rrecs = xfs_btree_get_numrecs(right);
2313
2314 /*
2315 * We add one entry to the left side and remove one for the right side.
2316 * Account for it here, the changes will be updated on disk and logged
2317 * later.
2318 */
2319 lrecs++;
2320 rrecs--;
2321
2322 XFS_BTREE_STATS_INC(cur, lshift);
2323 XFS_BTREE_STATS_ADD(cur, moves, 1);
2324
2325 /*
2326 * If non-leaf, copy a key and a ptr to the left block.
2327 * Log the changes to the left block.
2328 */
2329 if (level > 0) {
2330 /* It's a non-leaf. Move keys and pointers. */
2331 union xfs_btree_key *lkp; /* left btree key */
2332 union xfs_btree_ptr *lpp; /* left address pointer */
2333
2334 lkp = xfs_btree_key_addr(cur, lrecs, left);
2335 rkp = xfs_btree_key_addr(cur, 1, right);
2336
2337 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2338 rpp = xfs_btree_ptr_addr(cur, 1, right);
2339 #ifdef DEBUG
2340 error = xfs_btree_check_ptr(cur, rpp, 0, level);
2341 if (error)
2342 goto error0;
2343 #endif
2344 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2345 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2346
2347 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2348 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2349
2350 ASSERT(cur->bc_ops->keys_inorder(cur,
2351 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2352 } else {
2353 /* It's a leaf. Move records. */
2354 union xfs_btree_rec *lrp; /* left record pointer */
2355
2356 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2357 rrp = xfs_btree_rec_addr(cur, 1, right);
2358
2359 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2360 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2361
2362 ASSERT(cur->bc_ops->recs_inorder(cur,
2363 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2364 }
2365
2366 xfs_btree_set_numrecs(left, lrecs);
2367 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2368
2369 xfs_btree_set_numrecs(right, rrecs);
2370 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2371
2372 /*
2373 * Slide the contents of right down one entry.
2374 */
2375 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2376 if (level > 0) {
2377 /* It's a nonleaf. operate on keys and ptrs */
2378 #ifdef DEBUG
2379 int i; /* loop index */
2380
2381 for (i = 0; i < rrecs; i++) {
2382 error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2383 if (error)
2384 goto error0;
2385 }
2386 #endif
2387 xfs_btree_shift_keys(cur,
2388 xfs_btree_key_addr(cur, 2, right),
2389 -1, rrecs);
2390 xfs_btree_shift_ptrs(cur,
2391 xfs_btree_ptr_addr(cur, 2, right),
2392 -1, rrecs);
2393
2394 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2395 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2396 } else {
2397 /* It's a leaf. operate on records */
2398 xfs_btree_shift_recs(cur,
2399 xfs_btree_rec_addr(cur, 2, right),
2400 -1, rrecs);
2401 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2402 }
2403
2404 /*
2405 * Using a temporary cursor, update the parent key values of the
2406 * block on the left.
2407 */
2408 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2409 error = xfs_btree_dup_cursor(cur, &tcur);
2410 if (error)
2411 goto error0;
2412 i = xfs_btree_firstrec(tcur, level);
2413 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2414
2415 error = xfs_btree_decrement(tcur, level, &i);
2416 if (error)
2417 goto error1;
2418
2419 /* Update the parent high keys of the left block, if needed. */
2420 error = xfs_btree_update_keys(tcur, level);
2421 if (error)
2422 goto error1;
2423
2424 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2425 }
2426
2427 /* Update the parent keys of the right block. */
2428 error = xfs_btree_update_keys(cur, level);
2429 if (error)
2430 goto error0;
2431
2432 /* Slide the cursor value left one. */
2433 cur->bc_ptrs[level]--;
2434
2435 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2436 *stat = 1;
2437 return 0;
2438
2439 out0:
2440 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2441 *stat = 0;
2442 return 0;
2443
2444 error0:
2445 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2446 return error;
2447
2448 error1:
2449 XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2450 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2451 return error;
2452 }
2453
2454 /*
2455 * Move 1 record right from cur/level if possible.
2456 * Update cur to reflect the new path.
2457 */
2458 STATIC int /* error */
2459 xfs_btree_rshift(
2460 struct xfs_btree_cur *cur,
2461 int level,
2462 int *stat) /* success/failure */
2463 {
2464 struct xfs_buf *lbp; /* left buffer pointer */
2465 struct xfs_btree_block *left; /* left btree block */
2466 struct xfs_buf *rbp; /* right buffer pointer */
2467 struct xfs_btree_block *right; /* right btree block */
2468 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2469 union xfs_btree_ptr rptr; /* right block pointer */
2470 union xfs_btree_key *rkp; /* right btree key */
2471 int rrecs; /* right record count */
2472 int lrecs; /* left record count */
2473 int error; /* error return value */
2474 int i; /* loop counter */
2475
2476 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2477 XFS_BTREE_TRACE_ARGI(cur, level);
2478
2479 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2480 (level == cur->bc_nlevels - 1))
2481 goto out0;
2482
2483 /* Set up variables for this block as "left". */
2484 left = xfs_btree_get_block(cur, level, &lbp);
2485
2486 #ifdef DEBUG
2487 error = xfs_btree_check_block(cur, left, level, lbp);
2488 if (error)
2489 goto error0;
2490 #endif
2491
2492 /* If we've got no right sibling then we can't shift an entry right. */
2493 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2494 if (xfs_btree_ptr_is_null(cur, &rptr))
2495 goto out0;
2496
2497 /*
2498 * If the cursor entry is the one that would be moved, don't
2499 * do it... it's too complicated.
2500 */
2501 lrecs = xfs_btree_get_numrecs(left);
2502 if (cur->bc_ptrs[level] >= lrecs)
2503 goto out0;
2504
2505 /* Set up the right neighbor as "right". */
2506 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2507 if (error)
2508 goto error0;
2509
2510 /* If it's full, it can't take another entry. */
2511 rrecs = xfs_btree_get_numrecs(right);
2512 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2513 goto out0;
2514
2515 XFS_BTREE_STATS_INC(cur, rshift);
2516 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2517
2518 /*
2519 * Make a hole at the start of the right neighbor block, then
2520 * copy the last left block entry to the hole.
2521 */
2522 if (level > 0) {
2523 /* It's a nonleaf. make a hole in the keys and ptrs */
2524 union xfs_btree_key *lkp;
2525 union xfs_btree_ptr *lpp;
2526 union xfs_btree_ptr *rpp;
2527
2528 lkp = xfs_btree_key_addr(cur, lrecs, left);
2529 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2530 rkp = xfs_btree_key_addr(cur, 1, right);
2531 rpp = xfs_btree_ptr_addr(cur, 1, right);
2532
2533 #ifdef DEBUG
2534 for (i = rrecs - 1; i >= 0; i--) {
2535 error = xfs_btree_check_ptr(cur, rpp, i, level);
2536 if (error)
2537 goto error0;
2538 }
2539 #endif
2540
2541 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2542 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2543
2544 #ifdef DEBUG
2545 error = xfs_btree_check_ptr(cur, lpp, 0, level);
2546 if (error)
2547 goto error0;
2548 #endif
2549
2550 /* Now put the new data in, and log it. */
2551 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2552 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2553
2554 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2555 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2556
2557 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2558 xfs_btree_key_addr(cur, 2, right)));
2559 } else {
2560 /* It's a leaf. make a hole in the records */
2561 union xfs_btree_rec *lrp;
2562 union xfs_btree_rec *rrp;
2563
2564 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2565 rrp = xfs_btree_rec_addr(cur, 1, right);
2566
2567 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2568
2569 /* Now put the new data in, and log it. */
2570 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2571 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2572 }
2573
2574 /*
2575 * Decrement and log left's numrecs, bump and log right's numrecs.
2576 */
2577 xfs_btree_set_numrecs(left, --lrecs);
2578 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2579
2580 xfs_btree_set_numrecs(right, ++rrecs);
2581 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2582
2583 /*
2584 * Using a temporary cursor, update the parent key values of the
2585 * block on the right.
2586 */
2587 error = xfs_btree_dup_cursor(cur, &tcur);
2588 if (error)
2589 goto error0;
2590 i = xfs_btree_lastrec(tcur, level);
2591 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2592
2593 error = xfs_btree_increment(tcur, level, &i);
2594 if (error)
2595 goto error1;
2596
2597 /* Update the parent high keys of the left block, if needed. */
2598 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2599 error = xfs_btree_update_keys(cur, level);
2600 if (error)
2601 goto error1;
2602 }
2603
2604 /* Update the parent keys of the right block. */
2605 error = xfs_btree_update_keys(tcur, level);
2606 if (error)
2607 goto error1;
2608
2609 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2610
2611 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2612 *stat = 1;
2613 return 0;
2614
2615 out0:
2616 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2617 *stat = 0;
2618 return 0;
2619
2620 error0:
2621 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2622 return error;
2623
2624 error1:
2625 XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2626 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2627 return error;
2628 }
2629
2630 /*
2631 * Split cur/level block in half.
2632 * Return new block number and the key to its first
2633 * record (to be inserted into parent).
2634 */
2635 STATIC int /* error */
2636 __xfs_btree_split(
2637 struct xfs_btree_cur *cur,
2638 int level,
2639 union xfs_btree_ptr *ptrp,
2640 union xfs_btree_key *key,
2641 struct xfs_btree_cur **curp,
2642 int *stat) /* success/failure */
2643 {
2644 union xfs_btree_ptr lptr; /* left sibling block ptr */
2645 struct xfs_buf *lbp; /* left buffer pointer */
2646 struct xfs_btree_block *left; /* left btree block */
2647 union xfs_btree_ptr rptr; /* right sibling block ptr */
2648 struct xfs_buf *rbp; /* right buffer pointer */
2649 struct xfs_btree_block *right; /* right btree block */
2650 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2651 struct xfs_buf *rrbp; /* right-right buffer pointer */
2652 struct xfs_btree_block *rrblock; /* right-right btree block */
2653 int lrecs;
2654 int rrecs;
2655 int src_index;
2656 int error; /* error return value */
2657 #ifdef DEBUG
2658 int i;
2659 #endif
2660
2661 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2662 XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
2663
2664 XFS_BTREE_STATS_INC(cur, split);
2665
2666 /* Set up left block (current one). */
2667 left = xfs_btree_get_block(cur, level, &lbp);
2668
2669 #ifdef DEBUG
2670 error = xfs_btree_check_block(cur, left, level, lbp);
2671 if (error)
2672 goto error0;
2673 #endif
2674
2675 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2676
2677 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2678 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2679 if (error)
2680 goto error0;
2681 if (*stat == 0)
2682 goto out0;
2683 XFS_BTREE_STATS_INC(cur, alloc);
2684
2685 /* Set up the new block as "right". */
2686 error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2687 if (error)
2688 goto error0;
2689
2690 /* Fill in the btree header for the new right block. */
2691 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2692
2693 /*
2694 * Split the entries between the old and the new block evenly.
2695 * Make sure that if there's an odd number of entries now, that
2696 * each new block will have the same number of entries.
2697 */
2698 lrecs = xfs_btree_get_numrecs(left);
2699 rrecs = lrecs / 2;
2700 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2701 rrecs++;
2702 src_index = (lrecs - rrecs + 1);
2703
2704 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2705
2706 /* Adjust numrecs for the later get_*_keys() calls. */
2707 lrecs -= rrecs;
2708 xfs_btree_set_numrecs(left, lrecs);
2709 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2710
2711 /*
2712 * Copy btree block entries from the left block over to the
2713 * new block, the right. Update the right block and log the
2714 * changes.
2715 */
2716 if (level > 0) {
2717 /* It's a non-leaf. Move keys and pointers. */
2718 union xfs_btree_key *lkp; /* left btree key */
2719 union xfs_btree_ptr *lpp; /* left address pointer */
2720 union xfs_btree_key *rkp; /* right btree key */
2721 union xfs_btree_ptr *rpp; /* right address pointer */
2722
2723 lkp = xfs_btree_key_addr(cur, src_index, left);
2724 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2725 rkp = xfs_btree_key_addr(cur, 1, right);
2726 rpp = xfs_btree_ptr_addr(cur, 1, right);
2727
2728 #ifdef DEBUG
2729 for (i = src_index; i < rrecs; i++) {
2730 error = xfs_btree_check_ptr(cur, lpp, i, level);
2731 if (error)
2732 goto error0;
2733 }
2734 #endif
2735
2736 /* Copy the keys & pointers to the new block. */
2737 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2738 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2739
2740 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2741 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2742
2743 /* Stash the keys of the new block for later insertion. */
2744 xfs_btree_get_node_keys(cur, right, key);
2745 } else {
2746 /* It's a leaf. Move records. */
2747 union xfs_btree_rec *lrp; /* left record pointer */
2748 union xfs_btree_rec *rrp; /* right record pointer */
2749
2750 lrp = xfs_btree_rec_addr(cur, src_index, left);
2751 rrp = xfs_btree_rec_addr(cur, 1, right);
2752
2753 /* Copy records to the new block. */
2754 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2755 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2756
2757 /* Stash the keys of the new block for later insertion. */
2758 xfs_btree_get_leaf_keys(cur, right, key);
2759 }
2760
2761 /*
2762 * Find the left block number by looking in the buffer.
2763 * Adjust sibling pointers.
2764 */
2765 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2766 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2767 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2768 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2769
2770 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2771 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2772
2773 /*
2774 * If there's a block to the new block's right, make that block
2775 * point back to right instead of to left.
2776 */
2777 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2778 error = xfs_btree_read_buf_block(cur, &rrptr,
2779 0, &rrblock, &rrbp);
2780 if (error)
2781 goto error0;
2782 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2783 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2784 }
2785
2786 /* Update the parent high keys of the left block, if needed. */
2787 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2788 error = xfs_btree_update_keys(cur, level);
2789 if (error)
2790 goto error0;
2791 }
2792
2793 /*
2794 * If the cursor is really in the right block, move it there.
2795 * If it's just pointing past the last entry in left, then we'll
2796 * insert there, so don't change anything in that case.
2797 */
2798 if (cur->bc_ptrs[level] > lrecs + 1) {
2799 xfs_btree_setbuf(cur, level, rbp);
2800 cur->bc_ptrs[level] -= lrecs;
2801 }
2802 /*
2803 * If there are more levels, we'll need another cursor which refers
2804 * the right block, no matter where this cursor was.
2805 */
2806 if (level + 1 < cur->bc_nlevels) {
2807 error = xfs_btree_dup_cursor(cur, curp);
2808 if (error)
2809 goto error0;
2810 (*curp)->bc_ptrs[level + 1]++;
2811 }
2812 *ptrp = rptr;
2813 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2814 *stat = 1;
2815 return 0;
2816 out0:
2817 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2818 *stat = 0;
2819 return 0;
2820
2821 error0:
2822 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2823 return error;
2824 }
2825
2826 struct xfs_btree_split_args {
2827 struct xfs_btree_cur *cur;
2828 int level;
2829 union xfs_btree_ptr *ptrp;
2830 union xfs_btree_key *key;
2831 struct xfs_btree_cur **curp;
2832 int *stat; /* success/failure */
2833 int result;
2834 bool kswapd; /* allocation in kswapd context */
2835 struct completion *done;
2836 struct work_struct work;
2837 };
2838
2839 /*
2840 * Stack switching interfaces for allocation
2841 */
2842 static void
2843 xfs_btree_split_worker(
2844 struct work_struct *work)
2845 {
2846 struct xfs_btree_split_args *args = container_of(work,
2847 struct xfs_btree_split_args, work);
2848 unsigned long pflags;
2849 unsigned long new_pflags = PF_FSTRANS;
2850
2851 /*
2852 * we are in a transaction context here, but may also be doing work
2853 * in kswapd context, and hence we may need to inherit that state
2854 * temporarily to ensure that we don't block waiting for memory reclaim
2855 * in any way.
2856 */
2857 if (args->kswapd)
2858 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2859
2860 current_set_flags_nested(&pflags, new_pflags);
2861
2862 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2863 args->key, args->curp, args->stat);
2864 complete(args->done);
2865
2866 current_restore_flags_nested(&pflags, new_pflags);
2867 }
2868
2869 /*
2870 * BMBT split requests often come in with little stack to work on. Push
2871 * them off to a worker thread so there is lots of stack to use. For the other
2872 * btree types, just call directly to avoid the context switch overhead here.
2873 */
2874 STATIC int /* error */
2875 xfs_btree_split(
2876 struct xfs_btree_cur *cur,
2877 int level,
2878 union xfs_btree_ptr *ptrp,
2879 union xfs_btree_key *key,
2880 struct xfs_btree_cur **curp,
2881 int *stat) /* success/failure */
2882 {
2883 struct xfs_btree_split_args args;
2884 DECLARE_COMPLETION_ONSTACK(done);
2885
2886 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2887 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2888
2889 args.cur = cur;
2890 args.level = level;
2891 args.ptrp = ptrp;
2892 args.key = key;
2893 args.curp = curp;
2894 args.stat = stat;
2895 args.done = &done;
2896 args.kswapd = current_is_kswapd();
2897 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2898 queue_work(xfs_alloc_wq, &args.work);
2899 wait_for_completion(&done);
2900 destroy_work_on_stack(&args.work);
2901 return args.result;
2902 }
2903
2904
2905 /*
2906 * Copy the old inode root contents into a real block and make the
2907 * broot point to it.
2908 */
2909 int /* error */
2910 xfs_btree_new_iroot(
2911 struct xfs_btree_cur *cur, /* btree cursor */
2912 int *logflags, /* logging flags for inode */
2913 int *stat) /* return status - 0 fail */
2914 {
2915 struct xfs_buf *cbp; /* buffer for cblock */
2916 struct xfs_btree_block *block; /* btree block */
2917 struct xfs_btree_block *cblock; /* child btree block */
2918 union xfs_btree_key *ckp; /* child key pointer */
2919 union xfs_btree_ptr *cpp; /* child ptr pointer */
2920 union xfs_btree_key *kp; /* pointer to btree key */
2921 union xfs_btree_ptr *pp; /* pointer to block addr */
2922 union xfs_btree_ptr nptr; /* new block addr */
2923 int level; /* btree level */
2924 int error; /* error return code */
2925 #ifdef DEBUG
2926 int i; /* loop counter */
2927 #endif
2928
2929 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2930 XFS_BTREE_STATS_INC(cur, newroot);
2931
2932 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2933
2934 level = cur->bc_nlevels - 1;
2935
2936 block = xfs_btree_get_iroot(cur);
2937 pp = xfs_btree_ptr_addr(cur, 1, block);
2938
2939 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2940 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2941 if (error)
2942 goto error0;
2943 if (*stat == 0) {
2944 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2945 return 0;
2946 }
2947 XFS_BTREE_STATS_INC(cur, alloc);
2948
2949 /* Copy the root into a real block. */
2950 error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2951 if (error)
2952 goto error0;
2953
2954 /*
2955 * we can't just memcpy() the root in for CRC enabled btree blocks.
2956 * In that case have to also ensure the blkno remains correct
2957 */
2958 memcpy(cblock, block, xfs_btree_block_len(cur));
2959 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2960 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2961 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2962 else
2963 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2964 }
2965
2966 be16_add_cpu(&block->bb_level, 1);
2967 xfs_btree_set_numrecs(block, 1);
2968 cur->bc_nlevels++;
2969 cur->bc_ptrs[level + 1] = 1;
2970
2971 kp = xfs_btree_key_addr(cur, 1, block);
2972 ckp = xfs_btree_key_addr(cur, 1, cblock);
2973 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2974
2975 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2976 #ifdef DEBUG
2977 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2978 error = xfs_btree_check_ptr(cur, pp, i, level);
2979 if (error)
2980 goto error0;
2981 }
2982 #endif
2983 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2984
2985 #ifdef DEBUG
2986 error = xfs_btree_check_ptr(cur, &nptr, 0, level);
2987 if (error)
2988 goto error0;
2989 #endif
2990 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2991
2992 xfs_iroot_realloc(cur->bc_private.b.ip,
2993 1 - xfs_btree_get_numrecs(cblock),
2994 cur->bc_private.b.whichfork);
2995
2996 xfs_btree_setbuf(cur, level, cbp);
2997
2998 /*
2999 * Do all this logging at the end so that
3000 * the root is at the right level.
3001 */
3002 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3003 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3004 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3005
3006 *logflags |=
3007 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3008 *stat = 1;
3009 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3010 return 0;
3011 error0:
3012 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3013 return error;
3014 }
3015
3016 /*
3017 * Allocate a new root block, fill it in.
3018 */
3019 STATIC int /* error */
3020 xfs_btree_new_root(
3021 struct xfs_btree_cur *cur, /* btree cursor */
3022 int *stat) /* success/failure */
3023 {
3024 struct xfs_btree_block *block; /* one half of the old root block */
3025 struct xfs_buf *bp; /* buffer containing block */
3026 int error; /* error return value */
3027 struct xfs_buf *lbp; /* left buffer pointer */
3028 struct xfs_btree_block *left; /* left btree block */
3029 struct xfs_buf *nbp; /* new (root) buffer */
3030 struct xfs_btree_block *new; /* new (root) btree block */
3031 int nptr; /* new value for key index, 1 or 2 */
3032 struct xfs_buf *rbp; /* right buffer pointer */
3033 struct xfs_btree_block *right; /* right btree block */
3034 union xfs_btree_ptr rptr;
3035 union xfs_btree_ptr lptr;
3036
3037 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3038 XFS_BTREE_STATS_INC(cur, newroot);
3039
3040 /* initialise our start point from the cursor */
3041 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3042
3043 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3044 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3045 if (error)
3046 goto error0;
3047 if (*stat == 0)
3048 goto out0;
3049 XFS_BTREE_STATS_INC(cur, alloc);
3050
3051 /* Set up the new block. */
3052 error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3053 if (error)
3054 goto error0;
3055
3056 /* Set the root in the holding structure increasing the level by 1. */
3057 cur->bc_ops->set_root(cur, &lptr, 1);
3058
3059 /*
3060 * At the previous root level there are now two blocks: the old root,
3061 * and the new block generated when it was split. We don't know which
3062 * one the cursor is pointing at, so we set up variables "left" and
3063 * "right" for each case.
3064 */
3065 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3066
3067 #ifdef DEBUG
3068 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3069 if (error)
3070 goto error0;
3071 #endif
3072
3073 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3074 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3075 /* Our block is left, pick up the right block. */
3076 lbp = bp;
3077 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3078 left = block;
3079 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3080 if (error)
3081 goto error0;
3082 bp = rbp;
3083 nptr = 1;
3084 } else {
3085 /* Our block is right, pick up the left block. */
3086 rbp = bp;
3087 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3088 right = block;
3089 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3090 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3091 if (error)
3092 goto error0;
3093 bp = lbp;
3094 nptr = 2;
3095 }
3096
3097 /* Fill in the new block's btree header and log it. */
3098 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3099 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3100 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3101 !xfs_btree_ptr_is_null(cur, &rptr));
3102
3103 /* Fill in the key data in the new root. */
3104 if (xfs_btree_get_level(left) > 0) {
3105 /*
3106 * Get the keys for the left block's keys and put them directly
3107 * in the parent block. Do the same for the right block.
3108 */
3109 xfs_btree_get_node_keys(cur, left,
3110 xfs_btree_key_addr(cur, 1, new));
3111 xfs_btree_get_node_keys(cur, right,
3112 xfs_btree_key_addr(cur, 2, new));
3113 } else {
3114 /*
3115 * Get the keys for the left block's records and put them
3116 * directly in the parent block. Do the same for the right
3117 * block.
3118 */
3119 xfs_btree_get_leaf_keys(cur, left,
3120 xfs_btree_key_addr(cur, 1, new));
3121 xfs_btree_get_leaf_keys(cur, right,
3122 xfs_btree_key_addr(cur, 2, new));
3123 }
3124 xfs_btree_log_keys(cur, nbp, 1, 2);
3125
3126 /* Fill in the pointer data in the new root. */
3127 xfs_btree_copy_ptrs(cur,
3128 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3129 xfs_btree_copy_ptrs(cur,
3130 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3131 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3132
3133 /* Fix up the cursor. */
3134 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3135 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3136 cur->bc_nlevels++;
3137 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3138 *stat = 1;
3139 return 0;
3140 error0:
3141 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3142 return error;
3143 out0:
3144 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3145 *stat = 0;
3146 return 0;
3147 }
3148
3149 STATIC int
3150 xfs_btree_make_block_unfull(
3151 struct xfs_btree_cur *cur, /* btree cursor */
3152 int level, /* btree level */
3153 int numrecs,/* # of recs in block */
3154 int *oindex,/* old tree index */
3155 int *index, /* new tree index */
3156 union xfs_btree_ptr *nptr, /* new btree ptr */
3157 struct xfs_btree_cur **ncur, /* new btree cursor */
3158 union xfs_btree_key *key, /* key of new block */
3159 int *stat)
3160 {
3161 int error = 0;
3162
3163 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3164 level == cur->bc_nlevels - 1) {
3165 struct xfs_inode *ip = cur->bc_private.b.ip;
3166
3167 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3168 /* A root block that can be made bigger. */
3169 xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3170 *stat = 1;
3171 } else {
3172 /* A root block that needs replacing */
3173 int logflags = 0;
3174
3175 error = xfs_btree_new_iroot(cur, &logflags, stat);
3176 if (error || *stat == 0)
3177 return error;
3178
3179 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3180 }
3181
3182 return 0;
3183 }
3184
3185 /* First, try shifting an entry to the right neighbor. */
3186 error = xfs_btree_rshift(cur, level, stat);
3187 if (error || *stat)
3188 return error;
3189
3190 /* Next, try shifting an entry to the left neighbor. */
3191 error = xfs_btree_lshift(cur, level, stat);
3192 if (error)
3193 return error;
3194
3195 if (*stat) {
3196 *oindex = *index = cur->bc_ptrs[level];
3197 return 0;
3198 }
3199
3200 /*
3201 * Next, try splitting the current block in half.
3202 *
3203 * If this works we have to re-set our variables because we
3204 * could be in a different block now.
3205 */
3206 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3207 if (error || *stat == 0)
3208 return error;
3209
3210
3211 *index = cur->bc_ptrs[level];
3212 return 0;
3213 }
3214
3215 /*
3216 * Insert one record/level. Return information to the caller
3217 * allowing the next level up to proceed if necessary.
3218 */
3219 STATIC int
3220 xfs_btree_insrec(
3221 struct xfs_btree_cur *cur, /* btree cursor */
3222 int level, /* level to insert record at */
3223 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3224 union xfs_btree_rec *rec, /* record to insert */
3225 union xfs_btree_key *key, /* i/o: block key for ptrp */
3226 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3227 int *stat) /* success/failure */
3228 {
3229 struct xfs_btree_block *block; /* btree block */
3230 struct xfs_buf *bp; /* buffer for block */
3231 union xfs_btree_ptr nptr; /* new block ptr */
3232 struct xfs_btree_cur *ncur; /* new btree cursor */
3233 union xfs_btree_key nkey; /* new block key */
3234 union xfs_btree_key *lkey;
3235 int optr; /* old key/record index */
3236 int ptr; /* key/record index */
3237 int numrecs;/* number of records */
3238 int error; /* error return value */
3239 #ifdef DEBUG
3240 int i;
3241 #endif
3242 xfs_daddr_t old_bn;
3243
3244 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3245 XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
3246
3247 ncur = NULL;
3248 lkey = &nkey;
3249
3250 /*
3251 * If we have an external root pointer, and we've made it to the
3252 * root level, allocate a new root block and we're done.
3253 */
3254 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3255 (level >= cur->bc_nlevels)) {
3256 error = xfs_btree_new_root(cur, stat);
3257 xfs_btree_set_ptr_null(cur, ptrp);
3258
3259 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3260 return error;
3261 }
3262
3263 /* If we're off the left edge, return failure. */
3264 ptr = cur->bc_ptrs[level];
3265 if (ptr == 0) {
3266 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3267 *stat = 0;
3268 return 0;
3269 }
3270
3271 optr = ptr;
3272
3273 XFS_BTREE_STATS_INC(cur, insrec);
3274
3275 /* Get pointers to the btree buffer and block. */
3276 block = xfs_btree_get_block(cur, level, &bp);
3277 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3278 numrecs = xfs_btree_get_numrecs(block);
3279
3280 #ifdef DEBUG
3281 error = xfs_btree_check_block(cur, block, level, bp);
3282 if (error)
3283 goto error0;
3284
3285 /* Check that the new entry is being inserted in the right place. */
3286 if (ptr <= numrecs) {
3287 if (level == 0) {
3288 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3289 xfs_btree_rec_addr(cur, ptr, block)));
3290 } else {
3291 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3292 xfs_btree_key_addr(cur, ptr, block)));
3293 }
3294 }
3295 #endif
3296
3297 /*
3298 * If the block is full, we can't insert the new entry until we
3299 * make the block un-full.
3300 */
3301 xfs_btree_set_ptr_null(cur, &nptr);
3302 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3303 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3304 &optr, &ptr, &nptr, &ncur, lkey, stat);
3305 if (error || *stat == 0)
3306 goto error0;
3307 }
3308
3309 /*
3310 * The current block may have changed if the block was
3311 * previously full and we have just made space in it.
3312 */
3313 block = xfs_btree_get_block(cur, level, &bp);
3314 numrecs = xfs_btree_get_numrecs(block);
3315
3316 #ifdef DEBUG
3317 error = xfs_btree_check_block(cur, block, level, bp);
3318 if (error)
3319 return error;
3320 #endif
3321
3322 /*
3323 * At this point we know there's room for our new entry in the block
3324 * we're pointing at.
3325 */
3326 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3327
3328 if (level > 0) {
3329 /* It's a nonleaf. make a hole in the keys and ptrs */
3330 union xfs_btree_key *kp;
3331 union xfs_btree_ptr *pp;
3332
3333 kp = xfs_btree_key_addr(cur, ptr, block);
3334 pp = xfs_btree_ptr_addr(cur, ptr, block);
3335
3336 #ifdef DEBUG
3337 for (i = numrecs - ptr; i >= 0; i--) {
3338 error = xfs_btree_check_ptr(cur, pp, i, level);
3339 if (error)
3340 return error;
3341 }
3342 #endif
3343
3344 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3345 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3346
3347 #ifdef DEBUG
3348 error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3349 if (error)
3350 goto error0;
3351 #endif
3352
3353 /* Now put the new data in, bump numrecs and log it. */
3354 xfs_btree_copy_keys(cur, kp, key, 1);
3355 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3356 numrecs++;
3357 xfs_btree_set_numrecs(block, numrecs);
3358 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3359 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3360 #ifdef DEBUG
3361 if (ptr < numrecs) {
3362 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3363 xfs_btree_key_addr(cur, ptr + 1, block)));
3364 }
3365 #endif
3366 } else {
3367 /* It's a leaf. make a hole in the records */
3368 union xfs_btree_rec *rp;
3369
3370 rp = xfs_btree_rec_addr(cur, ptr, block);
3371
3372 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3373
3374 /* Now put the new data in, bump numrecs and log it. */
3375 xfs_btree_copy_recs(cur, rp, rec, 1);
3376 xfs_btree_set_numrecs(block, ++numrecs);
3377 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3378 #ifdef DEBUG
3379 if (ptr < numrecs) {
3380 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3381 xfs_btree_rec_addr(cur, ptr + 1, block)));
3382 }
3383 #endif
3384 }
3385
3386 /* Log the new number of records in the btree header. */
3387 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3388
3389 /*
3390 * If we just inserted into a new tree block, we have to
3391 * recalculate nkey here because nkey is out of date.
3392 *
3393 * Otherwise we're just updating an existing block (having shoved
3394 * some records into the new tree block), so use the regular key
3395 * update mechanism.
3396 */
3397 if (bp && bp->b_bn != old_bn) {
3398 xfs_btree_get_keys(cur, block, lkey);
3399 } else if (xfs_btree_needs_key_update(cur, optr)) {
3400 error = xfs_btree_update_keys(cur, level);
3401 if (error)
3402 goto error0;
3403 }
3404
3405 /*
3406 * If we are tracking the last record in the tree and
3407 * we are at the far right edge of the tree, update it.
3408 */
3409 if (xfs_btree_is_lastrec(cur, block, level)) {
3410 cur->bc_ops->update_lastrec(cur, block, rec,
3411 ptr, LASTREC_INSREC);
3412 }
3413
3414 /*
3415 * Return the new block number, if any.
3416 * If there is one, give back a record value and a cursor too.
3417 */
3418 *ptrp = nptr;
3419 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3420 xfs_btree_copy_keys(cur, key, lkey, 1);
3421 *curp = ncur;
3422 }
3423
3424 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3425 *stat = 1;
3426 return 0;
3427
3428 error0:
3429 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3430 return error;
3431 }
3432
3433 /*
3434 * Insert the record at the point referenced by cur.
3435 *
3436 * A multi-level split of the tree on insert will invalidate the original
3437 * cursor. All callers of this function should assume that the cursor is
3438 * no longer valid and revalidate it.
3439 */
3440 int
3441 xfs_btree_insert(
3442 struct xfs_btree_cur *cur,
3443 int *stat)
3444 {
3445 int error; /* error return value */
3446 int i; /* result value, 0 for failure */
3447 int level; /* current level number in btree */
3448 union xfs_btree_ptr nptr; /* new block number (split result) */
3449 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3450 struct xfs_btree_cur *pcur; /* previous level's cursor */
3451 union xfs_btree_key bkey; /* key of block to insert */
3452 union xfs_btree_key *key;
3453 union xfs_btree_rec rec; /* record to insert */
3454
3455 level = 0;
3456 ncur = NULL;
3457 pcur = cur;
3458 key = &bkey;
3459
3460 xfs_btree_set_ptr_null(cur, &nptr);
3461
3462 /* Make a key out of the record data to be inserted, and save it. */
3463 cur->bc_ops->init_rec_from_cur(cur, &rec);
3464 cur->bc_ops->init_key_from_rec(key, &rec);
3465
3466 /*
3467 * Loop going up the tree, starting at the leaf level.
3468 * Stop when we don't get a split block, that must mean that
3469 * the insert is finished with this level.
3470 */
3471 do {
3472 /*
3473 * Insert nrec/nptr into this level of the tree.
3474 * Note if we fail, nptr will be null.
3475 */
3476 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3477 &ncur, &i);
3478 if (error) {
3479 if (pcur != cur)
3480 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3481 goto error0;
3482 }
3483
3484 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3485 level++;
3486
3487 /*
3488 * See if the cursor we just used is trash.
3489 * Can't trash the caller's cursor, but otherwise we should
3490 * if ncur is a new cursor or we're about to be done.
3491 */
3492 if (pcur != cur &&
3493 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3494 /* Save the state from the cursor before we trash it */
3495 if (cur->bc_ops->update_cursor)
3496 cur->bc_ops->update_cursor(pcur, cur);
3497 cur->bc_nlevels = pcur->bc_nlevels;
3498 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3499 }
3500 /* If we got a new cursor, switch to it. */
3501 if (ncur) {
3502 pcur = ncur;
3503 ncur = NULL;
3504 }
3505 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3506
3507 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3508 *stat = i;
3509 return 0;
3510 error0:
3511 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3512 return error;
3513 }
3514
3515 /*
3516 * Try to merge a non-leaf block back into the inode root.
3517 *
3518 * Note: the killroot names comes from the fact that we're effectively
3519 * killing the old root block. But because we can't just delete the
3520 * inode we have to copy the single block it was pointing to into the
3521 * inode.
3522 */
3523 STATIC int
3524 xfs_btree_kill_iroot(
3525 struct xfs_btree_cur *cur)
3526 {
3527 int whichfork = cur->bc_private.b.whichfork;
3528 struct xfs_inode *ip = cur->bc_private.b.ip;
3529 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3530 struct xfs_btree_block *block;
3531 struct xfs_btree_block *cblock;
3532 union xfs_btree_key *kp;
3533 union xfs_btree_key *ckp;
3534 union xfs_btree_ptr *pp;
3535 union xfs_btree_ptr *cpp;
3536 struct xfs_buf *cbp;
3537 int level;
3538 int index;
3539 int numrecs;
3540 int error;
3541 #ifdef DEBUG
3542 union xfs_btree_ptr ptr;
3543 int i;
3544 #endif
3545
3546 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3547
3548 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3549 ASSERT(cur->bc_nlevels > 1);
3550
3551 /*
3552 * Don't deal with the root block needs to be a leaf case.
3553 * We're just going to turn the thing back into extents anyway.
3554 */
3555 level = cur->bc_nlevels - 1;
3556 if (level == 1)
3557 goto out0;
3558
3559 /*
3560 * Give up if the root has multiple children.
3561 */
3562 block = xfs_btree_get_iroot(cur);
3563 if (xfs_btree_get_numrecs(block) != 1)
3564 goto out0;
3565
3566 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3567 numrecs = xfs_btree_get_numrecs(cblock);
3568
3569 /*
3570 * Only do this if the next level will fit.
3571 * Then the data must be copied up to the inode,
3572 * instead of freeing the root you free the next level.
3573 */
3574 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3575 goto out0;
3576
3577 XFS_BTREE_STATS_INC(cur, killroot);
3578
3579 #ifdef DEBUG
3580 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3581 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3582 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3583 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3584 #endif
3585
3586 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3587 if (index) {
3588 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3589 cur->bc_private.b.whichfork);
3590 block = ifp->if_broot;
3591 }
3592
3593 be16_add_cpu(&block->bb_numrecs, index);
3594 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3595
3596 kp = xfs_btree_key_addr(cur, 1, block);
3597 ckp = xfs_btree_key_addr(cur, 1, cblock);
3598 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3599
3600 pp = xfs_btree_ptr_addr(cur, 1, block);
3601 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3602 #ifdef DEBUG
3603 for (i = 0; i < numrecs; i++) {
3604 error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3605 if (error) {
3606 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3607 return error;
3608 }
3609 }
3610 #endif
3611 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3612
3613 error = xfs_btree_free_block(cur, cbp);
3614 if (error) {
3615 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3616 return error;
3617 }
3618
3619 cur->bc_bufs[level - 1] = NULL;
3620 be16_add_cpu(&block->bb_level, -1);
3621 xfs_trans_log_inode(cur->bc_tp, ip,
3622 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3623 cur->bc_nlevels--;
3624 out0:
3625 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3626 return 0;
3627 }
3628
3629 /*
3630 * Kill the current root node, and replace it with it's only child node.
3631 */
3632 STATIC int
3633 xfs_btree_kill_root(
3634 struct xfs_btree_cur *cur,
3635 struct xfs_buf *bp,
3636 int level,
3637 union xfs_btree_ptr *newroot)
3638 {
3639 int error;
3640
3641 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3642 XFS_BTREE_STATS_INC(cur, killroot);
3643
3644 /*
3645 * Update the root pointer, decreasing the level by 1 and then
3646 * free the old root.
3647 */
3648 cur->bc_ops->set_root(cur, newroot, -1);
3649
3650 error = xfs_btree_free_block(cur, bp);
3651 if (error) {
3652 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3653 return error;
3654 }
3655
3656 cur->bc_bufs[level] = NULL;
3657 cur->bc_ra[level] = 0;
3658 cur->bc_nlevels--;
3659
3660 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3661 return 0;
3662 }
3663
3664 STATIC int
3665 xfs_btree_dec_cursor(
3666 struct xfs_btree_cur *cur,
3667 int level,
3668 int *stat)
3669 {
3670 int error;
3671 int i;
3672
3673 if (level > 0) {
3674 error = xfs_btree_decrement(cur, level, &i);
3675 if (error)
3676 return error;
3677 }
3678
3679 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3680 *stat = 1;
3681 return 0;
3682 }
3683
3684 /*
3685 * Single level of the btree record deletion routine.
3686 * Delete record pointed to by cur/level.
3687 * Remove the record from its block then rebalance the tree.
3688 * Return 0 for error, 1 for done, 2 to go on to the next level.
3689 */
3690 STATIC int /* error */
3691 xfs_btree_delrec(
3692 struct xfs_btree_cur *cur, /* btree cursor */
3693 int level, /* level removing record from */
3694 int *stat) /* fail/done/go-on */
3695 {
3696 struct xfs_btree_block *block; /* btree block */
3697 union xfs_btree_ptr cptr; /* current block ptr */
3698 struct xfs_buf *bp; /* buffer for block */
3699 int error; /* error return value */
3700 int i; /* loop counter */
3701 union xfs_btree_ptr lptr; /* left sibling block ptr */
3702 struct xfs_buf *lbp; /* left buffer pointer */
3703 struct xfs_btree_block *left; /* left btree block */
3704 int lrecs = 0; /* left record count */
3705 int ptr; /* key/record index */
3706 union xfs_btree_ptr rptr; /* right sibling block ptr */
3707 struct xfs_buf *rbp; /* right buffer pointer */
3708 struct xfs_btree_block *right; /* right btree block */
3709 struct xfs_btree_block *rrblock; /* right-right btree block */
3710 struct xfs_buf *rrbp; /* right-right buffer pointer */
3711 int rrecs = 0; /* right record count */
3712 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3713 int numrecs; /* temporary numrec count */
3714
3715 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3716 XFS_BTREE_TRACE_ARGI(cur, level);
3717
3718 tcur = NULL;
3719
3720 /* Get the index of the entry being deleted, check for nothing there. */
3721 ptr = cur->bc_ptrs[level];
3722 if (ptr == 0) {
3723 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3724 *stat = 0;
3725 return 0;
3726 }
3727
3728 /* Get the buffer & block containing the record or key/ptr. */
3729 block = xfs_btree_get_block(cur, level, &bp);
3730 numrecs = xfs_btree_get_numrecs(block);
3731
3732 #ifdef DEBUG
3733 error = xfs_btree_check_block(cur, block, level, bp);
3734 if (error)
3735 goto error0;
3736 #endif
3737
3738 /* Fail if we're off the end of the block. */
3739 if (ptr > numrecs) {
3740 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3741 *stat = 0;
3742 return 0;
3743 }
3744
3745 XFS_BTREE_STATS_INC(cur, delrec);
3746 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3747
3748 /* Excise the entries being deleted. */
3749 if (level > 0) {
3750 /* It's a nonleaf. operate on keys and ptrs */
3751 union xfs_btree_key *lkp;
3752 union xfs_btree_ptr *lpp;
3753
3754 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3755 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3756
3757 #ifdef DEBUG
3758 for (i = 0; i < numrecs - ptr; i++) {
3759 error = xfs_btree_check_ptr(cur, lpp, i, level);
3760 if (error)
3761 goto error0;
3762 }
3763 #endif
3764
3765 if (ptr < numrecs) {
3766 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3767 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3768 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3769 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3770 }
3771 } else {
3772 /* It's a leaf. operate on records */
3773 if (ptr < numrecs) {
3774 xfs_btree_shift_recs(cur,
3775 xfs_btree_rec_addr(cur, ptr + 1, block),
3776 -1, numrecs - ptr);
3777 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3778 }
3779 }
3780
3781 /*
3782 * Decrement and log the number of entries in the block.
3783 */
3784 xfs_btree_set_numrecs(block, --numrecs);
3785 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3786
3787 /*
3788 * If we are tracking the last record in the tree and
3789 * we are at the far right edge of the tree, update it.
3790 */
3791 if (xfs_btree_is_lastrec(cur, block, level)) {
3792 cur->bc_ops->update_lastrec(cur, block, NULL,
3793 ptr, LASTREC_DELREC);
3794 }
3795
3796 /*
3797 * We're at the root level. First, shrink the root block in-memory.
3798 * Try to get rid of the next level down. If we can't then there's
3799 * nothing left to do.
3800 */
3801 if (level == cur->bc_nlevels - 1) {
3802 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3803 xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3804 cur->bc_private.b.whichfork);
3805
3806 error = xfs_btree_kill_iroot(cur);
3807 if (error)
3808 goto error0;
3809
3810 error = xfs_btree_dec_cursor(cur, level, stat);
3811 if (error)
3812 goto error0;
3813 *stat = 1;
3814 return 0;
3815 }
3816
3817 /*
3818 * If this is the root level, and there's only one entry left,
3819 * and it's NOT the leaf level, then we can get rid of this
3820 * level.
3821 */
3822 if (numrecs == 1 && level > 0) {
3823 union xfs_btree_ptr *pp;
3824 /*
3825 * pp is still set to the first pointer in the block.
3826 * Make it the new root of the btree.
3827 */
3828 pp = xfs_btree_ptr_addr(cur, 1, block);
3829 error = xfs_btree_kill_root(cur, bp, level, pp);
3830 if (error)
3831 goto error0;
3832 } else if (level > 0) {
3833 error = xfs_btree_dec_cursor(cur, level, stat);
3834 if (error)
3835 goto error0;
3836 }
3837 *stat = 1;
3838 return 0;
3839 }
3840
3841 /*
3842 * If we deleted the leftmost entry in the block, update the
3843 * key values above us in the tree.
3844 */
3845 if (xfs_btree_needs_key_update(cur, ptr)) {
3846 error = xfs_btree_update_keys(cur, level);
3847 if (error)
3848 goto error0;
3849 }
3850
3851 /*
3852 * If the number of records remaining in the block is at least
3853 * the minimum, we're done.
3854 */
3855 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3856 error = xfs_btree_dec_cursor(cur, level, stat);
3857 if (error)
3858 goto error0;
3859 return 0;
3860 }
3861
3862 /*
3863 * Otherwise, we have to move some records around to keep the
3864 * tree balanced. Look at the left and right sibling blocks to
3865 * see if we can re-balance by moving only one record.
3866 */
3867 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3868 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3869
3870 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3871 /*
3872 * One child of root, need to get a chance to copy its contents
3873 * into the root and delete it. Can't go up to next level,
3874 * there's nothing to delete there.
3875 */
3876 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3877 xfs_btree_ptr_is_null(cur, &lptr) &&
3878 level == cur->bc_nlevels - 2) {
3879 error = xfs_btree_kill_iroot(cur);
3880 if (!error)
3881 error = xfs_btree_dec_cursor(cur, level, stat);
3882 if (error)
3883 goto error0;
3884 return 0;
3885 }
3886 }
3887
3888 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3889 !xfs_btree_ptr_is_null(cur, &lptr));
3890
3891 /*
3892 * Duplicate the cursor so our btree manipulations here won't
3893 * disrupt the next level up.
3894 */
3895 error = xfs_btree_dup_cursor(cur, &tcur);
3896 if (error)
3897 goto error0;
3898
3899 /*
3900 * If there's a right sibling, see if it's ok to shift an entry
3901 * out of it.
3902 */
3903 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3904 /*
3905 * Move the temp cursor to the last entry in the next block.
3906 * Actually any entry but the first would suffice.
3907 */
3908 i = xfs_btree_lastrec(tcur, level);
3909 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3910
3911 error = xfs_btree_increment(tcur, level, &i);
3912 if (error)
3913 goto error0;
3914 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3915
3916 i = xfs_btree_lastrec(tcur, level);
3917 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3918
3919 /* Grab a pointer to the block. */
3920 right = xfs_btree_get_block(tcur, level, &rbp);
3921 #ifdef DEBUG
3922 error = xfs_btree_check_block(tcur, right, level, rbp);
3923 if (error)
3924 goto error0;
3925 #endif
3926 /* Grab the current block number, for future use. */
3927 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3928
3929 /*
3930 * If right block is full enough so that removing one entry
3931 * won't make it too empty, and left-shifting an entry out
3932 * of right to us works, we're done.
3933 */
3934 if (xfs_btree_get_numrecs(right) - 1 >=
3935 cur->bc_ops->get_minrecs(tcur, level)) {
3936 error = xfs_btree_lshift(tcur, level, &i);
3937 if (error)
3938 goto error0;
3939 if (i) {
3940 ASSERT(xfs_btree_get_numrecs(block) >=
3941 cur->bc_ops->get_minrecs(tcur, level));
3942
3943 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3944 tcur = NULL;
3945
3946 error = xfs_btree_dec_cursor(cur, level, stat);
3947 if (error)
3948 goto error0;
3949 return 0;
3950 }
3951 }
3952
3953 /*
3954 * Otherwise, grab the number of records in right for
3955 * future reference, and fix up the temp cursor to point
3956 * to our block again (last record).
3957 */
3958 rrecs = xfs_btree_get_numrecs(right);
3959 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3960 i = xfs_btree_firstrec(tcur, level);
3961 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3962
3963 error = xfs_btree_decrement(tcur, level, &i);
3964 if (error)
3965 goto error0;
3966 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3967 }
3968 }
3969
3970 /*
3971 * If there's a left sibling, see if it's ok to shift an entry
3972 * out of it.
3973 */
3974 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3975 /*
3976 * Move the temp cursor to the first entry in the
3977 * previous block.
3978 */
3979 i = xfs_btree_firstrec(tcur, level);
3980 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3981
3982 error = xfs_btree_decrement(tcur, level, &i);
3983 if (error)
3984 goto error0;
3985 i = xfs_btree_firstrec(tcur, level);
3986 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3987
3988 /* Grab a pointer to the block. */
3989 left = xfs_btree_get_block(tcur, level, &lbp);
3990 #ifdef DEBUG
3991 error = xfs_btree_check_block(cur, left, level, lbp);
3992 if (error)
3993 goto error0;
3994 #endif
3995 /* Grab the current block number, for future use. */
3996 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3997
3998 /*
3999 * If left block is full enough so that removing one entry
4000 * won't make it too empty, and right-shifting an entry out
4001 * of left to us works, we're done.
4002 */
4003 if (xfs_btree_get_numrecs(left) - 1 >=
4004 cur->bc_ops->get_minrecs(tcur, level)) {
4005 error = xfs_btree_rshift(tcur, level, &i);
4006 if (error)
4007 goto error0;
4008 if (i) {
4009 ASSERT(xfs_btree_get_numrecs(block) >=
4010 cur->bc_ops->get_minrecs(tcur, level));
4011 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4012 tcur = NULL;
4013 if (level == 0)
4014 cur->bc_ptrs[0]++;
4015 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4016 *stat = 1;
4017 return 0;
4018 }
4019 }
4020
4021 /*
4022 * Otherwise, grab the number of records in right for
4023 * future reference.
4024 */
4025 lrecs = xfs_btree_get_numrecs(left);
4026 }
4027
4028 /* Delete the temp cursor, we're done with it. */
4029 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4030 tcur = NULL;
4031
4032 /* If here, we need to do a join to keep the tree balanced. */
4033 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4034
4035 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4036 lrecs + xfs_btree_get_numrecs(block) <=
4037 cur->bc_ops->get_maxrecs(cur, level)) {
4038 /*
4039 * Set "right" to be the starting block,
4040 * "left" to be the left neighbor.
4041 */
4042 rptr = cptr;
4043 right = block;
4044 rbp = bp;
4045 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4046 if (error)
4047 goto error0;
4048
4049 /*
4050 * If that won't work, see if we can join with the right neighbor block.
4051 */
4052 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4053 rrecs + xfs_btree_get_numrecs(block) <=
4054 cur->bc_ops->get_maxrecs(cur, level)) {
4055 /*
4056 * Set "left" to be the starting block,
4057 * "right" to be the right neighbor.
4058 */
4059 lptr = cptr;
4060 left = block;
4061 lbp = bp;
4062 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4063 if (error)
4064 goto error0;
4065
4066 /*
4067 * Otherwise, we can't fix the imbalance.
4068 * Just return. This is probably a logic error, but it's not fatal.
4069 */
4070 } else {
4071 error = xfs_btree_dec_cursor(cur, level, stat);
4072 if (error)
4073 goto error0;
4074 return 0;
4075 }
4076
4077 rrecs = xfs_btree_get_numrecs(right);
4078 lrecs = xfs_btree_get_numrecs(left);
4079
4080 /*
4081 * We're now going to join "left" and "right" by moving all the stuff
4082 * in "right" to "left" and deleting "right".
4083 */
4084 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4085 if (level > 0) {
4086 /* It's a non-leaf. Move keys and pointers. */
4087 union xfs_btree_key *lkp; /* left btree key */
4088 union xfs_btree_ptr *lpp; /* left address pointer */
4089 union xfs_btree_key *rkp; /* right btree key */
4090 union xfs_btree_ptr *rpp; /* right address pointer */
4091
4092 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4093 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4094 rkp = xfs_btree_key_addr(cur, 1, right);
4095 rpp = xfs_btree_ptr_addr(cur, 1, right);
4096 #ifdef DEBUG
4097 for (i = 1; i < rrecs; i++) {
4098 error = xfs_btree_check_ptr(cur, rpp, i, level);
4099 if (error)
4100 goto error0;
4101 }
4102 #endif
4103 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4104 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4105
4106 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4107 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4108 } else {
4109 /* It's a leaf. Move records. */
4110 union xfs_btree_rec *lrp; /* left record pointer */
4111 union xfs_btree_rec *rrp; /* right record pointer */
4112
4113 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4114 rrp = xfs_btree_rec_addr(cur, 1, right);
4115
4116 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4117 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4118 }
4119
4120 XFS_BTREE_STATS_INC(cur, join);
4121
4122 /*
4123 * Fix up the number of records and right block pointer in the
4124 * surviving block, and log it.
4125 */
4126 xfs_btree_set_numrecs(left, lrecs + rrecs);
4127 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4128 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4129 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4130
4131 /* If there is a right sibling, point it to the remaining block. */
4132 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4133 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4134 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4135 if (error)
4136 goto error0;
4137 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4138 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4139 }
4140
4141 /* Free the deleted block. */
4142 error = xfs_btree_free_block(cur, rbp);
4143 if (error)
4144 goto error0;
4145
4146 /*
4147 * If we joined with the left neighbor, set the buffer in the
4148 * cursor to the left block, and fix up the index.
4149 */
4150 if (bp != lbp) {
4151 cur->bc_bufs[level] = lbp;
4152 cur->bc_ptrs[level] += lrecs;
4153 cur->bc_ra[level] = 0;
4154 }
4155 /*
4156 * If we joined with the right neighbor and there's a level above
4157 * us, increment the cursor at that level.
4158 */
4159 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4160 (level + 1 < cur->bc_nlevels)) {
4161 error = xfs_btree_increment(cur, level + 1, &i);
4162 if (error)
4163 goto error0;
4164 }
4165
4166 /*
4167 * Readjust the ptr at this level if it's not a leaf, since it's
4168 * still pointing at the deletion point, which makes the cursor
4169 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4170 * We can't use decrement because it would change the next level up.
4171 */
4172 if (level > 0)
4173 cur->bc_ptrs[level]--;
4174
4175 /*
4176 * We combined blocks, so we have to update the parent keys if the
4177 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4178 * points to the old block so that the caller knows which record to
4179 * delete. Therefore, the caller must be savvy enough to call updkeys
4180 * for us if we return stat == 2. The other exit points from this
4181 * function don't require deletions further up the tree, so they can
4182 * call updkeys directly.
4183 */
4184
4185 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4186 /* Return value means the next level up has something to do. */
4187 *stat = 2;
4188 return 0;
4189
4190 error0:
4191 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4192 if (tcur)
4193 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4194 return error;
4195 }
4196
4197 /*
4198 * Delete the record pointed to by cur.
4199 * The cursor refers to the place where the record was (could be inserted)
4200 * when the operation returns.
4201 */
4202 int /* error */
4203 xfs_btree_delete(
4204 struct xfs_btree_cur *cur,
4205 int *stat) /* success/failure */
4206 {
4207 int error; /* error return value */
4208 int level;
4209 int i;
4210 bool joined = false;
4211
4212 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
4213
4214 /*
4215 * Go up the tree, starting at leaf level.
4216 *
4217 * If 2 is returned then a join was done; go to the next level.
4218 * Otherwise we are done.
4219 */
4220 for (level = 0, i = 2; i == 2; level++) {
4221 error = xfs_btree_delrec(cur, level, &i);
4222 if (error)
4223 goto error0;
4224 if (i == 2)
4225 joined = true;
4226 }
4227
4228 /*
4229 * If we combined blocks as part of deleting the record, delrec won't
4230 * have updated the parent high keys so we have to do that here.
4231 */
4232 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4233 error = xfs_btree_updkeys_force(cur, 0);
4234 if (error)
4235 goto error0;
4236 }
4237
4238 if (i == 0) {
4239 for (level = 1; level < cur->bc_nlevels; level++) {
4240 if (cur->bc_ptrs[level] == 0) {
4241 error = xfs_btree_decrement(cur, level, &i);
4242 if (error)
4243 goto error0;
4244 break;
4245 }
4246 }
4247 }
4248
4249 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4250 *stat = i;
4251 return 0;
4252 error0:
4253 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4254 return error;
4255 }
4256
4257 /*
4258 * Get the data from the pointed-to record.
4259 */
4260 int /* error */
4261 xfs_btree_get_rec(
4262 struct xfs_btree_cur *cur, /* btree cursor */
4263 union xfs_btree_rec **recp, /* output: btree record */
4264 int *stat) /* output: success/failure */
4265 {
4266 struct xfs_btree_block *block; /* btree block */
4267 struct xfs_buf *bp; /* buffer pointer */
4268 int ptr; /* record number */
4269 #ifdef DEBUG
4270 int error; /* error return value */
4271 #endif
4272
4273 ptr = cur->bc_ptrs[0];
4274 block = xfs_btree_get_block(cur, 0, &bp);
4275
4276 #ifdef DEBUG
4277 error = xfs_btree_check_block(cur, block, 0, bp);
4278 if (error)
4279 return error;
4280 #endif
4281
4282 /*
4283 * Off the right end or left end, return failure.
4284 */
4285 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4286 *stat = 0;
4287 return 0;
4288 }
4289
4290 /*
4291 * Point to the record and extract its data.
4292 */
4293 *recp = xfs_btree_rec_addr(cur, ptr, block);
4294 *stat = 1;
4295 return 0;
4296 }
4297
4298 /* Visit a block in a btree. */
4299 STATIC int
4300 xfs_btree_visit_block(
4301 struct xfs_btree_cur *cur,
4302 int level,
4303 xfs_btree_visit_blocks_fn fn,
4304 void *data)
4305 {
4306 struct xfs_btree_block *block;
4307 struct xfs_buf *bp;
4308 union xfs_btree_ptr rptr;
4309 int error;
4310
4311 /* do right sibling readahead */
4312 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4313 block = xfs_btree_get_block(cur, level, &bp);
4314
4315 /* process the block */
4316 error = fn(cur, level, data);
4317 if (error)
4318 return error;
4319
4320 /* now read rh sibling block for next iteration */
4321 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4322 if (xfs_btree_ptr_is_null(cur, &rptr))
4323 return -ENOENT;
4324
4325 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4326 }
4327
4328
4329 /* Visit every block in a btree. */
4330 int
4331 xfs_btree_visit_blocks(
4332 struct xfs_btree_cur *cur,
4333 xfs_btree_visit_blocks_fn fn,
4334 void *data)
4335 {
4336 union xfs_btree_ptr lptr;
4337 int level;
4338 struct xfs_btree_block *block = NULL;
4339 int error = 0;
4340
4341 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4342
4343 /* for each level */
4344 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4345 /* grab the left hand block */
4346 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4347 if (error)
4348 return error;
4349
4350 /* readahead the left most block for the next level down */
4351 if (level > 0) {
4352 union xfs_btree_ptr *ptr;
4353
4354 ptr = xfs_btree_ptr_addr(cur, 1, block);
4355 xfs_btree_readahead_ptr(cur, ptr, 1);
4356
4357 /* save for the next iteration of the loop */
4358 lptr = *ptr;
4359 }
4360
4361 /* for each buffer in the level */
4362 do {
4363 error = xfs_btree_visit_block(cur, level, fn, data);
4364 } while (!error);
4365
4366 if (error != -ENOENT)
4367 return error;
4368 }
4369
4370 return 0;
4371 }
4372
4373 /*
4374 * Change the owner of a btree.
4375 *
4376 * The mechanism we use here is ordered buffer logging. Because we don't know
4377 * how many buffers were are going to need to modify, we don't really want to
4378 * have to make transaction reservations for the worst case of every buffer in a
4379 * full size btree as that may be more space that we can fit in the log....
4380 *
4381 * We do the btree walk in the most optimal manner possible - we have sibling
4382 * pointers so we can just walk all the blocks on each level from left to right
4383 * in a single pass, and then move to the next level and do the same. We can
4384 * also do readahead on the sibling pointers to get IO moving more quickly,
4385 * though for slow disks this is unlikely to make much difference to performance
4386 * as the amount of CPU work we have to do before moving to the next block is
4387 * relatively small.
4388 *
4389 * For each btree block that we load, modify the owner appropriately, set the
4390 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4391 * we mark the region we change dirty so that if the buffer is relogged in
4392 * a subsequent transaction the changes we make here as an ordered buffer are
4393 * correctly relogged in that transaction. If we are in recovery context, then
4394 * just queue the modified buffer as delayed write buffer so the transaction
4395 * recovery completion writes the changes to disk.
4396 */
4397 struct xfs_btree_block_change_owner_info {
4398 __uint64_t new_owner;
4399 struct list_head *buffer_list;
4400 };
4401
4402 static int
4403 xfs_btree_block_change_owner(
4404 struct xfs_btree_cur *cur,
4405 int level,
4406 void *data)
4407 {
4408 struct xfs_btree_block_change_owner_info *bbcoi = data;
4409 struct xfs_btree_block *block;
4410 struct xfs_buf *bp;
4411
4412 /* modify the owner */
4413 block = xfs_btree_get_block(cur, level, &bp);
4414 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4415 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4416 else
4417 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4418
4419 /*
4420 * If the block is a root block hosted in an inode, we might not have a
4421 * buffer pointer here and we shouldn't attempt to log the change as the
4422 * information is already held in the inode and discarded when the root
4423 * block is formatted into the on-disk inode fork. We still change it,
4424 * though, so everything is consistent in memory.
4425 */
4426 if (bp) {
4427 if (cur->bc_tp) {
4428 xfs_trans_ordered_buf(cur->bc_tp, bp);
4429 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4430 } else {
4431 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4432 }
4433 } else {
4434 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4435 ASSERT(level == cur->bc_nlevels - 1);
4436 }
4437
4438 return 0;
4439 }
4440
4441 int
4442 xfs_btree_change_owner(
4443 struct xfs_btree_cur *cur,
4444 __uint64_t new_owner,
4445 struct list_head *buffer_list)
4446 {
4447 struct xfs_btree_block_change_owner_info bbcoi;
4448
4449 bbcoi.new_owner = new_owner;
4450 bbcoi.buffer_list = buffer_list;
4451
4452 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4453 &bbcoi);
4454 }
4455
4456 /**
4457 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4458 * btree block
4459 *
4460 * @bp: buffer containing the btree block
4461 * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4462 * @pag_max_level: pointer to the per-ag max level field
4463 */
4464 bool
4465 xfs_btree_sblock_v5hdr_verify(
4466 struct xfs_buf *bp)
4467 {
4468 struct xfs_mount *mp = bp->b_target->bt_mount;
4469 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4470 struct xfs_perag *pag = bp->b_pag;
4471
4472 if (!xfs_sb_version_hascrc(&mp->m_sb))
4473 return false;
4474 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4475 return false;
4476 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4477 return false;
4478 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4479 return false;
4480 return true;
4481 }
4482
4483 /**
4484 * xfs_btree_sblock_verify() -- verify a short-format btree block
4485 *
4486 * @bp: buffer containing the btree block
4487 * @max_recs: maximum records allowed in this btree node
4488 */
4489 bool
4490 xfs_btree_sblock_verify(
4491 struct xfs_buf *bp,
4492 unsigned int max_recs)
4493 {
4494 struct xfs_mount *mp = bp->b_target->bt_mount;
4495 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4496
4497 /* numrecs verification */
4498 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4499 return false;
4500
4501 /* sibling pointer verification */
4502 if (!block->bb_u.s.bb_leftsib ||
4503 (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
4504 block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
4505 return false;
4506 if (!block->bb_u.s.bb_rightsib ||
4507 (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
4508 block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
4509 return false;
4510
4511 return true;
4512 }
4513
4514 /*
4515 * Calculate the number of btree levels needed to store a given number of
4516 * records in a short-format btree.
4517 */
4518 uint
4519 xfs_btree_compute_maxlevels(
4520 struct xfs_mount *mp,
4521 uint *limits,
4522 unsigned long len)
4523 {
4524 uint level;
4525 unsigned long maxblocks;
4526
4527 maxblocks = (len + limits[0] - 1) / limits[0];
4528 for (level = 1; maxblocks > 1; level++)
4529 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4530 return level;
4531 }
4532
4533 /*
4534 * Query a regular btree for all records overlapping a given interval.
4535 * Start with a LE lookup of the key of low_rec and return all records
4536 * until we find a record with a key greater than the key of high_rec.
4537 */
4538 STATIC int
4539 xfs_btree_simple_query_range(
4540 struct xfs_btree_cur *cur,
4541 union xfs_btree_key *low_key,
4542 union xfs_btree_key *high_key,
4543 xfs_btree_query_range_fn fn,
4544 void *priv)
4545 {
4546 union xfs_btree_rec *recp;
4547 union xfs_btree_key rec_key;
4548 __int64_t diff;
4549 int stat;
4550 bool firstrec = true;
4551 int error;
4552
4553 ASSERT(cur->bc_ops->init_high_key_from_rec);
4554 ASSERT(cur->bc_ops->diff_two_keys);
4555
4556 /*
4557 * Find the leftmost record. The btree cursor must be set
4558 * to the low record used to generate low_key.
4559 */
4560 stat = 0;
4561 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4562 if (error)
4563 goto out;
4564
4565 /* Nothing? See if there's anything to the right. */
4566 if (!stat) {
4567 error = xfs_btree_increment(cur, 0, &stat);
4568 if (error)
4569 goto out;
4570 }
4571
4572 while (stat) {
4573 /* Find the record. */
4574 error = xfs_btree_get_rec(cur, &recp, &stat);
4575 if (error || !stat)
4576 break;
4577
4578 /* Skip if high_key(rec) < low_key. */
4579 if (firstrec) {
4580 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4581 firstrec = false;
4582 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4583 &rec_key);
4584 if (diff > 0)
4585 goto advloop;
4586 }
4587
4588 /* Stop if high_key < low_key(rec). */
4589 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4590 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4591 if (diff > 0)
4592 break;
4593
4594 /* Callback */
4595 error = fn(cur, recp, priv);
4596 if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4597 break;
4598
4599 advloop:
4600 /* Move on to the next record. */
4601 error = xfs_btree_increment(cur, 0, &stat);
4602 if (error)
4603 break;
4604 }
4605
4606 out:
4607 return error;
4608 }
4609
4610 /*
4611 * Query an overlapped interval btree for all records overlapping a given
4612 * interval. This function roughly follows the algorithm given in
4613 * "Interval Trees" of _Introduction to Algorithms_, which is section
4614 * 14.3 in the 2nd and 3rd editions.
4615 *
4616 * First, generate keys for the low and high records passed in.
4617 *
4618 * For any leaf node, generate the high and low keys for the record.
4619 * If the record keys overlap with the query low/high keys, pass the
4620 * record to the function iterator.
4621 *
4622 * For any internal node, compare the low and high keys of each
4623 * pointer against the query low/high keys. If there's an overlap,
4624 * follow the pointer.
4625 *
4626 * As an optimization, we stop scanning a block when we find a low key
4627 * that is greater than the query's high key.
4628 */
4629 STATIC int
4630 xfs_btree_overlapped_query_range(
4631 struct xfs_btree_cur *cur,
4632 union xfs_btree_key *low_key,
4633 union xfs_btree_key *high_key,
4634 xfs_btree_query_range_fn fn,
4635 void *priv)
4636 {
4637 union xfs_btree_ptr ptr;
4638 union xfs_btree_ptr *pp;
4639 union xfs_btree_key rec_key;
4640 union xfs_btree_key rec_hkey;
4641 union xfs_btree_key *lkp;
4642 union xfs_btree_key *hkp;
4643 union xfs_btree_rec *recp;
4644 struct xfs_btree_block *block;
4645 __int64_t ldiff;
4646 __int64_t hdiff;
4647 int level;
4648 struct xfs_buf *bp;
4649 int i;
4650 int error;
4651
4652 /* Load the root of the btree. */
4653 level = cur->bc_nlevels - 1;
4654 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4655 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4656 if (error)
4657 return error;
4658 xfs_btree_get_block(cur, level, &bp);
4659 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4660 #ifdef DEBUG
4661 error = xfs_btree_check_block(cur, block, level, bp);
4662 if (error)
4663 goto out;
4664 #endif
4665 cur->bc_ptrs[level] = 1;
4666
4667 while (level < cur->bc_nlevels) {
4668 block = xfs_btree_get_block(cur, level, &bp);
4669
4670 /* End of node, pop back towards the root. */
4671 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4672 pop_up:
4673 if (level < cur->bc_nlevels - 1)
4674 cur->bc_ptrs[level + 1]++;
4675 level++;
4676 continue;
4677 }
4678
4679 if (level == 0) {
4680 /* Handle a leaf node. */
4681 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4682
4683 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4684 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4685 low_key);
4686
4687 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4688 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4689 &rec_key);
4690
4691 /*
4692 * If (record's high key >= query's low key) and
4693 * (query's high key >= record's low key), then
4694 * this record overlaps the query range; callback.
4695 */
4696 if (ldiff >= 0 && hdiff >= 0) {
4697 error = fn(cur, recp, priv);
4698 if (error < 0 ||
4699 error == XFS_BTREE_QUERY_RANGE_ABORT)
4700 break;
4701 } else if (hdiff < 0) {
4702 /* Record is larger than high key; pop. */
4703 goto pop_up;
4704 }
4705 cur->bc_ptrs[level]++;
4706 continue;
4707 }
4708
4709 /* Handle an internal node. */
4710 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4711 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4712 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4713
4714 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4715 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4716
4717 /*
4718 * If (pointer's high key >= query's low key) and
4719 * (query's high key >= pointer's low key), then
4720 * this record overlaps the query range; follow pointer.
4721 */
4722 if (ldiff >= 0 && hdiff >= 0) {
4723 level--;
4724 error = xfs_btree_lookup_get_block(cur, level, pp,
4725 &block);
4726 if (error)
4727 goto out;
4728 xfs_btree_get_block(cur, level, &bp);
4729 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4730 #ifdef DEBUG
4731 error = xfs_btree_check_block(cur, block, level, bp);
4732 if (error)
4733 goto out;
4734 #endif
4735 cur->bc_ptrs[level] = 1;
4736 continue;
4737 } else if (hdiff < 0) {
4738 /* The low key is larger than the upper range; pop. */
4739 goto pop_up;
4740 }
4741 cur->bc_ptrs[level]++;
4742 }
4743
4744 out:
4745 /*
4746 * If we don't end this function with the cursor pointing at a record
4747 * block, a subsequent non-error cursor deletion will not release
4748 * node-level buffers, causing a buffer leak. This is quite possible
4749 * with a zero-results range query, so release the buffers if we
4750 * failed to return any results.
4751 */
4752 if (cur->bc_bufs[0] == NULL) {
4753 for (i = 0; i < cur->bc_nlevels; i++) {
4754 if (cur->bc_bufs[i]) {
4755 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4756 cur->bc_bufs[i] = NULL;
4757 cur->bc_ptrs[i] = 0;
4758 cur->bc_ra[i] = 0;
4759 }
4760 }
4761 }
4762
4763 return error;
4764 }
4765
4766 /*
4767 * Query a btree for all records overlapping a given interval of keys. The
4768 * supplied function will be called with each record found; return one of the
4769 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4770 * code. This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4771 * negative error code.
4772 */
4773 int
4774 xfs_btree_query_range(
4775 struct xfs_btree_cur *cur,
4776 union xfs_btree_irec *low_rec,
4777 union xfs_btree_irec *high_rec,
4778 xfs_btree_query_range_fn fn,
4779 void *priv)
4780 {
4781 union xfs_btree_rec rec;
4782 union xfs_btree_key low_key;
4783 union xfs_btree_key high_key;
4784
4785 /* Find the keys of both ends of the interval. */
4786 cur->bc_rec = *high_rec;
4787 cur->bc_ops->init_rec_from_cur(cur, &rec);
4788 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4789
4790 cur->bc_rec = *low_rec;
4791 cur->bc_ops->init_rec_from_cur(cur, &rec);
4792 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4793
4794 /* Enforce low key < high key. */
4795 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4796 return -EINVAL;
4797
4798 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4799 return xfs_btree_simple_query_range(cur, &low_key,
4800 &high_key, fn, priv);
4801 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4802 fn, priv);
4803 }
4804
4805 /*
4806 * Calculate the number of blocks needed to store a given number of records
4807 * in a short-format (per-AG metadata) btree.
4808 */
4809 xfs_extlen_t
4810 xfs_btree_calc_size(
4811 struct xfs_mount *mp,
4812 uint *limits,
4813 unsigned long long len)
4814 {
4815 int level;
4816 int maxrecs;
4817 xfs_extlen_t rval;
4818
4819 maxrecs = limits[0];
4820 for (level = 0, rval = 0; len > 1; level++) {
4821 len += maxrecs - 1;
4822 do_div(len, maxrecs);
4823 maxrecs = limits[1];
4824 rval += len;
4825 }
4826 return rval;
4827 }
4828
4829 static int
4830 xfs_btree_count_blocks_helper(
4831 struct xfs_btree_cur *cur,
4832 int level,
4833 void *data)
4834 {
4835 xfs_extlen_t *blocks = data;
4836 (*blocks)++;
4837
4838 return 0;
4839 }
4840
4841 /* Count the blocks in a btree and return the result in *blocks. */
4842 int
4843 xfs_btree_count_blocks(
4844 struct xfs_btree_cur *cur,
4845 xfs_extlen_t *blocks)
4846 {
4847 *blocks = 0;
4848 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4849 blocks);
4850 }