]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/libxfs/xfs_ialloc.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / fs / xfs / libxfs / xfs_ialloc.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_ialloc.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_error.h"
35 #include "xfs_bmap.h"
36 #include "xfs_cksum.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_icreate_item.h"
40 #include "xfs_icache.h"
41 #include "xfs_trace.h"
42 #include "xfs_log.h"
43 #include "xfs_rmap.h"
44
45
46 /*
47 * Allocation group level functions.
48 */
49 int
50 xfs_ialloc_cluster_alignment(
51 struct xfs_mount *mp)
52 {
53 if (xfs_sb_version_hasalign(&mp->m_sb) &&
54 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
55 return mp->m_sb.sb_inoalignmt;
56 return 1;
57 }
58
59 /*
60 * Lookup a record by ino in the btree given by cur.
61 */
62 int /* error */
63 xfs_inobt_lookup(
64 struct xfs_btree_cur *cur, /* btree cursor */
65 xfs_agino_t ino, /* starting inode of chunk */
66 xfs_lookup_t dir, /* <=, >=, == */
67 int *stat) /* success/failure */
68 {
69 cur->bc_rec.i.ir_startino = ino;
70 cur->bc_rec.i.ir_holemask = 0;
71 cur->bc_rec.i.ir_count = 0;
72 cur->bc_rec.i.ir_freecount = 0;
73 cur->bc_rec.i.ir_free = 0;
74 return xfs_btree_lookup(cur, dir, stat);
75 }
76
77 /*
78 * Update the record referred to by cur to the value given.
79 * This either works (return 0) or gets an EFSCORRUPTED error.
80 */
81 STATIC int /* error */
82 xfs_inobt_update(
83 struct xfs_btree_cur *cur, /* btree cursor */
84 xfs_inobt_rec_incore_t *irec) /* btree record */
85 {
86 union xfs_btree_rec rec;
87
88 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
89 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
90 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
91 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
92 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
93 } else {
94 /* ir_holemask/ir_count not supported on-disk */
95 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
96 }
97 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
98 return xfs_btree_update(cur, &rec);
99 }
100
101 /* Convert on-disk btree record to incore inobt record. */
102 void
103 xfs_inobt_btrec_to_irec(
104 struct xfs_mount *mp,
105 union xfs_btree_rec *rec,
106 struct xfs_inobt_rec_incore *irec)
107 {
108 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
109 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
110 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
111 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
112 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
113 } else {
114 /*
115 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
116 * values for full inode chunks.
117 */
118 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
119 irec->ir_count = XFS_INODES_PER_CHUNK;
120 irec->ir_freecount =
121 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
122 }
123 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
124 }
125
126 /*
127 * Get the data from the pointed-to record.
128 */
129 int
130 xfs_inobt_get_rec(
131 struct xfs_btree_cur *cur,
132 struct xfs_inobt_rec_incore *irec,
133 int *stat)
134 {
135 union xfs_btree_rec *rec;
136 int error;
137
138 error = xfs_btree_get_rec(cur, &rec, stat);
139 if (error || *stat == 0)
140 return error;
141
142 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec);
143
144 return 0;
145 }
146
147 /*
148 * Insert a single inobt record. Cursor must already point to desired location.
149 */
150 STATIC int
151 xfs_inobt_insert_rec(
152 struct xfs_btree_cur *cur,
153 uint16_t holemask,
154 uint8_t count,
155 int32_t freecount,
156 xfs_inofree_t free,
157 int *stat)
158 {
159 cur->bc_rec.i.ir_holemask = holemask;
160 cur->bc_rec.i.ir_count = count;
161 cur->bc_rec.i.ir_freecount = freecount;
162 cur->bc_rec.i.ir_free = free;
163 return xfs_btree_insert(cur, stat);
164 }
165
166 /*
167 * Insert records describing a newly allocated inode chunk into the inobt.
168 */
169 STATIC int
170 xfs_inobt_insert(
171 struct xfs_mount *mp,
172 struct xfs_trans *tp,
173 struct xfs_buf *agbp,
174 xfs_agino_t newino,
175 xfs_agino_t newlen,
176 xfs_btnum_t btnum)
177 {
178 struct xfs_btree_cur *cur;
179 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
180 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
181 xfs_agino_t thisino;
182 int i;
183 int error;
184
185 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
186
187 for (thisino = newino;
188 thisino < newino + newlen;
189 thisino += XFS_INODES_PER_CHUNK) {
190 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
191 if (error) {
192 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
193 return error;
194 }
195 ASSERT(i == 0);
196
197 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
198 XFS_INODES_PER_CHUNK,
199 XFS_INODES_PER_CHUNK,
200 XFS_INOBT_ALL_FREE, &i);
201 if (error) {
202 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
203 return error;
204 }
205 ASSERT(i == 1);
206 }
207
208 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
209
210 return 0;
211 }
212
213 /*
214 * Verify that the number of free inodes in the AGI is correct.
215 */
216 #ifdef DEBUG
217 STATIC int
218 xfs_check_agi_freecount(
219 struct xfs_btree_cur *cur,
220 struct xfs_agi *agi)
221 {
222 if (cur->bc_nlevels == 1) {
223 xfs_inobt_rec_incore_t rec;
224 int freecount = 0;
225 int error;
226 int i;
227
228 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
229 if (error)
230 return error;
231
232 do {
233 error = xfs_inobt_get_rec(cur, &rec, &i);
234 if (error)
235 return error;
236
237 if (i) {
238 freecount += rec.ir_freecount;
239 error = xfs_btree_increment(cur, 0, &i);
240 if (error)
241 return error;
242 }
243 } while (i == 1);
244
245 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
246 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
247 }
248 return 0;
249 }
250 #else
251 #define xfs_check_agi_freecount(cur, agi) 0
252 #endif
253
254 /*
255 * Initialise a new set of inodes. When called without a transaction context
256 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
257 * than logging them (which in a transaction context puts them into the AIL
258 * for writeback rather than the xfsbufd queue).
259 */
260 int
261 xfs_ialloc_inode_init(
262 struct xfs_mount *mp,
263 struct xfs_trans *tp,
264 struct list_head *buffer_list,
265 int icount,
266 xfs_agnumber_t agno,
267 xfs_agblock_t agbno,
268 xfs_agblock_t length,
269 unsigned int gen)
270 {
271 struct xfs_buf *fbuf;
272 struct xfs_dinode *free;
273 int nbufs, blks_per_cluster, inodes_per_cluster;
274 int version;
275 int i, j;
276 xfs_daddr_t d;
277 xfs_ino_t ino = 0;
278
279 /*
280 * Loop over the new block(s), filling in the inodes. For small block
281 * sizes, manipulate the inodes in buffers which are multiples of the
282 * blocks size.
283 */
284 blks_per_cluster = xfs_icluster_size_fsb(mp);
285 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
286 nbufs = length / blks_per_cluster;
287
288 /*
289 * Figure out what version number to use in the inodes we create. If
290 * the superblock version has caught up to the one that supports the new
291 * inode format, then use the new inode version. Otherwise use the old
292 * version so that old kernels will continue to be able to use the file
293 * system.
294 *
295 * For v3 inodes, we also need to write the inode number into the inode,
296 * so calculate the first inode number of the chunk here as
297 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
298 * across multiple filesystem blocks (such as a cluster) and so cannot
299 * be used in the cluster buffer loop below.
300 *
301 * Further, because we are writing the inode directly into the buffer
302 * and calculating a CRC on the entire inode, we have ot log the entire
303 * inode so that the entire range the CRC covers is present in the log.
304 * That means for v3 inode we log the entire buffer rather than just the
305 * inode cores.
306 */
307 if (xfs_sb_version_hascrc(&mp->m_sb)) {
308 version = 3;
309 ino = XFS_AGINO_TO_INO(mp, agno,
310 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
311
312 /*
313 * log the initialisation that is about to take place as an
314 * logical operation. This means the transaction does not
315 * need to log the physical changes to the inode buffers as log
316 * recovery will know what initialisation is actually needed.
317 * Hence we only need to log the buffers as "ordered" buffers so
318 * they track in the AIL as if they were physically logged.
319 */
320 if (tp)
321 xfs_icreate_log(tp, agno, agbno, icount,
322 mp->m_sb.sb_inodesize, length, gen);
323 } else
324 version = 2;
325
326 for (j = 0; j < nbufs; j++) {
327 /*
328 * Get the block.
329 */
330 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
331 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
332 mp->m_bsize * blks_per_cluster,
333 XBF_UNMAPPED);
334 if (!fbuf)
335 return -ENOMEM;
336
337 /* Initialize the inode buffers and log them appropriately. */
338 fbuf->b_ops = &xfs_inode_buf_ops;
339 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
340 for (i = 0; i < inodes_per_cluster; i++) {
341 int ioffset = i << mp->m_sb.sb_inodelog;
342 uint isize = xfs_dinode_size(version);
343
344 free = xfs_make_iptr(mp, fbuf, i);
345 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
346 free->di_version = version;
347 free->di_gen = cpu_to_be32(gen);
348 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
349
350 if (version == 3) {
351 free->di_ino = cpu_to_be64(ino);
352 ino++;
353 uuid_copy(&free->di_uuid,
354 &mp->m_sb.sb_meta_uuid);
355 xfs_dinode_calc_crc(mp, free);
356 } else if (tp) {
357 /* just log the inode core */
358 xfs_trans_log_buf(tp, fbuf, ioffset,
359 ioffset + isize - 1);
360 }
361 }
362
363 if (tp) {
364 /*
365 * Mark the buffer as an inode allocation buffer so it
366 * sticks in AIL at the point of this allocation
367 * transaction. This ensures the they are on disk before
368 * the tail of the log can be moved past this
369 * transaction (i.e. by preventing relogging from moving
370 * it forward in the log).
371 */
372 xfs_trans_inode_alloc_buf(tp, fbuf);
373 if (version == 3) {
374 /*
375 * Mark the buffer as ordered so that they are
376 * not physically logged in the transaction but
377 * still tracked in the AIL as part of the
378 * transaction and pin the log appropriately.
379 */
380 xfs_trans_ordered_buf(tp, fbuf);
381 xfs_trans_log_buf(tp, fbuf, 0,
382 BBTOB(fbuf->b_length) - 1);
383 }
384 } else {
385 fbuf->b_flags |= XBF_DONE;
386 xfs_buf_delwri_queue(fbuf, buffer_list);
387 xfs_buf_relse(fbuf);
388 }
389 }
390 return 0;
391 }
392
393 /*
394 * Align startino and allocmask for a recently allocated sparse chunk such that
395 * they are fit for insertion (or merge) into the on-disk inode btrees.
396 *
397 * Background:
398 *
399 * When enabled, sparse inode support increases the inode alignment from cluster
400 * size to inode chunk size. This means that the minimum range between two
401 * non-adjacent inode records in the inobt is large enough for a full inode
402 * record. This allows for cluster sized, cluster aligned block allocation
403 * without need to worry about whether the resulting inode record overlaps with
404 * another record in the tree. Without this basic rule, we would have to deal
405 * with the consequences of overlap by potentially undoing recent allocations in
406 * the inode allocation codepath.
407 *
408 * Because of this alignment rule (which is enforced on mount), there are two
409 * inobt possibilities for newly allocated sparse chunks. One is that the
410 * aligned inode record for the chunk covers a range of inodes not already
411 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
412 * other is that a record already exists at the aligned startino that considers
413 * the newly allocated range as sparse. In the latter case, record content is
414 * merged in hope that sparse inode chunks fill to full chunks over time.
415 */
416 STATIC void
417 xfs_align_sparse_ino(
418 struct xfs_mount *mp,
419 xfs_agino_t *startino,
420 uint16_t *allocmask)
421 {
422 xfs_agblock_t agbno;
423 xfs_agblock_t mod;
424 int offset;
425
426 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
427 mod = agbno % mp->m_sb.sb_inoalignmt;
428 if (!mod)
429 return;
430
431 /* calculate the inode offset and align startino */
432 offset = mod << mp->m_sb.sb_inopblog;
433 *startino -= offset;
434
435 /*
436 * Since startino has been aligned down, left shift allocmask such that
437 * it continues to represent the same physical inodes relative to the
438 * new startino.
439 */
440 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
441 }
442
443 /*
444 * Determine whether the source inode record can merge into the target. Both
445 * records must be sparse, the inode ranges must match and there must be no
446 * allocation overlap between the records.
447 */
448 STATIC bool
449 __xfs_inobt_can_merge(
450 struct xfs_inobt_rec_incore *trec, /* tgt record */
451 struct xfs_inobt_rec_incore *srec) /* src record */
452 {
453 uint64_t talloc;
454 uint64_t salloc;
455
456 /* records must cover the same inode range */
457 if (trec->ir_startino != srec->ir_startino)
458 return false;
459
460 /* both records must be sparse */
461 if (!xfs_inobt_issparse(trec->ir_holemask) ||
462 !xfs_inobt_issparse(srec->ir_holemask))
463 return false;
464
465 /* both records must track some inodes */
466 if (!trec->ir_count || !srec->ir_count)
467 return false;
468
469 /* can't exceed capacity of a full record */
470 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
471 return false;
472
473 /* verify there is no allocation overlap */
474 talloc = xfs_inobt_irec_to_allocmask(trec);
475 salloc = xfs_inobt_irec_to_allocmask(srec);
476 if (talloc & salloc)
477 return false;
478
479 return true;
480 }
481
482 /*
483 * Merge the source inode record into the target. The caller must call
484 * __xfs_inobt_can_merge() to ensure the merge is valid.
485 */
486 STATIC void
487 __xfs_inobt_rec_merge(
488 struct xfs_inobt_rec_incore *trec, /* target */
489 struct xfs_inobt_rec_incore *srec) /* src */
490 {
491 ASSERT(trec->ir_startino == srec->ir_startino);
492
493 /* combine the counts */
494 trec->ir_count += srec->ir_count;
495 trec->ir_freecount += srec->ir_freecount;
496
497 /*
498 * Merge the holemask and free mask. For both fields, 0 bits refer to
499 * allocated inodes. We combine the allocated ranges with bitwise AND.
500 */
501 trec->ir_holemask &= srec->ir_holemask;
502 trec->ir_free &= srec->ir_free;
503 }
504
505 /*
506 * Insert a new sparse inode chunk into the associated inode btree. The inode
507 * record for the sparse chunk is pre-aligned to a startino that should match
508 * any pre-existing sparse inode record in the tree. This allows sparse chunks
509 * to fill over time.
510 *
511 * This function supports two modes of handling preexisting records depending on
512 * the merge flag. If merge is true, the provided record is merged with the
513 * existing record and updated in place. The merged record is returned in nrec.
514 * If merge is false, an existing record is replaced with the provided record.
515 * If no preexisting record exists, the provided record is always inserted.
516 *
517 * It is considered corruption if a merge is requested and not possible. Given
518 * the sparse inode alignment constraints, this should never happen.
519 */
520 STATIC int
521 xfs_inobt_insert_sprec(
522 struct xfs_mount *mp,
523 struct xfs_trans *tp,
524 struct xfs_buf *agbp,
525 int btnum,
526 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
527 bool merge) /* merge or replace */
528 {
529 struct xfs_btree_cur *cur;
530 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
531 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
532 int error;
533 int i;
534 struct xfs_inobt_rec_incore rec;
535
536 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
537
538 /* the new record is pre-aligned so we know where to look */
539 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
540 if (error)
541 goto error;
542 /* if nothing there, insert a new record and return */
543 if (i == 0) {
544 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
545 nrec->ir_count, nrec->ir_freecount,
546 nrec->ir_free, &i);
547 if (error)
548 goto error;
549 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
550
551 goto out;
552 }
553
554 /*
555 * A record exists at this startino. Merge or replace the record
556 * depending on what we've been asked to do.
557 */
558 if (merge) {
559 error = xfs_inobt_get_rec(cur, &rec, &i);
560 if (error)
561 goto error;
562 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
563 XFS_WANT_CORRUPTED_GOTO(mp,
564 rec.ir_startino == nrec->ir_startino,
565 error);
566
567 /*
568 * This should never fail. If we have coexisting records that
569 * cannot merge, something is seriously wrong.
570 */
571 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
572 error);
573
574 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
575 rec.ir_holemask, nrec->ir_startino,
576 nrec->ir_holemask);
577
578 /* merge to nrec to output the updated record */
579 __xfs_inobt_rec_merge(nrec, &rec);
580
581 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
582 nrec->ir_holemask);
583
584 error = xfs_inobt_rec_check_count(mp, nrec);
585 if (error)
586 goto error;
587 }
588
589 error = xfs_inobt_update(cur, nrec);
590 if (error)
591 goto error;
592
593 out:
594 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
595 return 0;
596 error:
597 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
598 return error;
599 }
600
601 /*
602 * Allocate new inodes in the allocation group specified by agbp.
603 * Return 0 for success, else error code.
604 */
605 STATIC int /* error code or 0 */
606 xfs_ialloc_ag_alloc(
607 xfs_trans_t *tp, /* transaction pointer */
608 xfs_buf_t *agbp, /* alloc group buffer */
609 int *alloc)
610 {
611 xfs_agi_t *agi; /* allocation group header */
612 xfs_alloc_arg_t args; /* allocation argument structure */
613 xfs_agnumber_t agno;
614 int error;
615 xfs_agino_t newino; /* new first inode's number */
616 xfs_agino_t newlen; /* new number of inodes */
617 int isaligned = 0; /* inode allocation at stripe unit */
618 /* boundary */
619 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
620 struct xfs_inobt_rec_incore rec;
621 struct xfs_perag *pag;
622 int do_sparse = 0;
623
624 memset(&args, 0, sizeof(args));
625 args.tp = tp;
626 args.mp = tp->t_mountp;
627 args.fsbno = NULLFSBLOCK;
628 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
629
630 #ifdef DEBUG
631 /* randomly do sparse inode allocations */
632 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
633 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
634 do_sparse = prandom_u32() & 1;
635 #endif
636
637 /*
638 * Locking will ensure that we don't have two callers in here
639 * at one time.
640 */
641 newlen = args.mp->m_ialloc_inos;
642 if (args.mp->m_maxicount &&
643 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
644 args.mp->m_maxicount)
645 return -ENOSPC;
646 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
647 /*
648 * First try to allocate inodes contiguous with the last-allocated
649 * chunk of inodes. If the filesystem is striped, this will fill
650 * an entire stripe unit with inodes.
651 */
652 agi = XFS_BUF_TO_AGI(agbp);
653 newino = be32_to_cpu(agi->agi_newino);
654 agno = be32_to_cpu(agi->agi_seqno);
655 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
656 args.mp->m_ialloc_blks;
657 if (do_sparse)
658 goto sparse_alloc;
659 if (likely(newino != NULLAGINO &&
660 (args.agbno < be32_to_cpu(agi->agi_length)))) {
661 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
662 args.type = XFS_ALLOCTYPE_THIS_BNO;
663 args.prod = 1;
664
665 /*
666 * We need to take into account alignment here to ensure that
667 * we don't modify the free list if we fail to have an exact
668 * block. If we don't have an exact match, and every oher
669 * attempt allocation attempt fails, we'll end up cancelling
670 * a dirty transaction and shutting down.
671 *
672 * For an exact allocation, alignment must be 1,
673 * however we need to take cluster alignment into account when
674 * fixing up the freelist. Use the minalignslop field to
675 * indicate that extra blocks might be required for alignment,
676 * but not to use them in the actual exact allocation.
677 */
678 args.alignment = 1;
679 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
680
681 /* Allow space for the inode btree to split. */
682 args.minleft = args.mp->m_in_maxlevels - 1;
683 if ((error = xfs_alloc_vextent(&args)))
684 return error;
685
686 /*
687 * This request might have dirtied the transaction if the AG can
688 * satisfy the request, but the exact block was not available.
689 * If the allocation did fail, subsequent requests will relax
690 * the exact agbno requirement and increase the alignment
691 * instead. It is critical that the total size of the request
692 * (len + alignment + slop) does not increase from this point
693 * on, so reset minalignslop to ensure it is not included in
694 * subsequent requests.
695 */
696 args.minalignslop = 0;
697 }
698
699 if (unlikely(args.fsbno == NULLFSBLOCK)) {
700 /*
701 * Set the alignment for the allocation.
702 * If stripe alignment is turned on then align at stripe unit
703 * boundary.
704 * If the cluster size is smaller than a filesystem block
705 * then we're doing I/O for inodes in filesystem block size
706 * pieces, so don't need alignment anyway.
707 */
708 isaligned = 0;
709 if (args.mp->m_sinoalign) {
710 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
711 args.alignment = args.mp->m_dalign;
712 isaligned = 1;
713 } else
714 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
715 /*
716 * Need to figure out where to allocate the inode blocks.
717 * Ideally they should be spaced out through the a.g.
718 * For now, just allocate blocks up front.
719 */
720 args.agbno = be32_to_cpu(agi->agi_root);
721 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
722 /*
723 * Allocate a fixed-size extent of inodes.
724 */
725 args.type = XFS_ALLOCTYPE_NEAR_BNO;
726 args.prod = 1;
727 /*
728 * Allow space for the inode btree to split.
729 */
730 args.minleft = args.mp->m_in_maxlevels - 1;
731 if ((error = xfs_alloc_vextent(&args)))
732 return error;
733 }
734
735 /*
736 * If stripe alignment is turned on, then try again with cluster
737 * alignment.
738 */
739 if (isaligned && args.fsbno == NULLFSBLOCK) {
740 args.type = XFS_ALLOCTYPE_NEAR_BNO;
741 args.agbno = be32_to_cpu(agi->agi_root);
742 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
743 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
744 if ((error = xfs_alloc_vextent(&args)))
745 return error;
746 }
747
748 /*
749 * Finally, try a sparse allocation if the filesystem supports it and
750 * the sparse allocation length is smaller than a full chunk.
751 */
752 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
753 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
754 args.fsbno == NULLFSBLOCK) {
755 sparse_alloc:
756 args.type = XFS_ALLOCTYPE_NEAR_BNO;
757 args.agbno = be32_to_cpu(agi->agi_root);
758 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
759 args.alignment = args.mp->m_sb.sb_spino_align;
760 args.prod = 1;
761
762 args.minlen = args.mp->m_ialloc_min_blks;
763 args.maxlen = args.minlen;
764
765 /*
766 * The inode record will be aligned to full chunk size. We must
767 * prevent sparse allocation from AG boundaries that result in
768 * invalid inode records, such as records that start at agbno 0
769 * or extend beyond the AG.
770 *
771 * Set min agbno to the first aligned, non-zero agbno and max to
772 * the last aligned agbno that is at least one full chunk from
773 * the end of the AG.
774 */
775 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
776 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
777 args.mp->m_sb.sb_inoalignmt) -
778 args.mp->m_ialloc_blks;
779
780 error = xfs_alloc_vextent(&args);
781 if (error)
782 return error;
783
784 newlen = args.len << args.mp->m_sb.sb_inopblog;
785 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
786 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
787 }
788
789 if (args.fsbno == NULLFSBLOCK) {
790 *alloc = 0;
791 return 0;
792 }
793 ASSERT(args.len == args.minlen);
794
795 /*
796 * Stamp and write the inode buffers.
797 *
798 * Seed the new inode cluster with a random generation number. This
799 * prevents short-term reuse of generation numbers if a chunk is
800 * freed and then immediately reallocated. We use random numbers
801 * rather than a linear progression to prevent the next generation
802 * number from being easily guessable.
803 */
804 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
805 args.agbno, args.len, prandom_u32());
806
807 if (error)
808 return error;
809 /*
810 * Convert the results.
811 */
812 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
813
814 if (xfs_inobt_issparse(~allocmask)) {
815 /*
816 * We've allocated a sparse chunk. Align the startino and mask.
817 */
818 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
819
820 rec.ir_startino = newino;
821 rec.ir_holemask = ~allocmask;
822 rec.ir_count = newlen;
823 rec.ir_freecount = newlen;
824 rec.ir_free = XFS_INOBT_ALL_FREE;
825
826 /*
827 * Insert the sparse record into the inobt and allow for a merge
828 * if necessary. If a merge does occur, rec is updated to the
829 * merged record.
830 */
831 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
832 &rec, true);
833 if (error == -EFSCORRUPTED) {
834 xfs_alert(args.mp,
835 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
836 XFS_AGINO_TO_INO(args.mp, agno,
837 rec.ir_startino),
838 rec.ir_holemask, rec.ir_count);
839 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
840 }
841 if (error)
842 return error;
843
844 /*
845 * We can't merge the part we've just allocated as for the inobt
846 * due to finobt semantics. The original record may or may not
847 * exist independent of whether physical inodes exist in this
848 * sparse chunk.
849 *
850 * We must update the finobt record based on the inobt record.
851 * rec contains the fully merged and up to date inobt record
852 * from the previous call. Set merge false to replace any
853 * existing record with this one.
854 */
855 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
856 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
857 XFS_BTNUM_FINO, &rec,
858 false);
859 if (error)
860 return error;
861 }
862 } else {
863 /* full chunk - insert new records to both btrees */
864 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
865 XFS_BTNUM_INO);
866 if (error)
867 return error;
868
869 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
870 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
871 newlen, XFS_BTNUM_FINO);
872 if (error)
873 return error;
874 }
875 }
876
877 /*
878 * Update AGI counts and newino.
879 */
880 be32_add_cpu(&agi->agi_count, newlen);
881 be32_add_cpu(&agi->agi_freecount, newlen);
882 pag = xfs_perag_get(args.mp, agno);
883 pag->pagi_freecount += newlen;
884 xfs_perag_put(pag);
885 agi->agi_newino = cpu_to_be32(newino);
886
887 /*
888 * Log allocation group header fields
889 */
890 xfs_ialloc_log_agi(tp, agbp,
891 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
892 /*
893 * Modify/log superblock values for inode count and inode free count.
894 */
895 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
896 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
897 *alloc = 1;
898 return 0;
899 }
900
901 STATIC xfs_agnumber_t
902 xfs_ialloc_next_ag(
903 xfs_mount_t *mp)
904 {
905 xfs_agnumber_t agno;
906
907 spin_lock(&mp->m_agirotor_lock);
908 agno = mp->m_agirotor;
909 if (++mp->m_agirotor >= mp->m_maxagi)
910 mp->m_agirotor = 0;
911 spin_unlock(&mp->m_agirotor_lock);
912
913 return agno;
914 }
915
916 /*
917 * Select an allocation group to look for a free inode in, based on the parent
918 * inode and the mode. Return the allocation group buffer.
919 */
920 STATIC xfs_agnumber_t
921 xfs_ialloc_ag_select(
922 xfs_trans_t *tp, /* transaction pointer */
923 xfs_ino_t parent, /* parent directory inode number */
924 umode_t mode, /* bits set to indicate file type */
925 int okalloc) /* ok to allocate more space */
926 {
927 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
928 xfs_agnumber_t agno; /* current ag number */
929 int flags; /* alloc buffer locking flags */
930 xfs_extlen_t ineed; /* blocks needed for inode allocation */
931 xfs_extlen_t longest = 0; /* longest extent available */
932 xfs_mount_t *mp; /* mount point structure */
933 int needspace; /* file mode implies space allocated */
934 xfs_perag_t *pag; /* per allocation group data */
935 xfs_agnumber_t pagno; /* parent (starting) ag number */
936 int error;
937
938 /*
939 * Files of these types need at least one block if length > 0
940 * (and they won't fit in the inode, but that's hard to figure out).
941 */
942 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
943 mp = tp->t_mountp;
944 agcount = mp->m_maxagi;
945 if (S_ISDIR(mode))
946 pagno = xfs_ialloc_next_ag(mp);
947 else {
948 pagno = XFS_INO_TO_AGNO(mp, parent);
949 if (pagno >= agcount)
950 pagno = 0;
951 }
952
953 ASSERT(pagno < agcount);
954
955 /*
956 * Loop through allocation groups, looking for one with a little
957 * free space in it. Note we don't look for free inodes, exactly.
958 * Instead, we include whether there is a need to allocate inodes
959 * to mean that blocks must be allocated for them,
960 * if none are currently free.
961 */
962 agno = pagno;
963 flags = XFS_ALLOC_FLAG_TRYLOCK;
964 for (;;) {
965 pag = xfs_perag_get(mp, agno);
966 if (!pag->pagi_inodeok) {
967 xfs_ialloc_next_ag(mp);
968 goto nextag;
969 }
970
971 if (!pag->pagi_init) {
972 error = xfs_ialloc_pagi_init(mp, tp, agno);
973 if (error)
974 goto nextag;
975 }
976
977 if (pag->pagi_freecount) {
978 xfs_perag_put(pag);
979 return agno;
980 }
981
982 if (!okalloc)
983 goto nextag;
984
985 if (!pag->pagf_init) {
986 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
987 if (error)
988 goto nextag;
989 }
990
991 /*
992 * Check that there is enough free space for the file plus a
993 * chunk of inodes if we need to allocate some. If this is the
994 * first pass across the AGs, take into account the potential
995 * space needed for alignment of inode chunks when checking the
996 * longest contiguous free space in the AG - this prevents us
997 * from getting ENOSPC because we have free space larger than
998 * m_ialloc_blks but alignment constraints prevent us from using
999 * it.
1000 *
1001 * If we can't find an AG with space for full alignment slack to
1002 * be taken into account, we must be near ENOSPC in all AGs.
1003 * Hence we don't include alignment for the second pass and so
1004 * if we fail allocation due to alignment issues then it is most
1005 * likely a real ENOSPC condition.
1006 */
1007 ineed = mp->m_ialloc_min_blks;
1008 if (flags && ineed > 1)
1009 ineed += xfs_ialloc_cluster_alignment(mp);
1010 longest = pag->pagf_longest;
1011 if (!longest)
1012 longest = pag->pagf_flcount > 0;
1013
1014 if (pag->pagf_freeblks >= needspace + ineed &&
1015 longest >= ineed) {
1016 xfs_perag_put(pag);
1017 return agno;
1018 }
1019 nextag:
1020 xfs_perag_put(pag);
1021 /*
1022 * No point in iterating over the rest, if we're shutting
1023 * down.
1024 */
1025 if (XFS_FORCED_SHUTDOWN(mp))
1026 return NULLAGNUMBER;
1027 agno++;
1028 if (agno >= agcount)
1029 agno = 0;
1030 if (agno == pagno) {
1031 if (flags == 0)
1032 return NULLAGNUMBER;
1033 flags = 0;
1034 }
1035 }
1036 }
1037
1038 /*
1039 * Try to retrieve the next record to the left/right from the current one.
1040 */
1041 STATIC int
1042 xfs_ialloc_next_rec(
1043 struct xfs_btree_cur *cur,
1044 xfs_inobt_rec_incore_t *rec,
1045 int *done,
1046 int left)
1047 {
1048 int error;
1049 int i;
1050
1051 if (left)
1052 error = xfs_btree_decrement(cur, 0, &i);
1053 else
1054 error = xfs_btree_increment(cur, 0, &i);
1055
1056 if (error)
1057 return error;
1058 *done = !i;
1059 if (i) {
1060 error = xfs_inobt_get_rec(cur, rec, &i);
1061 if (error)
1062 return error;
1063 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1064 }
1065
1066 return 0;
1067 }
1068
1069 STATIC int
1070 xfs_ialloc_get_rec(
1071 struct xfs_btree_cur *cur,
1072 xfs_agino_t agino,
1073 xfs_inobt_rec_incore_t *rec,
1074 int *done)
1075 {
1076 int error;
1077 int i;
1078
1079 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1080 if (error)
1081 return error;
1082 *done = !i;
1083 if (i) {
1084 error = xfs_inobt_get_rec(cur, rec, &i);
1085 if (error)
1086 return error;
1087 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1088 }
1089
1090 return 0;
1091 }
1092
1093 /*
1094 * Return the offset of the first free inode in the record. If the inode chunk
1095 * is sparsely allocated, we convert the record holemask to inode granularity
1096 * and mask off the unallocated regions from the inode free mask.
1097 */
1098 STATIC int
1099 xfs_inobt_first_free_inode(
1100 struct xfs_inobt_rec_incore *rec)
1101 {
1102 xfs_inofree_t realfree;
1103
1104 /* if there are no holes, return the first available offset */
1105 if (!xfs_inobt_issparse(rec->ir_holemask))
1106 return xfs_lowbit64(rec->ir_free);
1107
1108 realfree = xfs_inobt_irec_to_allocmask(rec);
1109 realfree &= rec->ir_free;
1110
1111 return xfs_lowbit64(realfree);
1112 }
1113
1114 /*
1115 * Allocate an inode using the inobt-only algorithm.
1116 */
1117 STATIC int
1118 xfs_dialloc_ag_inobt(
1119 struct xfs_trans *tp,
1120 struct xfs_buf *agbp,
1121 xfs_ino_t parent,
1122 xfs_ino_t *inop)
1123 {
1124 struct xfs_mount *mp = tp->t_mountp;
1125 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1126 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1127 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1128 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1129 struct xfs_perag *pag;
1130 struct xfs_btree_cur *cur, *tcur;
1131 struct xfs_inobt_rec_incore rec, trec;
1132 xfs_ino_t ino;
1133 int error;
1134 int offset;
1135 int i, j;
1136
1137 pag = xfs_perag_get(mp, agno);
1138
1139 ASSERT(pag->pagi_init);
1140 ASSERT(pag->pagi_inodeok);
1141 ASSERT(pag->pagi_freecount > 0);
1142
1143 restart_pagno:
1144 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1145 /*
1146 * If pagino is 0 (this is the root inode allocation) use newino.
1147 * This must work because we've just allocated some.
1148 */
1149 if (!pagino)
1150 pagino = be32_to_cpu(agi->agi_newino);
1151
1152 error = xfs_check_agi_freecount(cur, agi);
1153 if (error)
1154 goto error0;
1155
1156 /*
1157 * If in the same AG as the parent, try to get near the parent.
1158 */
1159 if (pagno == agno) {
1160 int doneleft; /* done, to the left */
1161 int doneright; /* done, to the right */
1162 int searchdistance = 10;
1163
1164 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1165 if (error)
1166 goto error0;
1167 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1168
1169 error = xfs_inobt_get_rec(cur, &rec, &j);
1170 if (error)
1171 goto error0;
1172 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1173
1174 if (rec.ir_freecount > 0) {
1175 /*
1176 * Found a free inode in the same chunk
1177 * as the parent, done.
1178 */
1179 goto alloc_inode;
1180 }
1181
1182
1183 /*
1184 * In the same AG as parent, but parent's chunk is full.
1185 */
1186
1187 /* duplicate the cursor, search left & right simultaneously */
1188 error = xfs_btree_dup_cursor(cur, &tcur);
1189 if (error)
1190 goto error0;
1191
1192 /*
1193 * Skip to last blocks looked up if same parent inode.
1194 */
1195 if (pagino != NULLAGINO &&
1196 pag->pagl_pagino == pagino &&
1197 pag->pagl_leftrec != NULLAGINO &&
1198 pag->pagl_rightrec != NULLAGINO) {
1199 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1200 &trec, &doneleft);
1201 if (error)
1202 goto error1;
1203
1204 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1205 &rec, &doneright);
1206 if (error)
1207 goto error1;
1208 } else {
1209 /* search left with tcur, back up 1 record */
1210 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1211 if (error)
1212 goto error1;
1213
1214 /* search right with cur, go forward 1 record. */
1215 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1216 if (error)
1217 goto error1;
1218 }
1219
1220 /*
1221 * Loop until we find an inode chunk with a free inode.
1222 */
1223 while (!doneleft || !doneright) {
1224 int useleft; /* using left inode chunk this time */
1225
1226 if (!--searchdistance) {
1227 /*
1228 * Not in range - save last search
1229 * location and allocate a new inode
1230 */
1231 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1232 pag->pagl_leftrec = trec.ir_startino;
1233 pag->pagl_rightrec = rec.ir_startino;
1234 pag->pagl_pagino = pagino;
1235 goto newino;
1236 }
1237
1238 /* figure out the closer block if both are valid. */
1239 if (!doneleft && !doneright) {
1240 useleft = pagino -
1241 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1242 rec.ir_startino - pagino;
1243 } else {
1244 useleft = !doneleft;
1245 }
1246
1247 /* free inodes to the left? */
1248 if (useleft && trec.ir_freecount) {
1249 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1250 cur = tcur;
1251
1252 pag->pagl_leftrec = trec.ir_startino;
1253 pag->pagl_rightrec = rec.ir_startino;
1254 pag->pagl_pagino = pagino;
1255 rec = trec;
1256 goto alloc_inode;
1257 }
1258
1259 /* free inodes to the right? */
1260 if (!useleft && rec.ir_freecount) {
1261 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1262
1263 pag->pagl_leftrec = trec.ir_startino;
1264 pag->pagl_rightrec = rec.ir_startino;
1265 pag->pagl_pagino = pagino;
1266 goto alloc_inode;
1267 }
1268
1269 /* get next record to check */
1270 if (useleft) {
1271 error = xfs_ialloc_next_rec(tcur, &trec,
1272 &doneleft, 1);
1273 } else {
1274 error = xfs_ialloc_next_rec(cur, &rec,
1275 &doneright, 0);
1276 }
1277 if (error)
1278 goto error1;
1279 }
1280
1281 /*
1282 * We've reached the end of the btree. because
1283 * we are only searching a small chunk of the
1284 * btree each search, there is obviously free
1285 * inodes closer to the parent inode than we
1286 * are now. restart the search again.
1287 */
1288 pag->pagl_pagino = NULLAGINO;
1289 pag->pagl_leftrec = NULLAGINO;
1290 pag->pagl_rightrec = NULLAGINO;
1291 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1292 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1293 goto restart_pagno;
1294 }
1295
1296 /*
1297 * In a different AG from the parent.
1298 * See if the most recently allocated block has any free.
1299 */
1300 newino:
1301 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1302 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1303 XFS_LOOKUP_EQ, &i);
1304 if (error)
1305 goto error0;
1306
1307 if (i == 1) {
1308 error = xfs_inobt_get_rec(cur, &rec, &j);
1309 if (error)
1310 goto error0;
1311
1312 if (j == 1 && rec.ir_freecount > 0) {
1313 /*
1314 * The last chunk allocated in the group
1315 * still has a free inode.
1316 */
1317 goto alloc_inode;
1318 }
1319 }
1320 }
1321
1322 /*
1323 * None left in the last group, search the whole AG
1324 */
1325 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1326 if (error)
1327 goto error0;
1328 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1329
1330 for (;;) {
1331 error = xfs_inobt_get_rec(cur, &rec, &i);
1332 if (error)
1333 goto error0;
1334 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1335 if (rec.ir_freecount > 0)
1336 break;
1337 error = xfs_btree_increment(cur, 0, &i);
1338 if (error)
1339 goto error0;
1340 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1341 }
1342
1343 alloc_inode:
1344 offset = xfs_inobt_first_free_inode(&rec);
1345 ASSERT(offset >= 0);
1346 ASSERT(offset < XFS_INODES_PER_CHUNK);
1347 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1348 XFS_INODES_PER_CHUNK) == 0);
1349 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1350 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1351 rec.ir_freecount--;
1352 error = xfs_inobt_update(cur, &rec);
1353 if (error)
1354 goto error0;
1355 be32_add_cpu(&agi->agi_freecount, -1);
1356 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1357 pag->pagi_freecount--;
1358
1359 error = xfs_check_agi_freecount(cur, agi);
1360 if (error)
1361 goto error0;
1362
1363 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1364 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1365 xfs_perag_put(pag);
1366 *inop = ino;
1367 return 0;
1368 error1:
1369 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1370 error0:
1371 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1372 xfs_perag_put(pag);
1373 return error;
1374 }
1375
1376 /*
1377 * Use the free inode btree to allocate an inode based on distance from the
1378 * parent. Note that the provided cursor may be deleted and replaced.
1379 */
1380 STATIC int
1381 xfs_dialloc_ag_finobt_near(
1382 xfs_agino_t pagino,
1383 struct xfs_btree_cur **ocur,
1384 struct xfs_inobt_rec_incore *rec)
1385 {
1386 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1387 struct xfs_btree_cur *rcur; /* right search cursor */
1388 struct xfs_inobt_rec_incore rrec;
1389 int error;
1390 int i, j;
1391
1392 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1393 if (error)
1394 return error;
1395
1396 if (i == 1) {
1397 error = xfs_inobt_get_rec(lcur, rec, &i);
1398 if (error)
1399 return error;
1400 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1401
1402 /*
1403 * See if we've landed in the parent inode record. The finobt
1404 * only tracks chunks with at least one free inode, so record
1405 * existence is enough.
1406 */
1407 if (pagino >= rec->ir_startino &&
1408 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1409 return 0;
1410 }
1411
1412 error = xfs_btree_dup_cursor(lcur, &rcur);
1413 if (error)
1414 return error;
1415
1416 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1417 if (error)
1418 goto error_rcur;
1419 if (j == 1) {
1420 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1421 if (error)
1422 goto error_rcur;
1423 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1424 }
1425
1426 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1427 if (i == 1 && j == 1) {
1428 /*
1429 * Both the left and right records are valid. Choose the closer
1430 * inode chunk to the target.
1431 */
1432 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1433 (rrec.ir_startino - pagino)) {
1434 *rec = rrec;
1435 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1436 *ocur = rcur;
1437 } else {
1438 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1439 }
1440 } else if (j == 1) {
1441 /* only the right record is valid */
1442 *rec = rrec;
1443 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1444 *ocur = rcur;
1445 } else if (i == 1) {
1446 /* only the left record is valid */
1447 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1448 }
1449
1450 return 0;
1451
1452 error_rcur:
1453 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1454 return error;
1455 }
1456
1457 /*
1458 * Use the free inode btree to find a free inode based on a newino hint. If
1459 * the hint is NULL, find the first free inode in the AG.
1460 */
1461 STATIC int
1462 xfs_dialloc_ag_finobt_newino(
1463 struct xfs_agi *agi,
1464 struct xfs_btree_cur *cur,
1465 struct xfs_inobt_rec_incore *rec)
1466 {
1467 int error;
1468 int i;
1469
1470 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1471 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1472 XFS_LOOKUP_EQ, &i);
1473 if (error)
1474 return error;
1475 if (i == 1) {
1476 error = xfs_inobt_get_rec(cur, rec, &i);
1477 if (error)
1478 return error;
1479 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1480 return 0;
1481 }
1482 }
1483
1484 /*
1485 * Find the first inode available in the AG.
1486 */
1487 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1488 if (error)
1489 return error;
1490 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1491
1492 error = xfs_inobt_get_rec(cur, rec, &i);
1493 if (error)
1494 return error;
1495 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1496
1497 return 0;
1498 }
1499
1500 /*
1501 * Update the inobt based on a modification made to the finobt. Also ensure that
1502 * the records from both trees are equivalent post-modification.
1503 */
1504 STATIC int
1505 xfs_dialloc_ag_update_inobt(
1506 struct xfs_btree_cur *cur, /* inobt cursor */
1507 struct xfs_inobt_rec_incore *frec, /* finobt record */
1508 int offset) /* inode offset */
1509 {
1510 struct xfs_inobt_rec_incore rec;
1511 int error;
1512 int i;
1513
1514 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1515 if (error)
1516 return error;
1517 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1518
1519 error = xfs_inobt_get_rec(cur, &rec, &i);
1520 if (error)
1521 return error;
1522 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1523 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1524 XFS_INODES_PER_CHUNK) == 0);
1525
1526 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1527 rec.ir_freecount--;
1528
1529 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1530 (rec.ir_freecount == frec->ir_freecount));
1531
1532 return xfs_inobt_update(cur, &rec);
1533 }
1534
1535 /*
1536 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1537 * back to the inobt search algorithm.
1538 *
1539 * The caller selected an AG for us, and made sure that free inodes are
1540 * available.
1541 */
1542 STATIC int
1543 xfs_dialloc_ag(
1544 struct xfs_trans *tp,
1545 struct xfs_buf *agbp,
1546 xfs_ino_t parent,
1547 xfs_ino_t *inop)
1548 {
1549 struct xfs_mount *mp = tp->t_mountp;
1550 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1551 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1552 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1553 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1554 struct xfs_perag *pag;
1555 struct xfs_btree_cur *cur; /* finobt cursor */
1556 struct xfs_btree_cur *icur; /* inobt cursor */
1557 struct xfs_inobt_rec_incore rec;
1558 xfs_ino_t ino;
1559 int error;
1560 int offset;
1561 int i;
1562
1563 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1564 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1565
1566 pag = xfs_perag_get(mp, agno);
1567
1568 /*
1569 * If pagino is 0 (this is the root inode allocation) use newino.
1570 * This must work because we've just allocated some.
1571 */
1572 if (!pagino)
1573 pagino = be32_to_cpu(agi->agi_newino);
1574
1575 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1576
1577 error = xfs_check_agi_freecount(cur, agi);
1578 if (error)
1579 goto error_cur;
1580
1581 /*
1582 * The search algorithm depends on whether we're in the same AG as the
1583 * parent. If so, find the closest available inode to the parent. If
1584 * not, consider the agi hint or find the first free inode in the AG.
1585 */
1586 if (agno == pagno)
1587 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1588 else
1589 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1590 if (error)
1591 goto error_cur;
1592
1593 offset = xfs_inobt_first_free_inode(&rec);
1594 ASSERT(offset >= 0);
1595 ASSERT(offset < XFS_INODES_PER_CHUNK);
1596 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1597 XFS_INODES_PER_CHUNK) == 0);
1598 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1599
1600 /*
1601 * Modify or remove the finobt record.
1602 */
1603 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1604 rec.ir_freecount--;
1605 if (rec.ir_freecount)
1606 error = xfs_inobt_update(cur, &rec);
1607 else
1608 error = xfs_btree_delete(cur, &i);
1609 if (error)
1610 goto error_cur;
1611
1612 /*
1613 * The finobt has now been updated appropriately. We haven't updated the
1614 * agi and superblock yet, so we can create an inobt cursor and validate
1615 * the original freecount. If all is well, make the equivalent update to
1616 * the inobt using the finobt record and offset information.
1617 */
1618 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1619
1620 error = xfs_check_agi_freecount(icur, agi);
1621 if (error)
1622 goto error_icur;
1623
1624 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1625 if (error)
1626 goto error_icur;
1627
1628 /*
1629 * Both trees have now been updated. We must update the perag and
1630 * superblock before we can check the freecount for each btree.
1631 */
1632 be32_add_cpu(&agi->agi_freecount, -1);
1633 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1634 pag->pagi_freecount--;
1635
1636 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1637
1638 error = xfs_check_agi_freecount(icur, agi);
1639 if (error)
1640 goto error_icur;
1641 error = xfs_check_agi_freecount(cur, agi);
1642 if (error)
1643 goto error_icur;
1644
1645 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1646 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1647 xfs_perag_put(pag);
1648 *inop = ino;
1649 return 0;
1650
1651 error_icur:
1652 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1653 error_cur:
1654 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1655 xfs_perag_put(pag);
1656 return error;
1657 }
1658
1659 /*
1660 * Allocate an inode on disk.
1661 *
1662 * Mode is used to tell whether the new inode will need space, and whether it
1663 * is a directory.
1664 *
1665 * This function is designed to be called twice if it has to do an allocation
1666 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1667 * If an inode is available without having to performn an allocation, an inode
1668 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1669 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1670 * The caller should then commit the current transaction, allocate a
1671 * new transaction, and call xfs_dialloc() again, passing in the previous value
1672 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1673 * buffer is locked across the two calls, the second call is guaranteed to have
1674 * a free inode available.
1675 *
1676 * Once we successfully pick an inode its number is returned and the on-disk
1677 * data structures are updated. The inode itself is not read in, since doing so
1678 * would break ordering constraints with xfs_reclaim.
1679 */
1680 int
1681 xfs_dialloc(
1682 struct xfs_trans *tp,
1683 xfs_ino_t parent,
1684 umode_t mode,
1685 int okalloc,
1686 struct xfs_buf **IO_agbp,
1687 xfs_ino_t *inop)
1688 {
1689 struct xfs_mount *mp = tp->t_mountp;
1690 struct xfs_buf *agbp;
1691 xfs_agnumber_t agno;
1692 int error;
1693 int ialloced;
1694 int noroom = 0;
1695 xfs_agnumber_t start_agno;
1696 struct xfs_perag *pag;
1697
1698 if (*IO_agbp) {
1699 /*
1700 * If the caller passes in a pointer to the AGI buffer,
1701 * continue where we left off before. In this case, we
1702 * know that the allocation group has free inodes.
1703 */
1704 agbp = *IO_agbp;
1705 goto out_alloc;
1706 }
1707
1708 /*
1709 * We do not have an agbp, so select an initial allocation
1710 * group for inode allocation.
1711 */
1712 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1713 if (start_agno == NULLAGNUMBER) {
1714 *inop = NULLFSINO;
1715 return 0;
1716 }
1717
1718 /*
1719 * If we have already hit the ceiling of inode blocks then clear
1720 * okalloc so we scan all available agi structures for a free
1721 * inode.
1722 *
1723 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1724 * which will sacrifice the preciseness but improve the performance.
1725 */
1726 if (mp->m_maxicount &&
1727 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1728 > mp->m_maxicount) {
1729 noroom = 1;
1730 okalloc = 0;
1731 }
1732
1733 /*
1734 * Loop until we find an allocation group that either has free inodes
1735 * or in which we can allocate some inodes. Iterate through the
1736 * allocation groups upward, wrapping at the end.
1737 */
1738 agno = start_agno;
1739 for (;;) {
1740 pag = xfs_perag_get(mp, agno);
1741 if (!pag->pagi_inodeok) {
1742 xfs_ialloc_next_ag(mp);
1743 goto nextag;
1744 }
1745
1746 if (!pag->pagi_init) {
1747 error = xfs_ialloc_pagi_init(mp, tp, agno);
1748 if (error)
1749 goto out_error;
1750 }
1751
1752 /*
1753 * Do a first racy fast path check if this AG is usable.
1754 */
1755 if (!pag->pagi_freecount && !okalloc)
1756 goto nextag;
1757
1758 /*
1759 * Then read in the AGI buffer and recheck with the AGI buffer
1760 * lock held.
1761 */
1762 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1763 if (error)
1764 goto out_error;
1765
1766 if (pag->pagi_freecount) {
1767 xfs_perag_put(pag);
1768 goto out_alloc;
1769 }
1770
1771 if (!okalloc)
1772 goto nextag_relse_buffer;
1773
1774
1775 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1776 if (error) {
1777 xfs_trans_brelse(tp, agbp);
1778
1779 if (error != -ENOSPC)
1780 goto out_error;
1781
1782 xfs_perag_put(pag);
1783 *inop = NULLFSINO;
1784 return 0;
1785 }
1786
1787 if (ialloced) {
1788 /*
1789 * We successfully allocated some inodes, return
1790 * the current context to the caller so that it
1791 * can commit the current transaction and call
1792 * us again where we left off.
1793 */
1794 ASSERT(pag->pagi_freecount > 0);
1795 xfs_perag_put(pag);
1796
1797 *IO_agbp = agbp;
1798 *inop = NULLFSINO;
1799 return 0;
1800 }
1801
1802 nextag_relse_buffer:
1803 xfs_trans_brelse(tp, agbp);
1804 nextag:
1805 xfs_perag_put(pag);
1806 if (++agno == mp->m_sb.sb_agcount)
1807 agno = 0;
1808 if (agno == start_agno) {
1809 *inop = NULLFSINO;
1810 return noroom ? -ENOSPC : 0;
1811 }
1812 }
1813
1814 out_alloc:
1815 *IO_agbp = NULL;
1816 return xfs_dialloc_ag(tp, agbp, parent, inop);
1817 out_error:
1818 xfs_perag_put(pag);
1819 return error;
1820 }
1821
1822 /*
1823 * Free the blocks of an inode chunk. We must consider that the inode chunk
1824 * might be sparse and only free the regions that are allocated as part of the
1825 * chunk.
1826 */
1827 STATIC void
1828 xfs_difree_inode_chunk(
1829 struct xfs_mount *mp,
1830 xfs_agnumber_t agno,
1831 struct xfs_inobt_rec_incore *rec,
1832 struct xfs_defer_ops *dfops)
1833 {
1834 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1835 int startidx, endidx;
1836 int nextbit;
1837 xfs_agblock_t agbno;
1838 int contigblk;
1839 struct xfs_owner_info oinfo;
1840 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1841 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1842
1843 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1844 /* not sparse, calculate extent info directly */
1845 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1846 mp->m_ialloc_blks, &oinfo);
1847 return;
1848 }
1849
1850 /* holemask is only 16-bits (fits in an unsigned long) */
1851 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1852 holemask[0] = rec->ir_holemask;
1853
1854 /*
1855 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1856 * holemask and convert the start/end index of each range to an extent.
1857 * We start with the start and end index both pointing at the first 0 in
1858 * the mask.
1859 */
1860 startidx = endidx = find_first_zero_bit(holemask,
1861 XFS_INOBT_HOLEMASK_BITS);
1862 nextbit = startidx + 1;
1863 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1864 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1865 nextbit);
1866 /*
1867 * If the next zero bit is contiguous, update the end index of
1868 * the current range and continue.
1869 */
1870 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1871 nextbit == endidx + 1) {
1872 endidx = nextbit;
1873 goto next;
1874 }
1875
1876 /*
1877 * nextbit is not contiguous with the current end index. Convert
1878 * the current start/end to an extent and add it to the free
1879 * list.
1880 */
1881 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1882 mp->m_sb.sb_inopblock;
1883 contigblk = ((endidx - startidx + 1) *
1884 XFS_INODES_PER_HOLEMASK_BIT) /
1885 mp->m_sb.sb_inopblock;
1886
1887 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1888 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1889 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1890 contigblk, &oinfo);
1891
1892 /* reset range to current bit and carry on... */
1893 startidx = endidx = nextbit;
1894
1895 next:
1896 nextbit++;
1897 }
1898 }
1899
1900 STATIC int
1901 xfs_difree_inobt(
1902 struct xfs_mount *mp,
1903 struct xfs_trans *tp,
1904 struct xfs_buf *agbp,
1905 xfs_agino_t agino,
1906 struct xfs_defer_ops *dfops,
1907 struct xfs_icluster *xic,
1908 struct xfs_inobt_rec_incore *orec)
1909 {
1910 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1911 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1912 struct xfs_perag *pag;
1913 struct xfs_btree_cur *cur;
1914 struct xfs_inobt_rec_incore rec;
1915 int ilen;
1916 int error;
1917 int i;
1918 int off;
1919
1920 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1921 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1922
1923 /*
1924 * Initialize the cursor.
1925 */
1926 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1927
1928 error = xfs_check_agi_freecount(cur, agi);
1929 if (error)
1930 goto error0;
1931
1932 /*
1933 * Look for the entry describing this inode.
1934 */
1935 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1936 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1937 __func__, error);
1938 goto error0;
1939 }
1940 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1941 error = xfs_inobt_get_rec(cur, &rec, &i);
1942 if (error) {
1943 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1944 __func__, error);
1945 goto error0;
1946 }
1947 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1948 /*
1949 * Get the offset in the inode chunk.
1950 */
1951 off = agino - rec.ir_startino;
1952 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1953 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1954 /*
1955 * Mark the inode free & increment the count.
1956 */
1957 rec.ir_free |= XFS_INOBT_MASK(off);
1958 rec.ir_freecount++;
1959
1960 /*
1961 * When an inode chunk is free, it becomes eligible for removal. Don't
1962 * remove the chunk if the block size is large enough for multiple inode
1963 * chunks (that might not be free).
1964 */
1965 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1966 rec.ir_free == XFS_INOBT_ALL_FREE &&
1967 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1968 xic->deleted = 1;
1969 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1970 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1971
1972 /*
1973 * Remove the inode cluster from the AGI B+Tree, adjust the
1974 * AGI and Superblock inode counts, and mark the disk space
1975 * to be freed when the transaction is committed.
1976 */
1977 ilen = rec.ir_freecount;
1978 be32_add_cpu(&agi->agi_count, -ilen);
1979 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1980 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1981 pag = xfs_perag_get(mp, agno);
1982 pag->pagi_freecount -= ilen - 1;
1983 xfs_perag_put(pag);
1984 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1985 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1986
1987 if ((error = xfs_btree_delete(cur, &i))) {
1988 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1989 __func__, error);
1990 goto error0;
1991 }
1992
1993 xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1994 } else {
1995 xic->deleted = 0;
1996
1997 error = xfs_inobt_update(cur, &rec);
1998 if (error) {
1999 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2000 __func__, error);
2001 goto error0;
2002 }
2003
2004 /*
2005 * Change the inode free counts and log the ag/sb changes.
2006 */
2007 be32_add_cpu(&agi->agi_freecount, 1);
2008 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2009 pag = xfs_perag_get(mp, agno);
2010 pag->pagi_freecount++;
2011 xfs_perag_put(pag);
2012 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2013 }
2014
2015 error = xfs_check_agi_freecount(cur, agi);
2016 if (error)
2017 goto error0;
2018
2019 *orec = rec;
2020 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2021 return 0;
2022
2023 error0:
2024 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2025 return error;
2026 }
2027
2028 /*
2029 * Free an inode in the free inode btree.
2030 */
2031 STATIC int
2032 xfs_difree_finobt(
2033 struct xfs_mount *mp,
2034 struct xfs_trans *tp,
2035 struct xfs_buf *agbp,
2036 xfs_agino_t agino,
2037 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2038 {
2039 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2040 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2041 struct xfs_btree_cur *cur;
2042 struct xfs_inobt_rec_incore rec;
2043 int offset = agino - ibtrec->ir_startino;
2044 int error;
2045 int i;
2046
2047 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2048
2049 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2050 if (error)
2051 goto error;
2052 if (i == 0) {
2053 /*
2054 * If the record does not exist in the finobt, we must have just
2055 * freed an inode in a previously fully allocated chunk. If not,
2056 * something is out of sync.
2057 */
2058 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2059
2060 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2061 ibtrec->ir_count,
2062 ibtrec->ir_freecount,
2063 ibtrec->ir_free, &i);
2064 if (error)
2065 goto error;
2066 ASSERT(i == 1);
2067
2068 goto out;
2069 }
2070
2071 /*
2072 * Read and update the existing record. We could just copy the ibtrec
2073 * across here, but that would defeat the purpose of having redundant
2074 * metadata. By making the modifications independently, we can catch
2075 * corruptions that we wouldn't see if we just copied from one record
2076 * to another.
2077 */
2078 error = xfs_inobt_get_rec(cur, &rec, &i);
2079 if (error)
2080 goto error;
2081 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2082
2083 rec.ir_free |= XFS_INOBT_MASK(offset);
2084 rec.ir_freecount++;
2085
2086 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2087 (rec.ir_freecount == ibtrec->ir_freecount),
2088 error);
2089
2090 /*
2091 * The content of inobt records should always match between the inobt
2092 * and finobt. The lifecycle of records in the finobt is different from
2093 * the inobt in that the finobt only tracks records with at least one
2094 * free inode. Hence, if all of the inodes are free and we aren't
2095 * keeping inode chunks permanently on disk, remove the record.
2096 * Otherwise, update the record with the new information.
2097 *
2098 * Note that we currently can't free chunks when the block size is large
2099 * enough for multiple chunks. Leave the finobt record to remain in sync
2100 * with the inobt.
2101 */
2102 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2103 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2104 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2105 error = xfs_btree_delete(cur, &i);
2106 if (error)
2107 goto error;
2108 ASSERT(i == 1);
2109 } else {
2110 error = xfs_inobt_update(cur, &rec);
2111 if (error)
2112 goto error;
2113 }
2114
2115 out:
2116 error = xfs_check_agi_freecount(cur, agi);
2117 if (error)
2118 goto error;
2119
2120 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2121 return 0;
2122
2123 error:
2124 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2125 return error;
2126 }
2127
2128 /*
2129 * Free disk inode. Carefully avoids touching the incore inode, all
2130 * manipulations incore are the caller's responsibility.
2131 * The on-disk inode is not changed by this operation, only the
2132 * btree (free inode mask) is changed.
2133 */
2134 int
2135 xfs_difree(
2136 struct xfs_trans *tp, /* transaction pointer */
2137 xfs_ino_t inode, /* inode to be freed */
2138 struct xfs_defer_ops *dfops, /* extents to free */
2139 struct xfs_icluster *xic) /* cluster info if deleted */
2140 {
2141 /* REFERENCED */
2142 xfs_agblock_t agbno; /* block number containing inode */
2143 struct xfs_buf *agbp; /* buffer for allocation group header */
2144 xfs_agino_t agino; /* allocation group inode number */
2145 xfs_agnumber_t agno; /* allocation group number */
2146 int error; /* error return value */
2147 struct xfs_mount *mp; /* mount structure for filesystem */
2148 struct xfs_inobt_rec_incore rec;/* btree record */
2149
2150 mp = tp->t_mountp;
2151
2152 /*
2153 * Break up inode number into its components.
2154 */
2155 agno = XFS_INO_TO_AGNO(mp, inode);
2156 if (agno >= mp->m_sb.sb_agcount) {
2157 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2158 __func__, agno, mp->m_sb.sb_agcount);
2159 ASSERT(0);
2160 return -EINVAL;
2161 }
2162 agino = XFS_INO_TO_AGINO(mp, inode);
2163 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2164 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2165 __func__, (unsigned long long)inode,
2166 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2167 ASSERT(0);
2168 return -EINVAL;
2169 }
2170 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2171 if (agbno >= mp->m_sb.sb_agblocks) {
2172 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2173 __func__, agbno, mp->m_sb.sb_agblocks);
2174 ASSERT(0);
2175 return -EINVAL;
2176 }
2177 /*
2178 * Get the allocation group header.
2179 */
2180 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2181 if (error) {
2182 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2183 __func__, error);
2184 return error;
2185 }
2186
2187 /*
2188 * Fix up the inode allocation btree.
2189 */
2190 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2191 if (error)
2192 goto error0;
2193
2194 /*
2195 * Fix up the free inode btree.
2196 */
2197 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2198 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2199 if (error)
2200 goto error0;
2201 }
2202
2203 return 0;
2204
2205 error0:
2206 return error;
2207 }
2208
2209 STATIC int
2210 xfs_imap_lookup(
2211 struct xfs_mount *mp,
2212 struct xfs_trans *tp,
2213 xfs_agnumber_t agno,
2214 xfs_agino_t agino,
2215 xfs_agblock_t agbno,
2216 xfs_agblock_t *chunk_agbno,
2217 xfs_agblock_t *offset_agbno,
2218 int flags)
2219 {
2220 struct xfs_inobt_rec_incore rec;
2221 struct xfs_btree_cur *cur;
2222 struct xfs_buf *agbp;
2223 int error;
2224 int i;
2225
2226 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2227 if (error) {
2228 xfs_alert(mp,
2229 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2230 __func__, error, agno);
2231 return error;
2232 }
2233
2234 /*
2235 * Lookup the inode record for the given agino. If the record cannot be
2236 * found, then it's an invalid inode number and we should abort. Once
2237 * we have a record, we need to ensure it contains the inode number
2238 * we are looking up.
2239 */
2240 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2241 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2242 if (!error) {
2243 if (i)
2244 error = xfs_inobt_get_rec(cur, &rec, &i);
2245 if (!error && i == 0)
2246 error = -EINVAL;
2247 }
2248
2249 xfs_trans_brelse(tp, agbp);
2250 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2251 if (error)
2252 return error;
2253
2254 /* check that the returned record contains the required inode */
2255 if (rec.ir_startino > agino ||
2256 rec.ir_startino + mp->m_ialloc_inos <= agino)
2257 return -EINVAL;
2258
2259 /* for untrusted inodes check it is allocated first */
2260 if ((flags & XFS_IGET_UNTRUSTED) &&
2261 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2262 return -EINVAL;
2263
2264 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2265 *offset_agbno = agbno - *chunk_agbno;
2266 return 0;
2267 }
2268
2269 /*
2270 * Return the location of the inode in imap, for mapping it into a buffer.
2271 */
2272 int
2273 xfs_imap(
2274 xfs_mount_t *mp, /* file system mount structure */
2275 xfs_trans_t *tp, /* transaction pointer */
2276 xfs_ino_t ino, /* inode to locate */
2277 struct xfs_imap *imap, /* location map structure */
2278 uint flags) /* flags for inode btree lookup */
2279 {
2280 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2281 xfs_agino_t agino; /* inode number within alloc group */
2282 xfs_agnumber_t agno; /* allocation group number */
2283 int blks_per_cluster; /* num blocks per inode cluster */
2284 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2285 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2286 int error; /* error code */
2287 int offset; /* index of inode in its buffer */
2288 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2289
2290 ASSERT(ino != NULLFSINO);
2291
2292 /*
2293 * Split up the inode number into its parts.
2294 */
2295 agno = XFS_INO_TO_AGNO(mp, ino);
2296 agino = XFS_INO_TO_AGINO(mp, ino);
2297 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2298 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2299 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2300 #ifdef DEBUG
2301 /*
2302 * Don't output diagnostic information for untrusted inodes
2303 * as they can be invalid without implying corruption.
2304 */
2305 if (flags & XFS_IGET_UNTRUSTED)
2306 return -EINVAL;
2307 if (agno >= mp->m_sb.sb_agcount) {
2308 xfs_alert(mp,
2309 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2310 __func__, agno, mp->m_sb.sb_agcount);
2311 }
2312 if (agbno >= mp->m_sb.sb_agblocks) {
2313 xfs_alert(mp,
2314 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2315 __func__, (unsigned long long)agbno,
2316 (unsigned long)mp->m_sb.sb_agblocks);
2317 }
2318 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2319 xfs_alert(mp,
2320 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2321 __func__, ino,
2322 XFS_AGINO_TO_INO(mp, agno, agino));
2323 }
2324 xfs_stack_trace();
2325 #endif /* DEBUG */
2326 return -EINVAL;
2327 }
2328
2329 blks_per_cluster = xfs_icluster_size_fsb(mp);
2330
2331 /*
2332 * For bulkstat and handle lookups, we have an untrusted inode number
2333 * that we have to verify is valid. We cannot do this just by reading
2334 * the inode buffer as it may have been unlinked and removed leaving
2335 * inodes in stale state on disk. Hence we have to do a btree lookup
2336 * in all cases where an untrusted inode number is passed.
2337 */
2338 if (flags & XFS_IGET_UNTRUSTED) {
2339 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2340 &chunk_agbno, &offset_agbno, flags);
2341 if (error)
2342 return error;
2343 goto out_map;
2344 }
2345
2346 /*
2347 * If the inode cluster size is the same as the blocksize or
2348 * smaller we get to the buffer by simple arithmetics.
2349 */
2350 if (blks_per_cluster == 1) {
2351 offset = XFS_INO_TO_OFFSET(mp, ino);
2352 ASSERT(offset < mp->m_sb.sb_inopblock);
2353
2354 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2355 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2356 imap->im_boffset = (unsigned short)(offset <<
2357 mp->m_sb.sb_inodelog);
2358 return 0;
2359 }
2360
2361 /*
2362 * If the inode chunks are aligned then use simple maths to
2363 * find the location. Otherwise we have to do a btree
2364 * lookup to find the location.
2365 */
2366 if (mp->m_inoalign_mask) {
2367 offset_agbno = agbno & mp->m_inoalign_mask;
2368 chunk_agbno = agbno - offset_agbno;
2369 } else {
2370 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2371 &chunk_agbno, &offset_agbno, flags);
2372 if (error)
2373 return error;
2374 }
2375
2376 out_map:
2377 ASSERT(agbno >= chunk_agbno);
2378 cluster_agbno = chunk_agbno +
2379 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2380 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2381 XFS_INO_TO_OFFSET(mp, ino);
2382
2383 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2384 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2385 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2386
2387 /*
2388 * If the inode number maps to a block outside the bounds
2389 * of the file system then return NULL rather than calling
2390 * read_buf and panicing when we get an error from the
2391 * driver.
2392 */
2393 if ((imap->im_blkno + imap->im_len) >
2394 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2395 xfs_alert(mp,
2396 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2397 __func__, (unsigned long long) imap->im_blkno,
2398 (unsigned long long) imap->im_len,
2399 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2400 return -EINVAL;
2401 }
2402 return 0;
2403 }
2404
2405 /*
2406 * Compute and fill in value of m_in_maxlevels.
2407 */
2408 void
2409 xfs_ialloc_compute_maxlevels(
2410 xfs_mount_t *mp) /* file system mount structure */
2411 {
2412 uint inodes;
2413
2414 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2415 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr,
2416 inodes);
2417 }
2418
2419 /*
2420 * Log specified fields for the ag hdr (inode section). The growth of the agi
2421 * structure over time requires that we interpret the buffer as two logical
2422 * regions delineated by the end of the unlinked list. This is due to the size
2423 * of the hash table and its location in the middle of the agi.
2424 *
2425 * For example, a request to log a field before agi_unlinked and a field after
2426 * agi_unlinked could cause us to log the entire hash table and use an excessive
2427 * amount of log space. To avoid this behavior, log the region up through
2428 * agi_unlinked in one call and the region after agi_unlinked through the end of
2429 * the structure in another.
2430 */
2431 void
2432 xfs_ialloc_log_agi(
2433 xfs_trans_t *tp, /* transaction pointer */
2434 xfs_buf_t *bp, /* allocation group header buffer */
2435 int fields) /* bitmask of fields to log */
2436 {
2437 int first; /* first byte number */
2438 int last; /* last byte number */
2439 static const short offsets[] = { /* field starting offsets */
2440 /* keep in sync with bit definitions */
2441 offsetof(xfs_agi_t, agi_magicnum),
2442 offsetof(xfs_agi_t, agi_versionnum),
2443 offsetof(xfs_agi_t, agi_seqno),
2444 offsetof(xfs_agi_t, agi_length),
2445 offsetof(xfs_agi_t, agi_count),
2446 offsetof(xfs_agi_t, agi_root),
2447 offsetof(xfs_agi_t, agi_level),
2448 offsetof(xfs_agi_t, agi_freecount),
2449 offsetof(xfs_agi_t, agi_newino),
2450 offsetof(xfs_agi_t, agi_dirino),
2451 offsetof(xfs_agi_t, agi_unlinked),
2452 offsetof(xfs_agi_t, agi_free_root),
2453 offsetof(xfs_agi_t, agi_free_level),
2454 sizeof(xfs_agi_t)
2455 };
2456 #ifdef DEBUG
2457 xfs_agi_t *agi; /* allocation group header */
2458
2459 agi = XFS_BUF_TO_AGI(bp);
2460 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2461 #endif
2462
2463 /*
2464 * Compute byte offsets for the first and last fields in the first
2465 * region and log the agi buffer. This only logs up through
2466 * agi_unlinked.
2467 */
2468 if (fields & XFS_AGI_ALL_BITS_R1) {
2469 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2470 &first, &last);
2471 xfs_trans_log_buf(tp, bp, first, last);
2472 }
2473
2474 /*
2475 * Mask off the bits in the first region and calculate the first and
2476 * last field offsets for any bits in the second region.
2477 */
2478 fields &= ~XFS_AGI_ALL_BITS_R1;
2479 if (fields) {
2480 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2481 &first, &last);
2482 xfs_trans_log_buf(tp, bp, first, last);
2483 }
2484 }
2485
2486 #ifdef DEBUG
2487 STATIC void
2488 xfs_check_agi_unlinked(
2489 struct xfs_agi *agi)
2490 {
2491 int i;
2492
2493 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2494 ASSERT(agi->agi_unlinked[i]);
2495 }
2496 #else
2497 #define xfs_check_agi_unlinked(agi)
2498 #endif
2499
2500 static bool
2501 xfs_agi_verify(
2502 struct xfs_buf *bp)
2503 {
2504 struct xfs_mount *mp = bp->b_target->bt_mount;
2505 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2506
2507 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2508 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2509 return false;
2510 if (!xfs_log_check_lsn(mp,
2511 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2512 return false;
2513 }
2514
2515 /*
2516 * Validate the magic number of the agi block.
2517 */
2518 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2519 return false;
2520 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2521 return false;
2522
2523 if (be32_to_cpu(agi->agi_level) < 1 ||
2524 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2525 return false;
2526
2527 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2528 (be32_to_cpu(agi->agi_free_level) < 1 ||
2529 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2530 return false;
2531
2532 /*
2533 * during growfs operations, the perag is not fully initialised,
2534 * so we can't use it for any useful checking. growfs ensures we can't
2535 * use it by using uncached buffers that don't have the perag attached
2536 * so we can detect and avoid this problem.
2537 */
2538 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2539 return false;
2540
2541 xfs_check_agi_unlinked(agi);
2542 return true;
2543 }
2544
2545 static void
2546 xfs_agi_read_verify(
2547 struct xfs_buf *bp)
2548 {
2549 struct xfs_mount *mp = bp->b_target->bt_mount;
2550
2551 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2552 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2553 xfs_buf_ioerror(bp, -EFSBADCRC);
2554 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2555 XFS_ERRTAG_IALLOC_READ_AGI))
2556 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2557
2558 if (bp->b_error)
2559 xfs_verifier_error(bp);
2560 }
2561
2562 static void
2563 xfs_agi_write_verify(
2564 struct xfs_buf *bp)
2565 {
2566 struct xfs_mount *mp = bp->b_target->bt_mount;
2567 struct xfs_buf_log_item *bip = bp->b_fspriv;
2568
2569 if (!xfs_agi_verify(bp)) {
2570 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2571 xfs_verifier_error(bp);
2572 return;
2573 }
2574
2575 if (!xfs_sb_version_hascrc(&mp->m_sb))
2576 return;
2577
2578 if (bip)
2579 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2580 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2581 }
2582
2583 const struct xfs_buf_ops xfs_agi_buf_ops = {
2584 .name = "xfs_agi",
2585 .verify_read = xfs_agi_read_verify,
2586 .verify_write = xfs_agi_write_verify,
2587 };
2588
2589 /*
2590 * Read in the allocation group header (inode allocation section)
2591 */
2592 int
2593 xfs_read_agi(
2594 struct xfs_mount *mp, /* file system mount structure */
2595 struct xfs_trans *tp, /* transaction pointer */
2596 xfs_agnumber_t agno, /* allocation group number */
2597 struct xfs_buf **bpp) /* allocation group hdr buf */
2598 {
2599 int error;
2600
2601 trace_xfs_read_agi(mp, agno);
2602
2603 ASSERT(agno != NULLAGNUMBER);
2604 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2605 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2606 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2607 if (error)
2608 return error;
2609 if (tp)
2610 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2611
2612 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2613 return 0;
2614 }
2615
2616 int
2617 xfs_ialloc_read_agi(
2618 struct xfs_mount *mp, /* file system mount structure */
2619 struct xfs_trans *tp, /* transaction pointer */
2620 xfs_agnumber_t agno, /* allocation group number */
2621 struct xfs_buf **bpp) /* allocation group hdr buf */
2622 {
2623 struct xfs_agi *agi; /* allocation group header */
2624 struct xfs_perag *pag; /* per allocation group data */
2625 int error;
2626
2627 trace_xfs_ialloc_read_agi(mp, agno);
2628
2629 error = xfs_read_agi(mp, tp, agno, bpp);
2630 if (error)
2631 return error;
2632
2633 agi = XFS_BUF_TO_AGI(*bpp);
2634 pag = xfs_perag_get(mp, agno);
2635 if (!pag->pagi_init) {
2636 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2637 pag->pagi_count = be32_to_cpu(agi->agi_count);
2638 pag->pagi_init = 1;
2639 }
2640
2641 /*
2642 * It's possible for these to be out of sync if
2643 * we are in the middle of a forced shutdown.
2644 */
2645 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2646 XFS_FORCED_SHUTDOWN(mp));
2647 xfs_perag_put(pag);
2648 return 0;
2649 }
2650
2651 /*
2652 * Read in the agi to initialise the per-ag data in the mount structure
2653 */
2654 int
2655 xfs_ialloc_pagi_init(
2656 xfs_mount_t *mp, /* file system mount structure */
2657 xfs_trans_t *tp, /* transaction pointer */
2658 xfs_agnumber_t agno) /* allocation group number */
2659 {
2660 xfs_buf_t *bp = NULL;
2661 int error;
2662
2663 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2664 if (error)
2665 return error;
2666 if (bp)
2667 xfs_trans_brelse(tp, bp);
2668 return 0;
2669 }