]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/linux-2.6/xfs_aops.c
Pull bugzilla-7880 into release branch
[mirror_ubuntu-artful-kernel.git] / fs / xfs / linux-2.6 / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_dir2.h"
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
38 #include "xfs_rw.h"
39 #include "xfs_iomap.h"
40 #include <linux/mpage.h>
41 #include <linux/pagevec.h>
42 #include <linux/writeback.h>
43
44 STATIC void
45 xfs_count_page_state(
46 struct page *page,
47 int *delalloc,
48 int *unmapped,
49 int *unwritten)
50 {
51 struct buffer_head *bh, *head;
52
53 *delalloc = *unmapped = *unwritten = 0;
54
55 bh = head = page_buffers(page);
56 do {
57 if (buffer_uptodate(bh) && !buffer_mapped(bh))
58 (*unmapped) = 1;
59 else if (buffer_unwritten(bh))
60 (*unwritten) = 1;
61 else if (buffer_delay(bh))
62 (*delalloc) = 1;
63 } while ((bh = bh->b_this_page) != head);
64 }
65
66 #if defined(XFS_RW_TRACE)
67 void
68 xfs_page_trace(
69 int tag,
70 struct inode *inode,
71 struct page *page,
72 unsigned long pgoff)
73 {
74 xfs_inode_t *ip;
75 bhv_vnode_t *vp = vn_from_inode(inode);
76 loff_t isize = i_size_read(inode);
77 loff_t offset = page_offset(page);
78 int delalloc = -1, unmapped = -1, unwritten = -1;
79
80 if (page_has_buffers(page))
81 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
82
83 ip = xfs_vtoi(vp);
84 if (!ip->i_rwtrace)
85 return;
86
87 ktrace_enter(ip->i_rwtrace,
88 (void *)((unsigned long)tag),
89 (void *)ip,
90 (void *)inode,
91 (void *)page,
92 (void *)pgoff,
93 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
94 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
95 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
96 (void *)((unsigned long)(isize & 0xffffffff)),
97 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
98 (void *)((unsigned long)(offset & 0xffffffff)),
99 (void *)((unsigned long)delalloc),
100 (void *)((unsigned long)unmapped),
101 (void *)((unsigned long)unwritten),
102 (void *)((unsigned long)current_pid()),
103 (void *)NULL);
104 }
105 #else
106 #define xfs_page_trace(tag, inode, page, pgoff)
107 #endif
108
109 /*
110 * Schedule IO completion handling on a xfsdatad if this was
111 * the final hold on this ioend. If we are asked to wait,
112 * flush the workqueue.
113 */
114 STATIC void
115 xfs_finish_ioend(
116 xfs_ioend_t *ioend,
117 int wait)
118 {
119 if (atomic_dec_and_test(&ioend->io_remaining)) {
120 queue_work(xfsdatad_workqueue, &ioend->io_work);
121 if (wait)
122 flush_workqueue(xfsdatad_workqueue);
123 }
124 }
125
126 /*
127 * We're now finished for good with this ioend structure.
128 * Update the page state via the associated buffer_heads,
129 * release holds on the inode and bio, and finally free
130 * up memory. Do not use the ioend after this.
131 */
132 STATIC void
133 xfs_destroy_ioend(
134 xfs_ioend_t *ioend)
135 {
136 struct buffer_head *bh, *next;
137
138 for (bh = ioend->io_buffer_head; bh; bh = next) {
139 next = bh->b_private;
140 bh->b_end_io(bh, !ioend->io_error);
141 }
142 if (unlikely(ioend->io_error))
143 vn_ioerror(ioend->io_vnode, ioend->io_error, __FILE__,__LINE__);
144 vn_iowake(ioend->io_vnode);
145 mempool_free(ioend, xfs_ioend_pool);
146 }
147
148 /*
149 * Update on-disk file size now that data has been written to disk.
150 * The current in-memory file size is i_size. If a write is beyond
151 * eof io_new_size will be the intended file size until i_size is
152 * updated. If this write does not extend all the way to the valid
153 * file size then restrict this update to the end of the write.
154 */
155 STATIC void
156 xfs_setfilesize(
157 xfs_ioend_t *ioend)
158 {
159 xfs_inode_t *ip;
160 xfs_fsize_t isize;
161 xfs_fsize_t bsize;
162
163 ip = xfs_vtoi(ioend->io_vnode);
164 if (!ip)
165 return;
166
167 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
168 ASSERT(ioend->io_type != IOMAP_READ);
169
170 if (unlikely(ioend->io_error))
171 return;
172
173 bsize = ioend->io_offset + ioend->io_size;
174
175 xfs_ilock(ip, XFS_ILOCK_EXCL);
176
177 isize = MAX(ip->i_size, ip->i_iocore.io_new_size);
178 isize = MIN(isize, bsize);
179
180 if (ip->i_d.di_size < isize) {
181 ip->i_d.di_size = isize;
182 ip->i_update_core = 1;
183 ip->i_update_size = 1;
184 }
185
186 xfs_iunlock(ip, XFS_ILOCK_EXCL);
187 }
188
189 /*
190 * Buffered IO write completion for delayed allocate extents.
191 */
192 STATIC void
193 xfs_end_bio_delalloc(
194 struct work_struct *work)
195 {
196 xfs_ioend_t *ioend =
197 container_of(work, xfs_ioend_t, io_work);
198
199 xfs_setfilesize(ioend);
200 xfs_destroy_ioend(ioend);
201 }
202
203 /*
204 * Buffered IO write completion for regular, written extents.
205 */
206 STATIC void
207 xfs_end_bio_written(
208 struct work_struct *work)
209 {
210 xfs_ioend_t *ioend =
211 container_of(work, xfs_ioend_t, io_work);
212
213 xfs_setfilesize(ioend);
214 xfs_destroy_ioend(ioend);
215 }
216
217 /*
218 * IO write completion for unwritten extents.
219 *
220 * Issue transactions to convert a buffer range from unwritten
221 * to written extents.
222 */
223 STATIC void
224 xfs_end_bio_unwritten(
225 struct work_struct *work)
226 {
227 xfs_ioend_t *ioend =
228 container_of(work, xfs_ioend_t, io_work);
229 bhv_vnode_t *vp = ioend->io_vnode;
230 xfs_off_t offset = ioend->io_offset;
231 size_t size = ioend->io_size;
232
233 if (likely(!ioend->io_error)) {
234 bhv_vop_bmap(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL);
235 xfs_setfilesize(ioend);
236 }
237 xfs_destroy_ioend(ioend);
238 }
239
240 /*
241 * IO read completion for regular, written extents.
242 */
243 STATIC void
244 xfs_end_bio_read(
245 struct work_struct *work)
246 {
247 xfs_ioend_t *ioend =
248 container_of(work, xfs_ioend_t, io_work);
249
250 xfs_destroy_ioend(ioend);
251 }
252
253 /*
254 * Allocate and initialise an IO completion structure.
255 * We need to track unwritten extent write completion here initially.
256 * We'll need to extend this for updating the ondisk inode size later
257 * (vs. incore size).
258 */
259 STATIC xfs_ioend_t *
260 xfs_alloc_ioend(
261 struct inode *inode,
262 unsigned int type)
263 {
264 xfs_ioend_t *ioend;
265
266 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
267
268 /*
269 * Set the count to 1 initially, which will prevent an I/O
270 * completion callback from happening before we have started
271 * all the I/O from calling the completion routine too early.
272 */
273 atomic_set(&ioend->io_remaining, 1);
274 ioend->io_error = 0;
275 ioend->io_list = NULL;
276 ioend->io_type = type;
277 ioend->io_vnode = vn_from_inode(inode);
278 ioend->io_buffer_head = NULL;
279 ioend->io_buffer_tail = NULL;
280 atomic_inc(&ioend->io_vnode->v_iocount);
281 ioend->io_offset = 0;
282 ioend->io_size = 0;
283
284 if (type == IOMAP_UNWRITTEN)
285 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
286 else if (type == IOMAP_DELAY)
287 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
288 else if (type == IOMAP_READ)
289 INIT_WORK(&ioend->io_work, xfs_end_bio_read);
290 else
291 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
292
293 return ioend;
294 }
295
296 STATIC int
297 xfs_map_blocks(
298 struct inode *inode,
299 loff_t offset,
300 ssize_t count,
301 xfs_iomap_t *mapp,
302 int flags)
303 {
304 bhv_vnode_t *vp = vn_from_inode(inode);
305 int error, nmaps = 1;
306
307 error = bhv_vop_bmap(vp, offset, count, flags, mapp, &nmaps);
308 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
309 VMODIFY(vp);
310 return -error;
311 }
312
313 STATIC_INLINE int
314 xfs_iomap_valid(
315 xfs_iomap_t *iomapp,
316 loff_t offset)
317 {
318 return offset >= iomapp->iomap_offset &&
319 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
320 }
321
322 /*
323 * BIO completion handler for buffered IO.
324 */
325 STATIC int
326 xfs_end_bio(
327 struct bio *bio,
328 unsigned int bytes_done,
329 int error)
330 {
331 xfs_ioend_t *ioend = bio->bi_private;
332
333 if (bio->bi_size)
334 return 1;
335
336 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
337 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
338
339 /* Toss bio and pass work off to an xfsdatad thread */
340 bio->bi_private = NULL;
341 bio->bi_end_io = NULL;
342 bio_put(bio);
343
344 xfs_finish_ioend(ioend, 0);
345 return 0;
346 }
347
348 STATIC void
349 xfs_submit_ioend_bio(
350 xfs_ioend_t *ioend,
351 struct bio *bio)
352 {
353 atomic_inc(&ioend->io_remaining);
354
355 bio->bi_private = ioend;
356 bio->bi_end_io = xfs_end_bio;
357
358 submit_bio(WRITE, bio);
359 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
360 bio_put(bio);
361 }
362
363 STATIC struct bio *
364 xfs_alloc_ioend_bio(
365 struct buffer_head *bh)
366 {
367 struct bio *bio;
368 int nvecs = bio_get_nr_vecs(bh->b_bdev);
369
370 do {
371 bio = bio_alloc(GFP_NOIO, nvecs);
372 nvecs >>= 1;
373 } while (!bio);
374
375 ASSERT(bio->bi_private == NULL);
376 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
377 bio->bi_bdev = bh->b_bdev;
378 bio_get(bio);
379 return bio;
380 }
381
382 STATIC void
383 xfs_start_buffer_writeback(
384 struct buffer_head *bh)
385 {
386 ASSERT(buffer_mapped(bh));
387 ASSERT(buffer_locked(bh));
388 ASSERT(!buffer_delay(bh));
389 ASSERT(!buffer_unwritten(bh));
390
391 mark_buffer_async_write(bh);
392 set_buffer_uptodate(bh);
393 clear_buffer_dirty(bh);
394 }
395
396 STATIC void
397 xfs_start_page_writeback(
398 struct page *page,
399 struct writeback_control *wbc,
400 int clear_dirty,
401 int buffers)
402 {
403 ASSERT(PageLocked(page));
404 ASSERT(!PageWriteback(page));
405 if (clear_dirty)
406 clear_page_dirty_for_io(page);
407 set_page_writeback(page);
408 unlock_page(page);
409 if (!buffers) {
410 end_page_writeback(page);
411 wbc->pages_skipped++; /* We didn't write this page */
412 }
413 }
414
415 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
416 {
417 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
418 }
419
420 /*
421 * Submit all of the bios for all of the ioends we have saved up, covering the
422 * initial writepage page and also any probed pages.
423 *
424 * Because we may have multiple ioends spanning a page, we need to start
425 * writeback on all the buffers before we submit them for I/O. If we mark the
426 * buffers as we got, then we can end up with a page that only has buffers
427 * marked async write and I/O complete on can occur before we mark the other
428 * buffers async write.
429 *
430 * The end result of this is that we trip a bug in end_page_writeback() because
431 * we call it twice for the one page as the code in end_buffer_async_write()
432 * assumes that all buffers on the page are started at the same time.
433 *
434 * The fix is two passes across the ioend list - one to start writeback on the
435 * buffer_heads, and then submit them for I/O on the second pass.
436 */
437 STATIC void
438 xfs_submit_ioend(
439 xfs_ioend_t *ioend)
440 {
441 xfs_ioend_t *head = ioend;
442 xfs_ioend_t *next;
443 struct buffer_head *bh;
444 struct bio *bio;
445 sector_t lastblock = 0;
446
447 /* Pass 1 - start writeback */
448 do {
449 next = ioend->io_list;
450 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
451 xfs_start_buffer_writeback(bh);
452 }
453 } while ((ioend = next) != NULL);
454
455 /* Pass 2 - submit I/O */
456 ioend = head;
457 do {
458 next = ioend->io_list;
459 bio = NULL;
460
461 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
462
463 if (!bio) {
464 retry:
465 bio = xfs_alloc_ioend_bio(bh);
466 } else if (bh->b_blocknr != lastblock + 1) {
467 xfs_submit_ioend_bio(ioend, bio);
468 goto retry;
469 }
470
471 if (bio_add_buffer(bio, bh) != bh->b_size) {
472 xfs_submit_ioend_bio(ioend, bio);
473 goto retry;
474 }
475
476 lastblock = bh->b_blocknr;
477 }
478 if (bio)
479 xfs_submit_ioend_bio(ioend, bio);
480 xfs_finish_ioend(ioend, 0);
481 } while ((ioend = next) != NULL);
482 }
483
484 /*
485 * Cancel submission of all buffer_heads so far in this endio.
486 * Toss the endio too. Only ever called for the initial page
487 * in a writepage request, so only ever one page.
488 */
489 STATIC void
490 xfs_cancel_ioend(
491 xfs_ioend_t *ioend)
492 {
493 xfs_ioend_t *next;
494 struct buffer_head *bh, *next_bh;
495
496 do {
497 next = ioend->io_list;
498 bh = ioend->io_buffer_head;
499 do {
500 next_bh = bh->b_private;
501 clear_buffer_async_write(bh);
502 unlock_buffer(bh);
503 } while ((bh = next_bh) != NULL);
504
505 vn_iowake(ioend->io_vnode);
506 mempool_free(ioend, xfs_ioend_pool);
507 } while ((ioend = next) != NULL);
508 }
509
510 /*
511 * Test to see if we've been building up a completion structure for
512 * earlier buffers -- if so, we try to append to this ioend if we
513 * can, otherwise we finish off any current ioend and start another.
514 * Return true if we've finished the given ioend.
515 */
516 STATIC void
517 xfs_add_to_ioend(
518 struct inode *inode,
519 struct buffer_head *bh,
520 xfs_off_t offset,
521 unsigned int type,
522 xfs_ioend_t **result,
523 int need_ioend)
524 {
525 xfs_ioend_t *ioend = *result;
526
527 if (!ioend || need_ioend || type != ioend->io_type) {
528 xfs_ioend_t *previous = *result;
529
530 ioend = xfs_alloc_ioend(inode, type);
531 ioend->io_offset = offset;
532 ioend->io_buffer_head = bh;
533 ioend->io_buffer_tail = bh;
534 if (previous)
535 previous->io_list = ioend;
536 *result = ioend;
537 } else {
538 ioend->io_buffer_tail->b_private = bh;
539 ioend->io_buffer_tail = bh;
540 }
541
542 bh->b_private = NULL;
543 ioend->io_size += bh->b_size;
544 }
545
546 STATIC void
547 xfs_map_buffer(
548 struct buffer_head *bh,
549 xfs_iomap_t *mp,
550 xfs_off_t offset,
551 uint block_bits)
552 {
553 sector_t bn;
554
555 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
556
557 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
558 ((offset - mp->iomap_offset) >> block_bits);
559
560 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
561
562 bh->b_blocknr = bn;
563 set_buffer_mapped(bh);
564 }
565
566 STATIC void
567 xfs_map_at_offset(
568 struct buffer_head *bh,
569 loff_t offset,
570 int block_bits,
571 xfs_iomap_t *iomapp)
572 {
573 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
574 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
575
576 lock_buffer(bh);
577 xfs_map_buffer(bh, iomapp, offset, block_bits);
578 bh->b_bdev = iomapp->iomap_target->bt_bdev;
579 set_buffer_mapped(bh);
580 clear_buffer_delay(bh);
581 clear_buffer_unwritten(bh);
582 }
583
584 /*
585 * Look for a page at index that is suitable for clustering.
586 */
587 STATIC unsigned int
588 xfs_probe_page(
589 struct page *page,
590 unsigned int pg_offset,
591 int mapped)
592 {
593 int ret = 0;
594
595 if (PageWriteback(page))
596 return 0;
597
598 if (page->mapping && PageDirty(page)) {
599 if (page_has_buffers(page)) {
600 struct buffer_head *bh, *head;
601
602 bh = head = page_buffers(page);
603 do {
604 if (!buffer_uptodate(bh))
605 break;
606 if (mapped != buffer_mapped(bh))
607 break;
608 ret += bh->b_size;
609 if (ret >= pg_offset)
610 break;
611 } while ((bh = bh->b_this_page) != head);
612 } else
613 ret = mapped ? 0 : PAGE_CACHE_SIZE;
614 }
615
616 return ret;
617 }
618
619 STATIC size_t
620 xfs_probe_cluster(
621 struct inode *inode,
622 struct page *startpage,
623 struct buffer_head *bh,
624 struct buffer_head *head,
625 int mapped)
626 {
627 struct pagevec pvec;
628 pgoff_t tindex, tlast, tloff;
629 size_t total = 0;
630 int done = 0, i;
631
632 /* First sum forwards in this page */
633 do {
634 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
635 return total;
636 total += bh->b_size;
637 } while ((bh = bh->b_this_page) != head);
638
639 /* if we reached the end of the page, sum forwards in following pages */
640 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
641 tindex = startpage->index + 1;
642
643 /* Prune this back to avoid pathological behavior */
644 tloff = min(tlast, startpage->index + 64);
645
646 pagevec_init(&pvec, 0);
647 while (!done && tindex <= tloff) {
648 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
649
650 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
651 break;
652
653 for (i = 0; i < pagevec_count(&pvec); i++) {
654 struct page *page = pvec.pages[i];
655 size_t pg_offset, len = 0;
656
657 if (tindex == tlast) {
658 pg_offset =
659 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
660 if (!pg_offset) {
661 done = 1;
662 break;
663 }
664 } else
665 pg_offset = PAGE_CACHE_SIZE;
666
667 if (page->index == tindex && !TestSetPageLocked(page)) {
668 len = xfs_probe_page(page, pg_offset, mapped);
669 unlock_page(page);
670 }
671
672 if (!len) {
673 done = 1;
674 break;
675 }
676
677 total += len;
678 tindex++;
679 }
680
681 pagevec_release(&pvec);
682 cond_resched();
683 }
684
685 return total;
686 }
687
688 /*
689 * Test if a given page is suitable for writing as part of an unwritten
690 * or delayed allocate extent.
691 */
692 STATIC int
693 xfs_is_delayed_page(
694 struct page *page,
695 unsigned int type)
696 {
697 if (PageWriteback(page))
698 return 0;
699
700 if (page->mapping && page_has_buffers(page)) {
701 struct buffer_head *bh, *head;
702 int acceptable = 0;
703
704 bh = head = page_buffers(page);
705 do {
706 if (buffer_unwritten(bh))
707 acceptable = (type == IOMAP_UNWRITTEN);
708 else if (buffer_delay(bh))
709 acceptable = (type == IOMAP_DELAY);
710 else if (buffer_dirty(bh) && buffer_mapped(bh))
711 acceptable = (type == IOMAP_NEW);
712 else
713 break;
714 } while ((bh = bh->b_this_page) != head);
715
716 if (acceptable)
717 return 1;
718 }
719
720 return 0;
721 }
722
723 /*
724 * Allocate & map buffers for page given the extent map. Write it out.
725 * except for the original page of a writepage, this is called on
726 * delalloc/unwritten pages only, for the original page it is possible
727 * that the page has no mapping at all.
728 */
729 STATIC int
730 xfs_convert_page(
731 struct inode *inode,
732 struct page *page,
733 loff_t tindex,
734 xfs_iomap_t *mp,
735 xfs_ioend_t **ioendp,
736 struct writeback_control *wbc,
737 int startio,
738 int all_bh)
739 {
740 struct buffer_head *bh, *head;
741 xfs_off_t end_offset;
742 unsigned long p_offset;
743 unsigned int type;
744 int bbits = inode->i_blkbits;
745 int len, page_dirty;
746 int count = 0, done = 0, uptodate = 1;
747 xfs_off_t offset = page_offset(page);
748
749 if (page->index != tindex)
750 goto fail;
751 if (TestSetPageLocked(page))
752 goto fail;
753 if (PageWriteback(page))
754 goto fail_unlock_page;
755 if (page->mapping != inode->i_mapping)
756 goto fail_unlock_page;
757 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
758 goto fail_unlock_page;
759
760 /*
761 * page_dirty is initially a count of buffers on the page before
762 * EOF and is decremented as we move each into a cleanable state.
763 *
764 * Derivation:
765 *
766 * End offset is the highest offset that this page should represent.
767 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
768 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
769 * hence give us the correct page_dirty count. On any other page,
770 * it will be zero and in that case we need page_dirty to be the
771 * count of buffers on the page.
772 */
773 end_offset = min_t(unsigned long long,
774 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
775 i_size_read(inode));
776
777 len = 1 << inode->i_blkbits;
778 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
779 PAGE_CACHE_SIZE);
780 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
781 page_dirty = p_offset / len;
782
783 bh = head = page_buffers(page);
784 do {
785 if (offset >= end_offset)
786 break;
787 if (!buffer_uptodate(bh))
788 uptodate = 0;
789 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
790 done = 1;
791 continue;
792 }
793
794 if (buffer_unwritten(bh) || buffer_delay(bh)) {
795 if (buffer_unwritten(bh))
796 type = IOMAP_UNWRITTEN;
797 else
798 type = IOMAP_DELAY;
799
800 if (!xfs_iomap_valid(mp, offset)) {
801 done = 1;
802 continue;
803 }
804
805 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
806 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
807
808 xfs_map_at_offset(bh, offset, bbits, mp);
809 if (startio) {
810 xfs_add_to_ioend(inode, bh, offset,
811 type, ioendp, done);
812 } else {
813 set_buffer_dirty(bh);
814 unlock_buffer(bh);
815 mark_buffer_dirty(bh);
816 }
817 page_dirty--;
818 count++;
819 } else {
820 type = IOMAP_NEW;
821 if (buffer_mapped(bh) && all_bh && startio) {
822 lock_buffer(bh);
823 xfs_add_to_ioend(inode, bh, offset,
824 type, ioendp, done);
825 count++;
826 page_dirty--;
827 } else {
828 done = 1;
829 }
830 }
831 } while (offset += len, (bh = bh->b_this_page) != head);
832
833 if (uptodate && bh == head)
834 SetPageUptodate(page);
835
836 if (startio) {
837 if (count) {
838 struct backing_dev_info *bdi;
839
840 bdi = inode->i_mapping->backing_dev_info;
841 wbc->nr_to_write--;
842 if (bdi_write_congested(bdi)) {
843 wbc->encountered_congestion = 1;
844 done = 1;
845 } else if (wbc->nr_to_write <= 0) {
846 done = 1;
847 }
848 }
849 xfs_start_page_writeback(page, wbc, !page_dirty, count);
850 }
851
852 return done;
853 fail_unlock_page:
854 unlock_page(page);
855 fail:
856 return 1;
857 }
858
859 /*
860 * Convert & write out a cluster of pages in the same extent as defined
861 * by mp and following the start page.
862 */
863 STATIC void
864 xfs_cluster_write(
865 struct inode *inode,
866 pgoff_t tindex,
867 xfs_iomap_t *iomapp,
868 xfs_ioend_t **ioendp,
869 struct writeback_control *wbc,
870 int startio,
871 int all_bh,
872 pgoff_t tlast)
873 {
874 struct pagevec pvec;
875 int done = 0, i;
876
877 pagevec_init(&pvec, 0);
878 while (!done && tindex <= tlast) {
879 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
880
881 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
882 break;
883
884 for (i = 0; i < pagevec_count(&pvec); i++) {
885 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
886 iomapp, ioendp, wbc, startio, all_bh);
887 if (done)
888 break;
889 }
890
891 pagevec_release(&pvec);
892 cond_resched();
893 }
894 }
895
896 /*
897 * Calling this without startio set means we are being asked to make a dirty
898 * page ready for freeing it's buffers. When called with startio set then
899 * we are coming from writepage.
900 *
901 * When called with startio set it is important that we write the WHOLE
902 * page if possible.
903 * The bh->b_state's cannot know if any of the blocks or which block for
904 * that matter are dirty due to mmap writes, and therefore bh uptodate is
905 * only valid if the page itself isn't completely uptodate. Some layers
906 * may clear the page dirty flag prior to calling write page, under the
907 * assumption the entire page will be written out; by not writing out the
908 * whole page the page can be reused before all valid dirty data is
909 * written out. Note: in the case of a page that has been dirty'd by
910 * mapwrite and but partially setup by block_prepare_write the
911 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
912 * valid state, thus the whole page must be written out thing.
913 */
914
915 STATIC int
916 xfs_page_state_convert(
917 struct inode *inode,
918 struct page *page,
919 struct writeback_control *wbc,
920 int startio,
921 int unmapped) /* also implies page uptodate */
922 {
923 struct buffer_head *bh, *head;
924 xfs_iomap_t iomap;
925 xfs_ioend_t *ioend = NULL, *iohead = NULL;
926 loff_t offset;
927 unsigned long p_offset = 0;
928 unsigned int type;
929 __uint64_t end_offset;
930 pgoff_t end_index, last_index, tlast;
931 ssize_t size, len;
932 int flags, err, iomap_valid = 0, uptodate = 1;
933 int page_dirty, count = 0;
934 int trylock = 0;
935 int all_bh = unmapped;
936
937 if (startio) {
938 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
939 trylock |= BMAPI_TRYLOCK;
940 }
941
942 /* Is this page beyond the end of the file? */
943 offset = i_size_read(inode);
944 end_index = offset >> PAGE_CACHE_SHIFT;
945 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
946 if (page->index >= end_index) {
947 if ((page->index >= end_index + 1) ||
948 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
949 if (startio)
950 unlock_page(page);
951 return 0;
952 }
953 }
954
955 /*
956 * page_dirty is initially a count of buffers on the page before
957 * EOF and is decremented as we move each into a cleanable state.
958 *
959 * Derivation:
960 *
961 * End offset is the highest offset that this page should represent.
962 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
963 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
964 * hence give us the correct page_dirty count. On any other page,
965 * it will be zero and in that case we need page_dirty to be the
966 * count of buffers on the page.
967 */
968 end_offset = min_t(unsigned long long,
969 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
970 len = 1 << inode->i_blkbits;
971 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
972 PAGE_CACHE_SIZE);
973 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
974 page_dirty = p_offset / len;
975
976 bh = head = page_buffers(page);
977 offset = page_offset(page);
978 flags = BMAPI_READ;
979 type = IOMAP_NEW;
980
981 /* TODO: cleanup count and page_dirty */
982
983 do {
984 if (offset >= end_offset)
985 break;
986 if (!buffer_uptodate(bh))
987 uptodate = 0;
988 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
989 /*
990 * the iomap is actually still valid, but the ioend
991 * isn't. shouldn't happen too often.
992 */
993 iomap_valid = 0;
994 continue;
995 }
996
997 if (iomap_valid)
998 iomap_valid = xfs_iomap_valid(&iomap, offset);
999
1000 /*
1001 * First case, map an unwritten extent and prepare for
1002 * extent state conversion transaction on completion.
1003 *
1004 * Second case, allocate space for a delalloc buffer.
1005 * We can return EAGAIN here in the release page case.
1006 *
1007 * Third case, an unmapped buffer was found, and we are
1008 * in a path where we need to write the whole page out.
1009 */
1010 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1011 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1012 !buffer_mapped(bh) && (unmapped || startio))) {
1013 int new_ioend = 0;
1014
1015 /*
1016 * Make sure we don't use a read-only iomap
1017 */
1018 if (flags == BMAPI_READ)
1019 iomap_valid = 0;
1020
1021 if (buffer_unwritten(bh)) {
1022 type = IOMAP_UNWRITTEN;
1023 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
1024 } else if (buffer_delay(bh)) {
1025 type = IOMAP_DELAY;
1026 flags = BMAPI_ALLOCATE | trylock;
1027 } else {
1028 type = IOMAP_NEW;
1029 flags = BMAPI_WRITE | BMAPI_MMAP;
1030 }
1031
1032 if (!iomap_valid) {
1033 /*
1034 * if we didn't have a valid mapping then we
1035 * need to ensure that we put the new mapping
1036 * in a new ioend structure. This needs to be
1037 * done to ensure that the ioends correctly
1038 * reflect the block mappings at io completion
1039 * for unwritten extent conversion.
1040 */
1041 new_ioend = 1;
1042 if (type == IOMAP_NEW) {
1043 size = xfs_probe_cluster(inode,
1044 page, bh, head, 0);
1045 } else {
1046 size = len;
1047 }
1048
1049 err = xfs_map_blocks(inode, offset, size,
1050 &iomap, flags);
1051 if (err)
1052 goto error;
1053 iomap_valid = xfs_iomap_valid(&iomap, offset);
1054 }
1055 if (iomap_valid) {
1056 xfs_map_at_offset(bh, offset,
1057 inode->i_blkbits, &iomap);
1058 if (startio) {
1059 xfs_add_to_ioend(inode, bh, offset,
1060 type, &ioend,
1061 new_ioend);
1062 } else {
1063 set_buffer_dirty(bh);
1064 unlock_buffer(bh);
1065 mark_buffer_dirty(bh);
1066 }
1067 page_dirty--;
1068 count++;
1069 }
1070 } else if (buffer_uptodate(bh) && startio) {
1071 /*
1072 * we got here because the buffer is already mapped.
1073 * That means it must already have extents allocated
1074 * underneath it. Map the extent by reading it.
1075 */
1076 if (!iomap_valid || flags != BMAPI_READ) {
1077 flags = BMAPI_READ;
1078 size = xfs_probe_cluster(inode, page, bh,
1079 head, 1);
1080 err = xfs_map_blocks(inode, offset, size,
1081 &iomap, flags);
1082 if (err)
1083 goto error;
1084 iomap_valid = xfs_iomap_valid(&iomap, offset);
1085 }
1086
1087 /*
1088 * We set the type to IOMAP_NEW in case we are doing a
1089 * small write at EOF that is extending the file but
1090 * without needing an allocation. We need to update the
1091 * file size on I/O completion in this case so it is
1092 * the same case as having just allocated a new extent
1093 * that we are writing into for the first time.
1094 */
1095 type = IOMAP_NEW;
1096 if (!test_and_set_bit(BH_Lock, &bh->b_state)) {
1097 ASSERT(buffer_mapped(bh));
1098 if (iomap_valid)
1099 all_bh = 1;
1100 xfs_add_to_ioend(inode, bh, offset, type,
1101 &ioend, !iomap_valid);
1102 page_dirty--;
1103 count++;
1104 } else {
1105 iomap_valid = 0;
1106 }
1107 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1108 (unmapped || startio)) {
1109 iomap_valid = 0;
1110 }
1111
1112 if (!iohead)
1113 iohead = ioend;
1114
1115 } while (offset += len, ((bh = bh->b_this_page) != head));
1116
1117 if (uptodate && bh == head)
1118 SetPageUptodate(page);
1119
1120 if (startio)
1121 xfs_start_page_writeback(page, wbc, 1, count);
1122
1123 if (ioend && iomap_valid) {
1124 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1125 PAGE_CACHE_SHIFT;
1126 tlast = min_t(pgoff_t, offset, last_index);
1127 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
1128 wbc, startio, all_bh, tlast);
1129 }
1130
1131 if (iohead)
1132 xfs_submit_ioend(iohead);
1133
1134 return page_dirty;
1135
1136 error:
1137 if (iohead)
1138 xfs_cancel_ioend(iohead);
1139
1140 /*
1141 * If it's delalloc and we have nowhere to put it,
1142 * throw it away, unless the lower layers told
1143 * us to try again.
1144 */
1145 if (err != -EAGAIN) {
1146 if (!unmapped)
1147 block_invalidatepage(page, 0);
1148 ClearPageUptodate(page);
1149 }
1150 return err;
1151 }
1152
1153 /*
1154 * writepage: Called from one of two places:
1155 *
1156 * 1. we are flushing a delalloc buffer head.
1157 *
1158 * 2. we are writing out a dirty page. Typically the page dirty
1159 * state is cleared before we get here. In this case is it
1160 * conceivable we have no buffer heads.
1161 *
1162 * For delalloc space on the page we need to allocate space and
1163 * flush it. For unmapped buffer heads on the page we should
1164 * allocate space if the page is uptodate. For any other dirty
1165 * buffer heads on the page we should flush them.
1166 *
1167 * If we detect that a transaction would be required to flush
1168 * the page, we have to check the process flags first, if we
1169 * are already in a transaction or disk I/O during allocations
1170 * is off, we need to fail the writepage and redirty the page.
1171 */
1172
1173 STATIC int
1174 xfs_vm_writepage(
1175 struct page *page,
1176 struct writeback_control *wbc)
1177 {
1178 int error;
1179 int need_trans;
1180 int delalloc, unmapped, unwritten;
1181 struct inode *inode = page->mapping->host;
1182
1183 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1184
1185 /*
1186 * We need a transaction if:
1187 * 1. There are delalloc buffers on the page
1188 * 2. The page is uptodate and we have unmapped buffers
1189 * 3. The page is uptodate and we have no buffers
1190 * 4. There are unwritten buffers on the page
1191 */
1192
1193 if (!page_has_buffers(page)) {
1194 unmapped = 1;
1195 need_trans = 1;
1196 } else {
1197 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1198 if (!PageUptodate(page))
1199 unmapped = 0;
1200 need_trans = delalloc + unmapped + unwritten;
1201 }
1202
1203 /*
1204 * If we need a transaction and the process flags say
1205 * we are already in a transaction, or no IO is allowed
1206 * then mark the page dirty again and leave the page
1207 * as is.
1208 */
1209 if (current_test_flags(PF_FSTRANS) && need_trans)
1210 goto out_fail;
1211
1212 /*
1213 * Delay hooking up buffer heads until we have
1214 * made our go/no-go decision.
1215 */
1216 if (!page_has_buffers(page))
1217 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1218
1219 /*
1220 * Convert delayed allocate, unwritten or unmapped space
1221 * to real space and flush out to disk.
1222 */
1223 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1224 if (error == -EAGAIN)
1225 goto out_fail;
1226 if (unlikely(error < 0))
1227 goto out_unlock;
1228
1229 return 0;
1230
1231 out_fail:
1232 redirty_page_for_writepage(wbc, page);
1233 unlock_page(page);
1234 return 0;
1235 out_unlock:
1236 unlock_page(page);
1237 return error;
1238 }
1239
1240 STATIC int
1241 xfs_vm_writepages(
1242 struct address_space *mapping,
1243 struct writeback_control *wbc)
1244 {
1245 struct bhv_vnode *vp = vn_from_inode(mapping->host);
1246
1247 if (VN_TRUNC(vp))
1248 VUNTRUNCATE(vp);
1249 return generic_writepages(mapping, wbc);
1250 }
1251
1252 /*
1253 * Called to move a page into cleanable state - and from there
1254 * to be released. Possibly the page is already clean. We always
1255 * have buffer heads in this call.
1256 *
1257 * Returns 0 if the page is ok to release, 1 otherwise.
1258 *
1259 * Possible scenarios are:
1260 *
1261 * 1. We are being called to release a page which has been written
1262 * to via regular I/O. buffer heads will be dirty and possibly
1263 * delalloc. If no delalloc buffer heads in this case then we
1264 * can just return zero.
1265 *
1266 * 2. We are called to release a page which has been written via
1267 * mmap, all we need to do is ensure there is no delalloc
1268 * state in the buffer heads, if not we can let the caller
1269 * free them and we should come back later via writepage.
1270 */
1271 STATIC int
1272 xfs_vm_releasepage(
1273 struct page *page,
1274 gfp_t gfp_mask)
1275 {
1276 struct inode *inode = page->mapping->host;
1277 int dirty, delalloc, unmapped, unwritten;
1278 struct writeback_control wbc = {
1279 .sync_mode = WB_SYNC_ALL,
1280 .nr_to_write = 1,
1281 };
1282
1283 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
1284
1285 if (!page_has_buffers(page))
1286 return 0;
1287
1288 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1289 if (!delalloc && !unwritten)
1290 goto free_buffers;
1291
1292 if (!(gfp_mask & __GFP_FS))
1293 return 0;
1294
1295 /* If we are already inside a transaction or the thread cannot
1296 * do I/O, we cannot release this page.
1297 */
1298 if (current_test_flags(PF_FSTRANS))
1299 return 0;
1300
1301 /*
1302 * Convert delalloc space to real space, do not flush the
1303 * data out to disk, that will be done by the caller.
1304 * Never need to allocate space here - we will always
1305 * come back to writepage in that case.
1306 */
1307 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1308 if (dirty == 0 && !unwritten)
1309 goto free_buffers;
1310 return 0;
1311
1312 free_buffers:
1313 return try_to_free_buffers(page);
1314 }
1315
1316 STATIC int
1317 __xfs_get_blocks(
1318 struct inode *inode,
1319 sector_t iblock,
1320 struct buffer_head *bh_result,
1321 int create,
1322 int direct,
1323 bmapi_flags_t flags)
1324 {
1325 bhv_vnode_t *vp = vn_from_inode(inode);
1326 xfs_iomap_t iomap;
1327 xfs_off_t offset;
1328 ssize_t size;
1329 int niomap = 1;
1330 int error;
1331
1332 offset = (xfs_off_t)iblock << inode->i_blkbits;
1333 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1334 size = bh_result->b_size;
1335 error = bhv_vop_bmap(vp, offset, size,
1336 create ? flags : BMAPI_READ, &iomap, &niomap);
1337 if (error)
1338 return -error;
1339 if (niomap == 0)
1340 return 0;
1341
1342 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
1343 /*
1344 * For unwritten extents do not report a disk address on
1345 * the read case (treat as if we're reading into a hole).
1346 */
1347 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1348 xfs_map_buffer(bh_result, &iomap, offset,
1349 inode->i_blkbits);
1350 }
1351 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1352 if (direct)
1353 bh_result->b_private = inode;
1354 set_buffer_unwritten(bh_result);
1355 }
1356 }
1357
1358 /*
1359 * If this is a realtime file, data may be on a different device.
1360 * to that pointed to from the buffer_head b_bdev currently.
1361 */
1362 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1363
1364 /*
1365 * If we previously allocated a block out beyond eof and we are now
1366 * coming back to use it then we will need to flag it as new even if it
1367 * has a disk address.
1368 *
1369 * With sub-block writes into unwritten extents we also need to mark
1370 * the buffer as new so that the unwritten parts of the buffer gets
1371 * correctly zeroed.
1372 */
1373 if (create &&
1374 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1375 (offset >= i_size_read(inode)) ||
1376 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1377 set_buffer_new(bh_result);
1378
1379 if (iomap.iomap_flags & IOMAP_DELAY) {
1380 BUG_ON(direct);
1381 if (create) {
1382 set_buffer_uptodate(bh_result);
1383 set_buffer_mapped(bh_result);
1384 set_buffer_delay(bh_result);
1385 }
1386 }
1387
1388 if (direct || size > (1 << inode->i_blkbits)) {
1389 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1390 offset = min_t(xfs_off_t,
1391 iomap.iomap_bsize - iomap.iomap_delta, size);
1392 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1393 }
1394
1395 return 0;
1396 }
1397
1398 int
1399 xfs_get_blocks(
1400 struct inode *inode,
1401 sector_t iblock,
1402 struct buffer_head *bh_result,
1403 int create)
1404 {
1405 return __xfs_get_blocks(inode, iblock,
1406 bh_result, create, 0, BMAPI_WRITE);
1407 }
1408
1409 STATIC int
1410 xfs_get_blocks_direct(
1411 struct inode *inode,
1412 sector_t iblock,
1413 struct buffer_head *bh_result,
1414 int create)
1415 {
1416 return __xfs_get_blocks(inode, iblock,
1417 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1418 }
1419
1420 STATIC void
1421 xfs_end_io_direct(
1422 struct kiocb *iocb,
1423 loff_t offset,
1424 ssize_t size,
1425 void *private)
1426 {
1427 xfs_ioend_t *ioend = iocb->private;
1428
1429 /*
1430 * Non-NULL private data means we need to issue a transaction to
1431 * convert a range from unwritten to written extents. This needs
1432 * to happen from process context but aio+dio I/O completion
1433 * happens from irq context so we need to defer it to a workqueue.
1434 * This is not necessary for synchronous direct I/O, but we do
1435 * it anyway to keep the code uniform and simpler.
1436 *
1437 * Well, if only it were that simple. Because synchronous direct I/O
1438 * requires extent conversion to occur *before* we return to userspace,
1439 * we have to wait for extent conversion to complete. Look at the
1440 * iocb that has been passed to us to determine if this is AIO or
1441 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1442 * workqueue and wait for it to complete.
1443 *
1444 * The core direct I/O code might be changed to always call the
1445 * completion handler in the future, in which case all this can
1446 * go away.
1447 */
1448 ioend->io_offset = offset;
1449 ioend->io_size = size;
1450 if (ioend->io_type == IOMAP_READ) {
1451 xfs_finish_ioend(ioend, 0);
1452 } else if (private && size > 0) {
1453 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
1454 } else {
1455 /*
1456 * A direct I/O write ioend starts it's life in unwritten
1457 * state in case they map an unwritten extent. This write
1458 * didn't map an unwritten extent so switch it's completion
1459 * handler.
1460 */
1461 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
1462 xfs_finish_ioend(ioend, 0);
1463 }
1464
1465 /*
1466 * blockdev_direct_IO can return an error even after the I/O
1467 * completion handler was called. Thus we need to protect
1468 * against double-freeing.
1469 */
1470 iocb->private = NULL;
1471 }
1472
1473 STATIC ssize_t
1474 xfs_vm_direct_IO(
1475 int rw,
1476 struct kiocb *iocb,
1477 const struct iovec *iov,
1478 loff_t offset,
1479 unsigned long nr_segs)
1480 {
1481 struct file *file = iocb->ki_filp;
1482 struct inode *inode = file->f_mapping->host;
1483 bhv_vnode_t *vp = vn_from_inode(inode);
1484 xfs_iomap_t iomap;
1485 int maps = 1;
1486 int error;
1487 ssize_t ret;
1488
1489 error = bhv_vop_bmap(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps);
1490 if (error)
1491 return -error;
1492
1493 if (rw == WRITE) {
1494 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
1495 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1496 iomap.iomap_target->bt_bdev,
1497 iov, offset, nr_segs,
1498 xfs_get_blocks_direct,
1499 xfs_end_io_direct);
1500 } else {
1501 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
1502 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
1503 iomap.iomap_target->bt_bdev,
1504 iov, offset, nr_segs,
1505 xfs_get_blocks_direct,
1506 xfs_end_io_direct);
1507 }
1508
1509 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
1510 xfs_destroy_ioend(iocb->private);
1511 return ret;
1512 }
1513
1514 STATIC int
1515 xfs_vm_prepare_write(
1516 struct file *file,
1517 struct page *page,
1518 unsigned int from,
1519 unsigned int to)
1520 {
1521 return block_prepare_write(page, from, to, xfs_get_blocks);
1522 }
1523
1524 STATIC sector_t
1525 xfs_vm_bmap(
1526 struct address_space *mapping,
1527 sector_t block)
1528 {
1529 struct inode *inode = (struct inode *)mapping->host;
1530 bhv_vnode_t *vp = vn_from_inode(inode);
1531
1532 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
1533 bhv_vop_rwlock(vp, VRWLOCK_READ);
1534 bhv_vop_flush_pages(vp, (xfs_off_t)0, -1, 0, FI_REMAPF);
1535 bhv_vop_rwunlock(vp, VRWLOCK_READ);
1536 return generic_block_bmap(mapping, block, xfs_get_blocks);
1537 }
1538
1539 STATIC int
1540 xfs_vm_readpage(
1541 struct file *unused,
1542 struct page *page)
1543 {
1544 return mpage_readpage(page, xfs_get_blocks);
1545 }
1546
1547 STATIC int
1548 xfs_vm_readpages(
1549 struct file *unused,
1550 struct address_space *mapping,
1551 struct list_head *pages,
1552 unsigned nr_pages)
1553 {
1554 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1555 }
1556
1557 STATIC void
1558 xfs_vm_invalidatepage(
1559 struct page *page,
1560 unsigned long offset)
1561 {
1562 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1563 page->mapping->host, page, offset);
1564 block_invalidatepage(page, offset);
1565 }
1566
1567 const struct address_space_operations xfs_address_space_operations = {
1568 .readpage = xfs_vm_readpage,
1569 .readpages = xfs_vm_readpages,
1570 .writepage = xfs_vm_writepage,
1571 .writepages = xfs_vm_writepages,
1572 .sync_page = block_sync_page,
1573 .releasepage = xfs_vm_releasepage,
1574 .invalidatepage = xfs_vm_invalidatepage,
1575 .prepare_write = xfs_vm_prepare_write,
1576 .commit_write = generic_commit_write,
1577 .bmap = xfs_vm_bmap,
1578 .direct_IO = xfs_vm_direct_IO,
1579 .migratepage = buffer_migrate_page,
1580 };