]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/linux-2.6/xfs_aops.c
Merge commit 'linus/master' into bkl/core
[mirror_ubuntu-artful-kernel.git] / fs / xfs / linux-2.6 / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_trans.h"
25 #include "xfs_mount.h"
26 #include "xfs_bmap_btree.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_alloc.h"
30 #include "xfs_error.h"
31 #include "xfs_rw.h"
32 #include "xfs_iomap.h"
33 #include "xfs_vnodeops.h"
34 #include "xfs_trace.h"
35 #include "xfs_bmap.h"
36 #include <linux/gfp.h>
37 #include <linux/mpage.h>
38 #include <linux/pagevec.h>
39 #include <linux/writeback.h>
40
41 /*
42 * Types of I/O for bmap clustering and I/O completion tracking.
43 */
44 enum {
45 IO_READ, /* mapping for a read */
46 IO_DELAY, /* mapping covers delalloc region */
47 IO_UNWRITTEN, /* mapping covers allocated but uninitialized data */
48 IO_NEW /* just allocated */
49 };
50
51 /*
52 * Prime number of hash buckets since address is used as the key.
53 */
54 #define NVSYNC 37
55 #define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
56 static wait_queue_head_t xfs_ioend_wq[NVSYNC];
57
58 void __init
59 xfs_ioend_init(void)
60 {
61 int i;
62
63 for (i = 0; i < NVSYNC; i++)
64 init_waitqueue_head(&xfs_ioend_wq[i]);
65 }
66
67 void
68 xfs_ioend_wait(
69 xfs_inode_t *ip)
70 {
71 wait_queue_head_t *wq = to_ioend_wq(ip);
72
73 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
74 }
75
76 STATIC void
77 xfs_ioend_wake(
78 xfs_inode_t *ip)
79 {
80 if (atomic_dec_and_test(&ip->i_iocount))
81 wake_up(to_ioend_wq(ip));
82 }
83
84 void
85 xfs_count_page_state(
86 struct page *page,
87 int *delalloc,
88 int *unwritten)
89 {
90 struct buffer_head *bh, *head;
91
92 *delalloc = *unwritten = 0;
93
94 bh = head = page_buffers(page);
95 do {
96 if (buffer_unwritten(bh))
97 (*unwritten) = 1;
98 else if (buffer_delay(bh))
99 (*delalloc) = 1;
100 } while ((bh = bh->b_this_page) != head);
101 }
102
103 STATIC struct block_device *
104 xfs_find_bdev_for_inode(
105 struct inode *inode)
106 {
107 struct xfs_inode *ip = XFS_I(inode);
108 struct xfs_mount *mp = ip->i_mount;
109
110 if (XFS_IS_REALTIME_INODE(ip))
111 return mp->m_rtdev_targp->bt_bdev;
112 else
113 return mp->m_ddev_targp->bt_bdev;
114 }
115
116 /*
117 * We're now finished for good with this ioend structure.
118 * Update the page state via the associated buffer_heads,
119 * release holds on the inode and bio, and finally free
120 * up memory. Do not use the ioend after this.
121 */
122 STATIC void
123 xfs_destroy_ioend(
124 xfs_ioend_t *ioend)
125 {
126 struct buffer_head *bh, *next;
127 struct xfs_inode *ip = XFS_I(ioend->io_inode);
128
129 for (bh = ioend->io_buffer_head; bh; bh = next) {
130 next = bh->b_private;
131 bh->b_end_io(bh, !ioend->io_error);
132 }
133
134 /*
135 * Volume managers supporting multiple paths can send back ENODEV
136 * when the final path disappears. In this case continuing to fill
137 * the page cache with dirty data which cannot be written out is
138 * evil, so prevent that.
139 */
140 if (unlikely(ioend->io_error == -ENODEV)) {
141 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
142 __FILE__, __LINE__);
143 }
144
145 xfs_ioend_wake(ip);
146 mempool_free(ioend, xfs_ioend_pool);
147 }
148
149 /*
150 * If the end of the current ioend is beyond the current EOF,
151 * return the new EOF value, otherwise zero.
152 */
153 STATIC xfs_fsize_t
154 xfs_ioend_new_eof(
155 xfs_ioend_t *ioend)
156 {
157 xfs_inode_t *ip = XFS_I(ioend->io_inode);
158 xfs_fsize_t isize;
159 xfs_fsize_t bsize;
160
161 bsize = ioend->io_offset + ioend->io_size;
162 isize = MAX(ip->i_size, ip->i_new_size);
163 isize = MIN(isize, bsize);
164 return isize > ip->i_d.di_size ? isize : 0;
165 }
166
167 /*
168 * Update on-disk file size now that data has been written to disk. The
169 * current in-memory file size is i_size. If a write is beyond eof i_new_size
170 * will be the intended file size until i_size is updated. If this write does
171 * not extend all the way to the valid file size then restrict this update to
172 * the end of the write.
173 *
174 * This function does not block as blocking on the inode lock in IO completion
175 * can lead to IO completion order dependency deadlocks.. If it can't get the
176 * inode ilock it will return EAGAIN. Callers must handle this.
177 */
178 STATIC int
179 xfs_setfilesize(
180 xfs_ioend_t *ioend)
181 {
182 xfs_inode_t *ip = XFS_I(ioend->io_inode);
183 xfs_fsize_t isize;
184
185 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
186 ASSERT(ioend->io_type != IO_READ);
187
188 if (unlikely(ioend->io_error))
189 return 0;
190
191 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
192 return EAGAIN;
193
194 isize = xfs_ioend_new_eof(ioend);
195 if (isize) {
196 ip->i_d.di_size = isize;
197 xfs_mark_inode_dirty(ip);
198 }
199
200 xfs_iunlock(ip, XFS_ILOCK_EXCL);
201 return 0;
202 }
203
204 /*
205 * Schedule IO completion handling on the final put of an ioend.
206 */
207 STATIC void
208 xfs_finish_ioend(
209 struct xfs_ioend *ioend)
210 {
211 if (atomic_dec_and_test(&ioend->io_remaining)) {
212 if (ioend->io_type == IO_UNWRITTEN)
213 queue_work(xfsconvertd_workqueue, &ioend->io_work);
214 else
215 queue_work(xfsdatad_workqueue, &ioend->io_work);
216 }
217 }
218
219 /*
220 * IO write completion.
221 */
222 STATIC void
223 xfs_end_io(
224 struct work_struct *work)
225 {
226 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
227 struct xfs_inode *ip = XFS_I(ioend->io_inode);
228 int error = 0;
229
230 /*
231 * For unwritten extents we need to issue transactions to convert a
232 * range to normal written extens after the data I/O has finished.
233 */
234 if (ioend->io_type == IO_UNWRITTEN &&
235 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
236
237 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
238 ioend->io_size);
239 if (error)
240 ioend->io_error = error;
241 }
242
243 /*
244 * We might have to update the on-disk file size after extending
245 * writes.
246 */
247 if (ioend->io_type != IO_READ) {
248 error = xfs_setfilesize(ioend);
249 ASSERT(!error || error == EAGAIN);
250 }
251
252 /*
253 * If we didn't complete processing of the ioend, requeue it to the
254 * tail of the workqueue for another attempt later. Otherwise destroy
255 * it.
256 */
257 if (error == EAGAIN) {
258 atomic_inc(&ioend->io_remaining);
259 xfs_finish_ioend(ioend);
260 /* ensure we don't spin on blocked ioends */
261 delay(1);
262 } else {
263 if (ioend->io_iocb)
264 aio_complete(ioend->io_iocb, ioend->io_result, 0);
265 xfs_destroy_ioend(ioend);
266 }
267 }
268
269 /*
270 * Call IO completion handling in caller context on the final put of an ioend.
271 */
272 STATIC void
273 xfs_finish_ioend_sync(
274 struct xfs_ioend *ioend)
275 {
276 if (atomic_dec_and_test(&ioend->io_remaining))
277 xfs_end_io(&ioend->io_work);
278 }
279
280 /*
281 * Allocate and initialise an IO completion structure.
282 * We need to track unwritten extent write completion here initially.
283 * We'll need to extend this for updating the ondisk inode size later
284 * (vs. incore size).
285 */
286 STATIC xfs_ioend_t *
287 xfs_alloc_ioend(
288 struct inode *inode,
289 unsigned int type)
290 {
291 xfs_ioend_t *ioend;
292
293 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
294
295 /*
296 * Set the count to 1 initially, which will prevent an I/O
297 * completion callback from happening before we have started
298 * all the I/O from calling the completion routine too early.
299 */
300 atomic_set(&ioend->io_remaining, 1);
301 ioend->io_error = 0;
302 ioend->io_list = NULL;
303 ioend->io_type = type;
304 ioend->io_inode = inode;
305 ioend->io_buffer_head = NULL;
306 ioend->io_buffer_tail = NULL;
307 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
308 ioend->io_offset = 0;
309 ioend->io_size = 0;
310 ioend->io_iocb = NULL;
311 ioend->io_result = 0;
312
313 INIT_WORK(&ioend->io_work, xfs_end_io);
314 return ioend;
315 }
316
317 STATIC int
318 xfs_map_blocks(
319 struct inode *inode,
320 loff_t offset,
321 ssize_t count,
322 struct xfs_bmbt_irec *imap,
323 int flags)
324 {
325 int nmaps = 1;
326 int new = 0;
327
328 return -xfs_iomap(XFS_I(inode), offset, count, flags, imap, &nmaps, &new);
329 }
330
331 STATIC int
332 xfs_imap_valid(
333 struct inode *inode,
334 struct xfs_bmbt_irec *imap,
335 xfs_off_t offset)
336 {
337 offset >>= inode->i_blkbits;
338
339 return offset >= imap->br_startoff &&
340 offset < imap->br_startoff + imap->br_blockcount;
341 }
342
343 /*
344 * BIO completion handler for buffered IO.
345 */
346 STATIC void
347 xfs_end_bio(
348 struct bio *bio,
349 int error)
350 {
351 xfs_ioend_t *ioend = bio->bi_private;
352
353 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
354 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
355
356 /* Toss bio and pass work off to an xfsdatad thread */
357 bio->bi_private = NULL;
358 bio->bi_end_io = NULL;
359 bio_put(bio);
360
361 xfs_finish_ioend(ioend);
362 }
363
364 STATIC void
365 xfs_submit_ioend_bio(
366 struct writeback_control *wbc,
367 xfs_ioend_t *ioend,
368 struct bio *bio)
369 {
370 atomic_inc(&ioend->io_remaining);
371 bio->bi_private = ioend;
372 bio->bi_end_io = xfs_end_bio;
373
374 /*
375 * If the I/O is beyond EOF we mark the inode dirty immediately
376 * but don't update the inode size until I/O completion.
377 */
378 if (xfs_ioend_new_eof(ioend))
379 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
380
381 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
382 WRITE_SYNC_PLUG : WRITE, bio);
383 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
384 bio_put(bio);
385 }
386
387 STATIC struct bio *
388 xfs_alloc_ioend_bio(
389 struct buffer_head *bh)
390 {
391 struct bio *bio;
392 int nvecs = bio_get_nr_vecs(bh->b_bdev);
393
394 do {
395 bio = bio_alloc(GFP_NOIO, nvecs);
396 nvecs >>= 1;
397 } while (!bio);
398
399 ASSERT(bio->bi_private == NULL);
400 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
401 bio->bi_bdev = bh->b_bdev;
402 bio_get(bio);
403 return bio;
404 }
405
406 STATIC void
407 xfs_start_buffer_writeback(
408 struct buffer_head *bh)
409 {
410 ASSERT(buffer_mapped(bh));
411 ASSERT(buffer_locked(bh));
412 ASSERT(!buffer_delay(bh));
413 ASSERT(!buffer_unwritten(bh));
414
415 mark_buffer_async_write(bh);
416 set_buffer_uptodate(bh);
417 clear_buffer_dirty(bh);
418 }
419
420 STATIC void
421 xfs_start_page_writeback(
422 struct page *page,
423 int clear_dirty,
424 int buffers)
425 {
426 ASSERT(PageLocked(page));
427 ASSERT(!PageWriteback(page));
428 if (clear_dirty)
429 clear_page_dirty_for_io(page);
430 set_page_writeback(page);
431 unlock_page(page);
432 /* If no buffers on the page are to be written, finish it here */
433 if (!buffers)
434 end_page_writeback(page);
435 }
436
437 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
438 {
439 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
440 }
441
442 /*
443 * Submit all of the bios for all of the ioends we have saved up, covering the
444 * initial writepage page and also any probed pages.
445 *
446 * Because we may have multiple ioends spanning a page, we need to start
447 * writeback on all the buffers before we submit them for I/O. If we mark the
448 * buffers as we got, then we can end up with a page that only has buffers
449 * marked async write and I/O complete on can occur before we mark the other
450 * buffers async write.
451 *
452 * The end result of this is that we trip a bug in end_page_writeback() because
453 * we call it twice for the one page as the code in end_buffer_async_write()
454 * assumes that all buffers on the page are started at the same time.
455 *
456 * The fix is two passes across the ioend list - one to start writeback on the
457 * buffer_heads, and then submit them for I/O on the second pass.
458 */
459 STATIC void
460 xfs_submit_ioend(
461 struct writeback_control *wbc,
462 xfs_ioend_t *ioend)
463 {
464 xfs_ioend_t *head = ioend;
465 xfs_ioend_t *next;
466 struct buffer_head *bh;
467 struct bio *bio;
468 sector_t lastblock = 0;
469
470 /* Pass 1 - start writeback */
471 do {
472 next = ioend->io_list;
473 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
474 xfs_start_buffer_writeback(bh);
475 }
476 } while ((ioend = next) != NULL);
477
478 /* Pass 2 - submit I/O */
479 ioend = head;
480 do {
481 next = ioend->io_list;
482 bio = NULL;
483
484 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
485
486 if (!bio) {
487 retry:
488 bio = xfs_alloc_ioend_bio(bh);
489 } else if (bh->b_blocknr != lastblock + 1) {
490 xfs_submit_ioend_bio(wbc, ioend, bio);
491 goto retry;
492 }
493
494 if (bio_add_buffer(bio, bh) != bh->b_size) {
495 xfs_submit_ioend_bio(wbc, ioend, bio);
496 goto retry;
497 }
498
499 lastblock = bh->b_blocknr;
500 }
501 if (bio)
502 xfs_submit_ioend_bio(wbc, ioend, bio);
503 xfs_finish_ioend(ioend);
504 } while ((ioend = next) != NULL);
505 }
506
507 /*
508 * Cancel submission of all buffer_heads so far in this endio.
509 * Toss the endio too. Only ever called for the initial page
510 * in a writepage request, so only ever one page.
511 */
512 STATIC void
513 xfs_cancel_ioend(
514 xfs_ioend_t *ioend)
515 {
516 xfs_ioend_t *next;
517 struct buffer_head *bh, *next_bh;
518
519 do {
520 next = ioend->io_list;
521 bh = ioend->io_buffer_head;
522 do {
523 next_bh = bh->b_private;
524 clear_buffer_async_write(bh);
525 unlock_buffer(bh);
526 } while ((bh = next_bh) != NULL);
527
528 xfs_ioend_wake(XFS_I(ioend->io_inode));
529 mempool_free(ioend, xfs_ioend_pool);
530 } while ((ioend = next) != NULL);
531 }
532
533 /*
534 * Test to see if we've been building up a completion structure for
535 * earlier buffers -- if so, we try to append to this ioend if we
536 * can, otherwise we finish off any current ioend and start another.
537 * Return true if we've finished the given ioend.
538 */
539 STATIC void
540 xfs_add_to_ioend(
541 struct inode *inode,
542 struct buffer_head *bh,
543 xfs_off_t offset,
544 unsigned int type,
545 xfs_ioend_t **result,
546 int need_ioend)
547 {
548 xfs_ioend_t *ioend = *result;
549
550 if (!ioend || need_ioend || type != ioend->io_type) {
551 xfs_ioend_t *previous = *result;
552
553 ioend = xfs_alloc_ioend(inode, type);
554 ioend->io_offset = offset;
555 ioend->io_buffer_head = bh;
556 ioend->io_buffer_tail = bh;
557 if (previous)
558 previous->io_list = ioend;
559 *result = ioend;
560 } else {
561 ioend->io_buffer_tail->b_private = bh;
562 ioend->io_buffer_tail = bh;
563 }
564
565 bh->b_private = NULL;
566 ioend->io_size += bh->b_size;
567 }
568
569 STATIC void
570 xfs_map_buffer(
571 struct inode *inode,
572 struct buffer_head *bh,
573 struct xfs_bmbt_irec *imap,
574 xfs_off_t offset)
575 {
576 sector_t bn;
577 struct xfs_mount *m = XFS_I(inode)->i_mount;
578 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
579 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
580
581 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
582 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
583
584 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
585 ((offset - iomap_offset) >> inode->i_blkbits);
586
587 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
588
589 bh->b_blocknr = bn;
590 set_buffer_mapped(bh);
591 }
592
593 STATIC void
594 xfs_map_at_offset(
595 struct inode *inode,
596 struct buffer_head *bh,
597 struct xfs_bmbt_irec *imap,
598 xfs_off_t offset)
599 {
600 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
601 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
602
603 lock_buffer(bh);
604 xfs_map_buffer(inode, bh, imap, offset);
605 bh->b_bdev = xfs_find_bdev_for_inode(inode);
606 set_buffer_mapped(bh);
607 clear_buffer_delay(bh);
608 clear_buffer_unwritten(bh);
609 }
610
611 /*
612 * Look for a page at index that is suitable for clustering.
613 */
614 STATIC unsigned int
615 xfs_probe_page(
616 struct page *page,
617 unsigned int pg_offset)
618 {
619 struct buffer_head *bh, *head;
620 int ret = 0;
621
622 if (PageWriteback(page))
623 return 0;
624 if (!PageDirty(page))
625 return 0;
626 if (!page->mapping)
627 return 0;
628 if (!page_has_buffers(page))
629 return 0;
630
631 bh = head = page_buffers(page);
632 do {
633 if (!buffer_uptodate(bh))
634 break;
635 if (!buffer_mapped(bh))
636 break;
637 ret += bh->b_size;
638 if (ret >= pg_offset)
639 break;
640 } while ((bh = bh->b_this_page) != head);
641
642 return ret;
643 }
644
645 STATIC size_t
646 xfs_probe_cluster(
647 struct inode *inode,
648 struct page *startpage,
649 struct buffer_head *bh,
650 struct buffer_head *head)
651 {
652 struct pagevec pvec;
653 pgoff_t tindex, tlast, tloff;
654 size_t total = 0;
655 int done = 0, i;
656
657 /* First sum forwards in this page */
658 do {
659 if (!buffer_uptodate(bh) || !buffer_mapped(bh))
660 return total;
661 total += bh->b_size;
662 } while ((bh = bh->b_this_page) != head);
663
664 /* if we reached the end of the page, sum forwards in following pages */
665 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
666 tindex = startpage->index + 1;
667
668 /* Prune this back to avoid pathological behavior */
669 tloff = min(tlast, startpage->index + 64);
670
671 pagevec_init(&pvec, 0);
672 while (!done && tindex <= tloff) {
673 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
674
675 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
676 break;
677
678 for (i = 0; i < pagevec_count(&pvec); i++) {
679 struct page *page = pvec.pages[i];
680 size_t pg_offset, pg_len = 0;
681
682 if (tindex == tlast) {
683 pg_offset =
684 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
685 if (!pg_offset) {
686 done = 1;
687 break;
688 }
689 } else
690 pg_offset = PAGE_CACHE_SIZE;
691
692 if (page->index == tindex && trylock_page(page)) {
693 pg_len = xfs_probe_page(page, pg_offset);
694 unlock_page(page);
695 }
696
697 if (!pg_len) {
698 done = 1;
699 break;
700 }
701
702 total += pg_len;
703 tindex++;
704 }
705
706 pagevec_release(&pvec);
707 cond_resched();
708 }
709
710 return total;
711 }
712
713 /*
714 * Test if a given page is suitable for writing as part of an unwritten
715 * or delayed allocate extent.
716 */
717 STATIC int
718 xfs_is_delayed_page(
719 struct page *page,
720 unsigned int type)
721 {
722 if (PageWriteback(page))
723 return 0;
724
725 if (page->mapping && page_has_buffers(page)) {
726 struct buffer_head *bh, *head;
727 int acceptable = 0;
728
729 bh = head = page_buffers(page);
730 do {
731 if (buffer_unwritten(bh))
732 acceptable = (type == IO_UNWRITTEN);
733 else if (buffer_delay(bh))
734 acceptable = (type == IO_DELAY);
735 else if (buffer_dirty(bh) && buffer_mapped(bh))
736 acceptable = (type == IO_NEW);
737 else
738 break;
739 } while ((bh = bh->b_this_page) != head);
740
741 if (acceptable)
742 return 1;
743 }
744
745 return 0;
746 }
747
748 /*
749 * Allocate & map buffers for page given the extent map. Write it out.
750 * except for the original page of a writepage, this is called on
751 * delalloc/unwritten pages only, for the original page it is possible
752 * that the page has no mapping at all.
753 */
754 STATIC int
755 xfs_convert_page(
756 struct inode *inode,
757 struct page *page,
758 loff_t tindex,
759 struct xfs_bmbt_irec *imap,
760 xfs_ioend_t **ioendp,
761 struct writeback_control *wbc,
762 int all_bh)
763 {
764 struct buffer_head *bh, *head;
765 xfs_off_t end_offset;
766 unsigned long p_offset;
767 unsigned int type;
768 int len, page_dirty;
769 int count = 0, done = 0, uptodate = 1;
770 xfs_off_t offset = page_offset(page);
771
772 if (page->index != tindex)
773 goto fail;
774 if (!trylock_page(page))
775 goto fail;
776 if (PageWriteback(page))
777 goto fail_unlock_page;
778 if (page->mapping != inode->i_mapping)
779 goto fail_unlock_page;
780 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
781 goto fail_unlock_page;
782
783 /*
784 * page_dirty is initially a count of buffers on the page before
785 * EOF and is decremented as we move each into a cleanable state.
786 *
787 * Derivation:
788 *
789 * End offset is the highest offset that this page should represent.
790 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
791 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
792 * hence give us the correct page_dirty count. On any other page,
793 * it will be zero and in that case we need page_dirty to be the
794 * count of buffers on the page.
795 */
796 end_offset = min_t(unsigned long long,
797 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
798 i_size_read(inode));
799
800 len = 1 << inode->i_blkbits;
801 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
802 PAGE_CACHE_SIZE);
803 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
804 page_dirty = p_offset / len;
805
806 bh = head = page_buffers(page);
807 do {
808 if (offset >= end_offset)
809 break;
810 if (!buffer_uptodate(bh))
811 uptodate = 0;
812 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
813 done = 1;
814 continue;
815 }
816
817 if (buffer_unwritten(bh) || buffer_delay(bh)) {
818 if (buffer_unwritten(bh))
819 type = IO_UNWRITTEN;
820 else
821 type = IO_DELAY;
822
823 if (!xfs_imap_valid(inode, imap, offset)) {
824 done = 1;
825 continue;
826 }
827
828 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
829 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
830
831 xfs_map_at_offset(inode, bh, imap, offset);
832 xfs_add_to_ioend(inode, bh, offset, type,
833 ioendp, done);
834
835 page_dirty--;
836 count++;
837 } else {
838 type = IO_NEW;
839 if (buffer_mapped(bh) && all_bh) {
840 lock_buffer(bh);
841 xfs_add_to_ioend(inode, bh, offset,
842 type, ioendp, done);
843 count++;
844 page_dirty--;
845 } else {
846 done = 1;
847 }
848 }
849 } while (offset += len, (bh = bh->b_this_page) != head);
850
851 if (uptodate && bh == head)
852 SetPageUptodate(page);
853
854 if (count) {
855 wbc->nr_to_write--;
856 if (wbc->nr_to_write <= 0)
857 done = 1;
858 }
859 xfs_start_page_writeback(page, !page_dirty, count);
860
861 return done;
862 fail_unlock_page:
863 unlock_page(page);
864 fail:
865 return 1;
866 }
867
868 /*
869 * Convert & write out a cluster of pages in the same extent as defined
870 * by mp and following the start page.
871 */
872 STATIC void
873 xfs_cluster_write(
874 struct inode *inode,
875 pgoff_t tindex,
876 struct xfs_bmbt_irec *imap,
877 xfs_ioend_t **ioendp,
878 struct writeback_control *wbc,
879 int all_bh,
880 pgoff_t tlast)
881 {
882 struct pagevec pvec;
883 int done = 0, i;
884
885 pagevec_init(&pvec, 0);
886 while (!done && tindex <= tlast) {
887 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
888
889 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
890 break;
891
892 for (i = 0; i < pagevec_count(&pvec); i++) {
893 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
894 imap, ioendp, wbc, all_bh);
895 if (done)
896 break;
897 }
898
899 pagevec_release(&pvec);
900 cond_resched();
901 }
902 }
903
904 STATIC void
905 xfs_vm_invalidatepage(
906 struct page *page,
907 unsigned long offset)
908 {
909 trace_xfs_invalidatepage(page->mapping->host, page, offset);
910 block_invalidatepage(page, offset);
911 }
912
913 /*
914 * If the page has delalloc buffers on it, we need to punch them out before we
915 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
916 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
917 * is done on that same region - the delalloc extent is returned when none is
918 * supposed to be there.
919 *
920 * We prevent this by truncating away the delalloc regions on the page before
921 * invalidating it. Because they are delalloc, we can do this without needing a
922 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
923 * truncation without a transaction as there is no space left for block
924 * reservation (typically why we see a ENOSPC in writeback).
925 *
926 * This is not a performance critical path, so for now just do the punching a
927 * buffer head at a time.
928 */
929 STATIC void
930 xfs_aops_discard_page(
931 struct page *page)
932 {
933 struct inode *inode = page->mapping->host;
934 struct xfs_inode *ip = XFS_I(inode);
935 struct buffer_head *bh, *head;
936 loff_t offset = page_offset(page);
937 ssize_t len = 1 << inode->i_blkbits;
938
939 if (!xfs_is_delayed_page(page, IO_DELAY))
940 goto out_invalidate;
941
942 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
943 goto out_invalidate;
944
945 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
946 "page discard on page %p, inode 0x%llx, offset %llu.",
947 page, ip->i_ino, offset);
948
949 xfs_ilock(ip, XFS_ILOCK_EXCL);
950 bh = head = page_buffers(page);
951 do {
952 int done;
953 xfs_fileoff_t offset_fsb;
954 xfs_bmbt_irec_t imap;
955 int nimaps = 1;
956 int error;
957 xfs_fsblock_t firstblock;
958 xfs_bmap_free_t flist;
959
960 if (!buffer_delay(bh))
961 goto next_buffer;
962
963 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
964
965 /*
966 * Map the range first and check that it is a delalloc extent
967 * before trying to unmap the range. Otherwise we will be
968 * trying to remove a real extent (which requires a
969 * transaction) or a hole, which is probably a bad idea...
970 */
971 error = xfs_bmapi(NULL, ip, offset_fsb, 1,
972 XFS_BMAPI_ENTIRE, NULL, 0, &imap,
973 &nimaps, NULL);
974
975 if (error) {
976 /* something screwed, just bail */
977 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
978 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
979 "page discard failed delalloc mapping lookup.");
980 }
981 break;
982 }
983 if (!nimaps) {
984 /* nothing there */
985 goto next_buffer;
986 }
987 if (imap.br_startblock != DELAYSTARTBLOCK) {
988 /* been converted, ignore */
989 goto next_buffer;
990 }
991 WARN_ON(imap.br_blockcount == 0);
992
993 /*
994 * Note: while we initialise the firstblock/flist pair, they
995 * should never be used because blocks should never be
996 * allocated or freed for a delalloc extent and hence we need
997 * don't cancel or finish them after the xfs_bunmapi() call.
998 */
999 xfs_bmap_init(&flist, &firstblock);
1000 error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock,
1001 &flist, &done);
1002
1003 ASSERT(!flist.xbf_count && !flist.xbf_first);
1004 if (error) {
1005 /* something screwed, just bail */
1006 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1007 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
1008 "page discard unable to remove delalloc mapping.");
1009 }
1010 break;
1011 }
1012 next_buffer:
1013 offset += len;
1014
1015 } while ((bh = bh->b_this_page) != head);
1016
1017 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1018 out_invalidate:
1019 xfs_vm_invalidatepage(page, 0);
1020 return;
1021 }
1022
1023 /*
1024 * Write out a dirty page.
1025 *
1026 * For delalloc space on the page we need to allocate space and flush it.
1027 * For unwritten space on the page we need to start the conversion to
1028 * regular allocated space.
1029 * For any other dirty buffer heads on the page we should flush them.
1030 *
1031 * If we detect that a transaction would be required to flush the page, we
1032 * have to check the process flags first, if we are already in a transaction
1033 * or disk I/O during allocations is off, we need to fail the writepage and
1034 * redirty the page.
1035 */
1036 STATIC int
1037 xfs_vm_writepage(
1038 struct page *page,
1039 struct writeback_control *wbc)
1040 {
1041 struct inode *inode = page->mapping->host;
1042 int delalloc, unwritten;
1043 struct buffer_head *bh, *head;
1044 struct xfs_bmbt_irec imap;
1045 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1046 loff_t offset;
1047 unsigned int type;
1048 __uint64_t end_offset;
1049 pgoff_t end_index, last_index;
1050 ssize_t size, len;
1051 int flags, err, imap_valid = 0, uptodate = 1;
1052 int count = 0;
1053 int all_bh = 0;
1054
1055 trace_xfs_writepage(inode, page, 0);
1056
1057 ASSERT(page_has_buffers(page));
1058
1059 /*
1060 * Refuse to write the page out if we are called from reclaim context.
1061 *
1062 * This avoids stack overflows when called from deeply used stacks in
1063 * random callers for direct reclaim or memcg reclaim. We explicitly
1064 * allow reclaim from kswapd as the stack usage there is relatively low.
1065 *
1066 * This should really be done by the core VM, but until that happens
1067 * filesystems like XFS, btrfs and ext4 have to take care of this
1068 * by themselves.
1069 */
1070 if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
1071 goto out_fail;
1072
1073 /*
1074 * We need a transaction if there are delalloc or unwritten buffers
1075 * on the page.
1076 *
1077 * If we need a transaction and the process flags say we are already
1078 * in a transaction, or no IO is allowed then mark the page dirty
1079 * again and leave the page as is.
1080 */
1081 xfs_count_page_state(page, &delalloc, &unwritten);
1082 if ((current->flags & PF_FSTRANS) && (delalloc || unwritten))
1083 goto out_fail;
1084
1085 /* Is this page beyond the end of the file? */
1086 offset = i_size_read(inode);
1087 end_index = offset >> PAGE_CACHE_SHIFT;
1088 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1089 if (page->index >= end_index) {
1090 if ((page->index >= end_index + 1) ||
1091 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
1092 unlock_page(page);
1093 return 0;
1094 }
1095 }
1096
1097 end_offset = min_t(unsigned long long,
1098 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
1099 offset);
1100 len = 1 << inode->i_blkbits;
1101
1102 bh = head = page_buffers(page);
1103 offset = page_offset(page);
1104 flags = BMAPI_READ;
1105 type = IO_NEW;
1106
1107 do {
1108 if (offset >= end_offset)
1109 break;
1110 if (!buffer_uptodate(bh))
1111 uptodate = 0;
1112
1113 /*
1114 * A hole may still be marked uptodate because discard_buffer
1115 * leaves the flag set.
1116 */
1117 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1118 ASSERT(!buffer_dirty(bh));
1119 imap_valid = 0;
1120 continue;
1121 }
1122
1123 if (imap_valid)
1124 imap_valid = xfs_imap_valid(inode, &imap, offset);
1125
1126 if (buffer_unwritten(bh) || buffer_delay(bh)) {
1127 int new_ioend = 0;
1128
1129 /*
1130 * Make sure we don't use a read-only iomap
1131 */
1132 if (flags == BMAPI_READ)
1133 imap_valid = 0;
1134
1135 if (buffer_unwritten(bh)) {
1136 type = IO_UNWRITTEN;
1137 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
1138 } else if (buffer_delay(bh)) {
1139 type = IO_DELAY;
1140 flags = BMAPI_ALLOCATE;
1141
1142 if (wbc->sync_mode == WB_SYNC_NONE &&
1143 wbc->nonblocking)
1144 flags |= BMAPI_TRYLOCK;
1145 }
1146
1147 if (!imap_valid) {
1148 /*
1149 * If we didn't have a valid mapping then we
1150 * need to ensure that we put the new mapping
1151 * in a new ioend structure. This needs to be
1152 * done to ensure that the ioends correctly
1153 * reflect the block mappings at io completion
1154 * for unwritten extent conversion.
1155 */
1156 new_ioend = 1;
1157 err = xfs_map_blocks(inode, offset, len,
1158 &imap, flags);
1159 if (err)
1160 goto error;
1161 imap_valid = xfs_imap_valid(inode, &imap,
1162 offset);
1163 }
1164 if (imap_valid) {
1165 xfs_map_at_offset(inode, bh, &imap, offset);
1166 xfs_add_to_ioend(inode, bh, offset, type,
1167 &ioend, new_ioend);
1168 count++;
1169 }
1170 } else if (buffer_uptodate(bh)) {
1171 /*
1172 * we got here because the buffer is already mapped.
1173 * That means it must already have extents allocated
1174 * underneath it. Map the extent by reading it.
1175 */
1176 if (!imap_valid || flags != BMAPI_READ) {
1177 flags = BMAPI_READ;
1178 size = xfs_probe_cluster(inode, page, bh, head);
1179 err = xfs_map_blocks(inode, offset, size,
1180 &imap, flags);
1181 if (err)
1182 goto error;
1183 imap_valid = xfs_imap_valid(inode, &imap,
1184 offset);
1185 }
1186
1187 /*
1188 * We set the type to IO_NEW in case we are doing a
1189 * small write at EOF that is extending the file but
1190 * without needing an allocation. We need to update the
1191 * file size on I/O completion in this case so it is
1192 * the same case as having just allocated a new extent
1193 * that we are writing into for the first time.
1194 */
1195 type = IO_NEW;
1196 if (trylock_buffer(bh)) {
1197 if (imap_valid)
1198 all_bh = 1;
1199 xfs_add_to_ioend(inode, bh, offset, type,
1200 &ioend, !imap_valid);
1201 count++;
1202 } else {
1203 imap_valid = 0;
1204 }
1205 } else if (PageUptodate(page)) {
1206 ASSERT(buffer_mapped(bh));
1207 imap_valid = 0;
1208 }
1209
1210 if (!iohead)
1211 iohead = ioend;
1212
1213 } while (offset += len, ((bh = bh->b_this_page) != head));
1214
1215 if (uptodate && bh == head)
1216 SetPageUptodate(page);
1217
1218 xfs_start_page_writeback(page, 1, count);
1219
1220 if (ioend && imap_valid) {
1221 xfs_off_t end_index;
1222
1223 end_index = imap.br_startoff + imap.br_blockcount;
1224
1225 /* to bytes */
1226 end_index <<= inode->i_blkbits;
1227
1228 /* to pages */
1229 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1230
1231 /* check against file size */
1232 if (end_index > last_index)
1233 end_index = last_index;
1234
1235 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1236 wbc, all_bh, end_index);
1237 }
1238
1239 if (iohead)
1240 xfs_submit_ioend(wbc, iohead);
1241
1242 return 0;
1243
1244 error:
1245 if (iohead)
1246 xfs_cancel_ioend(iohead);
1247
1248 xfs_aops_discard_page(page);
1249 ClearPageUptodate(page);
1250 unlock_page(page);
1251 return err;
1252
1253 out_fail:
1254 redirty_page_for_writepage(wbc, page);
1255 unlock_page(page);
1256 return 0;
1257 }
1258
1259 STATIC int
1260 xfs_vm_writepages(
1261 struct address_space *mapping,
1262 struct writeback_control *wbc)
1263 {
1264 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1265 return generic_writepages(mapping, wbc);
1266 }
1267
1268 /*
1269 * Called to move a page into cleanable state - and from there
1270 * to be released. The page should already be clean. We always
1271 * have buffer heads in this call.
1272 *
1273 * Returns 1 if the page is ok to release, 0 otherwise.
1274 */
1275 STATIC int
1276 xfs_vm_releasepage(
1277 struct page *page,
1278 gfp_t gfp_mask)
1279 {
1280 int delalloc, unwritten;
1281
1282 trace_xfs_releasepage(page->mapping->host, page, 0);
1283
1284 xfs_count_page_state(page, &delalloc, &unwritten);
1285
1286 if (WARN_ON(delalloc))
1287 return 0;
1288 if (WARN_ON(unwritten))
1289 return 0;
1290
1291 return try_to_free_buffers(page);
1292 }
1293
1294 STATIC int
1295 __xfs_get_blocks(
1296 struct inode *inode,
1297 sector_t iblock,
1298 struct buffer_head *bh_result,
1299 int create,
1300 int direct)
1301 {
1302 int flags = create ? BMAPI_WRITE : BMAPI_READ;
1303 struct xfs_bmbt_irec imap;
1304 xfs_off_t offset;
1305 ssize_t size;
1306 int nimap = 1;
1307 int new = 0;
1308 int error;
1309
1310 offset = (xfs_off_t)iblock << inode->i_blkbits;
1311 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1312 size = bh_result->b_size;
1313
1314 if (!create && direct && offset >= i_size_read(inode))
1315 return 0;
1316
1317 if (direct && create)
1318 flags |= BMAPI_DIRECT;
1319
1320 error = xfs_iomap(XFS_I(inode), offset, size, flags, &imap, &nimap,
1321 &new);
1322 if (error)
1323 return -error;
1324 if (nimap == 0)
1325 return 0;
1326
1327 if (imap.br_startblock != HOLESTARTBLOCK &&
1328 imap.br_startblock != DELAYSTARTBLOCK) {
1329 /*
1330 * For unwritten extents do not report a disk address on
1331 * the read case (treat as if we're reading into a hole).
1332 */
1333 if (create || !ISUNWRITTEN(&imap))
1334 xfs_map_buffer(inode, bh_result, &imap, offset);
1335 if (create && ISUNWRITTEN(&imap)) {
1336 if (direct)
1337 bh_result->b_private = inode;
1338 set_buffer_unwritten(bh_result);
1339 }
1340 }
1341
1342 /*
1343 * If this is a realtime file, data may be on a different device.
1344 * to that pointed to from the buffer_head b_bdev currently.
1345 */
1346 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1347
1348 /*
1349 * If we previously allocated a block out beyond eof and we are now
1350 * coming back to use it then we will need to flag it as new even if it
1351 * has a disk address.
1352 *
1353 * With sub-block writes into unwritten extents we also need to mark
1354 * the buffer as new so that the unwritten parts of the buffer gets
1355 * correctly zeroed.
1356 */
1357 if (create &&
1358 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1359 (offset >= i_size_read(inode)) ||
1360 (new || ISUNWRITTEN(&imap))))
1361 set_buffer_new(bh_result);
1362
1363 if (imap.br_startblock == DELAYSTARTBLOCK) {
1364 BUG_ON(direct);
1365 if (create) {
1366 set_buffer_uptodate(bh_result);
1367 set_buffer_mapped(bh_result);
1368 set_buffer_delay(bh_result);
1369 }
1370 }
1371
1372 /*
1373 * If this is O_DIRECT or the mpage code calling tell them how large
1374 * the mapping is, so that we can avoid repeated get_blocks calls.
1375 */
1376 if (direct || size > (1 << inode->i_blkbits)) {
1377 xfs_off_t mapping_size;
1378
1379 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1380 mapping_size <<= inode->i_blkbits;
1381
1382 ASSERT(mapping_size > 0);
1383 if (mapping_size > size)
1384 mapping_size = size;
1385 if (mapping_size > LONG_MAX)
1386 mapping_size = LONG_MAX;
1387
1388 bh_result->b_size = mapping_size;
1389 }
1390
1391 return 0;
1392 }
1393
1394 int
1395 xfs_get_blocks(
1396 struct inode *inode,
1397 sector_t iblock,
1398 struct buffer_head *bh_result,
1399 int create)
1400 {
1401 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1402 }
1403
1404 STATIC int
1405 xfs_get_blocks_direct(
1406 struct inode *inode,
1407 sector_t iblock,
1408 struct buffer_head *bh_result,
1409 int create)
1410 {
1411 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1412 }
1413
1414 /*
1415 * Complete a direct I/O write request.
1416 *
1417 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1418 * need to issue a transaction to convert the range from unwritten to written
1419 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1420 * to do this and we are done. But in case this was a successfull AIO
1421 * request this handler is called from interrupt context, from which we
1422 * can't start transactions. In that case offload the I/O completion to
1423 * the workqueues we also use for buffered I/O completion.
1424 */
1425 STATIC void
1426 xfs_end_io_direct_write(
1427 struct kiocb *iocb,
1428 loff_t offset,
1429 ssize_t size,
1430 void *private,
1431 int ret,
1432 bool is_async)
1433 {
1434 struct xfs_ioend *ioend = iocb->private;
1435
1436 /*
1437 * blockdev_direct_IO can return an error even after the I/O
1438 * completion handler was called. Thus we need to protect
1439 * against double-freeing.
1440 */
1441 iocb->private = NULL;
1442
1443 ioend->io_offset = offset;
1444 ioend->io_size = size;
1445 if (private && size > 0)
1446 ioend->io_type = IO_UNWRITTEN;
1447
1448 if (is_async) {
1449 /*
1450 * If we are converting an unwritten extent we need to delay
1451 * the AIO completion until after the unwrittent extent
1452 * conversion has completed, otherwise do it ASAP.
1453 */
1454 if (ioend->io_type == IO_UNWRITTEN) {
1455 ioend->io_iocb = iocb;
1456 ioend->io_result = ret;
1457 } else {
1458 aio_complete(iocb, ret, 0);
1459 }
1460 xfs_finish_ioend(ioend);
1461 } else {
1462 xfs_finish_ioend_sync(ioend);
1463 }
1464 }
1465
1466 STATIC ssize_t
1467 xfs_vm_direct_IO(
1468 int rw,
1469 struct kiocb *iocb,
1470 const struct iovec *iov,
1471 loff_t offset,
1472 unsigned long nr_segs)
1473 {
1474 struct inode *inode = iocb->ki_filp->f_mapping->host;
1475 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1476 ssize_t ret;
1477
1478 if (rw & WRITE) {
1479 iocb->private = xfs_alloc_ioend(inode, IO_NEW);
1480
1481 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov,
1482 offset, nr_segs,
1483 xfs_get_blocks_direct,
1484 xfs_end_io_direct_write);
1485 if (ret != -EIOCBQUEUED && iocb->private)
1486 xfs_destroy_ioend(iocb->private);
1487 } else {
1488 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov,
1489 offset, nr_segs,
1490 xfs_get_blocks_direct,
1491 NULL);
1492 }
1493
1494 return ret;
1495 }
1496
1497 STATIC int
1498 xfs_vm_write_begin(
1499 struct file *file,
1500 struct address_space *mapping,
1501 loff_t pos,
1502 unsigned len,
1503 unsigned flags,
1504 struct page **pagep,
1505 void **fsdata)
1506 {
1507 *pagep = NULL;
1508 return block_write_begin(file, mapping, pos, len, flags | AOP_FLAG_NOFS,
1509 pagep, fsdata, xfs_get_blocks);
1510 }
1511
1512 STATIC sector_t
1513 xfs_vm_bmap(
1514 struct address_space *mapping,
1515 sector_t block)
1516 {
1517 struct inode *inode = (struct inode *)mapping->host;
1518 struct xfs_inode *ip = XFS_I(inode);
1519
1520 trace_xfs_vm_bmap(XFS_I(inode));
1521 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1522 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1523 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1524 return generic_block_bmap(mapping, block, xfs_get_blocks);
1525 }
1526
1527 STATIC int
1528 xfs_vm_readpage(
1529 struct file *unused,
1530 struct page *page)
1531 {
1532 return mpage_readpage(page, xfs_get_blocks);
1533 }
1534
1535 STATIC int
1536 xfs_vm_readpages(
1537 struct file *unused,
1538 struct address_space *mapping,
1539 struct list_head *pages,
1540 unsigned nr_pages)
1541 {
1542 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1543 }
1544
1545 const struct address_space_operations xfs_address_space_operations = {
1546 .readpage = xfs_vm_readpage,
1547 .readpages = xfs_vm_readpages,
1548 .writepage = xfs_vm_writepage,
1549 .writepages = xfs_vm_writepages,
1550 .sync_page = block_sync_page,
1551 .releasepage = xfs_vm_releasepage,
1552 .invalidatepage = xfs_vm_invalidatepage,
1553 .write_begin = xfs_vm_write_begin,
1554 .write_end = generic_write_end,
1555 .bmap = xfs_vm_bmap,
1556 .direct_IO = xfs_vm_direct_IO,
1557 .migratepage = buffer_migrate_page,
1558 .is_partially_uptodate = block_is_partially_uptodate,
1559 .error_remove_page = generic_error_remove_page,
1560 };