]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/xfs/libxfs/xfs_defer.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / libxfs / xfs_defer.c
1 /*
2 * Copyright (C) 2016 Oracle. All Rights Reserved.
3 *
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it would be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
19 */
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_bit.h"
27 #include "xfs_sb.h"
28 #include "xfs_mount.h"
29 #include "xfs_defer.h"
30 #include "xfs_trans.h"
31 #include "xfs_trace.h"
32
33 /*
34 * Deferred Operations in XFS
35 *
36 * Due to the way locking rules work in XFS, certain transactions (block
37 * mapping and unmapping, typically) have permanent reservations so that
38 * we can roll the transaction to adhere to AG locking order rules and
39 * to unlock buffers between metadata updates. Prior to rmap/reflink,
40 * the mapping code had a mechanism to perform these deferrals for
41 * extents that were going to be freed; this code makes that facility
42 * more generic.
43 *
44 * When adding the reverse mapping and reflink features, it became
45 * necessary to perform complex remapping multi-transactions to comply
46 * with AG locking order rules, and to be able to spread a single
47 * refcount update operation (an operation on an n-block extent can
48 * update as many as n records!) among multiple transactions. XFS can
49 * roll a transaction to facilitate this, but using this facility
50 * requires us to log "intent" items in case log recovery needs to
51 * redo the operation, and to log "done" items to indicate that redo
52 * is not necessary.
53 *
54 * Deferred work is tracked in xfs_defer_pending items. Each pending
55 * item tracks one type of deferred work. Incoming work items (which
56 * have not yet had an intent logged) are attached to a pending item
57 * on the dop_intake list, where they wait for the caller to finish
58 * the deferred operations.
59 *
60 * Finishing a set of deferred operations is an involved process. To
61 * start, we define "rolling a deferred-op transaction" as follows:
62 *
63 * > For each xfs_defer_pending item on the dop_intake list,
64 * - Sort the work items in AG order. XFS locking
65 * order rules require us to lock buffers in AG order.
66 * - Create a log intent item for that type.
67 * - Attach it to the pending item.
68 * - Move the pending item from the dop_intake list to the
69 * dop_pending list.
70 * > Roll the transaction.
71 *
72 * NOTE: To avoid exceeding the transaction reservation, we limit the
73 * number of items that we attach to a given xfs_defer_pending.
74 *
75 * The actual finishing process looks like this:
76 *
77 * > For each xfs_defer_pending in the dop_pending list,
78 * - Roll the deferred-op transaction as above.
79 * - Create a log done item for that type, and attach it to the
80 * log intent item.
81 * - For each work item attached to the log intent item,
82 * * Perform the described action.
83 * * Attach the work item to the log done item.
84 *
85 * The key here is that we must log an intent item for all pending
86 * work items every time we roll the transaction, and that we must log
87 * a done item as soon as the work is completed. With this mechanism
88 * we can perform complex remapping operations, chaining intent items
89 * as needed.
90 *
91 * This is an example of remapping the extent (E, E+B) into file X at
92 * offset A and dealing with the extent (C, C+B) already being mapped
93 * there:
94 * +-------------------------------------------------+
95 * | Unmap file X startblock C offset A length B | t0
96 * | Intent to reduce refcount for extent (C, B) |
97 * | Intent to remove rmap (X, C, A, B) |
98 * | Intent to free extent (D, 1) (bmbt block) |
99 * | Intent to map (X, A, B) at startblock E |
100 * +-------------------------------------------------+
101 * | Map file X startblock E offset A length B | t1
102 * | Done mapping (X, E, A, B) |
103 * | Intent to increase refcount for extent (E, B) |
104 * | Intent to add rmap (X, E, A, B) |
105 * +-------------------------------------------------+
106 * | Reduce refcount for extent (C, B) | t2
107 * | Done reducing refcount for extent (C, B) |
108 * | Increase refcount for extent (E, B) |
109 * | Done increasing refcount for extent (E, B) |
110 * | Intent to free extent (C, B) |
111 * | Intent to free extent (F, 1) (refcountbt block) |
112 * | Intent to remove rmap (F, 1, REFC) |
113 * +-------------------------------------------------+
114 * | Remove rmap (X, C, A, B) | t3
115 * | Done removing rmap (X, C, A, B) |
116 * | Add rmap (X, E, A, B) |
117 * | Done adding rmap (X, E, A, B) |
118 * | Remove rmap (F, 1, REFC) |
119 * | Done removing rmap (F, 1, REFC) |
120 * +-------------------------------------------------+
121 * | Free extent (C, B) | t4
122 * | Done freeing extent (C, B) |
123 * | Free extent (D, 1) |
124 * | Done freeing extent (D, 1) |
125 * | Free extent (F, 1) |
126 * | Done freeing extent (F, 1) |
127 * +-------------------------------------------------+
128 *
129 * If we should crash before t2 commits, log recovery replays
130 * the following intent items:
131 *
132 * - Intent to reduce refcount for extent (C, B)
133 * - Intent to remove rmap (X, C, A, B)
134 * - Intent to free extent (D, 1) (bmbt block)
135 * - Intent to increase refcount for extent (E, B)
136 * - Intent to add rmap (X, E, A, B)
137 *
138 * In the process of recovering, it should also generate and take care
139 * of these intent items:
140 *
141 * - Intent to free extent (C, B)
142 * - Intent to free extent (F, 1) (refcountbt block)
143 * - Intent to remove rmap (F, 1, REFC)
144 */
145
146 static const struct xfs_defer_op_type *defer_op_types[XFS_DEFER_OPS_TYPE_MAX];
147
148 /*
149 * For each pending item in the intake list, log its intent item and the
150 * associated extents, then add the entire intake list to the end of
151 * the pending list.
152 */
153 STATIC void
154 xfs_defer_intake_work(
155 struct xfs_trans *tp,
156 struct xfs_defer_ops *dop)
157 {
158 struct list_head *li;
159 struct xfs_defer_pending *dfp;
160
161 list_for_each_entry(dfp, &dop->dop_intake, dfp_list) {
162 trace_xfs_defer_intake_work(tp->t_mountp, dfp);
163 dfp->dfp_intent = dfp->dfp_type->create_intent(tp,
164 dfp->dfp_count);
165 list_sort(tp->t_mountp, &dfp->dfp_work,
166 dfp->dfp_type->diff_items);
167 list_for_each(li, &dfp->dfp_work)
168 dfp->dfp_type->log_item(tp, dfp->dfp_intent, li);
169 }
170
171 list_splice_tail_init(&dop->dop_intake, &dop->dop_pending);
172 }
173
174 /* Abort all the intents that were committed. */
175 STATIC void
176 xfs_defer_trans_abort(
177 struct xfs_trans *tp,
178 struct xfs_defer_ops *dop,
179 int error)
180 {
181 struct xfs_defer_pending *dfp;
182
183 trace_xfs_defer_trans_abort(tp->t_mountp, dop);
184 /*
185 * If the transaction was committed, drop the intent reference
186 * since we're bailing out of here. The other reference is
187 * dropped when the intent hits the AIL. If the transaction
188 * was not committed, the intent is freed by the intent item
189 * unlock handler on abort.
190 */
191 if (!dop->dop_committed)
192 return;
193
194 /* Abort intent items. */
195 list_for_each_entry(dfp, &dop->dop_pending, dfp_list) {
196 trace_xfs_defer_pending_abort(tp->t_mountp, dfp);
197 if (dfp->dfp_committed)
198 dfp->dfp_type->abort_intent(dfp->dfp_intent);
199 }
200
201 /* Shut down FS. */
202 xfs_force_shutdown(tp->t_mountp, (error == -EFSCORRUPTED) ?
203 SHUTDOWN_CORRUPT_INCORE : SHUTDOWN_META_IO_ERROR);
204 }
205
206 /* Roll a transaction so we can do some deferred op processing. */
207 STATIC int
208 xfs_defer_trans_roll(
209 struct xfs_trans **tp,
210 struct xfs_defer_ops *dop,
211 struct xfs_inode *ip)
212 {
213 int i;
214 int error;
215
216 /* Log all the joined inodes except the one we passed in. */
217 for (i = 0; i < XFS_DEFER_OPS_NR_INODES && dop->dop_inodes[i]; i++) {
218 if (dop->dop_inodes[i] == ip)
219 continue;
220 xfs_trans_log_inode(*tp, dop->dop_inodes[i], XFS_ILOG_CORE);
221 }
222
223 trace_xfs_defer_trans_roll((*tp)->t_mountp, dop);
224
225 /* Roll the transaction. */
226 error = xfs_trans_roll(tp, ip);
227 if (error) {
228 trace_xfs_defer_trans_roll_error((*tp)->t_mountp, dop, error);
229 xfs_defer_trans_abort(*tp, dop, error);
230 return error;
231 }
232 dop->dop_committed = true;
233
234 /* Rejoin the joined inodes except the one we passed in. */
235 for (i = 0; i < XFS_DEFER_OPS_NR_INODES && dop->dop_inodes[i]; i++) {
236 if (dop->dop_inodes[i] == ip)
237 continue;
238 xfs_trans_ijoin(*tp, dop->dop_inodes[i], 0);
239 }
240
241 return error;
242 }
243
244 /* Do we have any work items to finish? */
245 bool
246 xfs_defer_has_unfinished_work(
247 struct xfs_defer_ops *dop)
248 {
249 return !list_empty(&dop->dop_pending) || !list_empty(&dop->dop_intake);
250 }
251
252 /*
253 * Add this inode to the deferred op. Each joined inode is relogged
254 * each time we roll the transaction, in addition to any inode passed
255 * to xfs_defer_finish().
256 */
257 int
258 xfs_defer_join(
259 struct xfs_defer_ops *dop,
260 struct xfs_inode *ip)
261 {
262 int i;
263
264 for (i = 0; i < XFS_DEFER_OPS_NR_INODES; i++) {
265 if (dop->dop_inodes[i] == ip)
266 return 0;
267 else if (dop->dop_inodes[i] == NULL) {
268 dop->dop_inodes[i] = ip;
269 return 0;
270 }
271 }
272
273 return -EFSCORRUPTED;
274 }
275
276 /*
277 * Finish all the pending work. This involves logging intent items for
278 * any work items that wandered in since the last transaction roll (if
279 * one has even happened), rolling the transaction, and finishing the
280 * work items in the first item on the logged-and-pending list.
281 *
282 * If an inode is provided, relog it to the new transaction.
283 */
284 int
285 xfs_defer_finish(
286 struct xfs_trans **tp,
287 struct xfs_defer_ops *dop,
288 struct xfs_inode *ip)
289 {
290 struct xfs_defer_pending *dfp;
291 struct list_head *li;
292 struct list_head *n;
293 void *done_item = NULL;
294 void *state;
295 int error = 0;
296 void (*cleanup_fn)(struct xfs_trans *, void *, int);
297
298 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
299
300 trace_xfs_defer_finish((*tp)->t_mountp, dop);
301
302 /* Until we run out of pending work to finish... */
303 while (xfs_defer_has_unfinished_work(dop)) {
304 /* Log intents for work items sitting in the intake. */
305 xfs_defer_intake_work(*tp, dop);
306
307 /* Roll the transaction. */
308 error = xfs_defer_trans_roll(tp, dop, ip);
309 if (error)
310 goto out;
311
312 /* Mark all pending intents as committed. */
313 list_for_each_entry_reverse(dfp, &dop->dop_pending, dfp_list) {
314 if (dfp->dfp_committed)
315 break;
316 trace_xfs_defer_pending_commit((*tp)->t_mountp, dfp);
317 dfp->dfp_committed = true;
318 }
319
320 /* Log an intent-done item for the first pending item. */
321 dfp = list_first_entry(&dop->dop_pending,
322 struct xfs_defer_pending, dfp_list);
323 trace_xfs_defer_pending_finish((*tp)->t_mountp, dfp);
324 done_item = dfp->dfp_type->create_done(*tp, dfp->dfp_intent,
325 dfp->dfp_count);
326 cleanup_fn = dfp->dfp_type->finish_cleanup;
327
328 /* Finish the work items. */
329 state = NULL;
330 list_for_each_safe(li, n, &dfp->dfp_work) {
331 list_del(li);
332 dfp->dfp_count--;
333 error = dfp->dfp_type->finish_item(*tp, dop, li,
334 done_item, &state);
335 if (error) {
336 /*
337 * Clean up after ourselves and jump out.
338 * xfs_defer_cancel will take care of freeing
339 * all these lists and stuff.
340 */
341 if (cleanup_fn)
342 cleanup_fn(*tp, state, error);
343 xfs_defer_trans_abort(*tp, dop, error);
344 goto out;
345 }
346 }
347 /* Done with the dfp, free it. */
348 list_del(&dfp->dfp_list);
349 kmem_free(dfp);
350
351 if (cleanup_fn)
352 cleanup_fn(*tp, state, error);
353 }
354
355 out:
356 if (error)
357 trace_xfs_defer_finish_error((*tp)->t_mountp, dop, error);
358 else
359 trace_xfs_defer_finish_done((*tp)->t_mountp, dop);
360 return error;
361 }
362
363 /*
364 * Free up any items left in the list.
365 */
366 void
367 xfs_defer_cancel(
368 struct xfs_defer_ops *dop)
369 {
370 struct xfs_defer_pending *dfp;
371 struct xfs_defer_pending *pli;
372 struct list_head *pwi;
373 struct list_head *n;
374
375 trace_xfs_defer_cancel(NULL, dop);
376
377 /*
378 * Free the pending items. Caller should already have arranged
379 * for the intent items to be released.
380 */
381 list_for_each_entry_safe(dfp, pli, &dop->dop_intake, dfp_list) {
382 trace_xfs_defer_intake_cancel(NULL, dfp);
383 list_del(&dfp->dfp_list);
384 list_for_each_safe(pwi, n, &dfp->dfp_work) {
385 list_del(pwi);
386 dfp->dfp_count--;
387 dfp->dfp_type->cancel_item(pwi);
388 }
389 ASSERT(dfp->dfp_count == 0);
390 kmem_free(dfp);
391 }
392 list_for_each_entry_safe(dfp, pli, &dop->dop_pending, dfp_list) {
393 trace_xfs_defer_pending_cancel(NULL, dfp);
394 list_del(&dfp->dfp_list);
395 list_for_each_safe(pwi, n, &dfp->dfp_work) {
396 list_del(pwi);
397 dfp->dfp_count--;
398 dfp->dfp_type->cancel_item(pwi);
399 }
400 ASSERT(dfp->dfp_count == 0);
401 kmem_free(dfp);
402 }
403 }
404
405 /* Add an item for later deferred processing. */
406 void
407 xfs_defer_add(
408 struct xfs_defer_ops *dop,
409 enum xfs_defer_ops_type type,
410 struct list_head *li)
411 {
412 struct xfs_defer_pending *dfp = NULL;
413
414 /*
415 * Add the item to a pending item at the end of the intake list.
416 * If the last pending item has the same type, reuse it. Else,
417 * create a new pending item at the end of the intake list.
418 */
419 if (!list_empty(&dop->dop_intake)) {
420 dfp = list_last_entry(&dop->dop_intake,
421 struct xfs_defer_pending, dfp_list);
422 if (dfp->dfp_type->type != type ||
423 (dfp->dfp_type->max_items &&
424 dfp->dfp_count >= dfp->dfp_type->max_items))
425 dfp = NULL;
426 }
427 if (!dfp) {
428 dfp = kmem_alloc(sizeof(struct xfs_defer_pending),
429 KM_SLEEP | KM_NOFS);
430 dfp->dfp_type = defer_op_types[type];
431 dfp->dfp_committed = false;
432 dfp->dfp_intent = NULL;
433 dfp->dfp_count = 0;
434 INIT_LIST_HEAD(&dfp->dfp_work);
435 list_add_tail(&dfp->dfp_list, &dop->dop_intake);
436 }
437
438 list_add_tail(li, &dfp->dfp_work);
439 dfp->dfp_count++;
440 }
441
442 /* Initialize a deferred operation list. */
443 void
444 xfs_defer_init_op_type(
445 const struct xfs_defer_op_type *type)
446 {
447 defer_op_types[type->type] = type;
448 }
449
450 /* Initialize a deferred operation. */
451 void
452 xfs_defer_init(
453 struct xfs_defer_ops *dop,
454 xfs_fsblock_t *fbp)
455 {
456 dop->dop_committed = false;
457 dop->dop_low = false;
458 memset(&dop->dop_inodes, 0, sizeof(dop->dop_inodes));
459 *fbp = NULLFSBLOCK;
460 INIT_LIST_HEAD(&dop->dop_intake);
461 INIT_LIST_HEAD(&dop->dop_pending);
462 trace_xfs_defer_init(NULL, dop);
463 }