]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/xfs/libxfs/xfs_ialloc.c
Input: wm97xx: add new AC97 bus support
[mirror_ubuntu-focal-kernel.git] / fs / xfs / libxfs / xfs_ialloc.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_ialloc.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_error.h"
35 #include "xfs_bmap.h"
36 #include "xfs_cksum.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_icreate_item.h"
40 #include "xfs_icache.h"
41 #include "xfs_trace.h"
42 #include "xfs_log.h"
43 #include "xfs_rmap.h"
44
45
46 /*
47 * Allocation group level functions.
48 */
49 int
50 xfs_ialloc_cluster_alignment(
51 struct xfs_mount *mp)
52 {
53 if (xfs_sb_version_hasalign(&mp->m_sb) &&
54 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
55 return mp->m_sb.sb_inoalignmt;
56 return 1;
57 }
58
59 /*
60 * Lookup a record by ino in the btree given by cur.
61 */
62 int /* error */
63 xfs_inobt_lookup(
64 struct xfs_btree_cur *cur, /* btree cursor */
65 xfs_agino_t ino, /* starting inode of chunk */
66 xfs_lookup_t dir, /* <=, >=, == */
67 int *stat) /* success/failure */
68 {
69 cur->bc_rec.i.ir_startino = ino;
70 cur->bc_rec.i.ir_holemask = 0;
71 cur->bc_rec.i.ir_count = 0;
72 cur->bc_rec.i.ir_freecount = 0;
73 cur->bc_rec.i.ir_free = 0;
74 return xfs_btree_lookup(cur, dir, stat);
75 }
76
77 /*
78 * Update the record referred to by cur to the value given.
79 * This either works (return 0) or gets an EFSCORRUPTED error.
80 */
81 STATIC int /* error */
82 xfs_inobt_update(
83 struct xfs_btree_cur *cur, /* btree cursor */
84 xfs_inobt_rec_incore_t *irec) /* btree record */
85 {
86 union xfs_btree_rec rec;
87
88 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
89 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
90 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
91 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
92 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
93 } else {
94 /* ir_holemask/ir_count not supported on-disk */
95 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
96 }
97 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
98 return xfs_btree_update(cur, &rec);
99 }
100
101 /* Convert on-disk btree record to incore inobt record. */
102 void
103 xfs_inobt_btrec_to_irec(
104 struct xfs_mount *mp,
105 union xfs_btree_rec *rec,
106 struct xfs_inobt_rec_incore *irec)
107 {
108 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
109 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
110 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
111 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
112 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
113 } else {
114 /*
115 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
116 * values for full inode chunks.
117 */
118 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
119 irec->ir_count = XFS_INODES_PER_CHUNK;
120 irec->ir_freecount =
121 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
122 }
123 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
124 }
125
126 /*
127 * Get the data from the pointed-to record.
128 */
129 int
130 xfs_inobt_get_rec(
131 struct xfs_btree_cur *cur,
132 struct xfs_inobt_rec_incore *irec,
133 int *stat)
134 {
135 union xfs_btree_rec *rec;
136 int error;
137
138 error = xfs_btree_get_rec(cur, &rec, stat);
139 if (error || *stat == 0)
140 return error;
141
142 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec);
143
144 return 0;
145 }
146
147 /*
148 * Insert a single inobt record. Cursor must already point to desired location.
149 */
150 STATIC int
151 xfs_inobt_insert_rec(
152 struct xfs_btree_cur *cur,
153 uint16_t holemask,
154 uint8_t count,
155 int32_t freecount,
156 xfs_inofree_t free,
157 int *stat)
158 {
159 cur->bc_rec.i.ir_holemask = holemask;
160 cur->bc_rec.i.ir_count = count;
161 cur->bc_rec.i.ir_freecount = freecount;
162 cur->bc_rec.i.ir_free = free;
163 return xfs_btree_insert(cur, stat);
164 }
165
166 /*
167 * Insert records describing a newly allocated inode chunk into the inobt.
168 */
169 STATIC int
170 xfs_inobt_insert(
171 struct xfs_mount *mp,
172 struct xfs_trans *tp,
173 struct xfs_buf *agbp,
174 xfs_agino_t newino,
175 xfs_agino_t newlen,
176 xfs_btnum_t btnum)
177 {
178 struct xfs_btree_cur *cur;
179 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
180 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
181 xfs_agino_t thisino;
182 int i;
183 int error;
184
185 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
186
187 for (thisino = newino;
188 thisino < newino + newlen;
189 thisino += XFS_INODES_PER_CHUNK) {
190 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
191 if (error) {
192 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
193 return error;
194 }
195 ASSERT(i == 0);
196
197 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
198 XFS_INODES_PER_CHUNK,
199 XFS_INODES_PER_CHUNK,
200 XFS_INOBT_ALL_FREE, &i);
201 if (error) {
202 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
203 return error;
204 }
205 ASSERT(i == 1);
206 }
207
208 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
209
210 return 0;
211 }
212
213 /*
214 * Verify that the number of free inodes in the AGI is correct.
215 */
216 #ifdef DEBUG
217 STATIC int
218 xfs_check_agi_freecount(
219 struct xfs_btree_cur *cur,
220 struct xfs_agi *agi)
221 {
222 if (cur->bc_nlevels == 1) {
223 xfs_inobt_rec_incore_t rec;
224 int freecount = 0;
225 int error;
226 int i;
227
228 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
229 if (error)
230 return error;
231
232 do {
233 error = xfs_inobt_get_rec(cur, &rec, &i);
234 if (error)
235 return error;
236
237 if (i) {
238 freecount += rec.ir_freecount;
239 error = xfs_btree_increment(cur, 0, &i);
240 if (error)
241 return error;
242 }
243 } while (i == 1);
244
245 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
246 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
247 }
248 return 0;
249 }
250 #else
251 #define xfs_check_agi_freecount(cur, agi) 0
252 #endif
253
254 /*
255 * Initialise a new set of inodes. When called without a transaction context
256 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
257 * than logging them (which in a transaction context puts them into the AIL
258 * for writeback rather than the xfsbufd queue).
259 */
260 int
261 xfs_ialloc_inode_init(
262 struct xfs_mount *mp,
263 struct xfs_trans *tp,
264 struct list_head *buffer_list,
265 int icount,
266 xfs_agnumber_t agno,
267 xfs_agblock_t agbno,
268 xfs_agblock_t length,
269 unsigned int gen)
270 {
271 struct xfs_buf *fbuf;
272 struct xfs_dinode *free;
273 int nbufs, blks_per_cluster, inodes_per_cluster;
274 int version;
275 int i, j;
276 xfs_daddr_t d;
277 xfs_ino_t ino = 0;
278
279 /*
280 * Loop over the new block(s), filling in the inodes. For small block
281 * sizes, manipulate the inodes in buffers which are multiples of the
282 * blocks size.
283 */
284 blks_per_cluster = xfs_icluster_size_fsb(mp);
285 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
286 nbufs = length / blks_per_cluster;
287
288 /*
289 * Figure out what version number to use in the inodes we create. If
290 * the superblock version has caught up to the one that supports the new
291 * inode format, then use the new inode version. Otherwise use the old
292 * version so that old kernels will continue to be able to use the file
293 * system.
294 *
295 * For v3 inodes, we also need to write the inode number into the inode,
296 * so calculate the first inode number of the chunk here as
297 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
298 * across multiple filesystem blocks (such as a cluster) and so cannot
299 * be used in the cluster buffer loop below.
300 *
301 * Further, because we are writing the inode directly into the buffer
302 * and calculating a CRC on the entire inode, we have ot log the entire
303 * inode so that the entire range the CRC covers is present in the log.
304 * That means for v3 inode we log the entire buffer rather than just the
305 * inode cores.
306 */
307 if (xfs_sb_version_hascrc(&mp->m_sb)) {
308 version = 3;
309 ino = XFS_AGINO_TO_INO(mp, agno,
310 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
311
312 /*
313 * log the initialisation that is about to take place as an
314 * logical operation. This means the transaction does not
315 * need to log the physical changes to the inode buffers as log
316 * recovery will know what initialisation is actually needed.
317 * Hence we only need to log the buffers as "ordered" buffers so
318 * they track in the AIL as if they were physically logged.
319 */
320 if (tp)
321 xfs_icreate_log(tp, agno, agbno, icount,
322 mp->m_sb.sb_inodesize, length, gen);
323 } else
324 version = 2;
325
326 for (j = 0; j < nbufs; j++) {
327 /*
328 * Get the block.
329 */
330 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
331 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
332 mp->m_bsize * blks_per_cluster,
333 XBF_UNMAPPED);
334 if (!fbuf)
335 return -ENOMEM;
336
337 /* Initialize the inode buffers and log them appropriately. */
338 fbuf->b_ops = &xfs_inode_buf_ops;
339 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
340 for (i = 0; i < inodes_per_cluster; i++) {
341 int ioffset = i << mp->m_sb.sb_inodelog;
342 uint isize = xfs_dinode_size(version);
343
344 free = xfs_make_iptr(mp, fbuf, i);
345 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
346 free->di_version = version;
347 free->di_gen = cpu_to_be32(gen);
348 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
349
350 if (version == 3) {
351 free->di_ino = cpu_to_be64(ino);
352 ino++;
353 uuid_copy(&free->di_uuid,
354 &mp->m_sb.sb_meta_uuid);
355 xfs_dinode_calc_crc(mp, free);
356 } else if (tp) {
357 /* just log the inode core */
358 xfs_trans_log_buf(tp, fbuf, ioffset,
359 ioffset + isize - 1);
360 }
361 }
362
363 if (tp) {
364 /*
365 * Mark the buffer as an inode allocation buffer so it
366 * sticks in AIL at the point of this allocation
367 * transaction. This ensures the they are on disk before
368 * the tail of the log can be moved past this
369 * transaction (i.e. by preventing relogging from moving
370 * it forward in the log).
371 */
372 xfs_trans_inode_alloc_buf(tp, fbuf);
373 if (version == 3) {
374 /*
375 * Mark the buffer as ordered so that they are
376 * not physically logged in the transaction but
377 * still tracked in the AIL as part of the
378 * transaction and pin the log appropriately.
379 */
380 xfs_trans_ordered_buf(tp, fbuf);
381 }
382 } else {
383 fbuf->b_flags |= XBF_DONE;
384 xfs_buf_delwri_queue(fbuf, buffer_list);
385 xfs_buf_relse(fbuf);
386 }
387 }
388 return 0;
389 }
390
391 /*
392 * Align startino and allocmask for a recently allocated sparse chunk such that
393 * they are fit for insertion (or merge) into the on-disk inode btrees.
394 *
395 * Background:
396 *
397 * When enabled, sparse inode support increases the inode alignment from cluster
398 * size to inode chunk size. This means that the minimum range between two
399 * non-adjacent inode records in the inobt is large enough for a full inode
400 * record. This allows for cluster sized, cluster aligned block allocation
401 * without need to worry about whether the resulting inode record overlaps with
402 * another record in the tree. Without this basic rule, we would have to deal
403 * with the consequences of overlap by potentially undoing recent allocations in
404 * the inode allocation codepath.
405 *
406 * Because of this alignment rule (which is enforced on mount), there are two
407 * inobt possibilities for newly allocated sparse chunks. One is that the
408 * aligned inode record for the chunk covers a range of inodes not already
409 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
410 * other is that a record already exists at the aligned startino that considers
411 * the newly allocated range as sparse. In the latter case, record content is
412 * merged in hope that sparse inode chunks fill to full chunks over time.
413 */
414 STATIC void
415 xfs_align_sparse_ino(
416 struct xfs_mount *mp,
417 xfs_agino_t *startino,
418 uint16_t *allocmask)
419 {
420 xfs_agblock_t agbno;
421 xfs_agblock_t mod;
422 int offset;
423
424 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
425 mod = agbno % mp->m_sb.sb_inoalignmt;
426 if (!mod)
427 return;
428
429 /* calculate the inode offset and align startino */
430 offset = mod << mp->m_sb.sb_inopblog;
431 *startino -= offset;
432
433 /*
434 * Since startino has been aligned down, left shift allocmask such that
435 * it continues to represent the same physical inodes relative to the
436 * new startino.
437 */
438 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
439 }
440
441 /*
442 * Determine whether the source inode record can merge into the target. Both
443 * records must be sparse, the inode ranges must match and there must be no
444 * allocation overlap between the records.
445 */
446 STATIC bool
447 __xfs_inobt_can_merge(
448 struct xfs_inobt_rec_incore *trec, /* tgt record */
449 struct xfs_inobt_rec_incore *srec) /* src record */
450 {
451 uint64_t talloc;
452 uint64_t salloc;
453
454 /* records must cover the same inode range */
455 if (trec->ir_startino != srec->ir_startino)
456 return false;
457
458 /* both records must be sparse */
459 if (!xfs_inobt_issparse(trec->ir_holemask) ||
460 !xfs_inobt_issparse(srec->ir_holemask))
461 return false;
462
463 /* both records must track some inodes */
464 if (!trec->ir_count || !srec->ir_count)
465 return false;
466
467 /* can't exceed capacity of a full record */
468 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
469 return false;
470
471 /* verify there is no allocation overlap */
472 talloc = xfs_inobt_irec_to_allocmask(trec);
473 salloc = xfs_inobt_irec_to_allocmask(srec);
474 if (talloc & salloc)
475 return false;
476
477 return true;
478 }
479
480 /*
481 * Merge the source inode record into the target. The caller must call
482 * __xfs_inobt_can_merge() to ensure the merge is valid.
483 */
484 STATIC void
485 __xfs_inobt_rec_merge(
486 struct xfs_inobt_rec_incore *trec, /* target */
487 struct xfs_inobt_rec_incore *srec) /* src */
488 {
489 ASSERT(trec->ir_startino == srec->ir_startino);
490
491 /* combine the counts */
492 trec->ir_count += srec->ir_count;
493 trec->ir_freecount += srec->ir_freecount;
494
495 /*
496 * Merge the holemask and free mask. For both fields, 0 bits refer to
497 * allocated inodes. We combine the allocated ranges with bitwise AND.
498 */
499 trec->ir_holemask &= srec->ir_holemask;
500 trec->ir_free &= srec->ir_free;
501 }
502
503 /*
504 * Insert a new sparse inode chunk into the associated inode btree. The inode
505 * record for the sparse chunk is pre-aligned to a startino that should match
506 * any pre-existing sparse inode record in the tree. This allows sparse chunks
507 * to fill over time.
508 *
509 * This function supports two modes of handling preexisting records depending on
510 * the merge flag. If merge is true, the provided record is merged with the
511 * existing record and updated in place. The merged record is returned in nrec.
512 * If merge is false, an existing record is replaced with the provided record.
513 * If no preexisting record exists, the provided record is always inserted.
514 *
515 * It is considered corruption if a merge is requested and not possible. Given
516 * the sparse inode alignment constraints, this should never happen.
517 */
518 STATIC int
519 xfs_inobt_insert_sprec(
520 struct xfs_mount *mp,
521 struct xfs_trans *tp,
522 struct xfs_buf *agbp,
523 int btnum,
524 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
525 bool merge) /* merge or replace */
526 {
527 struct xfs_btree_cur *cur;
528 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
529 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
530 int error;
531 int i;
532 struct xfs_inobt_rec_incore rec;
533
534 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
535
536 /* the new record is pre-aligned so we know where to look */
537 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
538 if (error)
539 goto error;
540 /* if nothing there, insert a new record and return */
541 if (i == 0) {
542 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
543 nrec->ir_count, nrec->ir_freecount,
544 nrec->ir_free, &i);
545 if (error)
546 goto error;
547 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
548
549 goto out;
550 }
551
552 /*
553 * A record exists at this startino. Merge or replace the record
554 * depending on what we've been asked to do.
555 */
556 if (merge) {
557 error = xfs_inobt_get_rec(cur, &rec, &i);
558 if (error)
559 goto error;
560 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
561 XFS_WANT_CORRUPTED_GOTO(mp,
562 rec.ir_startino == nrec->ir_startino,
563 error);
564
565 /*
566 * This should never fail. If we have coexisting records that
567 * cannot merge, something is seriously wrong.
568 */
569 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
570 error);
571
572 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
573 rec.ir_holemask, nrec->ir_startino,
574 nrec->ir_holemask);
575
576 /* merge to nrec to output the updated record */
577 __xfs_inobt_rec_merge(nrec, &rec);
578
579 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
580 nrec->ir_holemask);
581
582 error = xfs_inobt_rec_check_count(mp, nrec);
583 if (error)
584 goto error;
585 }
586
587 error = xfs_inobt_update(cur, nrec);
588 if (error)
589 goto error;
590
591 out:
592 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
593 return 0;
594 error:
595 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
596 return error;
597 }
598
599 /*
600 * Allocate new inodes in the allocation group specified by agbp.
601 * Return 0 for success, else error code.
602 */
603 STATIC int /* error code or 0 */
604 xfs_ialloc_ag_alloc(
605 xfs_trans_t *tp, /* transaction pointer */
606 xfs_buf_t *agbp, /* alloc group buffer */
607 int *alloc)
608 {
609 xfs_agi_t *agi; /* allocation group header */
610 xfs_alloc_arg_t args; /* allocation argument structure */
611 xfs_agnumber_t agno;
612 int error;
613 xfs_agino_t newino; /* new first inode's number */
614 xfs_agino_t newlen; /* new number of inodes */
615 int isaligned = 0; /* inode allocation at stripe unit */
616 /* boundary */
617 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
618 struct xfs_inobt_rec_incore rec;
619 struct xfs_perag *pag;
620 int do_sparse = 0;
621
622 memset(&args, 0, sizeof(args));
623 args.tp = tp;
624 args.mp = tp->t_mountp;
625 args.fsbno = NULLFSBLOCK;
626 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
627
628 #ifdef DEBUG
629 /* randomly do sparse inode allocations */
630 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
631 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
632 do_sparse = prandom_u32() & 1;
633 #endif
634
635 /*
636 * Locking will ensure that we don't have two callers in here
637 * at one time.
638 */
639 newlen = args.mp->m_ialloc_inos;
640 if (args.mp->m_maxicount &&
641 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
642 args.mp->m_maxicount)
643 return -ENOSPC;
644 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
645 /*
646 * First try to allocate inodes contiguous with the last-allocated
647 * chunk of inodes. If the filesystem is striped, this will fill
648 * an entire stripe unit with inodes.
649 */
650 agi = XFS_BUF_TO_AGI(agbp);
651 newino = be32_to_cpu(agi->agi_newino);
652 agno = be32_to_cpu(agi->agi_seqno);
653 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
654 args.mp->m_ialloc_blks;
655 if (do_sparse)
656 goto sparse_alloc;
657 if (likely(newino != NULLAGINO &&
658 (args.agbno < be32_to_cpu(agi->agi_length)))) {
659 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
660 args.type = XFS_ALLOCTYPE_THIS_BNO;
661 args.prod = 1;
662
663 /*
664 * We need to take into account alignment here to ensure that
665 * we don't modify the free list if we fail to have an exact
666 * block. If we don't have an exact match, and every oher
667 * attempt allocation attempt fails, we'll end up cancelling
668 * a dirty transaction and shutting down.
669 *
670 * For an exact allocation, alignment must be 1,
671 * however we need to take cluster alignment into account when
672 * fixing up the freelist. Use the minalignslop field to
673 * indicate that extra blocks might be required for alignment,
674 * but not to use them in the actual exact allocation.
675 */
676 args.alignment = 1;
677 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
678
679 /* Allow space for the inode btree to split. */
680 args.minleft = args.mp->m_in_maxlevels - 1;
681 if ((error = xfs_alloc_vextent(&args)))
682 return error;
683
684 /*
685 * This request might have dirtied the transaction if the AG can
686 * satisfy the request, but the exact block was not available.
687 * If the allocation did fail, subsequent requests will relax
688 * the exact agbno requirement and increase the alignment
689 * instead. It is critical that the total size of the request
690 * (len + alignment + slop) does not increase from this point
691 * on, so reset minalignslop to ensure it is not included in
692 * subsequent requests.
693 */
694 args.minalignslop = 0;
695 }
696
697 if (unlikely(args.fsbno == NULLFSBLOCK)) {
698 /*
699 * Set the alignment for the allocation.
700 * If stripe alignment is turned on then align at stripe unit
701 * boundary.
702 * If the cluster size is smaller than a filesystem block
703 * then we're doing I/O for inodes in filesystem block size
704 * pieces, so don't need alignment anyway.
705 */
706 isaligned = 0;
707 if (args.mp->m_sinoalign) {
708 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
709 args.alignment = args.mp->m_dalign;
710 isaligned = 1;
711 } else
712 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
713 /*
714 * Need to figure out where to allocate the inode blocks.
715 * Ideally they should be spaced out through the a.g.
716 * For now, just allocate blocks up front.
717 */
718 args.agbno = be32_to_cpu(agi->agi_root);
719 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
720 /*
721 * Allocate a fixed-size extent of inodes.
722 */
723 args.type = XFS_ALLOCTYPE_NEAR_BNO;
724 args.prod = 1;
725 /*
726 * Allow space for the inode btree to split.
727 */
728 args.minleft = args.mp->m_in_maxlevels - 1;
729 if ((error = xfs_alloc_vextent(&args)))
730 return error;
731 }
732
733 /*
734 * If stripe alignment is turned on, then try again with cluster
735 * alignment.
736 */
737 if (isaligned && args.fsbno == NULLFSBLOCK) {
738 args.type = XFS_ALLOCTYPE_NEAR_BNO;
739 args.agbno = be32_to_cpu(agi->agi_root);
740 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
741 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
742 if ((error = xfs_alloc_vextent(&args)))
743 return error;
744 }
745
746 /*
747 * Finally, try a sparse allocation if the filesystem supports it and
748 * the sparse allocation length is smaller than a full chunk.
749 */
750 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
751 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
752 args.fsbno == NULLFSBLOCK) {
753 sparse_alloc:
754 args.type = XFS_ALLOCTYPE_NEAR_BNO;
755 args.agbno = be32_to_cpu(agi->agi_root);
756 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
757 args.alignment = args.mp->m_sb.sb_spino_align;
758 args.prod = 1;
759
760 args.minlen = args.mp->m_ialloc_min_blks;
761 args.maxlen = args.minlen;
762
763 /*
764 * The inode record will be aligned to full chunk size. We must
765 * prevent sparse allocation from AG boundaries that result in
766 * invalid inode records, such as records that start at agbno 0
767 * or extend beyond the AG.
768 *
769 * Set min agbno to the first aligned, non-zero agbno and max to
770 * the last aligned agbno that is at least one full chunk from
771 * the end of the AG.
772 */
773 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
774 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
775 args.mp->m_sb.sb_inoalignmt) -
776 args.mp->m_ialloc_blks;
777
778 error = xfs_alloc_vextent(&args);
779 if (error)
780 return error;
781
782 newlen = args.len << args.mp->m_sb.sb_inopblog;
783 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
784 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
785 }
786
787 if (args.fsbno == NULLFSBLOCK) {
788 *alloc = 0;
789 return 0;
790 }
791 ASSERT(args.len == args.minlen);
792
793 /*
794 * Stamp and write the inode buffers.
795 *
796 * Seed the new inode cluster with a random generation number. This
797 * prevents short-term reuse of generation numbers if a chunk is
798 * freed and then immediately reallocated. We use random numbers
799 * rather than a linear progression to prevent the next generation
800 * number from being easily guessable.
801 */
802 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
803 args.agbno, args.len, prandom_u32());
804
805 if (error)
806 return error;
807 /*
808 * Convert the results.
809 */
810 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
811
812 if (xfs_inobt_issparse(~allocmask)) {
813 /*
814 * We've allocated a sparse chunk. Align the startino and mask.
815 */
816 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
817
818 rec.ir_startino = newino;
819 rec.ir_holemask = ~allocmask;
820 rec.ir_count = newlen;
821 rec.ir_freecount = newlen;
822 rec.ir_free = XFS_INOBT_ALL_FREE;
823
824 /*
825 * Insert the sparse record into the inobt and allow for a merge
826 * if necessary. If a merge does occur, rec is updated to the
827 * merged record.
828 */
829 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
830 &rec, true);
831 if (error == -EFSCORRUPTED) {
832 xfs_alert(args.mp,
833 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
834 XFS_AGINO_TO_INO(args.mp, agno,
835 rec.ir_startino),
836 rec.ir_holemask, rec.ir_count);
837 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
838 }
839 if (error)
840 return error;
841
842 /*
843 * We can't merge the part we've just allocated as for the inobt
844 * due to finobt semantics. The original record may or may not
845 * exist independent of whether physical inodes exist in this
846 * sparse chunk.
847 *
848 * We must update the finobt record based on the inobt record.
849 * rec contains the fully merged and up to date inobt record
850 * from the previous call. Set merge false to replace any
851 * existing record with this one.
852 */
853 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
854 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
855 XFS_BTNUM_FINO, &rec,
856 false);
857 if (error)
858 return error;
859 }
860 } else {
861 /* full chunk - insert new records to both btrees */
862 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
863 XFS_BTNUM_INO);
864 if (error)
865 return error;
866
867 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
868 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
869 newlen, XFS_BTNUM_FINO);
870 if (error)
871 return error;
872 }
873 }
874
875 /*
876 * Update AGI counts and newino.
877 */
878 be32_add_cpu(&agi->agi_count, newlen);
879 be32_add_cpu(&agi->agi_freecount, newlen);
880 pag = xfs_perag_get(args.mp, agno);
881 pag->pagi_freecount += newlen;
882 xfs_perag_put(pag);
883 agi->agi_newino = cpu_to_be32(newino);
884
885 /*
886 * Log allocation group header fields
887 */
888 xfs_ialloc_log_agi(tp, agbp,
889 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
890 /*
891 * Modify/log superblock values for inode count and inode free count.
892 */
893 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
894 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
895 *alloc = 1;
896 return 0;
897 }
898
899 STATIC xfs_agnumber_t
900 xfs_ialloc_next_ag(
901 xfs_mount_t *mp)
902 {
903 xfs_agnumber_t agno;
904
905 spin_lock(&mp->m_agirotor_lock);
906 agno = mp->m_agirotor;
907 if (++mp->m_agirotor >= mp->m_maxagi)
908 mp->m_agirotor = 0;
909 spin_unlock(&mp->m_agirotor_lock);
910
911 return agno;
912 }
913
914 /*
915 * Select an allocation group to look for a free inode in, based on the parent
916 * inode and the mode. Return the allocation group buffer.
917 */
918 STATIC xfs_agnumber_t
919 xfs_ialloc_ag_select(
920 xfs_trans_t *tp, /* transaction pointer */
921 xfs_ino_t parent, /* parent directory inode number */
922 umode_t mode, /* bits set to indicate file type */
923 int okalloc) /* ok to allocate more space */
924 {
925 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
926 xfs_agnumber_t agno; /* current ag number */
927 int flags; /* alloc buffer locking flags */
928 xfs_extlen_t ineed; /* blocks needed for inode allocation */
929 xfs_extlen_t longest = 0; /* longest extent available */
930 xfs_mount_t *mp; /* mount point structure */
931 int needspace; /* file mode implies space allocated */
932 xfs_perag_t *pag; /* per allocation group data */
933 xfs_agnumber_t pagno; /* parent (starting) ag number */
934 int error;
935
936 /*
937 * Files of these types need at least one block if length > 0
938 * (and they won't fit in the inode, but that's hard to figure out).
939 */
940 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
941 mp = tp->t_mountp;
942 agcount = mp->m_maxagi;
943 if (S_ISDIR(mode))
944 pagno = xfs_ialloc_next_ag(mp);
945 else {
946 pagno = XFS_INO_TO_AGNO(mp, parent);
947 if (pagno >= agcount)
948 pagno = 0;
949 }
950
951 ASSERT(pagno < agcount);
952
953 /*
954 * Loop through allocation groups, looking for one with a little
955 * free space in it. Note we don't look for free inodes, exactly.
956 * Instead, we include whether there is a need to allocate inodes
957 * to mean that blocks must be allocated for them,
958 * if none are currently free.
959 */
960 agno = pagno;
961 flags = XFS_ALLOC_FLAG_TRYLOCK;
962 for (;;) {
963 pag = xfs_perag_get(mp, agno);
964 if (!pag->pagi_inodeok) {
965 xfs_ialloc_next_ag(mp);
966 goto nextag;
967 }
968
969 if (!pag->pagi_init) {
970 error = xfs_ialloc_pagi_init(mp, tp, agno);
971 if (error)
972 goto nextag;
973 }
974
975 if (pag->pagi_freecount) {
976 xfs_perag_put(pag);
977 return agno;
978 }
979
980 if (!okalloc)
981 goto nextag;
982
983 if (!pag->pagf_init) {
984 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
985 if (error)
986 goto nextag;
987 }
988
989 /*
990 * Check that there is enough free space for the file plus a
991 * chunk of inodes if we need to allocate some. If this is the
992 * first pass across the AGs, take into account the potential
993 * space needed for alignment of inode chunks when checking the
994 * longest contiguous free space in the AG - this prevents us
995 * from getting ENOSPC because we have free space larger than
996 * m_ialloc_blks but alignment constraints prevent us from using
997 * it.
998 *
999 * If we can't find an AG with space for full alignment slack to
1000 * be taken into account, we must be near ENOSPC in all AGs.
1001 * Hence we don't include alignment for the second pass and so
1002 * if we fail allocation due to alignment issues then it is most
1003 * likely a real ENOSPC condition.
1004 */
1005 ineed = mp->m_ialloc_min_blks;
1006 if (flags && ineed > 1)
1007 ineed += xfs_ialloc_cluster_alignment(mp);
1008 longest = pag->pagf_longest;
1009 if (!longest)
1010 longest = pag->pagf_flcount > 0;
1011
1012 if (pag->pagf_freeblks >= needspace + ineed &&
1013 longest >= ineed) {
1014 xfs_perag_put(pag);
1015 return agno;
1016 }
1017 nextag:
1018 xfs_perag_put(pag);
1019 /*
1020 * No point in iterating over the rest, if we're shutting
1021 * down.
1022 */
1023 if (XFS_FORCED_SHUTDOWN(mp))
1024 return NULLAGNUMBER;
1025 agno++;
1026 if (agno >= agcount)
1027 agno = 0;
1028 if (agno == pagno) {
1029 if (flags == 0)
1030 return NULLAGNUMBER;
1031 flags = 0;
1032 }
1033 }
1034 }
1035
1036 /*
1037 * Try to retrieve the next record to the left/right from the current one.
1038 */
1039 STATIC int
1040 xfs_ialloc_next_rec(
1041 struct xfs_btree_cur *cur,
1042 xfs_inobt_rec_incore_t *rec,
1043 int *done,
1044 int left)
1045 {
1046 int error;
1047 int i;
1048
1049 if (left)
1050 error = xfs_btree_decrement(cur, 0, &i);
1051 else
1052 error = xfs_btree_increment(cur, 0, &i);
1053
1054 if (error)
1055 return error;
1056 *done = !i;
1057 if (i) {
1058 error = xfs_inobt_get_rec(cur, rec, &i);
1059 if (error)
1060 return error;
1061 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1062 }
1063
1064 return 0;
1065 }
1066
1067 STATIC int
1068 xfs_ialloc_get_rec(
1069 struct xfs_btree_cur *cur,
1070 xfs_agino_t agino,
1071 xfs_inobt_rec_incore_t *rec,
1072 int *done)
1073 {
1074 int error;
1075 int i;
1076
1077 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1078 if (error)
1079 return error;
1080 *done = !i;
1081 if (i) {
1082 error = xfs_inobt_get_rec(cur, rec, &i);
1083 if (error)
1084 return error;
1085 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1086 }
1087
1088 return 0;
1089 }
1090
1091 /*
1092 * Return the offset of the first free inode in the record. If the inode chunk
1093 * is sparsely allocated, we convert the record holemask to inode granularity
1094 * and mask off the unallocated regions from the inode free mask.
1095 */
1096 STATIC int
1097 xfs_inobt_first_free_inode(
1098 struct xfs_inobt_rec_incore *rec)
1099 {
1100 xfs_inofree_t realfree;
1101
1102 /* if there are no holes, return the first available offset */
1103 if (!xfs_inobt_issparse(rec->ir_holemask))
1104 return xfs_lowbit64(rec->ir_free);
1105
1106 realfree = xfs_inobt_irec_to_allocmask(rec);
1107 realfree &= rec->ir_free;
1108
1109 return xfs_lowbit64(realfree);
1110 }
1111
1112 /*
1113 * Allocate an inode using the inobt-only algorithm.
1114 */
1115 STATIC int
1116 xfs_dialloc_ag_inobt(
1117 struct xfs_trans *tp,
1118 struct xfs_buf *agbp,
1119 xfs_ino_t parent,
1120 xfs_ino_t *inop)
1121 {
1122 struct xfs_mount *mp = tp->t_mountp;
1123 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1124 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1125 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1126 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1127 struct xfs_perag *pag;
1128 struct xfs_btree_cur *cur, *tcur;
1129 struct xfs_inobt_rec_incore rec, trec;
1130 xfs_ino_t ino;
1131 int error;
1132 int offset;
1133 int i, j;
1134 int searchdistance = 10;
1135
1136 pag = xfs_perag_get(mp, agno);
1137
1138 ASSERT(pag->pagi_init);
1139 ASSERT(pag->pagi_inodeok);
1140 ASSERT(pag->pagi_freecount > 0);
1141
1142 restart_pagno:
1143 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1144 /*
1145 * If pagino is 0 (this is the root inode allocation) use newino.
1146 * This must work because we've just allocated some.
1147 */
1148 if (!pagino)
1149 pagino = be32_to_cpu(agi->agi_newino);
1150
1151 error = xfs_check_agi_freecount(cur, agi);
1152 if (error)
1153 goto error0;
1154
1155 /*
1156 * If in the same AG as the parent, try to get near the parent.
1157 */
1158 if (pagno == agno) {
1159 int doneleft; /* done, to the left */
1160 int doneright; /* done, to the right */
1161
1162 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1163 if (error)
1164 goto error0;
1165 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1166
1167 error = xfs_inobt_get_rec(cur, &rec, &j);
1168 if (error)
1169 goto error0;
1170 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1171
1172 if (rec.ir_freecount > 0) {
1173 /*
1174 * Found a free inode in the same chunk
1175 * as the parent, done.
1176 */
1177 goto alloc_inode;
1178 }
1179
1180
1181 /*
1182 * In the same AG as parent, but parent's chunk is full.
1183 */
1184
1185 /* duplicate the cursor, search left & right simultaneously */
1186 error = xfs_btree_dup_cursor(cur, &tcur);
1187 if (error)
1188 goto error0;
1189
1190 /*
1191 * Skip to last blocks looked up if same parent inode.
1192 */
1193 if (pagino != NULLAGINO &&
1194 pag->pagl_pagino == pagino &&
1195 pag->pagl_leftrec != NULLAGINO &&
1196 pag->pagl_rightrec != NULLAGINO) {
1197 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1198 &trec, &doneleft);
1199 if (error)
1200 goto error1;
1201
1202 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1203 &rec, &doneright);
1204 if (error)
1205 goto error1;
1206 } else {
1207 /* search left with tcur, back up 1 record */
1208 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1209 if (error)
1210 goto error1;
1211
1212 /* search right with cur, go forward 1 record. */
1213 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1214 if (error)
1215 goto error1;
1216 }
1217
1218 /*
1219 * Loop until we find an inode chunk with a free inode.
1220 */
1221 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1222 int useleft; /* using left inode chunk this time */
1223
1224 /* figure out the closer block if both are valid. */
1225 if (!doneleft && !doneright) {
1226 useleft = pagino -
1227 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1228 rec.ir_startino - pagino;
1229 } else {
1230 useleft = !doneleft;
1231 }
1232
1233 /* free inodes to the left? */
1234 if (useleft && trec.ir_freecount) {
1235 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1236 cur = tcur;
1237
1238 pag->pagl_leftrec = trec.ir_startino;
1239 pag->pagl_rightrec = rec.ir_startino;
1240 pag->pagl_pagino = pagino;
1241 rec = trec;
1242 goto alloc_inode;
1243 }
1244
1245 /* free inodes to the right? */
1246 if (!useleft && rec.ir_freecount) {
1247 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1248
1249 pag->pagl_leftrec = trec.ir_startino;
1250 pag->pagl_rightrec = rec.ir_startino;
1251 pag->pagl_pagino = pagino;
1252 goto alloc_inode;
1253 }
1254
1255 /* get next record to check */
1256 if (useleft) {
1257 error = xfs_ialloc_next_rec(tcur, &trec,
1258 &doneleft, 1);
1259 } else {
1260 error = xfs_ialloc_next_rec(cur, &rec,
1261 &doneright, 0);
1262 }
1263 if (error)
1264 goto error1;
1265 }
1266
1267 if (searchdistance <= 0) {
1268 /*
1269 * Not in range - save last search
1270 * location and allocate a new inode
1271 */
1272 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1273 pag->pagl_leftrec = trec.ir_startino;
1274 pag->pagl_rightrec = rec.ir_startino;
1275 pag->pagl_pagino = pagino;
1276
1277 } else {
1278 /*
1279 * We've reached the end of the btree. because
1280 * we are only searching a small chunk of the
1281 * btree each search, there is obviously free
1282 * inodes closer to the parent inode than we
1283 * are now. restart the search again.
1284 */
1285 pag->pagl_pagino = NULLAGINO;
1286 pag->pagl_leftrec = NULLAGINO;
1287 pag->pagl_rightrec = NULLAGINO;
1288 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1289 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1290 goto restart_pagno;
1291 }
1292 }
1293
1294 /*
1295 * In a different AG from the parent.
1296 * See if the most recently allocated block has any free.
1297 */
1298 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1299 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1300 XFS_LOOKUP_EQ, &i);
1301 if (error)
1302 goto error0;
1303
1304 if (i == 1) {
1305 error = xfs_inobt_get_rec(cur, &rec, &j);
1306 if (error)
1307 goto error0;
1308
1309 if (j == 1 && rec.ir_freecount > 0) {
1310 /*
1311 * The last chunk allocated in the group
1312 * still has a free inode.
1313 */
1314 goto alloc_inode;
1315 }
1316 }
1317 }
1318
1319 /*
1320 * None left in the last group, search the whole AG
1321 */
1322 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1323 if (error)
1324 goto error0;
1325 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1326
1327 for (;;) {
1328 error = xfs_inobt_get_rec(cur, &rec, &i);
1329 if (error)
1330 goto error0;
1331 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1332 if (rec.ir_freecount > 0)
1333 break;
1334 error = xfs_btree_increment(cur, 0, &i);
1335 if (error)
1336 goto error0;
1337 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1338 }
1339
1340 alloc_inode:
1341 offset = xfs_inobt_first_free_inode(&rec);
1342 ASSERT(offset >= 0);
1343 ASSERT(offset < XFS_INODES_PER_CHUNK);
1344 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1345 XFS_INODES_PER_CHUNK) == 0);
1346 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1347 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1348 rec.ir_freecount--;
1349 error = xfs_inobt_update(cur, &rec);
1350 if (error)
1351 goto error0;
1352 be32_add_cpu(&agi->agi_freecount, -1);
1353 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1354 pag->pagi_freecount--;
1355
1356 error = xfs_check_agi_freecount(cur, agi);
1357 if (error)
1358 goto error0;
1359
1360 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1361 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1362 xfs_perag_put(pag);
1363 *inop = ino;
1364 return 0;
1365 error1:
1366 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1367 error0:
1368 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1369 xfs_perag_put(pag);
1370 return error;
1371 }
1372
1373 /*
1374 * Use the free inode btree to allocate an inode based on distance from the
1375 * parent. Note that the provided cursor may be deleted and replaced.
1376 */
1377 STATIC int
1378 xfs_dialloc_ag_finobt_near(
1379 xfs_agino_t pagino,
1380 struct xfs_btree_cur **ocur,
1381 struct xfs_inobt_rec_incore *rec)
1382 {
1383 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1384 struct xfs_btree_cur *rcur; /* right search cursor */
1385 struct xfs_inobt_rec_incore rrec;
1386 int error;
1387 int i, j;
1388
1389 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1390 if (error)
1391 return error;
1392
1393 if (i == 1) {
1394 error = xfs_inobt_get_rec(lcur, rec, &i);
1395 if (error)
1396 return error;
1397 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1398
1399 /*
1400 * See if we've landed in the parent inode record. The finobt
1401 * only tracks chunks with at least one free inode, so record
1402 * existence is enough.
1403 */
1404 if (pagino >= rec->ir_startino &&
1405 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1406 return 0;
1407 }
1408
1409 error = xfs_btree_dup_cursor(lcur, &rcur);
1410 if (error)
1411 return error;
1412
1413 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1414 if (error)
1415 goto error_rcur;
1416 if (j == 1) {
1417 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1418 if (error)
1419 goto error_rcur;
1420 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1421 }
1422
1423 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1424 if (i == 1 && j == 1) {
1425 /*
1426 * Both the left and right records are valid. Choose the closer
1427 * inode chunk to the target.
1428 */
1429 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1430 (rrec.ir_startino - pagino)) {
1431 *rec = rrec;
1432 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1433 *ocur = rcur;
1434 } else {
1435 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1436 }
1437 } else if (j == 1) {
1438 /* only the right record is valid */
1439 *rec = rrec;
1440 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1441 *ocur = rcur;
1442 } else if (i == 1) {
1443 /* only the left record is valid */
1444 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1445 }
1446
1447 return 0;
1448
1449 error_rcur:
1450 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1451 return error;
1452 }
1453
1454 /*
1455 * Use the free inode btree to find a free inode based on a newino hint. If
1456 * the hint is NULL, find the first free inode in the AG.
1457 */
1458 STATIC int
1459 xfs_dialloc_ag_finobt_newino(
1460 struct xfs_agi *agi,
1461 struct xfs_btree_cur *cur,
1462 struct xfs_inobt_rec_incore *rec)
1463 {
1464 int error;
1465 int i;
1466
1467 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1468 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1469 XFS_LOOKUP_EQ, &i);
1470 if (error)
1471 return error;
1472 if (i == 1) {
1473 error = xfs_inobt_get_rec(cur, rec, &i);
1474 if (error)
1475 return error;
1476 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1477 return 0;
1478 }
1479 }
1480
1481 /*
1482 * Find the first inode available in the AG.
1483 */
1484 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1485 if (error)
1486 return error;
1487 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1488
1489 error = xfs_inobt_get_rec(cur, rec, &i);
1490 if (error)
1491 return error;
1492 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1493
1494 return 0;
1495 }
1496
1497 /*
1498 * Update the inobt based on a modification made to the finobt. Also ensure that
1499 * the records from both trees are equivalent post-modification.
1500 */
1501 STATIC int
1502 xfs_dialloc_ag_update_inobt(
1503 struct xfs_btree_cur *cur, /* inobt cursor */
1504 struct xfs_inobt_rec_incore *frec, /* finobt record */
1505 int offset) /* inode offset */
1506 {
1507 struct xfs_inobt_rec_incore rec;
1508 int error;
1509 int i;
1510
1511 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1512 if (error)
1513 return error;
1514 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1515
1516 error = xfs_inobt_get_rec(cur, &rec, &i);
1517 if (error)
1518 return error;
1519 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1520 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1521 XFS_INODES_PER_CHUNK) == 0);
1522
1523 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1524 rec.ir_freecount--;
1525
1526 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1527 (rec.ir_freecount == frec->ir_freecount));
1528
1529 return xfs_inobt_update(cur, &rec);
1530 }
1531
1532 /*
1533 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1534 * back to the inobt search algorithm.
1535 *
1536 * The caller selected an AG for us, and made sure that free inodes are
1537 * available.
1538 */
1539 STATIC int
1540 xfs_dialloc_ag(
1541 struct xfs_trans *tp,
1542 struct xfs_buf *agbp,
1543 xfs_ino_t parent,
1544 xfs_ino_t *inop)
1545 {
1546 struct xfs_mount *mp = tp->t_mountp;
1547 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1548 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1549 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1550 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1551 struct xfs_perag *pag;
1552 struct xfs_btree_cur *cur; /* finobt cursor */
1553 struct xfs_btree_cur *icur; /* inobt cursor */
1554 struct xfs_inobt_rec_incore rec;
1555 xfs_ino_t ino;
1556 int error;
1557 int offset;
1558 int i;
1559
1560 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1561 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1562
1563 pag = xfs_perag_get(mp, agno);
1564
1565 /*
1566 * If pagino is 0 (this is the root inode allocation) use newino.
1567 * This must work because we've just allocated some.
1568 */
1569 if (!pagino)
1570 pagino = be32_to_cpu(agi->agi_newino);
1571
1572 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1573
1574 error = xfs_check_agi_freecount(cur, agi);
1575 if (error)
1576 goto error_cur;
1577
1578 /*
1579 * The search algorithm depends on whether we're in the same AG as the
1580 * parent. If so, find the closest available inode to the parent. If
1581 * not, consider the agi hint or find the first free inode in the AG.
1582 */
1583 if (agno == pagno)
1584 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1585 else
1586 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1587 if (error)
1588 goto error_cur;
1589
1590 offset = xfs_inobt_first_free_inode(&rec);
1591 ASSERT(offset >= 0);
1592 ASSERT(offset < XFS_INODES_PER_CHUNK);
1593 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1594 XFS_INODES_PER_CHUNK) == 0);
1595 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1596
1597 /*
1598 * Modify or remove the finobt record.
1599 */
1600 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1601 rec.ir_freecount--;
1602 if (rec.ir_freecount)
1603 error = xfs_inobt_update(cur, &rec);
1604 else
1605 error = xfs_btree_delete(cur, &i);
1606 if (error)
1607 goto error_cur;
1608
1609 /*
1610 * The finobt has now been updated appropriately. We haven't updated the
1611 * agi and superblock yet, so we can create an inobt cursor and validate
1612 * the original freecount. If all is well, make the equivalent update to
1613 * the inobt using the finobt record and offset information.
1614 */
1615 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1616
1617 error = xfs_check_agi_freecount(icur, agi);
1618 if (error)
1619 goto error_icur;
1620
1621 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1622 if (error)
1623 goto error_icur;
1624
1625 /*
1626 * Both trees have now been updated. We must update the perag and
1627 * superblock before we can check the freecount for each btree.
1628 */
1629 be32_add_cpu(&agi->agi_freecount, -1);
1630 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1631 pag->pagi_freecount--;
1632
1633 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1634
1635 error = xfs_check_agi_freecount(icur, agi);
1636 if (error)
1637 goto error_icur;
1638 error = xfs_check_agi_freecount(cur, agi);
1639 if (error)
1640 goto error_icur;
1641
1642 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1643 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1644 xfs_perag_put(pag);
1645 *inop = ino;
1646 return 0;
1647
1648 error_icur:
1649 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1650 error_cur:
1651 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1652 xfs_perag_put(pag);
1653 return error;
1654 }
1655
1656 /*
1657 * Allocate an inode on disk.
1658 *
1659 * Mode is used to tell whether the new inode will need space, and whether it
1660 * is a directory.
1661 *
1662 * This function is designed to be called twice if it has to do an allocation
1663 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1664 * If an inode is available without having to performn an allocation, an inode
1665 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1666 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1667 * The caller should then commit the current transaction, allocate a
1668 * new transaction, and call xfs_dialloc() again, passing in the previous value
1669 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1670 * buffer is locked across the two calls, the second call is guaranteed to have
1671 * a free inode available.
1672 *
1673 * Once we successfully pick an inode its number is returned and the on-disk
1674 * data structures are updated. The inode itself is not read in, since doing so
1675 * would break ordering constraints with xfs_reclaim.
1676 */
1677 int
1678 xfs_dialloc(
1679 struct xfs_trans *tp,
1680 xfs_ino_t parent,
1681 umode_t mode,
1682 int okalloc,
1683 struct xfs_buf **IO_agbp,
1684 xfs_ino_t *inop)
1685 {
1686 struct xfs_mount *mp = tp->t_mountp;
1687 struct xfs_buf *agbp;
1688 xfs_agnumber_t agno;
1689 int error;
1690 int ialloced;
1691 int noroom = 0;
1692 xfs_agnumber_t start_agno;
1693 struct xfs_perag *pag;
1694
1695 if (*IO_agbp) {
1696 /*
1697 * If the caller passes in a pointer to the AGI buffer,
1698 * continue where we left off before. In this case, we
1699 * know that the allocation group has free inodes.
1700 */
1701 agbp = *IO_agbp;
1702 goto out_alloc;
1703 }
1704
1705 /*
1706 * We do not have an agbp, so select an initial allocation
1707 * group for inode allocation.
1708 */
1709 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1710 if (start_agno == NULLAGNUMBER) {
1711 *inop = NULLFSINO;
1712 return 0;
1713 }
1714
1715 /*
1716 * If we have already hit the ceiling of inode blocks then clear
1717 * okalloc so we scan all available agi structures for a free
1718 * inode.
1719 *
1720 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1721 * which will sacrifice the preciseness but improve the performance.
1722 */
1723 if (mp->m_maxicount &&
1724 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1725 > mp->m_maxicount) {
1726 noroom = 1;
1727 okalloc = 0;
1728 }
1729
1730 /*
1731 * Loop until we find an allocation group that either has free inodes
1732 * or in which we can allocate some inodes. Iterate through the
1733 * allocation groups upward, wrapping at the end.
1734 */
1735 agno = start_agno;
1736 for (;;) {
1737 pag = xfs_perag_get(mp, agno);
1738 if (!pag->pagi_inodeok) {
1739 xfs_ialloc_next_ag(mp);
1740 goto nextag;
1741 }
1742
1743 if (!pag->pagi_init) {
1744 error = xfs_ialloc_pagi_init(mp, tp, agno);
1745 if (error)
1746 goto out_error;
1747 }
1748
1749 /*
1750 * Do a first racy fast path check if this AG is usable.
1751 */
1752 if (!pag->pagi_freecount && !okalloc)
1753 goto nextag;
1754
1755 /*
1756 * Then read in the AGI buffer and recheck with the AGI buffer
1757 * lock held.
1758 */
1759 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1760 if (error)
1761 goto out_error;
1762
1763 if (pag->pagi_freecount) {
1764 xfs_perag_put(pag);
1765 goto out_alloc;
1766 }
1767
1768 if (!okalloc)
1769 goto nextag_relse_buffer;
1770
1771
1772 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1773 if (error) {
1774 xfs_trans_brelse(tp, agbp);
1775
1776 if (error != -ENOSPC)
1777 goto out_error;
1778
1779 xfs_perag_put(pag);
1780 *inop = NULLFSINO;
1781 return 0;
1782 }
1783
1784 if (ialloced) {
1785 /*
1786 * We successfully allocated some inodes, return
1787 * the current context to the caller so that it
1788 * can commit the current transaction and call
1789 * us again where we left off.
1790 */
1791 ASSERT(pag->pagi_freecount > 0);
1792 xfs_perag_put(pag);
1793
1794 *IO_agbp = agbp;
1795 *inop = NULLFSINO;
1796 return 0;
1797 }
1798
1799 nextag_relse_buffer:
1800 xfs_trans_brelse(tp, agbp);
1801 nextag:
1802 xfs_perag_put(pag);
1803 if (++agno == mp->m_sb.sb_agcount)
1804 agno = 0;
1805 if (agno == start_agno) {
1806 *inop = NULLFSINO;
1807 return noroom ? -ENOSPC : 0;
1808 }
1809 }
1810
1811 out_alloc:
1812 *IO_agbp = NULL;
1813 return xfs_dialloc_ag(tp, agbp, parent, inop);
1814 out_error:
1815 xfs_perag_put(pag);
1816 return error;
1817 }
1818
1819 /*
1820 * Free the blocks of an inode chunk. We must consider that the inode chunk
1821 * might be sparse and only free the regions that are allocated as part of the
1822 * chunk.
1823 */
1824 STATIC void
1825 xfs_difree_inode_chunk(
1826 struct xfs_mount *mp,
1827 xfs_agnumber_t agno,
1828 struct xfs_inobt_rec_incore *rec,
1829 struct xfs_defer_ops *dfops)
1830 {
1831 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1832 int startidx, endidx;
1833 int nextbit;
1834 xfs_agblock_t agbno;
1835 int contigblk;
1836 struct xfs_owner_info oinfo;
1837 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1838 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1839
1840 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1841 /* not sparse, calculate extent info directly */
1842 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1843 mp->m_ialloc_blks, &oinfo);
1844 return;
1845 }
1846
1847 /* holemask is only 16-bits (fits in an unsigned long) */
1848 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1849 holemask[0] = rec->ir_holemask;
1850
1851 /*
1852 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1853 * holemask and convert the start/end index of each range to an extent.
1854 * We start with the start and end index both pointing at the first 0 in
1855 * the mask.
1856 */
1857 startidx = endidx = find_first_zero_bit(holemask,
1858 XFS_INOBT_HOLEMASK_BITS);
1859 nextbit = startidx + 1;
1860 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1861 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1862 nextbit);
1863 /*
1864 * If the next zero bit is contiguous, update the end index of
1865 * the current range and continue.
1866 */
1867 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1868 nextbit == endidx + 1) {
1869 endidx = nextbit;
1870 goto next;
1871 }
1872
1873 /*
1874 * nextbit is not contiguous with the current end index. Convert
1875 * the current start/end to an extent and add it to the free
1876 * list.
1877 */
1878 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1879 mp->m_sb.sb_inopblock;
1880 contigblk = ((endidx - startidx + 1) *
1881 XFS_INODES_PER_HOLEMASK_BIT) /
1882 mp->m_sb.sb_inopblock;
1883
1884 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1885 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1886 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1887 contigblk, &oinfo);
1888
1889 /* reset range to current bit and carry on... */
1890 startidx = endidx = nextbit;
1891
1892 next:
1893 nextbit++;
1894 }
1895 }
1896
1897 STATIC int
1898 xfs_difree_inobt(
1899 struct xfs_mount *mp,
1900 struct xfs_trans *tp,
1901 struct xfs_buf *agbp,
1902 xfs_agino_t agino,
1903 struct xfs_defer_ops *dfops,
1904 struct xfs_icluster *xic,
1905 struct xfs_inobt_rec_incore *orec)
1906 {
1907 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1908 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1909 struct xfs_perag *pag;
1910 struct xfs_btree_cur *cur;
1911 struct xfs_inobt_rec_incore rec;
1912 int ilen;
1913 int error;
1914 int i;
1915 int off;
1916
1917 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1918 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1919
1920 /*
1921 * Initialize the cursor.
1922 */
1923 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1924
1925 error = xfs_check_agi_freecount(cur, agi);
1926 if (error)
1927 goto error0;
1928
1929 /*
1930 * Look for the entry describing this inode.
1931 */
1932 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1933 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1934 __func__, error);
1935 goto error0;
1936 }
1937 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1938 error = xfs_inobt_get_rec(cur, &rec, &i);
1939 if (error) {
1940 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1941 __func__, error);
1942 goto error0;
1943 }
1944 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1945 /*
1946 * Get the offset in the inode chunk.
1947 */
1948 off = agino - rec.ir_startino;
1949 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1950 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1951 /*
1952 * Mark the inode free & increment the count.
1953 */
1954 rec.ir_free |= XFS_INOBT_MASK(off);
1955 rec.ir_freecount++;
1956
1957 /*
1958 * When an inode chunk is free, it becomes eligible for removal. Don't
1959 * remove the chunk if the block size is large enough for multiple inode
1960 * chunks (that might not be free).
1961 */
1962 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1963 rec.ir_free == XFS_INOBT_ALL_FREE &&
1964 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1965 xic->deleted = 1;
1966 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1967 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1968
1969 /*
1970 * Remove the inode cluster from the AGI B+Tree, adjust the
1971 * AGI and Superblock inode counts, and mark the disk space
1972 * to be freed when the transaction is committed.
1973 */
1974 ilen = rec.ir_freecount;
1975 be32_add_cpu(&agi->agi_count, -ilen);
1976 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1977 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1978 pag = xfs_perag_get(mp, agno);
1979 pag->pagi_freecount -= ilen - 1;
1980 xfs_perag_put(pag);
1981 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1982 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1983
1984 if ((error = xfs_btree_delete(cur, &i))) {
1985 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1986 __func__, error);
1987 goto error0;
1988 }
1989
1990 xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1991 } else {
1992 xic->deleted = 0;
1993
1994 error = xfs_inobt_update(cur, &rec);
1995 if (error) {
1996 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1997 __func__, error);
1998 goto error0;
1999 }
2000
2001 /*
2002 * Change the inode free counts and log the ag/sb changes.
2003 */
2004 be32_add_cpu(&agi->agi_freecount, 1);
2005 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2006 pag = xfs_perag_get(mp, agno);
2007 pag->pagi_freecount++;
2008 xfs_perag_put(pag);
2009 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2010 }
2011
2012 error = xfs_check_agi_freecount(cur, agi);
2013 if (error)
2014 goto error0;
2015
2016 *orec = rec;
2017 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2018 return 0;
2019
2020 error0:
2021 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2022 return error;
2023 }
2024
2025 /*
2026 * Free an inode in the free inode btree.
2027 */
2028 STATIC int
2029 xfs_difree_finobt(
2030 struct xfs_mount *mp,
2031 struct xfs_trans *tp,
2032 struct xfs_buf *agbp,
2033 xfs_agino_t agino,
2034 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2035 {
2036 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2037 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2038 struct xfs_btree_cur *cur;
2039 struct xfs_inobt_rec_incore rec;
2040 int offset = agino - ibtrec->ir_startino;
2041 int error;
2042 int i;
2043
2044 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2045
2046 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2047 if (error)
2048 goto error;
2049 if (i == 0) {
2050 /*
2051 * If the record does not exist in the finobt, we must have just
2052 * freed an inode in a previously fully allocated chunk. If not,
2053 * something is out of sync.
2054 */
2055 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2056
2057 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2058 ibtrec->ir_count,
2059 ibtrec->ir_freecount,
2060 ibtrec->ir_free, &i);
2061 if (error)
2062 goto error;
2063 ASSERT(i == 1);
2064
2065 goto out;
2066 }
2067
2068 /*
2069 * Read and update the existing record. We could just copy the ibtrec
2070 * across here, but that would defeat the purpose of having redundant
2071 * metadata. By making the modifications independently, we can catch
2072 * corruptions that we wouldn't see if we just copied from one record
2073 * to another.
2074 */
2075 error = xfs_inobt_get_rec(cur, &rec, &i);
2076 if (error)
2077 goto error;
2078 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2079
2080 rec.ir_free |= XFS_INOBT_MASK(offset);
2081 rec.ir_freecount++;
2082
2083 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2084 (rec.ir_freecount == ibtrec->ir_freecount),
2085 error);
2086
2087 /*
2088 * The content of inobt records should always match between the inobt
2089 * and finobt. The lifecycle of records in the finobt is different from
2090 * the inobt in that the finobt only tracks records with at least one
2091 * free inode. Hence, if all of the inodes are free and we aren't
2092 * keeping inode chunks permanently on disk, remove the record.
2093 * Otherwise, update the record with the new information.
2094 *
2095 * Note that we currently can't free chunks when the block size is large
2096 * enough for multiple chunks. Leave the finobt record to remain in sync
2097 * with the inobt.
2098 */
2099 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2100 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2101 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2102 error = xfs_btree_delete(cur, &i);
2103 if (error)
2104 goto error;
2105 ASSERT(i == 1);
2106 } else {
2107 error = xfs_inobt_update(cur, &rec);
2108 if (error)
2109 goto error;
2110 }
2111
2112 out:
2113 error = xfs_check_agi_freecount(cur, agi);
2114 if (error)
2115 goto error;
2116
2117 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2118 return 0;
2119
2120 error:
2121 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2122 return error;
2123 }
2124
2125 /*
2126 * Free disk inode. Carefully avoids touching the incore inode, all
2127 * manipulations incore are the caller's responsibility.
2128 * The on-disk inode is not changed by this operation, only the
2129 * btree (free inode mask) is changed.
2130 */
2131 int
2132 xfs_difree(
2133 struct xfs_trans *tp, /* transaction pointer */
2134 xfs_ino_t inode, /* inode to be freed */
2135 struct xfs_defer_ops *dfops, /* extents to free */
2136 struct xfs_icluster *xic) /* cluster info if deleted */
2137 {
2138 /* REFERENCED */
2139 xfs_agblock_t agbno; /* block number containing inode */
2140 struct xfs_buf *agbp; /* buffer for allocation group header */
2141 xfs_agino_t agino; /* allocation group inode number */
2142 xfs_agnumber_t agno; /* allocation group number */
2143 int error; /* error return value */
2144 struct xfs_mount *mp; /* mount structure for filesystem */
2145 struct xfs_inobt_rec_incore rec;/* btree record */
2146
2147 mp = tp->t_mountp;
2148
2149 /*
2150 * Break up inode number into its components.
2151 */
2152 agno = XFS_INO_TO_AGNO(mp, inode);
2153 if (agno >= mp->m_sb.sb_agcount) {
2154 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2155 __func__, agno, mp->m_sb.sb_agcount);
2156 ASSERT(0);
2157 return -EINVAL;
2158 }
2159 agino = XFS_INO_TO_AGINO(mp, inode);
2160 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2161 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2162 __func__, (unsigned long long)inode,
2163 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2164 ASSERT(0);
2165 return -EINVAL;
2166 }
2167 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2168 if (agbno >= mp->m_sb.sb_agblocks) {
2169 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2170 __func__, agbno, mp->m_sb.sb_agblocks);
2171 ASSERT(0);
2172 return -EINVAL;
2173 }
2174 /*
2175 * Get the allocation group header.
2176 */
2177 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2178 if (error) {
2179 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2180 __func__, error);
2181 return error;
2182 }
2183
2184 /*
2185 * Fix up the inode allocation btree.
2186 */
2187 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2188 if (error)
2189 goto error0;
2190
2191 /*
2192 * Fix up the free inode btree.
2193 */
2194 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2195 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2196 if (error)
2197 goto error0;
2198 }
2199
2200 return 0;
2201
2202 error0:
2203 return error;
2204 }
2205
2206 STATIC int
2207 xfs_imap_lookup(
2208 struct xfs_mount *mp,
2209 struct xfs_trans *tp,
2210 xfs_agnumber_t agno,
2211 xfs_agino_t agino,
2212 xfs_agblock_t agbno,
2213 xfs_agblock_t *chunk_agbno,
2214 xfs_agblock_t *offset_agbno,
2215 int flags)
2216 {
2217 struct xfs_inobt_rec_incore rec;
2218 struct xfs_btree_cur *cur;
2219 struct xfs_buf *agbp;
2220 int error;
2221 int i;
2222
2223 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2224 if (error) {
2225 xfs_alert(mp,
2226 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2227 __func__, error, agno);
2228 return error;
2229 }
2230
2231 /*
2232 * Lookup the inode record for the given agino. If the record cannot be
2233 * found, then it's an invalid inode number and we should abort. Once
2234 * we have a record, we need to ensure it contains the inode number
2235 * we are looking up.
2236 */
2237 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2238 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2239 if (!error) {
2240 if (i)
2241 error = xfs_inobt_get_rec(cur, &rec, &i);
2242 if (!error && i == 0)
2243 error = -EINVAL;
2244 }
2245
2246 xfs_trans_brelse(tp, agbp);
2247 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2248 if (error)
2249 return error;
2250
2251 /* check that the returned record contains the required inode */
2252 if (rec.ir_startino > agino ||
2253 rec.ir_startino + mp->m_ialloc_inos <= agino)
2254 return -EINVAL;
2255
2256 /* for untrusted inodes check it is allocated first */
2257 if ((flags & XFS_IGET_UNTRUSTED) &&
2258 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2259 return -EINVAL;
2260
2261 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2262 *offset_agbno = agbno - *chunk_agbno;
2263 return 0;
2264 }
2265
2266 /*
2267 * Return the location of the inode in imap, for mapping it into a buffer.
2268 */
2269 int
2270 xfs_imap(
2271 xfs_mount_t *mp, /* file system mount structure */
2272 xfs_trans_t *tp, /* transaction pointer */
2273 xfs_ino_t ino, /* inode to locate */
2274 struct xfs_imap *imap, /* location map structure */
2275 uint flags) /* flags for inode btree lookup */
2276 {
2277 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2278 xfs_agino_t agino; /* inode number within alloc group */
2279 xfs_agnumber_t agno; /* allocation group number */
2280 int blks_per_cluster; /* num blocks per inode cluster */
2281 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2282 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2283 int error; /* error code */
2284 int offset; /* index of inode in its buffer */
2285 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2286
2287 ASSERT(ino != NULLFSINO);
2288
2289 /*
2290 * Split up the inode number into its parts.
2291 */
2292 agno = XFS_INO_TO_AGNO(mp, ino);
2293 agino = XFS_INO_TO_AGINO(mp, ino);
2294 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2295 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2296 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2297 #ifdef DEBUG
2298 /*
2299 * Don't output diagnostic information for untrusted inodes
2300 * as they can be invalid without implying corruption.
2301 */
2302 if (flags & XFS_IGET_UNTRUSTED)
2303 return -EINVAL;
2304 if (agno >= mp->m_sb.sb_agcount) {
2305 xfs_alert(mp,
2306 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2307 __func__, agno, mp->m_sb.sb_agcount);
2308 }
2309 if (agbno >= mp->m_sb.sb_agblocks) {
2310 xfs_alert(mp,
2311 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2312 __func__, (unsigned long long)agbno,
2313 (unsigned long)mp->m_sb.sb_agblocks);
2314 }
2315 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2316 xfs_alert(mp,
2317 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2318 __func__, ino,
2319 XFS_AGINO_TO_INO(mp, agno, agino));
2320 }
2321 xfs_stack_trace();
2322 #endif /* DEBUG */
2323 return -EINVAL;
2324 }
2325
2326 blks_per_cluster = xfs_icluster_size_fsb(mp);
2327
2328 /*
2329 * For bulkstat and handle lookups, we have an untrusted inode number
2330 * that we have to verify is valid. We cannot do this just by reading
2331 * the inode buffer as it may have been unlinked and removed leaving
2332 * inodes in stale state on disk. Hence we have to do a btree lookup
2333 * in all cases where an untrusted inode number is passed.
2334 */
2335 if (flags & XFS_IGET_UNTRUSTED) {
2336 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2337 &chunk_agbno, &offset_agbno, flags);
2338 if (error)
2339 return error;
2340 goto out_map;
2341 }
2342
2343 /*
2344 * If the inode cluster size is the same as the blocksize or
2345 * smaller we get to the buffer by simple arithmetics.
2346 */
2347 if (blks_per_cluster == 1) {
2348 offset = XFS_INO_TO_OFFSET(mp, ino);
2349 ASSERT(offset < mp->m_sb.sb_inopblock);
2350
2351 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2352 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2353 imap->im_boffset = (unsigned short)(offset <<
2354 mp->m_sb.sb_inodelog);
2355 return 0;
2356 }
2357
2358 /*
2359 * If the inode chunks are aligned then use simple maths to
2360 * find the location. Otherwise we have to do a btree
2361 * lookup to find the location.
2362 */
2363 if (mp->m_inoalign_mask) {
2364 offset_agbno = agbno & mp->m_inoalign_mask;
2365 chunk_agbno = agbno - offset_agbno;
2366 } else {
2367 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2368 &chunk_agbno, &offset_agbno, flags);
2369 if (error)
2370 return error;
2371 }
2372
2373 out_map:
2374 ASSERT(agbno >= chunk_agbno);
2375 cluster_agbno = chunk_agbno +
2376 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2377 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2378 XFS_INO_TO_OFFSET(mp, ino);
2379
2380 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2381 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2382 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2383
2384 /*
2385 * If the inode number maps to a block outside the bounds
2386 * of the file system then return NULL rather than calling
2387 * read_buf and panicing when we get an error from the
2388 * driver.
2389 */
2390 if ((imap->im_blkno + imap->im_len) >
2391 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2392 xfs_alert(mp,
2393 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2394 __func__, (unsigned long long) imap->im_blkno,
2395 (unsigned long long) imap->im_len,
2396 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2397 return -EINVAL;
2398 }
2399 return 0;
2400 }
2401
2402 /*
2403 * Compute and fill in value of m_in_maxlevels.
2404 */
2405 void
2406 xfs_ialloc_compute_maxlevels(
2407 xfs_mount_t *mp) /* file system mount structure */
2408 {
2409 uint inodes;
2410
2411 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2412 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr,
2413 inodes);
2414 }
2415
2416 /*
2417 * Log specified fields for the ag hdr (inode section). The growth of the agi
2418 * structure over time requires that we interpret the buffer as two logical
2419 * regions delineated by the end of the unlinked list. This is due to the size
2420 * of the hash table and its location in the middle of the agi.
2421 *
2422 * For example, a request to log a field before agi_unlinked and a field after
2423 * agi_unlinked could cause us to log the entire hash table and use an excessive
2424 * amount of log space. To avoid this behavior, log the region up through
2425 * agi_unlinked in one call and the region after agi_unlinked through the end of
2426 * the structure in another.
2427 */
2428 void
2429 xfs_ialloc_log_agi(
2430 xfs_trans_t *tp, /* transaction pointer */
2431 xfs_buf_t *bp, /* allocation group header buffer */
2432 int fields) /* bitmask of fields to log */
2433 {
2434 int first; /* first byte number */
2435 int last; /* last byte number */
2436 static const short offsets[] = { /* field starting offsets */
2437 /* keep in sync with bit definitions */
2438 offsetof(xfs_agi_t, agi_magicnum),
2439 offsetof(xfs_agi_t, agi_versionnum),
2440 offsetof(xfs_agi_t, agi_seqno),
2441 offsetof(xfs_agi_t, agi_length),
2442 offsetof(xfs_agi_t, agi_count),
2443 offsetof(xfs_agi_t, agi_root),
2444 offsetof(xfs_agi_t, agi_level),
2445 offsetof(xfs_agi_t, agi_freecount),
2446 offsetof(xfs_agi_t, agi_newino),
2447 offsetof(xfs_agi_t, agi_dirino),
2448 offsetof(xfs_agi_t, agi_unlinked),
2449 offsetof(xfs_agi_t, agi_free_root),
2450 offsetof(xfs_agi_t, agi_free_level),
2451 sizeof(xfs_agi_t)
2452 };
2453 #ifdef DEBUG
2454 xfs_agi_t *agi; /* allocation group header */
2455
2456 agi = XFS_BUF_TO_AGI(bp);
2457 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2458 #endif
2459
2460 /*
2461 * Compute byte offsets for the first and last fields in the first
2462 * region and log the agi buffer. This only logs up through
2463 * agi_unlinked.
2464 */
2465 if (fields & XFS_AGI_ALL_BITS_R1) {
2466 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2467 &first, &last);
2468 xfs_trans_log_buf(tp, bp, first, last);
2469 }
2470
2471 /*
2472 * Mask off the bits in the first region and calculate the first and
2473 * last field offsets for any bits in the second region.
2474 */
2475 fields &= ~XFS_AGI_ALL_BITS_R1;
2476 if (fields) {
2477 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2478 &first, &last);
2479 xfs_trans_log_buf(tp, bp, first, last);
2480 }
2481 }
2482
2483 #ifdef DEBUG
2484 STATIC void
2485 xfs_check_agi_unlinked(
2486 struct xfs_agi *agi)
2487 {
2488 int i;
2489
2490 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2491 ASSERT(agi->agi_unlinked[i]);
2492 }
2493 #else
2494 #define xfs_check_agi_unlinked(agi)
2495 #endif
2496
2497 static bool
2498 xfs_agi_verify(
2499 struct xfs_buf *bp)
2500 {
2501 struct xfs_mount *mp = bp->b_target->bt_mount;
2502 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2503
2504 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2505 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2506 return false;
2507 if (!xfs_log_check_lsn(mp,
2508 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2509 return false;
2510 }
2511
2512 /*
2513 * Validate the magic number of the agi block.
2514 */
2515 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2516 return false;
2517 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2518 return false;
2519
2520 if (be32_to_cpu(agi->agi_level) < 1 ||
2521 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2522 return false;
2523
2524 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2525 (be32_to_cpu(agi->agi_free_level) < 1 ||
2526 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2527 return false;
2528
2529 /*
2530 * during growfs operations, the perag is not fully initialised,
2531 * so we can't use it for any useful checking. growfs ensures we can't
2532 * use it by using uncached buffers that don't have the perag attached
2533 * so we can detect and avoid this problem.
2534 */
2535 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2536 return false;
2537
2538 xfs_check_agi_unlinked(agi);
2539 return true;
2540 }
2541
2542 static void
2543 xfs_agi_read_verify(
2544 struct xfs_buf *bp)
2545 {
2546 struct xfs_mount *mp = bp->b_target->bt_mount;
2547
2548 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2549 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2550 xfs_buf_ioerror(bp, -EFSBADCRC);
2551 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2552 XFS_ERRTAG_IALLOC_READ_AGI))
2553 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2554
2555 if (bp->b_error)
2556 xfs_verifier_error(bp);
2557 }
2558
2559 static void
2560 xfs_agi_write_verify(
2561 struct xfs_buf *bp)
2562 {
2563 struct xfs_mount *mp = bp->b_target->bt_mount;
2564 struct xfs_buf_log_item *bip = bp->b_fspriv;
2565
2566 if (!xfs_agi_verify(bp)) {
2567 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2568 xfs_verifier_error(bp);
2569 return;
2570 }
2571
2572 if (!xfs_sb_version_hascrc(&mp->m_sb))
2573 return;
2574
2575 if (bip)
2576 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2577 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2578 }
2579
2580 const struct xfs_buf_ops xfs_agi_buf_ops = {
2581 .name = "xfs_agi",
2582 .verify_read = xfs_agi_read_verify,
2583 .verify_write = xfs_agi_write_verify,
2584 };
2585
2586 /*
2587 * Read in the allocation group header (inode allocation section)
2588 */
2589 int
2590 xfs_read_agi(
2591 struct xfs_mount *mp, /* file system mount structure */
2592 struct xfs_trans *tp, /* transaction pointer */
2593 xfs_agnumber_t agno, /* allocation group number */
2594 struct xfs_buf **bpp) /* allocation group hdr buf */
2595 {
2596 int error;
2597
2598 trace_xfs_read_agi(mp, agno);
2599
2600 ASSERT(agno != NULLAGNUMBER);
2601 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2602 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2603 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2604 if (error)
2605 return error;
2606 if (tp)
2607 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2608
2609 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2610 return 0;
2611 }
2612
2613 int
2614 xfs_ialloc_read_agi(
2615 struct xfs_mount *mp, /* file system mount structure */
2616 struct xfs_trans *tp, /* transaction pointer */
2617 xfs_agnumber_t agno, /* allocation group number */
2618 struct xfs_buf **bpp) /* allocation group hdr buf */
2619 {
2620 struct xfs_agi *agi; /* allocation group header */
2621 struct xfs_perag *pag; /* per allocation group data */
2622 int error;
2623
2624 trace_xfs_ialloc_read_agi(mp, agno);
2625
2626 error = xfs_read_agi(mp, tp, agno, bpp);
2627 if (error)
2628 return error;
2629
2630 agi = XFS_BUF_TO_AGI(*bpp);
2631 pag = xfs_perag_get(mp, agno);
2632 if (!pag->pagi_init) {
2633 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2634 pag->pagi_count = be32_to_cpu(agi->agi_count);
2635 pag->pagi_init = 1;
2636 }
2637
2638 /*
2639 * It's possible for these to be out of sync if
2640 * we are in the middle of a forced shutdown.
2641 */
2642 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2643 XFS_FORCED_SHUTDOWN(mp));
2644 xfs_perag_put(pag);
2645 return 0;
2646 }
2647
2648 /*
2649 * Read in the agi to initialise the per-ag data in the mount structure
2650 */
2651 int
2652 xfs_ialloc_pagi_init(
2653 xfs_mount_t *mp, /* file system mount structure */
2654 xfs_trans_t *tp, /* transaction pointer */
2655 xfs_agnumber_t agno) /* allocation group number */
2656 {
2657 xfs_buf_t *bp = NULL;
2658 int error;
2659
2660 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2661 if (error)
2662 return error;
2663 if (bp)
2664 xfs_trans_brelse(tp, bp);
2665 return 0;
2666 }