]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/linux-2.6/xfs_aops.c
Merge Linux 2.6.23
[mirror_ubuntu-artful-kernel.git] / fs / xfs / linux-2.6 / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_dir2.h"
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
38 #include "xfs_rw.h"
39 #include "xfs_iomap.h"
40 #include <linux/mpage.h>
41 #include <linux/pagevec.h>
42 #include <linux/writeback.h>
43
44 STATIC void
45 xfs_count_page_state(
46 struct page *page,
47 int *delalloc,
48 int *unmapped,
49 int *unwritten)
50 {
51 struct buffer_head *bh, *head;
52
53 *delalloc = *unmapped = *unwritten = 0;
54
55 bh = head = page_buffers(page);
56 do {
57 if (buffer_uptodate(bh) && !buffer_mapped(bh))
58 (*unmapped) = 1;
59 else if (buffer_unwritten(bh))
60 (*unwritten) = 1;
61 else if (buffer_delay(bh))
62 (*delalloc) = 1;
63 } while ((bh = bh->b_this_page) != head);
64 }
65
66 #if defined(XFS_RW_TRACE)
67 void
68 xfs_page_trace(
69 int tag,
70 struct inode *inode,
71 struct page *page,
72 unsigned long pgoff)
73 {
74 xfs_inode_t *ip;
75 bhv_vnode_t *vp = vn_from_inode(inode);
76 loff_t isize = i_size_read(inode);
77 loff_t offset = page_offset(page);
78 int delalloc = -1, unmapped = -1, unwritten = -1;
79
80 if (page_has_buffers(page))
81 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
82
83 ip = xfs_vtoi(vp);
84 if (!ip->i_rwtrace)
85 return;
86
87 ktrace_enter(ip->i_rwtrace,
88 (void *)((unsigned long)tag),
89 (void *)ip,
90 (void *)inode,
91 (void *)page,
92 (void *)pgoff,
93 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
94 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
95 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
96 (void *)((unsigned long)(isize & 0xffffffff)),
97 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
98 (void *)((unsigned long)(offset & 0xffffffff)),
99 (void *)((unsigned long)delalloc),
100 (void *)((unsigned long)unmapped),
101 (void *)((unsigned long)unwritten),
102 (void *)((unsigned long)current_pid()),
103 (void *)NULL);
104 }
105 #else
106 #define xfs_page_trace(tag, inode, page, pgoff)
107 #endif
108
109 /*
110 * Schedule IO completion handling on a xfsdatad if this was
111 * the final hold on this ioend. If we are asked to wait,
112 * flush the workqueue.
113 */
114 STATIC void
115 xfs_finish_ioend(
116 xfs_ioend_t *ioend,
117 int wait)
118 {
119 if (atomic_dec_and_test(&ioend->io_remaining)) {
120 queue_work(xfsdatad_workqueue, &ioend->io_work);
121 if (wait)
122 flush_workqueue(xfsdatad_workqueue);
123 }
124 }
125
126 /*
127 * We're now finished for good with this ioend structure.
128 * Update the page state via the associated buffer_heads,
129 * release holds on the inode and bio, and finally free
130 * up memory. Do not use the ioend after this.
131 */
132 STATIC void
133 xfs_destroy_ioend(
134 xfs_ioend_t *ioend)
135 {
136 struct buffer_head *bh, *next;
137
138 for (bh = ioend->io_buffer_head; bh; bh = next) {
139 next = bh->b_private;
140 bh->b_end_io(bh, !ioend->io_error);
141 }
142 if (unlikely(ioend->io_error))
143 vn_ioerror(ioend->io_vnode, ioend->io_error, __FILE__,__LINE__);
144 vn_iowake(ioend->io_vnode);
145 mempool_free(ioend, xfs_ioend_pool);
146 }
147
148 /*
149 * Update on-disk file size now that data has been written to disk.
150 * The current in-memory file size is i_size. If a write is beyond
151 * eof io_new_size will be the intended file size until i_size is
152 * updated. If this write does not extend all the way to the valid
153 * file size then restrict this update to the end of the write.
154 */
155 STATIC void
156 xfs_setfilesize(
157 xfs_ioend_t *ioend)
158 {
159 xfs_inode_t *ip;
160 xfs_fsize_t isize;
161 xfs_fsize_t bsize;
162
163 ip = xfs_vtoi(ioend->io_vnode);
164 if (!ip)
165 return;
166
167 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
168 ASSERT(ioend->io_type != IOMAP_READ);
169
170 if (unlikely(ioend->io_error))
171 return;
172
173 bsize = ioend->io_offset + ioend->io_size;
174
175 xfs_ilock(ip, XFS_ILOCK_EXCL);
176
177 isize = MAX(ip->i_size, ip->i_iocore.io_new_size);
178 isize = MIN(isize, bsize);
179
180 if (ip->i_d.di_size < isize) {
181 ip->i_d.di_size = isize;
182 ip->i_update_core = 1;
183 ip->i_update_size = 1;
184 mark_inode_dirty_sync(vn_to_inode(ioend->io_vnode));
185 }
186
187 xfs_iunlock(ip, XFS_ILOCK_EXCL);
188 }
189
190 /*
191 * Buffered IO write completion for delayed allocate extents.
192 */
193 STATIC void
194 xfs_end_bio_delalloc(
195 struct work_struct *work)
196 {
197 xfs_ioend_t *ioend =
198 container_of(work, xfs_ioend_t, io_work);
199
200 xfs_setfilesize(ioend);
201 xfs_destroy_ioend(ioend);
202 }
203
204 /*
205 * Buffered IO write completion for regular, written extents.
206 */
207 STATIC void
208 xfs_end_bio_written(
209 struct work_struct *work)
210 {
211 xfs_ioend_t *ioend =
212 container_of(work, xfs_ioend_t, io_work);
213
214 xfs_setfilesize(ioend);
215 xfs_destroy_ioend(ioend);
216 }
217
218 /*
219 * IO write completion for unwritten extents.
220 *
221 * Issue transactions to convert a buffer range from unwritten
222 * to written extents.
223 */
224 STATIC void
225 xfs_end_bio_unwritten(
226 struct work_struct *work)
227 {
228 xfs_ioend_t *ioend =
229 container_of(work, xfs_ioend_t, io_work);
230 bhv_vnode_t *vp = ioend->io_vnode;
231 xfs_off_t offset = ioend->io_offset;
232 size_t size = ioend->io_size;
233
234 if (likely(!ioend->io_error)) {
235 bhv_vop_bmap(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL);
236 xfs_setfilesize(ioend);
237 }
238 xfs_destroy_ioend(ioend);
239 }
240
241 /*
242 * IO read completion for regular, written extents.
243 */
244 STATIC void
245 xfs_end_bio_read(
246 struct work_struct *work)
247 {
248 xfs_ioend_t *ioend =
249 container_of(work, xfs_ioend_t, io_work);
250
251 xfs_destroy_ioend(ioend);
252 }
253
254 /*
255 * Allocate and initialise an IO completion structure.
256 * We need to track unwritten extent write completion here initially.
257 * We'll need to extend this for updating the ondisk inode size later
258 * (vs. incore size).
259 */
260 STATIC xfs_ioend_t *
261 xfs_alloc_ioend(
262 struct inode *inode,
263 unsigned int type)
264 {
265 xfs_ioend_t *ioend;
266
267 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
268
269 /*
270 * Set the count to 1 initially, which will prevent an I/O
271 * completion callback from happening before we have started
272 * all the I/O from calling the completion routine too early.
273 */
274 atomic_set(&ioend->io_remaining, 1);
275 ioend->io_error = 0;
276 ioend->io_list = NULL;
277 ioend->io_type = type;
278 ioend->io_vnode = vn_from_inode(inode);
279 ioend->io_buffer_head = NULL;
280 ioend->io_buffer_tail = NULL;
281 atomic_inc(&ioend->io_vnode->v_iocount);
282 ioend->io_offset = 0;
283 ioend->io_size = 0;
284
285 if (type == IOMAP_UNWRITTEN)
286 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
287 else if (type == IOMAP_DELAY)
288 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
289 else if (type == IOMAP_READ)
290 INIT_WORK(&ioend->io_work, xfs_end_bio_read);
291 else
292 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
293
294 return ioend;
295 }
296
297 STATIC int
298 xfs_map_blocks(
299 struct inode *inode,
300 loff_t offset,
301 ssize_t count,
302 xfs_iomap_t *mapp,
303 int flags)
304 {
305 bhv_vnode_t *vp = vn_from_inode(inode);
306 int error, nmaps = 1;
307
308 error = bhv_vop_bmap(vp, offset, count, flags, mapp, &nmaps);
309 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
310 VMODIFY(vp);
311 return -error;
312 }
313
314 STATIC_INLINE int
315 xfs_iomap_valid(
316 xfs_iomap_t *iomapp,
317 loff_t offset)
318 {
319 return offset >= iomapp->iomap_offset &&
320 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
321 }
322
323 /*
324 * BIO completion handler for buffered IO.
325 */
326 STATIC int
327 xfs_end_bio(
328 struct bio *bio,
329 unsigned int bytes_done,
330 int error)
331 {
332 xfs_ioend_t *ioend = bio->bi_private;
333
334 if (bio->bi_size)
335 return 1;
336
337 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
338 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
339
340 /* Toss bio and pass work off to an xfsdatad thread */
341 bio->bi_private = NULL;
342 bio->bi_end_io = NULL;
343 bio_put(bio);
344
345 xfs_finish_ioend(ioend, 0);
346 return 0;
347 }
348
349 STATIC void
350 xfs_submit_ioend_bio(
351 xfs_ioend_t *ioend,
352 struct bio *bio)
353 {
354 atomic_inc(&ioend->io_remaining);
355
356 bio->bi_private = ioend;
357 bio->bi_end_io = xfs_end_bio;
358
359 submit_bio(WRITE, bio);
360 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
361 bio_put(bio);
362 }
363
364 STATIC struct bio *
365 xfs_alloc_ioend_bio(
366 struct buffer_head *bh)
367 {
368 struct bio *bio;
369 int nvecs = bio_get_nr_vecs(bh->b_bdev);
370
371 do {
372 bio = bio_alloc(GFP_NOIO, nvecs);
373 nvecs >>= 1;
374 } while (!bio);
375
376 ASSERT(bio->bi_private == NULL);
377 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
378 bio->bi_bdev = bh->b_bdev;
379 bio_get(bio);
380 return bio;
381 }
382
383 STATIC void
384 xfs_start_buffer_writeback(
385 struct buffer_head *bh)
386 {
387 ASSERT(buffer_mapped(bh));
388 ASSERT(buffer_locked(bh));
389 ASSERT(!buffer_delay(bh));
390 ASSERT(!buffer_unwritten(bh));
391
392 mark_buffer_async_write(bh);
393 set_buffer_uptodate(bh);
394 clear_buffer_dirty(bh);
395 }
396
397 STATIC void
398 xfs_start_page_writeback(
399 struct page *page,
400 struct writeback_control *wbc,
401 int clear_dirty,
402 int buffers)
403 {
404 ASSERT(PageLocked(page));
405 ASSERT(!PageWriteback(page));
406 if (clear_dirty)
407 clear_page_dirty_for_io(page);
408 set_page_writeback(page);
409 unlock_page(page);
410 if (!buffers) {
411 end_page_writeback(page);
412 wbc->pages_skipped++; /* We didn't write this page */
413 }
414 }
415
416 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
417 {
418 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
419 }
420
421 /*
422 * Submit all of the bios for all of the ioends we have saved up, covering the
423 * initial writepage page and also any probed pages.
424 *
425 * Because we may have multiple ioends spanning a page, we need to start
426 * writeback on all the buffers before we submit them for I/O. If we mark the
427 * buffers as we got, then we can end up with a page that only has buffers
428 * marked async write and I/O complete on can occur before we mark the other
429 * buffers async write.
430 *
431 * The end result of this is that we trip a bug in end_page_writeback() because
432 * we call it twice for the one page as the code in end_buffer_async_write()
433 * assumes that all buffers on the page are started at the same time.
434 *
435 * The fix is two passes across the ioend list - one to start writeback on the
436 * buffer_heads, and then submit them for I/O on the second pass.
437 */
438 STATIC void
439 xfs_submit_ioend(
440 xfs_ioend_t *ioend)
441 {
442 xfs_ioend_t *head = ioend;
443 xfs_ioend_t *next;
444 struct buffer_head *bh;
445 struct bio *bio;
446 sector_t lastblock = 0;
447
448 /* Pass 1 - start writeback */
449 do {
450 next = ioend->io_list;
451 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
452 xfs_start_buffer_writeback(bh);
453 }
454 } while ((ioend = next) != NULL);
455
456 /* Pass 2 - submit I/O */
457 ioend = head;
458 do {
459 next = ioend->io_list;
460 bio = NULL;
461
462 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
463
464 if (!bio) {
465 retry:
466 bio = xfs_alloc_ioend_bio(bh);
467 } else if (bh->b_blocknr != lastblock + 1) {
468 xfs_submit_ioend_bio(ioend, bio);
469 goto retry;
470 }
471
472 if (bio_add_buffer(bio, bh) != bh->b_size) {
473 xfs_submit_ioend_bio(ioend, bio);
474 goto retry;
475 }
476
477 lastblock = bh->b_blocknr;
478 }
479 if (bio)
480 xfs_submit_ioend_bio(ioend, bio);
481 xfs_finish_ioend(ioend, 0);
482 } while ((ioend = next) != NULL);
483 }
484
485 /*
486 * Cancel submission of all buffer_heads so far in this endio.
487 * Toss the endio too. Only ever called for the initial page
488 * in a writepage request, so only ever one page.
489 */
490 STATIC void
491 xfs_cancel_ioend(
492 xfs_ioend_t *ioend)
493 {
494 xfs_ioend_t *next;
495 struct buffer_head *bh, *next_bh;
496
497 do {
498 next = ioend->io_list;
499 bh = ioend->io_buffer_head;
500 do {
501 next_bh = bh->b_private;
502 clear_buffer_async_write(bh);
503 unlock_buffer(bh);
504 } while ((bh = next_bh) != NULL);
505
506 vn_iowake(ioend->io_vnode);
507 mempool_free(ioend, xfs_ioend_pool);
508 } while ((ioend = next) != NULL);
509 }
510
511 /*
512 * Test to see if we've been building up a completion structure for
513 * earlier buffers -- if so, we try to append to this ioend if we
514 * can, otherwise we finish off any current ioend and start another.
515 * Return true if we've finished the given ioend.
516 */
517 STATIC void
518 xfs_add_to_ioend(
519 struct inode *inode,
520 struct buffer_head *bh,
521 xfs_off_t offset,
522 unsigned int type,
523 xfs_ioend_t **result,
524 int need_ioend)
525 {
526 xfs_ioend_t *ioend = *result;
527
528 if (!ioend || need_ioend || type != ioend->io_type) {
529 xfs_ioend_t *previous = *result;
530
531 ioend = xfs_alloc_ioend(inode, type);
532 ioend->io_offset = offset;
533 ioend->io_buffer_head = bh;
534 ioend->io_buffer_tail = bh;
535 if (previous)
536 previous->io_list = ioend;
537 *result = ioend;
538 } else {
539 ioend->io_buffer_tail->b_private = bh;
540 ioend->io_buffer_tail = bh;
541 }
542
543 bh->b_private = NULL;
544 ioend->io_size += bh->b_size;
545 }
546
547 STATIC void
548 xfs_map_buffer(
549 struct buffer_head *bh,
550 xfs_iomap_t *mp,
551 xfs_off_t offset,
552 uint block_bits)
553 {
554 sector_t bn;
555
556 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
557
558 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
559 ((offset - mp->iomap_offset) >> block_bits);
560
561 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
562
563 bh->b_blocknr = bn;
564 set_buffer_mapped(bh);
565 }
566
567 STATIC void
568 xfs_map_at_offset(
569 struct buffer_head *bh,
570 loff_t offset,
571 int block_bits,
572 xfs_iomap_t *iomapp)
573 {
574 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
575 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
576
577 lock_buffer(bh);
578 xfs_map_buffer(bh, iomapp, offset, block_bits);
579 bh->b_bdev = iomapp->iomap_target->bt_bdev;
580 set_buffer_mapped(bh);
581 clear_buffer_delay(bh);
582 clear_buffer_unwritten(bh);
583 }
584
585 /*
586 * Look for a page at index that is suitable for clustering.
587 */
588 STATIC unsigned int
589 xfs_probe_page(
590 struct page *page,
591 unsigned int pg_offset,
592 int mapped)
593 {
594 int ret = 0;
595
596 if (PageWriteback(page))
597 return 0;
598
599 if (page->mapping && PageDirty(page)) {
600 if (page_has_buffers(page)) {
601 struct buffer_head *bh, *head;
602
603 bh = head = page_buffers(page);
604 do {
605 if (!buffer_uptodate(bh))
606 break;
607 if (mapped != buffer_mapped(bh))
608 break;
609 ret += bh->b_size;
610 if (ret >= pg_offset)
611 break;
612 } while ((bh = bh->b_this_page) != head);
613 } else
614 ret = mapped ? 0 : PAGE_CACHE_SIZE;
615 }
616
617 return ret;
618 }
619
620 STATIC size_t
621 xfs_probe_cluster(
622 struct inode *inode,
623 struct page *startpage,
624 struct buffer_head *bh,
625 struct buffer_head *head,
626 int mapped)
627 {
628 struct pagevec pvec;
629 pgoff_t tindex, tlast, tloff;
630 size_t total = 0;
631 int done = 0, i;
632
633 /* First sum forwards in this page */
634 do {
635 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
636 return total;
637 total += bh->b_size;
638 } while ((bh = bh->b_this_page) != head);
639
640 /* if we reached the end of the page, sum forwards in following pages */
641 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
642 tindex = startpage->index + 1;
643
644 /* Prune this back to avoid pathological behavior */
645 tloff = min(tlast, startpage->index + 64);
646
647 pagevec_init(&pvec, 0);
648 while (!done && tindex <= tloff) {
649 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
650
651 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
652 break;
653
654 for (i = 0; i < pagevec_count(&pvec); i++) {
655 struct page *page = pvec.pages[i];
656 size_t pg_offset, pg_len = 0;
657
658 if (tindex == tlast) {
659 pg_offset =
660 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
661 if (!pg_offset) {
662 done = 1;
663 break;
664 }
665 } else
666 pg_offset = PAGE_CACHE_SIZE;
667
668 if (page->index == tindex && !TestSetPageLocked(page)) {
669 pg_len = xfs_probe_page(page, pg_offset, mapped);
670 unlock_page(page);
671 }
672
673 if (!pg_len) {
674 done = 1;
675 break;
676 }
677
678 total += pg_len;
679 tindex++;
680 }
681
682 pagevec_release(&pvec);
683 cond_resched();
684 }
685
686 return total;
687 }
688
689 /*
690 * Test if a given page is suitable for writing as part of an unwritten
691 * or delayed allocate extent.
692 */
693 STATIC int
694 xfs_is_delayed_page(
695 struct page *page,
696 unsigned int type)
697 {
698 if (PageWriteback(page))
699 return 0;
700
701 if (page->mapping && page_has_buffers(page)) {
702 struct buffer_head *bh, *head;
703 int acceptable = 0;
704
705 bh = head = page_buffers(page);
706 do {
707 if (buffer_unwritten(bh))
708 acceptable = (type == IOMAP_UNWRITTEN);
709 else if (buffer_delay(bh))
710 acceptable = (type == IOMAP_DELAY);
711 else if (buffer_dirty(bh) && buffer_mapped(bh))
712 acceptable = (type == IOMAP_NEW);
713 else
714 break;
715 } while ((bh = bh->b_this_page) != head);
716
717 if (acceptable)
718 return 1;
719 }
720
721 return 0;
722 }
723
724 /*
725 * Allocate & map buffers for page given the extent map. Write it out.
726 * except for the original page of a writepage, this is called on
727 * delalloc/unwritten pages only, for the original page it is possible
728 * that the page has no mapping at all.
729 */
730 STATIC int
731 xfs_convert_page(
732 struct inode *inode,
733 struct page *page,
734 loff_t tindex,
735 xfs_iomap_t *mp,
736 xfs_ioend_t **ioendp,
737 struct writeback_control *wbc,
738 int startio,
739 int all_bh)
740 {
741 struct buffer_head *bh, *head;
742 xfs_off_t end_offset;
743 unsigned long p_offset;
744 unsigned int type;
745 int bbits = inode->i_blkbits;
746 int len, page_dirty;
747 int count = 0, done = 0, uptodate = 1;
748 xfs_off_t offset = page_offset(page);
749
750 if (page->index != tindex)
751 goto fail;
752 if (TestSetPageLocked(page))
753 goto fail;
754 if (PageWriteback(page))
755 goto fail_unlock_page;
756 if (page->mapping != inode->i_mapping)
757 goto fail_unlock_page;
758 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
759 goto fail_unlock_page;
760
761 /*
762 * page_dirty is initially a count of buffers on the page before
763 * EOF and is decremented as we move each into a cleanable state.
764 *
765 * Derivation:
766 *
767 * End offset is the highest offset that this page should represent.
768 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
769 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
770 * hence give us the correct page_dirty count. On any other page,
771 * it will be zero and in that case we need page_dirty to be the
772 * count of buffers on the page.
773 */
774 end_offset = min_t(unsigned long long,
775 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
776 i_size_read(inode));
777
778 len = 1 << inode->i_blkbits;
779 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
780 PAGE_CACHE_SIZE);
781 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
782 page_dirty = p_offset / len;
783
784 bh = head = page_buffers(page);
785 do {
786 if (offset >= end_offset)
787 break;
788 if (!buffer_uptodate(bh))
789 uptodate = 0;
790 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
791 done = 1;
792 continue;
793 }
794
795 if (buffer_unwritten(bh) || buffer_delay(bh)) {
796 if (buffer_unwritten(bh))
797 type = IOMAP_UNWRITTEN;
798 else
799 type = IOMAP_DELAY;
800
801 if (!xfs_iomap_valid(mp, offset)) {
802 done = 1;
803 continue;
804 }
805
806 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
807 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
808
809 xfs_map_at_offset(bh, offset, bbits, mp);
810 if (startio) {
811 xfs_add_to_ioend(inode, bh, offset,
812 type, ioendp, done);
813 } else {
814 set_buffer_dirty(bh);
815 unlock_buffer(bh);
816 mark_buffer_dirty(bh);
817 }
818 page_dirty--;
819 count++;
820 } else {
821 type = IOMAP_NEW;
822 if (buffer_mapped(bh) && all_bh && startio) {
823 lock_buffer(bh);
824 xfs_add_to_ioend(inode, bh, offset,
825 type, ioendp, done);
826 count++;
827 page_dirty--;
828 } else {
829 done = 1;
830 }
831 }
832 } while (offset += len, (bh = bh->b_this_page) != head);
833
834 if (uptodate && bh == head)
835 SetPageUptodate(page);
836
837 if (startio) {
838 if (count) {
839 struct backing_dev_info *bdi;
840
841 bdi = inode->i_mapping->backing_dev_info;
842 wbc->nr_to_write--;
843 if (bdi_write_congested(bdi)) {
844 wbc->encountered_congestion = 1;
845 done = 1;
846 } else if (wbc->nr_to_write <= 0) {
847 done = 1;
848 }
849 }
850 xfs_start_page_writeback(page, wbc, !page_dirty, count);
851 }
852
853 return done;
854 fail_unlock_page:
855 unlock_page(page);
856 fail:
857 return 1;
858 }
859
860 /*
861 * Convert & write out a cluster of pages in the same extent as defined
862 * by mp and following the start page.
863 */
864 STATIC void
865 xfs_cluster_write(
866 struct inode *inode,
867 pgoff_t tindex,
868 xfs_iomap_t *iomapp,
869 xfs_ioend_t **ioendp,
870 struct writeback_control *wbc,
871 int startio,
872 int all_bh,
873 pgoff_t tlast)
874 {
875 struct pagevec pvec;
876 int done = 0, i;
877
878 pagevec_init(&pvec, 0);
879 while (!done && tindex <= tlast) {
880 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
881
882 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
883 break;
884
885 for (i = 0; i < pagevec_count(&pvec); i++) {
886 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
887 iomapp, ioendp, wbc, startio, all_bh);
888 if (done)
889 break;
890 }
891
892 pagevec_release(&pvec);
893 cond_resched();
894 }
895 }
896
897 /*
898 * Calling this without startio set means we are being asked to make a dirty
899 * page ready for freeing it's buffers. When called with startio set then
900 * we are coming from writepage.
901 *
902 * When called with startio set it is important that we write the WHOLE
903 * page if possible.
904 * The bh->b_state's cannot know if any of the blocks or which block for
905 * that matter are dirty due to mmap writes, and therefore bh uptodate is
906 * only valid if the page itself isn't completely uptodate. Some layers
907 * may clear the page dirty flag prior to calling write page, under the
908 * assumption the entire page will be written out; by not writing out the
909 * whole page the page can be reused before all valid dirty data is
910 * written out. Note: in the case of a page that has been dirty'd by
911 * mapwrite and but partially setup by block_prepare_write the
912 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
913 * valid state, thus the whole page must be written out thing.
914 */
915
916 STATIC int
917 xfs_page_state_convert(
918 struct inode *inode,
919 struct page *page,
920 struct writeback_control *wbc,
921 int startio,
922 int unmapped) /* also implies page uptodate */
923 {
924 struct buffer_head *bh, *head;
925 xfs_iomap_t iomap;
926 xfs_ioend_t *ioend = NULL, *iohead = NULL;
927 loff_t offset;
928 unsigned long p_offset = 0;
929 unsigned int type;
930 __uint64_t end_offset;
931 pgoff_t end_index, last_index, tlast;
932 ssize_t size, len;
933 int flags, err, iomap_valid = 0, uptodate = 1;
934 int page_dirty, count = 0;
935 int trylock = 0;
936 int all_bh = unmapped;
937
938 if (startio) {
939 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
940 trylock |= BMAPI_TRYLOCK;
941 }
942
943 /* Is this page beyond the end of the file? */
944 offset = i_size_read(inode);
945 end_index = offset >> PAGE_CACHE_SHIFT;
946 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
947 if (page->index >= end_index) {
948 if ((page->index >= end_index + 1) ||
949 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
950 if (startio)
951 unlock_page(page);
952 return 0;
953 }
954 }
955
956 /*
957 * page_dirty is initially a count of buffers on the page before
958 * EOF and is decremented as we move each into a cleanable state.
959 *
960 * Derivation:
961 *
962 * End offset is the highest offset that this page should represent.
963 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
964 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
965 * hence give us the correct page_dirty count. On any other page,
966 * it will be zero and in that case we need page_dirty to be the
967 * count of buffers on the page.
968 */
969 end_offset = min_t(unsigned long long,
970 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
971 len = 1 << inode->i_blkbits;
972 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
973 PAGE_CACHE_SIZE);
974 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
975 page_dirty = p_offset / len;
976
977 bh = head = page_buffers(page);
978 offset = page_offset(page);
979 flags = BMAPI_READ;
980 type = IOMAP_NEW;
981
982 /* TODO: cleanup count and page_dirty */
983
984 do {
985 if (offset >= end_offset)
986 break;
987 if (!buffer_uptodate(bh))
988 uptodate = 0;
989 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
990 /*
991 * the iomap is actually still valid, but the ioend
992 * isn't. shouldn't happen too often.
993 */
994 iomap_valid = 0;
995 continue;
996 }
997
998 if (iomap_valid)
999 iomap_valid = xfs_iomap_valid(&iomap, offset);
1000
1001 /*
1002 * First case, map an unwritten extent and prepare for
1003 * extent state conversion transaction on completion.
1004 *
1005 * Second case, allocate space for a delalloc buffer.
1006 * We can return EAGAIN here in the release page case.
1007 *
1008 * Third case, an unmapped buffer was found, and we are
1009 * in a path where we need to write the whole page out.
1010 */
1011 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1012 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1013 !buffer_mapped(bh) && (unmapped || startio))) {
1014 int new_ioend = 0;
1015
1016 /*
1017 * Make sure we don't use a read-only iomap
1018 */
1019 if (flags == BMAPI_READ)
1020 iomap_valid = 0;
1021
1022 if (buffer_unwritten(bh)) {
1023 type = IOMAP_UNWRITTEN;
1024 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
1025 } else if (buffer_delay(bh)) {
1026 type = IOMAP_DELAY;
1027 flags = BMAPI_ALLOCATE | trylock;
1028 } else {
1029 type = IOMAP_NEW;
1030 flags = BMAPI_WRITE | BMAPI_MMAP;
1031 }
1032
1033 if (!iomap_valid) {
1034 /*
1035 * if we didn't have a valid mapping then we
1036 * need to ensure that we put the new mapping
1037 * in a new ioend structure. This needs to be
1038 * done to ensure that the ioends correctly
1039 * reflect the block mappings at io completion
1040 * for unwritten extent conversion.
1041 */
1042 new_ioend = 1;
1043 if (type == IOMAP_NEW) {
1044 size = xfs_probe_cluster(inode,
1045 page, bh, head, 0);
1046 } else {
1047 size = len;
1048 }
1049
1050 err = xfs_map_blocks(inode, offset, size,
1051 &iomap, flags);
1052 if (err)
1053 goto error;
1054 iomap_valid = xfs_iomap_valid(&iomap, offset);
1055 }
1056 if (iomap_valid) {
1057 xfs_map_at_offset(bh, offset,
1058 inode->i_blkbits, &iomap);
1059 if (startio) {
1060 xfs_add_to_ioend(inode, bh, offset,
1061 type, &ioend,
1062 new_ioend);
1063 } else {
1064 set_buffer_dirty(bh);
1065 unlock_buffer(bh);
1066 mark_buffer_dirty(bh);
1067 }
1068 page_dirty--;
1069 count++;
1070 }
1071 } else if (buffer_uptodate(bh) && startio) {
1072 /*
1073 * we got here because the buffer is already mapped.
1074 * That means it must already have extents allocated
1075 * underneath it. Map the extent by reading it.
1076 */
1077 if (!iomap_valid || flags != BMAPI_READ) {
1078 flags = BMAPI_READ;
1079 size = xfs_probe_cluster(inode, page, bh,
1080 head, 1);
1081 err = xfs_map_blocks(inode, offset, size,
1082 &iomap, flags);
1083 if (err)
1084 goto error;
1085 iomap_valid = xfs_iomap_valid(&iomap, offset);
1086 }
1087
1088 /*
1089 * We set the type to IOMAP_NEW in case we are doing a
1090 * small write at EOF that is extending the file but
1091 * without needing an allocation. We need to update the
1092 * file size on I/O completion in this case so it is
1093 * the same case as having just allocated a new extent
1094 * that we are writing into for the first time.
1095 */
1096 type = IOMAP_NEW;
1097 if (!test_and_set_bit(BH_Lock, &bh->b_state)) {
1098 ASSERT(buffer_mapped(bh));
1099 if (iomap_valid)
1100 all_bh = 1;
1101 xfs_add_to_ioend(inode, bh, offset, type,
1102 &ioend, !iomap_valid);
1103 page_dirty--;
1104 count++;
1105 } else {
1106 iomap_valid = 0;
1107 }
1108 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1109 (unmapped || startio)) {
1110 iomap_valid = 0;
1111 }
1112
1113 if (!iohead)
1114 iohead = ioend;
1115
1116 } while (offset += len, ((bh = bh->b_this_page) != head));
1117
1118 if (uptodate && bh == head)
1119 SetPageUptodate(page);
1120
1121 if (startio)
1122 xfs_start_page_writeback(page, wbc, 1, count);
1123
1124 if (ioend && iomap_valid) {
1125 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1126 PAGE_CACHE_SHIFT;
1127 tlast = min_t(pgoff_t, offset, last_index);
1128 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
1129 wbc, startio, all_bh, tlast);
1130 }
1131
1132 if (iohead)
1133 xfs_submit_ioend(iohead);
1134
1135 return page_dirty;
1136
1137 error:
1138 if (iohead)
1139 xfs_cancel_ioend(iohead);
1140
1141 /*
1142 * If it's delalloc and we have nowhere to put it,
1143 * throw it away, unless the lower layers told
1144 * us to try again.
1145 */
1146 if (err != -EAGAIN) {
1147 if (!unmapped)
1148 block_invalidatepage(page, 0);
1149 ClearPageUptodate(page);
1150 }
1151 return err;
1152 }
1153
1154 /*
1155 * writepage: Called from one of two places:
1156 *
1157 * 1. we are flushing a delalloc buffer head.
1158 *
1159 * 2. we are writing out a dirty page. Typically the page dirty
1160 * state is cleared before we get here. In this case is it
1161 * conceivable we have no buffer heads.
1162 *
1163 * For delalloc space on the page we need to allocate space and
1164 * flush it. For unmapped buffer heads on the page we should
1165 * allocate space if the page is uptodate. For any other dirty
1166 * buffer heads on the page we should flush them.
1167 *
1168 * If we detect that a transaction would be required to flush
1169 * the page, we have to check the process flags first, if we
1170 * are already in a transaction or disk I/O during allocations
1171 * is off, we need to fail the writepage and redirty the page.
1172 */
1173
1174 STATIC int
1175 xfs_vm_writepage(
1176 struct page *page,
1177 struct writeback_control *wbc)
1178 {
1179 int error;
1180 int need_trans;
1181 int delalloc, unmapped, unwritten;
1182 struct inode *inode = page->mapping->host;
1183
1184 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1185
1186 /*
1187 * We need a transaction if:
1188 * 1. There are delalloc buffers on the page
1189 * 2. The page is uptodate and we have unmapped buffers
1190 * 3. The page is uptodate and we have no buffers
1191 * 4. There are unwritten buffers on the page
1192 */
1193
1194 if (!page_has_buffers(page)) {
1195 unmapped = 1;
1196 need_trans = 1;
1197 } else {
1198 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1199 if (!PageUptodate(page))
1200 unmapped = 0;
1201 need_trans = delalloc + unmapped + unwritten;
1202 }
1203
1204 /*
1205 * If we need a transaction and the process flags say
1206 * we are already in a transaction, or no IO is allowed
1207 * then mark the page dirty again and leave the page
1208 * as is.
1209 */
1210 if (current_test_flags(PF_FSTRANS) && need_trans)
1211 goto out_fail;
1212
1213 /*
1214 * Delay hooking up buffer heads until we have
1215 * made our go/no-go decision.
1216 */
1217 if (!page_has_buffers(page))
1218 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1219
1220 /*
1221 * Convert delayed allocate, unwritten or unmapped space
1222 * to real space and flush out to disk.
1223 */
1224 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1225 if (error == -EAGAIN)
1226 goto out_fail;
1227 if (unlikely(error < 0))
1228 goto out_unlock;
1229
1230 return 0;
1231
1232 out_fail:
1233 redirty_page_for_writepage(wbc, page);
1234 unlock_page(page);
1235 return 0;
1236 out_unlock:
1237 unlock_page(page);
1238 return error;
1239 }
1240
1241 STATIC int
1242 xfs_vm_writepages(
1243 struct address_space *mapping,
1244 struct writeback_control *wbc)
1245 {
1246 struct bhv_vnode *vp = vn_from_inode(mapping->host);
1247
1248 if (VN_TRUNC(vp))
1249 VUNTRUNCATE(vp);
1250 return generic_writepages(mapping, wbc);
1251 }
1252
1253 /*
1254 * Called to move a page into cleanable state - and from there
1255 * to be released. Possibly the page is already clean. We always
1256 * have buffer heads in this call.
1257 *
1258 * Returns 0 if the page is ok to release, 1 otherwise.
1259 *
1260 * Possible scenarios are:
1261 *
1262 * 1. We are being called to release a page which has been written
1263 * to via regular I/O. buffer heads will be dirty and possibly
1264 * delalloc. If no delalloc buffer heads in this case then we
1265 * can just return zero.
1266 *
1267 * 2. We are called to release a page which has been written via
1268 * mmap, all we need to do is ensure there is no delalloc
1269 * state in the buffer heads, if not we can let the caller
1270 * free them and we should come back later via writepage.
1271 */
1272 STATIC int
1273 xfs_vm_releasepage(
1274 struct page *page,
1275 gfp_t gfp_mask)
1276 {
1277 struct inode *inode = page->mapping->host;
1278 int dirty, delalloc, unmapped, unwritten;
1279 struct writeback_control wbc = {
1280 .sync_mode = WB_SYNC_ALL,
1281 .nr_to_write = 1,
1282 };
1283
1284 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
1285
1286 if (!page_has_buffers(page))
1287 return 0;
1288
1289 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1290 if (!delalloc && !unwritten)
1291 goto free_buffers;
1292
1293 if (!(gfp_mask & __GFP_FS))
1294 return 0;
1295
1296 /* If we are already inside a transaction or the thread cannot
1297 * do I/O, we cannot release this page.
1298 */
1299 if (current_test_flags(PF_FSTRANS))
1300 return 0;
1301
1302 /*
1303 * Convert delalloc space to real space, do not flush the
1304 * data out to disk, that will be done by the caller.
1305 * Never need to allocate space here - we will always
1306 * come back to writepage in that case.
1307 */
1308 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1309 if (dirty == 0 && !unwritten)
1310 goto free_buffers;
1311 return 0;
1312
1313 free_buffers:
1314 return try_to_free_buffers(page);
1315 }
1316
1317 STATIC int
1318 __xfs_get_blocks(
1319 struct inode *inode,
1320 sector_t iblock,
1321 struct buffer_head *bh_result,
1322 int create,
1323 int direct,
1324 bmapi_flags_t flags)
1325 {
1326 bhv_vnode_t *vp = vn_from_inode(inode);
1327 xfs_iomap_t iomap;
1328 xfs_off_t offset;
1329 ssize_t size;
1330 int niomap = 1;
1331 int error;
1332
1333 offset = (xfs_off_t)iblock << inode->i_blkbits;
1334 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1335 size = bh_result->b_size;
1336 error = bhv_vop_bmap(vp, offset, size,
1337 create ? flags : BMAPI_READ, &iomap, &niomap);
1338 if (error)
1339 return -error;
1340 if (niomap == 0)
1341 return 0;
1342
1343 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
1344 /*
1345 * For unwritten extents do not report a disk address on
1346 * the read case (treat as if we're reading into a hole).
1347 */
1348 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1349 xfs_map_buffer(bh_result, &iomap, offset,
1350 inode->i_blkbits);
1351 }
1352 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1353 if (direct)
1354 bh_result->b_private = inode;
1355 set_buffer_unwritten(bh_result);
1356 }
1357 }
1358
1359 /*
1360 * If this is a realtime file, data may be on a different device.
1361 * to that pointed to from the buffer_head b_bdev currently.
1362 */
1363 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1364
1365 /*
1366 * If we previously allocated a block out beyond eof and we are now
1367 * coming back to use it then we will need to flag it as new even if it
1368 * has a disk address.
1369 *
1370 * With sub-block writes into unwritten extents we also need to mark
1371 * the buffer as new so that the unwritten parts of the buffer gets
1372 * correctly zeroed.
1373 */
1374 if (create &&
1375 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1376 (offset >= i_size_read(inode)) ||
1377 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1378 set_buffer_new(bh_result);
1379
1380 if (iomap.iomap_flags & IOMAP_DELAY) {
1381 BUG_ON(direct);
1382 if (create) {
1383 set_buffer_uptodate(bh_result);
1384 set_buffer_mapped(bh_result);
1385 set_buffer_delay(bh_result);
1386 }
1387 }
1388
1389 if (direct || size > (1 << inode->i_blkbits)) {
1390 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1391 offset = min_t(xfs_off_t,
1392 iomap.iomap_bsize - iomap.iomap_delta, size);
1393 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1394 }
1395
1396 return 0;
1397 }
1398
1399 int
1400 xfs_get_blocks(
1401 struct inode *inode,
1402 sector_t iblock,
1403 struct buffer_head *bh_result,
1404 int create)
1405 {
1406 return __xfs_get_blocks(inode, iblock,
1407 bh_result, create, 0, BMAPI_WRITE);
1408 }
1409
1410 STATIC int
1411 xfs_get_blocks_direct(
1412 struct inode *inode,
1413 sector_t iblock,
1414 struct buffer_head *bh_result,
1415 int create)
1416 {
1417 return __xfs_get_blocks(inode, iblock,
1418 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1419 }
1420
1421 STATIC void
1422 xfs_end_io_direct(
1423 struct kiocb *iocb,
1424 loff_t offset,
1425 ssize_t size,
1426 void *private)
1427 {
1428 xfs_ioend_t *ioend = iocb->private;
1429
1430 /*
1431 * Non-NULL private data means we need to issue a transaction to
1432 * convert a range from unwritten to written extents. This needs
1433 * to happen from process context but aio+dio I/O completion
1434 * happens from irq context so we need to defer it to a workqueue.
1435 * This is not necessary for synchronous direct I/O, but we do
1436 * it anyway to keep the code uniform and simpler.
1437 *
1438 * Well, if only it were that simple. Because synchronous direct I/O
1439 * requires extent conversion to occur *before* we return to userspace,
1440 * we have to wait for extent conversion to complete. Look at the
1441 * iocb that has been passed to us to determine if this is AIO or
1442 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1443 * workqueue and wait for it to complete.
1444 *
1445 * The core direct I/O code might be changed to always call the
1446 * completion handler in the future, in which case all this can
1447 * go away.
1448 */
1449 ioend->io_offset = offset;
1450 ioend->io_size = size;
1451 if (ioend->io_type == IOMAP_READ) {
1452 xfs_finish_ioend(ioend, 0);
1453 } else if (private && size > 0) {
1454 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
1455 } else {
1456 /*
1457 * A direct I/O write ioend starts it's life in unwritten
1458 * state in case they map an unwritten extent. This write
1459 * didn't map an unwritten extent so switch it's completion
1460 * handler.
1461 */
1462 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
1463 xfs_finish_ioend(ioend, 0);
1464 }
1465
1466 /*
1467 * blockdev_direct_IO can return an error even after the I/O
1468 * completion handler was called. Thus we need to protect
1469 * against double-freeing.
1470 */
1471 iocb->private = NULL;
1472 }
1473
1474 STATIC ssize_t
1475 xfs_vm_direct_IO(
1476 int rw,
1477 struct kiocb *iocb,
1478 const struct iovec *iov,
1479 loff_t offset,
1480 unsigned long nr_segs)
1481 {
1482 struct file *file = iocb->ki_filp;
1483 struct inode *inode = file->f_mapping->host;
1484 bhv_vnode_t *vp = vn_from_inode(inode);
1485 xfs_iomap_t iomap;
1486 int maps = 1;
1487 int error;
1488 ssize_t ret;
1489
1490 error = bhv_vop_bmap(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps);
1491 if (error)
1492 return -error;
1493
1494 if (rw == WRITE) {
1495 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
1496 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1497 iomap.iomap_target->bt_bdev,
1498 iov, offset, nr_segs,
1499 xfs_get_blocks_direct,
1500 xfs_end_io_direct);
1501 } else {
1502 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
1503 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
1504 iomap.iomap_target->bt_bdev,
1505 iov, offset, nr_segs,
1506 xfs_get_blocks_direct,
1507 xfs_end_io_direct);
1508 }
1509
1510 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
1511 xfs_destroy_ioend(iocb->private);
1512 return ret;
1513 }
1514
1515 STATIC int
1516 xfs_vm_prepare_write(
1517 struct file *file,
1518 struct page *page,
1519 unsigned int from,
1520 unsigned int to)
1521 {
1522 return block_prepare_write(page, from, to, xfs_get_blocks);
1523 }
1524
1525 STATIC sector_t
1526 xfs_vm_bmap(
1527 struct address_space *mapping,
1528 sector_t block)
1529 {
1530 struct inode *inode = (struct inode *)mapping->host;
1531 bhv_vnode_t *vp = vn_from_inode(inode);
1532
1533 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
1534 bhv_vop_rwlock(vp, VRWLOCK_READ);
1535 bhv_vop_flush_pages(vp, (xfs_off_t)0, -1, 0, FI_REMAPF);
1536 bhv_vop_rwunlock(vp, VRWLOCK_READ);
1537 return generic_block_bmap(mapping, block, xfs_get_blocks);
1538 }
1539
1540 STATIC int
1541 xfs_vm_readpage(
1542 struct file *unused,
1543 struct page *page)
1544 {
1545 return mpage_readpage(page, xfs_get_blocks);
1546 }
1547
1548 STATIC int
1549 xfs_vm_readpages(
1550 struct file *unused,
1551 struct address_space *mapping,
1552 struct list_head *pages,
1553 unsigned nr_pages)
1554 {
1555 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1556 }
1557
1558 STATIC void
1559 xfs_vm_invalidatepage(
1560 struct page *page,
1561 unsigned long offset)
1562 {
1563 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1564 page->mapping->host, page, offset);
1565 block_invalidatepage(page, offset);
1566 }
1567
1568 const struct address_space_operations xfs_address_space_operations = {
1569 .readpage = xfs_vm_readpage,
1570 .readpages = xfs_vm_readpages,
1571 .writepage = xfs_vm_writepage,
1572 .writepages = xfs_vm_writepages,
1573 .sync_page = block_sync_page,
1574 .releasepage = xfs_vm_releasepage,
1575 .invalidatepage = xfs_vm_invalidatepage,
1576 .prepare_write = xfs_vm_prepare_write,
1577 .commit_write = generic_commit_write,
1578 .bmap = xfs_vm_bmap,
1579 .direct_IO = xfs_vm_direct_IO,
1580 .migratepage = buffer_migrate_page,
1581 };