]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/libxfs/xfs_ialloc_btree.c
Merge branch 'xfs-4.10-misc-fixes-4' into for-next
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / libxfs / xfs_ialloc_btree.c
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_btree.h"
28 #include "xfs_ialloc.h"
29 #include "xfs_ialloc_btree.h"
30 #include "xfs_alloc.h"
31 #include "xfs_error.h"
32 #include "xfs_trace.h"
33 #include "xfs_cksum.h"
34 #include "xfs_trans.h"
35 #include "xfs_rmap.h"
36
37
38 STATIC int
39 xfs_inobt_get_minrecs(
40 struct xfs_btree_cur *cur,
41 int level)
42 {
43 return cur->bc_mp->m_inobt_mnr[level != 0];
44 }
45
46 STATIC struct xfs_btree_cur *
47 xfs_inobt_dup_cursor(
48 struct xfs_btree_cur *cur)
49 {
50 return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
51 cur->bc_private.a.agbp, cur->bc_private.a.agno,
52 cur->bc_btnum);
53 }
54
55 STATIC void
56 xfs_inobt_set_root(
57 struct xfs_btree_cur *cur,
58 union xfs_btree_ptr *nptr,
59 int inc) /* level change */
60 {
61 struct xfs_buf *agbp = cur->bc_private.a.agbp;
62 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
63
64 agi->agi_root = nptr->s;
65 be32_add_cpu(&agi->agi_level, inc);
66 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
67 }
68
69 STATIC void
70 xfs_finobt_set_root(
71 struct xfs_btree_cur *cur,
72 union xfs_btree_ptr *nptr,
73 int inc) /* level change */
74 {
75 struct xfs_buf *agbp = cur->bc_private.a.agbp;
76 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
77
78 agi->agi_free_root = nptr->s;
79 be32_add_cpu(&agi->agi_free_level, inc);
80 xfs_ialloc_log_agi(cur->bc_tp, agbp,
81 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
82 }
83
84 STATIC int
85 xfs_inobt_alloc_block(
86 struct xfs_btree_cur *cur,
87 union xfs_btree_ptr *start,
88 union xfs_btree_ptr *new,
89 int *stat)
90 {
91 xfs_alloc_arg_t args; /* block allocation args */
92 int error; /* error return value */
93 xfs_agblock_t sbno = be32_to_cpu(start->s);
94
95 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
96
97 memset(&args, 0, sizeof(args));
98 args.tp = cur->bc_tp;
99 args.mp = cur->bc_mp;
100 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INOBT);
101 args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno);
102 args.minlen = 1;
103 args.maxlen = 1;
104 args.prod = 1;
105 args.type = XFS_ALLOCTYPE_NEAR_BNO;
106
107 error = xfs_alloc_vextent(&args);
108 if (error) {
109 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
110 return error;
111 }
112 if (args.fsbno == NULLFSBLOCK) {
113 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
114 *stat = 0;
115 return 0;
116 }
117 ASSERT(args.len == 1);
118 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
119
120 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
121 *stat = 1;
122 return 0;
123 }
124
125 STATIC int
126 xfs_inobt_free_block(
127 struct xfs_btree_cur *cur,
128 struct xfs_buf *bp)
129 {
130 struct xfs_owner_info oinfo;
131
132 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INOBT);
133 return xfs_free_extent(cur->bc_tp,
134 XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1,
135 &oinfo, XFS_AG_RESV_NONE);
136 }
137
138 STATIC int
139 xfs_inobt_get_maxrecs(
140 struct xfs_btree_cur *cur,
141 int level)
142 {
143 return cur->bc_mp->m_inobt_mxr[level != 0];
144 }
145
146 STATIC void
147 xfs_inobt_init_key_from_rec(
148 union xfs_btree_key *key,
149 union xfs_btree_rec *rec)
150 {
151 key->inobt.ir_startino = rec->inobt.ir_startino;
152 }
153
154 STATIC void
155 xfs_inobt_init_rec_from_cur(
156 struct xfs_btree_cur *cur,
157 union xfs_btree_rec *rec)
158 {
159 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
160 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
161 rec->inobt.ir_u.sp.ir_holemask =
162 cpu_to_be16(cur->bc_rec.i.ir_holemask);
163 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
164 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
165 } else {
166 /* ir_holemask/ir_count not supported on-disk */
167 rec->inobt.ir_u.f.ir_freecount =
168 cpu_to_be32(cur->bc_rec.i.ir_freecount);
169 }
170 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
171 }
172
173 /*
174 * initial value of ptr for lookup
175 */
176 STATIC void
177 xfs_inobt_init_ptr_from_cur(
178 struct xfs_btree_cur *cur,
179 union xfs_btree_ptr *ptr)
180 {
181 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
182
183 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
184
185 ptr->s = agi->agi_root;
186 }
187
188 STATIC void
189 xfs_finobt_init_ptr_from_cur(
190 struct xfs_btree_cur *cur,
191 union xfs_btree_ptr *ptr)
192 {
193 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
194
195 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
196 ptr->s = agi->agi_free_root;
197 }
198
199 STATIC __int64_t
200 xfs_inobt_key_diff(
201 struct xfs_btree_cur *cur,
202 union xfs_btree_key *key)
203 {
204 return (__int64_t)be32_to_cpu(key->inobt.ir_startino) -
205 cur->bc_rec.i.ir_startino;
206 }
207
208 static int
209 xfs_inobt_verify(
210 struct xfs_buf *bp)
211 {
212 struct xfs_mount *mp = bp->b_target->bt_mount;
213 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
214 unsigned int level;
215
216 /*
217 * During growfs operations, we can't verify the exact owner as the
218 * perag is not fully initialised and hence not attached to the buffer.
219 *
220 * Similarly, during log recovery we will have a perag structure
221 * attached, but the agi information will not yet have been initialised
222 * from the on disk AGI. We don't currently use any of this information,
223 * but beware of the landmine (i.e. need to check pag->pagi_init) if we
224 * ever do.
225 */
226 switch (block->bb_magic) {
227 case cpu_to_be32(XFS_IBT_CRC_MAGIC):
228 case cpu_to_be32(XFS_FIBT_CRC_MAGIC):
229 if (!xfs_btree_sblock_v5hdr_verify(bp))
230 return false;
231 /* fall through */
232 case cpu_to_be32(XFS_IBT_MAGIC):
233 case cpu_to_be32(XFS_FIBT_MAGIC):
234 break;
235 default:
236 return 0;
237 }
238
239 /* level verification */
240 level = be16_to_cpu(block->bb_level);
241 if (level >= mp->m_in_maxlevels)
242 return false;
243
244 return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]);
245 }
246
247 static void
248 xfs_inobt_read_verify(
249 struct xfs_buf *bp)
250 {
251 if (!xfs_btree_sblock_verify_crc(bp))
252 xfs_buf_ioerror(bp, -EFSBADCRC);
253 else if (!xfs_inobt_verify(bp))
254 xfs_buf_ioerror(bp, -EFSCORRUPTED);
255
256 if (bp->b_error) {
257 trace_xfs_btree_corrupt(bp, _RET_IP_);
258 xfs_verifier_error(bp);
259 }
260 }
261
262 static void
263 xfs_inobt_write_verify(
264 struct xfs_buf *bp)
265 {
266 if (!xfs_inobt_verify(bp)) {
267 trace_xfs_btree_corrupt(bp, _RET_IP_);
268 xfs_buf_ioerror(bp, -EFSCORRUPTED);
269 xfs_verifier_error(bp);
270 return;
271 }
272 xfs_btree_sblock_calc_crc(bp);
273
274 }
275
276 const struct xfs_buf_ops xfs_inobt_buf_ops = {
277 .name = "xfs_inobt",
278 .verify_read = xfs_inobt_read_verify,
279 .verify_write = xfs_inobt_write_verify,
280 };
281
282 #if defined(DEBUG) || defined(XFS_WARN)
283 STATIC int
284 xfs_inobt_keys_inorder(
285 struct xfs_btree_cur *cur,
286 union xfs_btree_key *k1,
287 union xfs_btree_key *k2)
288 {
289 return be32_to_cpu(k1->inobt.ir_startino) <
290 be32_to_cpu(k2->inobt.ir_startino);
291 }
292
293 STATIC int
294 xfs_inobt_recs_inorder(
295 struct xfs_btree_cur *cur,
296 union xfs_btree_rec *r1,
297 union xfs_btree_rec *r2)
298 {
299 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
300 be32_to_cpu(r2->inobt.ir_startino);
301 }
302 #endif /* DEBUG */
303
304 static const struct xfs_btree_ops xfs_inobt_ops = {
305 .rec_len = sizeof(xfs_inobt_rec_t),
306 .key_len = sizeof(xfs_inobt_key_t),
307
308 .dup_cursor = xfs_inobt_dup_cursor,
309 .set_root = xfs_inobt_set_root,
310 .alloc_block = xfs_inobt_alloc_block,
311 .free_block = xfs_inobt_free_block,
312 .get_minrecs = xfs_inobt_get_minrecs,
313 .get_maxrecs = xfs_inobt_get_maxrecs,
314 .init_key_from_rec = xfs_inobt_init_key_from_rec,
315 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
316 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
317 .key_diff = xfs_inobt_key_diff,
318 .buf_ops = &xfs_inobt_buf_ops,
319 #if defined(DEBUG) || defined(XFS_WARN)
320 .keys_inorder = xfs_inobt_keys_inorder,
321 .recs_inorder = xfs_inobt_recs_inorder,
322 #endif
323 };
324
325 static const struct xfs_btree_ops xfs_finobt_ops = {
326 .rec_len = sizeof(xfs_inobt_rec_t),
327 .key_len = sizeof(xfs_inobt_key_t),
328
329 .dup_cursor = xfs_inobt_dup_cursor,
330 .set_root = xfs_finobt_set_root,
331 .alloc_block = xfs_inobt_alloc_block,
332 .free_block = xfs_inobt_free_block,
333 .get_minrecs = xfs_inobt_get_minrecs,
334 .get_maxrecs = xfs_inobt_get_maxrecs,
335 .init_key_from_rec = xfs_inobt_init_key_from_rec,
336 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
337 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
338 .key_diff = xfs_inobt_key_diff,
339 .buf_ops = &xfs_inobt_buf_ops,
340 #if defined(DEBUG) || defined(XFS_WARN)
341 .keys_inorder = xfs_inobt_keys_inorder,
342 .recs_inorder = xfs_inobt_recs_inorder,
343 #endif
344 };
345
346 /*
347 * Allocate a new inode btree cursor.
348 */
349 struct xfs_btree_cur * /* new inode btree cursor */
350 xfs_inobt_init_cursor(
351 struct xfs_mount *mp, /* file system mount point */
352 struct xfs_trans *tp, /* transaction pointer */
353 struct xfs_buf *agbp, /* buffer for agi structure */
354 xfs_agnumber_t agno, /* allocation group number */
355 xfs_btnum_t btnum) /* ialloc or free ino btree */
356 {
357 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
358 struct xfs_btree_cur *cur;
359
360 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
361
362 cur->bc_tp = tp;
363 cur->bc_mp = mp;
364 cur->bc_btnum = btnum;
365 if (btnum == XFS_BTNUM_INO) {
366 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
367 cur->bc_ops = &xfs_inobt_ops;
368 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
369 } else {
370 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
371 cur->bc_ops = &xfs_finobt_ops;
372 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
373 }
374
375 cur->bc_blocklog = mp->m_sb.sb_blocklog;
376
377 if (xfs_sb_version_hascrc(&mp->m_sb))
378 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
379
380 cur->bc_private.a.agbp = agbp;
381 cur->bc_private.a.agno = agno;
382
383 return cur;
384 }
385
386 /*
387 * Calculate number of records in an inobt btree block.
388 */
389 int
390 xfs_inobt_maxrecs(
391 struct xfs_mount *mp,
392 int blocklen,
393 int leaf)
394 {
395 blocklen -= XFS_INOBT_BLOCK_LEN(mp);
396
397 if (leaf)
398 return blocklen / sizeof(xfs_inobt_rec_t);
399 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
400 }
401
402 /*
403 * Convert the inode record holemask to an inode allocation bitmap. The inode
404 * allocation bitmap is inode granularity and specifies whether an inode is
405 * physically allocated on disk (not whether the inode is considered allocated
406 * or free by the fs).
407 *
408 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
409 */
410 uint64_t
411 xfs_inobt_irec_to_allocmask(
412 struct xfs_inobt_rec_incore *rec)
413 {
414 uint64_t bitmap = 0;
415 uint64_t inodespbit;
416 int nextbit;
417 uint allocbitmap;
418
419 /*
420 * The holemask has 16-bits for a 64 inode record. Therefore each
421 * holemask bit represents multiple inodes. Create a mask of bits to set
422 * in the allocmask for each holemask bit.
423 */
424 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
425
426 /*
427 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
428 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
429 * anything beyond the 16 holemask bits since this casts to a larger
430 * type.
431 */
432 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
433
434 /*
435 * allocbitmap is the inverted holemask so every set bit represents
436 * allocated inodes. To expand from 16-bit holemask granularity to
437 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
438 * bitmap for every holemask bit.
439 */
440 nextbit = xfs_next_bit(&allocbitmap, 1, 0);
441 while (nextbit != -1) {
442 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
443
444 bitmap |= (inodespbit <<
445 (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
446
447 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
448 }
449
450 return bitmap;
451 }
452
453 #if defined(DEBUG) || defined(XFS_WARN)
454 /*
455 * Verify that an in-core inode record has a valid inode count.
456 */
457 int
458 xfs_inobt_rec_check_count(
459 struct xfs_mount *mp,
460 struct xfs_inobt_rec_incore *rec)
461 {
462 int inocount = 0;
463 int nextbit = 0;
464 uint64_t allocbmap;
465 int wordsz;
466
467 wordsz = sizeof(allocbmap) / sizeof(unsigned int);
468 allocbmap = xfs_inobt_irec_to_allocmask(rec);
469
470 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
471 while (nextbit != -1) {
472 inocount++;
473 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
474 nextbit + 1);
475 }
476
477 if (inocount != rec->ir_count)
478 return -EFSCORRUPTED;
479
480 return 0;
481 }
482 #endif /* DEBUG */