]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/linux-2.6/xfs_buf.c
Fix congestion_wait() sync/async vs read/write confusion
[mirror_ubuntu-artful-kernel.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_sb.h"
38 #include "xfs_inum.h"
39 #include "xfs_ag.h"
40 #include "xfs_dmapi.h"
41 #include "xfs_mount.h"
42
43 static kmem_zone_t *xfs_buf_zone;
44 STATIC int xfsbufd(void *);
45 STATIC int xfsbufd_wakeup(int, gfp_t);
46 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
47 static struct shrinker xfs_buf_shake = {
48 .shrink = xfsbufd_wakeup,
49 .seeks = DEFAULT_SEEKS,
50 };
51
52 static struct workqueue_struct *xfslogd_workqueue;
53 struct workqueue_struct *xfsdatad_workqueue;
54 struct workqueue_struct *xfsconvertd_workqueue;
55
56 #ifdef XFS_BUF_TRACE
57 void
58 xfs_buf_trace(
59 xfs_buf_t *bp,
60 char *id,
61 void *data,
62 void *ra)
63 {
64 ktrace_enter(xfs_buf_trace_buf,
65 bp, id,
66 (void *)(unsigned long)bp->b_flags,
67 (void *)(unsigned long)bp->b_hold.counter,
68 (void *)(unsigned long)bp->b_sema.count,
69 (void *)current,
70 data, ra,
71 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
72 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
73 (void *)(unsigned long)bp->b_buffer_length,
74 NULL, NULL, NULL, NULL, NULL);
75 }
76 ktrace_t *xfs_buf_trace_buf;
77 #define XFS_BUF_TRACE_SIZE 4096
78 #define XB_TRACE(bp, id, data) \
79 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
80 #else
81 #define XB_TRACE(bp, id, data) do { } while (0)
82 #endif
83
84 #ifdef XFS_BUF_LOCK_TRACKING
85 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
86 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
87 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
88 #else
89 # define XB_SET_OWNER(bp) do { } while (0)
90 # define XB_CLEAR_OWNER(bp) do { } while (0)
91 # define XB_GET_OWNER(bp) do { } while (0)
92 #endif
93
94 #define xb_to_gfp(flags) \
95 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
96 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
97
98 #define xb_to_km(flags) \
99 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
100
101 #define xfs_buf_allocate(flags) \
102 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
103 #define xfs_buf_deallocate(bp) \
104 kmem_zone_free(xfs_buf_zone, (bp));
105
106 /*
107 * Page Region interfaces.
108 *
109 * For pages in filesystems where the blocksize is smaller than the
110 * pagesize, we use the page->private field (long) to hold a bitmap
111 * of uptodate regions within the page.
112 *
113 * Each such region is "bytes per page / bits per long" bytes long.
114 *
115 * NBPPR == number-of-bytes-per-page-region
116 * BTOPR == bytes-to-page-region (rounded up)
117 * BTOPRT == bytes-to-page-region-truncated (rounded down)
118 */
119 #if (BITS_PER_LONG == 32)
120 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
121 #elif (BITS_PER_LONG == 64)
122 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
123 #else
124 #error BITS_PER_LONG must be 32 or 64
125 #endif
126 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
127 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
128 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
129
130 STATIC unsigned long
131 page_region_mask(
132 size_t offset,
133 size_t length)
134 {
135 unsigned long mask;
136 int first, final;
137
138 first = BTOPR(offset);
139 final = BTOPRT(offset + length - 1);
140 first = min(first, final);
141
142 mask = ~0UL;
143 mask <<= BITS_PER_LONG - (final - first);
144 mask >>= BITS_PER_LONG - (final);
145
146 ASSERT(offset + length <= PAGE_CACHE_SIZE);
147 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
148
149 return mask;
150 }
151
152 STATIC_INLINE void
153 set_page_region(
154 struct page *page,
155 size_t offset,
156 size_t length)
157 {
158 set_page_private(page,
159 page_private(page) | page_region_mask(offset, length));
160 if (page_private(page) == ~0UL)
161 SetPageUptodate(page);
162 }
163
164 STATIC_INLINE int
165 test_page_region(
166 struct page *page,
167 size_t offset,
168 size_t length)
169 {
170 unsigned long mask = page_region_mask(offset, length);
171
172 return (mask && (page_private(page) & mask) == mask);
173 }
174
175 /*
176 * Mapping of multi-page buffers into contiguous virtual space
177 */
178
179 typedef struct a_list {
180 void *vm_addr;
181 struct a_list *next;
182 } a_list_t;
183
184 static a_list_t *as_free_head;
185 static int as_list_len;
186 static DEFINE_SPINLOCK(as_lock);
187
188 /*
189 * Try to batch vunmaps because they are costly.
190 */
191 STATIC void
192 free_address(
193 void *addr)
194 {
195 a_list_t *aentry;
196
197 #ifdef CONFIG_XEN
198 /*
199 * Xen needs to be able to make sure it can get an exclusive
200 * RO mapping of pages it wants to turn into a pagetable. If
201 * a newly allocated page is also still being vmap()ed by xfs,
202 * it will cause pagetable construction to fail. This is a
203 * quick workaround to always eagerly unmap pages so that Xen
204 * is happy.
205 */
206 vunmap(addr);
207 return;
208 #endif
209
210 aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
211 if (likely(aentry)) {
212 spin_lock(&as_lock);
213 aentry->next = as_free_head;
214 aentry->vm_addr = addr;
215 as_free_head = aentry;
216 as_list_len++;
217 spin_unlock(&as_lock);
218 } else {
219 vunmap(addr);
220 }
221 }
222
223 STATIC void
224 purge_addresses(void)
225 {
226 a_list_t *aentry, *old;
227
228 if (as_free_head == NULL)
229 return;
230
231 spin_lock(&as_lock);
232 aentry = as_free_head;
233 as_free_head = NULL;
234 as_list_len = 0;
235 spin_unlock(&as_lock);
236
237 while ((old = aentry) != NULL) {
238 vunmap(aentry->vm_addr);
239 aentry = aentry->next;
240 kfree(old);
241 }
242 }
243
244 /*
245 * Internal xfs_buf_t object manipulation
246 */
247
248 STATIC void
249 _xfs_buf_initialize(
250 xfs_buf_t *bp,
251 xfs_buftarg_t *target,
252 xfs_off_t range_base,
253 size_t range_length,
254 xfs_buf_flags_t flags)
255 {
256 /*
257 * We don't want certain flags to appear in b_flags.
258 */
259 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
260
261 memset(bp, 0, sizeof(xfs_buf_t));
262 atomic_set(&bp->b_hold, 1);
263 init_completion(&bp->b_iowait);
264 INIT_LIST_HEAD(&bp->b_list);
265 INIT_LIST_HEAD(&bp->b_hash_list);
266 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
267 XB_SET_OWNER(bp);
268 bp->b_target = target;
269 bp->b_file_offset = range_base;
270 /*
271 * Set buffer_length and count_desired to the same value initially.
272 * I/O routines should use count_desired, which will be the same in
273 * most cases but may be reset (e.g. XFS recovery).
274 */
275 bp->b_buffer_length = bp->b_count_desired = range_length;
276 bp->b_flags = flags;
277 bp->b_bn = XFS_BUF_DADDR_NULL;
278 atomic_set(&bp->b_pin_count, 0);
279 init_waitqueue_head(&bp->b_waiters);
280
281 XFS_STATS_INC(xb_create);
282 XB_TRACE(bp, "initialize", target);
283 }
284
285 /*
286 * Allocate a page array capable of holding a specified number
287 * of pages, and point the page buf at it.
288 */
289 STATIC int
290 _xfs_buf_get_pages(
291 xfs_buf_t *bp,
292 int page_count,
293 xfs_buf_flags_t flags)
294 {
295 /* Make sure that we have a page list */
296 if (bp->b_pages == NULL) {
297 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
298 bp->b_page_count = page_count;
299 if (page_count <= XB_PAGES) {
300 bp->b_pages = bp->b_page_array;
301 } else {
302 bp->b_pages = kmem_alloc(sizeof(struct page *) *
303 page_count, xb_to_km(flags));
304 if (bp->b_pages == NULL)
305 return -ENOMEM;
306 }
307 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
308 }
309 return 0;
310 }
311
312 /*
313 * Frees b_pages if it was allocated.
314 */
315 STATIC void
316 _xfs_buf_free_pages(
317 xfs_buf_t *bp)
318 {
319 if (bp->b_pages != bp->b_page_array) {
320 kmem_free(bp->b_pages);
321 }
322 }
323
324 /*
325 * Releases the specified buffer.
326 *
327 * The modification state of any associated pages is left unchanged.
328 * The buffer most not be on any hash - use xfs_buf_rele instead for
329 * hashed and refcounted buffers
330 */
331 void
332 xfs_buf_free(
333 xfs_buf_t *bp)
334 {
335 XB_TRACE(bp, "free", 0);
336
337 ASSERT(list_empty(&bp->b_hash_list));
338
339 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
340 uint i;
341
342 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
343 free_address(bp->b_addr - bp->b_offset);
344
345 for (i = 0; i < bp->b_page_count; i++) {
346 struct page *page = bp->b_pages[i];
347
348 if (bp->b_flags & _XBF_PAGE_CACHE)
349 ASSERT(!PagePrivate(page));
350 page_cache_release(page);
351 }
352 _xfs_buf_free_pages(bp);
353 }
354
355 xfs_buf_deallocate(bp);
356 }
357
358 /*
359 * Finds all pages for buffer in question and builds it's page list.
360 */
361 STATIC int
362 _xfs_buf_lookup_pages(
363 xfs_buf_t *bp,
364 uint flags)
365 {
366 struct address_space *mapping = bp->b_target->bt_mapping;
367 size_t blocksize = bp->b_target->bt_bsize;
368 size_t size = bp->b_count_desired;
369 size_t nbytes, offset;
370 gfp_t gfp_mask = xb_to_gfp(flags);
371 unsigned short page_count, i;
372 pgoff_t first;
373 xfs_off_t end;
374 int error;
375
376 end = bp->b_file_offset + bp->b_buffer_length;
377 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
378
379 error = _xfs_buf_get_pages(bp, page_count, flags);
380 if (unlikely(error))
381 return error;
382 bp->b_flags |= _XBF_PAGE_CACHE;
383
384 offset = bp->b_offset;
385 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
386
387 for (i = 0; i < bp->b_page_count; i++) {
388 struct page *page;
389 uint retries = 0;
390
391 retry:
392 page = find_or_create_page(mapping, first + i, gfp_mask);
393 if (unlikely(page == NULL)) {
394 if (flags & XBF_READ_AHEAD) {
395 bp->b_page_count = i;
396 for (i = 0; i < bp->b_page_count; i++)
397 unlock_page(bp->b_pages[i]);
398 return -ENOMEM;
399 }
400
401 /*
402 * This could deadlock.
403 *
404 * But until all the XFS lowlevel code is revamped to
405 * handle buffer allocation failures we can't do much.
406 */
407 if (!(++retries % 100))
408 printk(KERN_ERR
409 "XFS: possible memory allocation "
410 "deadlock in %s (mode:0x%x)\n",
411 __func__, gfp_mask);
412
413 XFS_STATS_INC(xb_page_retries);
414 xfsbufd_wakeup(0, gfp_mask);
415 congestion_wait(BLK_RW_ASYNC, HZ/50);
416 goto retry;
417 }
418
419 XFS_STATS_INC(xb_page_found);
420
421 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
422 size -= nbytes;
423
424 ASSERT(!PagePrivate(page));
425 if (!PageUptodate(page)) {
426 page_count--;
427 if (blocksize >= PAGE_CACHE_SIZE) {
428 if (flags & XBF_READ)
429 bp->b_flags |= _XBF_PAGE_LOCKED;
430 } else if (!PagePrivate(page)) {
431 if (test_page_region(page, offset, nbytes))
432 page_count++;
433 }
434 }
435
436 bp->b_pages[i] = page;
437 offset = 0;
438 }
439
440 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
441 for (i = 0; i < bp->b_page_count; i++)
442 unlock_page(bp->b_pages[i]);
443 }
444
445 if (page_count == bp->b_page_count)
446 bp->b_flags |= XBF_DONE;
447
448 XB_TRACE(bp, "lookup_pages", (long)page_count);
449 return error;
450 }
451
452 /*
453 * Map buffer into kernel address-space if nessecary.
454 */
455 STATIC int
456 _xfs_buf_map_pages(
457 xfs_buf_t *bp,
458 uint flags)
459 {
460 /* A single page buffer is always mappable */
461 if (bp->b_page_count == 1) {
462 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
463 bp->b_flags |= XBF_MAPPED;
464 } else if (flags & XBF_MAPPED) {
465 if (as_list_len > 64)
466 purge_addresses();
467 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
468 VM_MAP, PAGE_KERNEL);
469 if (unlikely(bp->b_addr == NULL))
470 return -ENOMEM;
471 bp->b_addr += bp->b_offset;
472 bp->b_flags |= XBF_MAPPED;
473 }
474
475 return 0;
476 }
477
478 /*
479 * Finding and Reading Buffers
480 */
481
482 /*
483 * Look up, and creates if absent, a lockable buffer for
484 * a given range of an inode. The buffer is returned
485 * locked. If other overlapping buffers exist, they are
486 * released before the new buffer is created and locked,
487 * which may imply that this call will block until those buffers
488 * are unlocked. No I/O is implied by this call.
489 */
490 xfs_buf_t *
491 _xfs_buf_find(
492 xfs_buftarg_t *btp, /* block device target */
493 xfs_off_t ioff, /* starting offset of range */
494 size_t isize, /* length of range */
495 xfs_buf_flags_t flags,
496 xfs_buf_t *new_bp)
497 {
498 xfs_off_t range_base;
499 size_t range_length;
500 xfs_bufhash_t *hash;
501 xfs_buf_t *bp, *n;
502
503 range_base = (ioff << BBSHIFT);
504 range_length = (isize << BBSHIFT);
505
506 /* Check for IOs smaller than the sector size / not sector aligned */
507 ASSERT(!(range_length < (1 << btp->bt_sshift)));
508 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
509
510 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
511
512 spin_lock(&hash->bh_lock);
513
514 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
515 ASSERT(btp == bp->b_target);
516 if (bp->b_file_offset == range_base &&
517 bp->b_buffer_length == range_length) {
518 /*
519 * If we look at something, bring it to the
520 * front of the list for next time.
521 */
522 atomic_inc(&bp->b_hold);
523 list_move(&bp->b_hash_list, &hash->bh_list);
524 goto found;
525 }
526 }
527
528 /* No match found */
529 if (new_bp) {
530 _xfs_buf_initialize(new_bp, btp, range_base,
531 range_length, flags);
532 new_bp->b_hash = hash;
533 list_add(&new_bp->b_hash_list, &hash->bh_list);
534 } else {
535 XFS_STATS_INC(xb_miss_locked);
536 }
537
538 spin_unlock(&hash->bh_lock);
539 return new_bp;
540
541 found:
542 spin_unlock(&hash->bh_lock);
543
544 /* Attempt to get the semaphore without sleeping,
545 * if this does not work then we need to drop the
546 * spinlock and do a hard attempt on the semaphore.
547 */
548 if (down_trylock(&bp->b_sema)) {
549 if (!(flags & XBF_TRYLOCK)) {
550 /* wait for buffer ownership */
551 XB_TRACE(bp, "get_lock", 0);
552 xfs_buf_lock(bp);
553 XFS_STATS_INC(xb_get_locked_waited);
554 } else {
555 /* We asked for a trylock and failed, no need
556 * to look at file offset and length here, we
557 * know that this buffer at least overlaps our
558 * buffer and is locked, therefore our buffer
559 * either does not exist, or is this buffer.
560 */
561 xfs_buf_rele(bp);
562 XFS_STATS_INC(xb_busy_locked);
563 return NULL;
564 }
565 } else {
566 /* trylock worked */
567 XB_SET_OWNER(bp);
568 }
569
570 if (bp->b_flags & XBF_STALE) {
571 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
572 bp->b_flags &= XBF_MAPPED;
573 }
574 XB_TRACE(bp, "got_lock", 0);
575 XFS_STATS_INC(xb_get_locked);
576 return bp;
577 }
578
579 /*
580 * Assembles a buffer covering the specified range.
581 * Storage in memory for all portions of the buffer will be allocated,
582 * although backing storage may not be.
583 */
584 xfs_buf_t *
585 xfs_buf_get_flags(
586 xfs_buftarg_t *target,/* target for buffer */
587 xfs_off_t ioff, /* starting offset of range */
588 size_t isize, /* length of range */
589 xfs_buf_flags_t flags)
590 {
591 xfs_buf_t *bp, *new_bp;
592 int error = 0, i;
593
594 new_bp = xfs_buf_allocate(flags);
595 if (unlikely(!new_bp))
596 return NULL;
597
598 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
599 if (bp == new_bp) {
600 error = _xfs_buf_lookup_pages(bp, flags);
601 if (error)
602 goto no_buffer;
603 } else {
604 xfs_buf_deallocate(new_bp);
605 if (unlikely(bp == NULL))
606 return NULL;
607 }
608
609 for (i = 0; i < bp->b_page_count; i++)
610 mark_page_accessed(bp->b_pages[i]);
611
612 if (!(bp->b_flags & XBF_MAPPED)) {
613 error = _xfs_buf_map_pages(bp, flags);
614 if (unlikely(error)) {
615 printk(KERN_WARNING "%s: failed to map pages\n",
616 __func__);
617 goto no_buffer;
618 }
619 }
620
621 XFS_STATS_INC(xb_get);
622
623 /*
624 * Always fill in the block number now, the mapped cases can do
625 * their own overlay of this later.
626 */
627 bp->b_bn = ioff;
628 bp->b_count_desired = bp->b_buffer_length;
629
630 XB_TRACE(bp, "get", (unsigned long)flags);
631 return bp;
632
633 no_buffer:
634 if (flags & (XBF_LOCK | XBF_TRYLOCK))
635 xfs_buf_unlock(bp);
636 xfs_buf_rele(bp);
637 return NULL;
638 }
639
640 STATIC int
641 _xfs_buf_read(
642 xfs_buf_t *bp,
643 xfs_buf_flags_t flags)
644 {
645 int status;
646
647 XB_TRACE(bp, "_xfs_buf_read", (unsigned long)flags);
648
649 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
650 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
651
652 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
653 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
654 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
655 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
656
657 status = xfs_buf_iorequest(bp);
658 if (!status && !(flags & XBF_ASYNC))
659 status = xfs_buf_iowait(bp);
660 return status;
661 }
662
663 xfs_buf_t *
664 xfs_buf_read_flags(
665 xfs_buftarg_t *target,
666 xfs_off_t ioff,
667 size_t isize,
668 xfs_buf_flags_t flags)
669 {
670 xfs_buf_t *bp;
671
672 flags |= XBF_READ;
673
674 bp = xfs_buf_get_flags(target, ioff, isize, flags);
675 if (bp) {
676 if (!XFS_BUF_ISDONE(bp)) {
677 XB_TRACE(bp, "read", (unsigned long)flags);
678 XFS_STATS_INC(xb_get_read);
679 _xfs_buf_read(bp, flags);
680 } else if (flags & XBF_ASYNC) {
681 XB_TRACE(bp, "read_async", (unsigned long)flags);
682 /*
683 * Read ahead call which is already satisfied,
684 * drop the buffer
685 */
686 goto no_buffer;
687 } else {
688 XB_TRACE(bp, "read_done", (unsigned long)flags);
689 /* We do not want read in the flags */
690 bp->b_flags &= ~XBF_READ;
691 }
692 }
693
694 return bp;
695
696 no_buffer:
697 if (flags & (XBF_LOCK | XBF_TRYLOCK))
698 xfs_buf_unlock(bp);
699 xfs_buf_rele(bp);
700 return NULL;
701 }
702
703 /*
704 * If we are not low on memory then do the readahead in a deadlock
705 * safe manner.
706 */
707 void
708 xfs_buf_readahead(
709 xfs_buftarg_t *target,
710 xfs_off_t ioff,
711 size_t isize,
712 xfs_buf_flags_t flags)
713 {
714 struct backing_dev_info *bdi;
715
716 bdi = target->bt_mapping->backing_dev_info;
717 if (bdi_read_congested(bdi))
718 return;
719
720 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
721 xfs_buf_read_flags(target, ioff, isize, flags);
722 }
723
724 xfs_buf_t *
725 xfs_buf_get_empty(
726 size_t len,
727 xfs_buftarg_t *target)
728 {
729 xfs_buf_t *bp;
730
731 bp = xfs_buf_allocate(0);
732 if (bp)
733 _xfs_buf_initialize(bp, target, 0, len, 0);
734 return bp;
735 }
736
737 static inline struct page *
738 mem_to_page(
739 void *addr)
740 {
741 if ((!is_vmalloc_addr(addr))) {
742 return virt_to_page(addr);
743 } else {
744 return vmalloc_to_page(addr);
745 }
746 }
747
748 int
749 xfs_buf_associate_memory(
750 xfs_buf_t *bp,
751 void *mem,
752 size_t len)
753 {
754 int rval;
755 int i = 0;
756 unsigned long pageaddr;
757 unsigned long offset;
758 size_t buflen;
759 int page_count;
760
761 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
762 offset = (unsigned long)mem - pageaddr;
763 buflen = PAGE_CACHE_ALIGN(len + offset);
764 page_count = buflen >> PAGE_CACHE_SHIFT;
765
766 /* Free any previous set of page pointers */
767 if (bp->b_pages)
768 _xfs_buf_free_pages(bp);
769
770 bp->b_pages = NULL;
771 bp->b_addr = mem;
772
773 rval = _xfs_buf_get_pages(bp, page_count, 0);
774 if (rval)
775 return rval;
776
777 bp->b_offset = offset;
778
779 for (i = 0; i < bp->b_page_count; i++) {
780 bp->b_pages[i] = mem_to_page((void *)pageaddr);
781 pageaddr += PAGE_CACHE_SIZE;
782 }
783
784 bp->b_count_desired = len;
785 bp->b_buffer_length = buflen;
786 bp->b_flags |= XBF_MAPPED;
787 bp->b_flags &= ~_XBF_PAGE_LOCKED;
788
789 return 0;
790 }
791
792 xfs_buf_t *
793 xfs_buf_get_noaddr(
794 size_t len,
795 xfs_buftarg_t *target)
796 {
797 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
798 int error, i;
799 xfs_buf_t *bp;
800
801 bp = xfs_buf_allocate(0);
802 if (unlikely(bp == NULL))
803 goto fail;
804 _xfs_buf_initialize(bp, target, 0, len, 0);
805
806 error = _xfs_buf_get_pages(bp, page_count, 0);
807 if (error)
808 goto fail_free_buf;
809
810 for (i = 0; i < page_count; i++) {
811 bp->b_pages[i] = alloc_page(GFP_KERNEL);
812 if (!bp->b_pages[i])
813 goto fail_free_mem;
814 }
815 bp->b_flags |= _XBF_PAGES;
816
817 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
818 if (unlikely(error)) {
819 printk(KERN_WARNING "%s: failed to map pages\n",
820 __func__);
821 goto fail_free_mem;
822 }
823
824 xfs_buf_unlock(bp);
825
826 XB_TRACE(bp, "no_daddr", len);
827 return bp;
828
829 fail_free_mem:
830 while (--i >= 0)
831 __free_page(bp->b_pages[i]);
832 _xfs_buf_free_pages(bp);
833 fail_free_buf:
834 xfs_buf_deallocate(bp);
835 fail:
836 return NULL;
837 }
838
839 /*
840 * Increment reference count on buffer, to hold the buffer concurrently
841 * with another thread which may release (free) the buffer asynchronously.
842 * Must hold the buffer already to call this function.
843 */
844 void
845 xfs_buf_hold(
846 xfs_buf_t *bp)
847 {
848 atomic_inc(&bp->b_hold);
849 XB_TRACE(bp, "hold", 0);
850 }
851
852 /*
853 * Releases a hold on the specified buffer. If the
854 * the hold count is 1, calls xfs_buf_free.
855 */
856 void
857 xfs_buf_rele(
858 xfs_buf_t *bp)
859 {
860 xfs_bufhash_t *hash = bp->b_hash;
861
862 XB_TRACE(bp, "rele", bp->b_relse);
863
864 if (unlikely(!hash)) {
865 ASSERT(!bp->b_relse);
866 if (atomic_dec_and_test(&bp->b_hold))
867 xfs_buf_free(bp);
868 return;
869 }
870
871 ASSERT(atomic_read(&bp->b_hold) > 0);
872 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
873 if (bp->b_relse) {
874 atomic_inc(&bp->b_hold);
875 spin_unlock(&hash->bh_lock);
876 (*(bp->b_relse)) (bp);
877 } else if (bp->b_flags & XBF_FS_MANAGED) {
878 spin_unlock(&hash->bh_lock);
879 } else {
880 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
881 list_del_init(&bp->b_hash_list);
882 spin_unlock(&hash->bh_lock);
883 xfs_buf_free(bp);
884 }
885 }
886 }
887
888
889 /*
890 * Mutual exclusion on buffers. Locking model:
891 *
892 * Buffers associated with inodes for which buffer locking
893 * is not enabled are not protected by semaphores, and are
894 * assumed to be exclusively owned by the caller. There is a
895 * spinlock in the buffer, used by the caller when concurrent
896 * access is possible.
897 */
898
899 /*
900 * Locks a buffer object, if it is not already locked.
901 * Note that this in no way locks the underlying pages, so it is only
902 * useful for synchronizing concurrent use of buffer objects, not for
903 * synchronizing independent access to the underlying pages.
904 */
905 int
906 xfs_buf_cond_lock(
907 xfs_buf_t *bp)
908 {
909 int locked;
910
911 locked = down_trylock(&bp->b_sema) == 0;
912 if (locked) {
913 XB_SET_OWNER(bp);
914 }
915 XB_TRACE(bp, "cond_lock", (long)locked);
916 return locked ? 0 : -EBUSY;
917 }
918
919 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
920 int
921 xfs_buf_lock_value(
922 xfs_buf_t *bp)
923 {
924 return bp->b_sema.count;
925 }
926 #endif
927
928 /*
929 * Locks a buffer object.
930 * Note that this in no way locks the underlying pages, so it is only
931 * useful for synchronizing concurrent use of buffer objects, not for
932 * synchronizing independent access to the underlying pages.
933 */
934 void
935 xfs_buf_lock(
936 xfs_buf_t *bp)
937 {
938 XB_TRACE(bp, "lock", 0);
939 if (atomic_read(&bp->b_io_remaining))
940 blk_run_address_space(bp->b_target->bt_mapping);
941 down(&bp->b_sema);
942 XB_SET_OWNER(bp);
943 XB_TRACE(bp, "locked", 0);
944 }
945
946 /*
947 * Releases the lock on the buffer object.
948 * If the buffer is marked delwri but is not queued, do so before we
949 * unlock the buffer as we need to set flags correctly. We also need to
950 * take a reference for the delwri queue because the unlocker is going to
951 * drop their's and they don't know we just queued it.
952 */
953 void
954 xfs_buf_unlock(
955 xfs_buf_t *bp)
956 {
957 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
958 atomic_inc(&bp->b_hold);
959 bp->b_flags |= XBF_ASYNC;
960 xfs_buf_delwri_queue(bp, 0);
961 }
962
963 XB_CLEAR_OWNER(bp);
964 up(&bp->b_sema);
965 XB_TRACE(bp, "unlock", 0);
966 }
967
968
969 /*
970 * Pinning Buffer Storage in Memory
971 * Ensure that no attempt to force a buffer to disk will succeed.
972 */
973 void
974 xfs_buf_pin(
975 xfs_buf_t *bp)
976 {
977 atomic_inc(&bp->b_pin_count);
978 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
979 }
980
981 void
982 xfs_buf_unpin(
983 xfs_buf_t *bp)
984 {
985 if (atomic_dec_and_test(&bp->b_pin_count))
986 wake_up_all(&bp->b_waiters);
987 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
988 }
989
990 int
991 xfs_buf_ispin(
992 xfs_buf_t *bp)
993 {
994 return atomic_read(&bp->b_pin_count);
995 }
996
997 STATIC void
998 xfs_buf_wait_unpin(
999 xfs_buf_t *bp)
1000 {
1001 DECLARE_WAITQUEUE (wait, current);
1002
1003 if (atomic_read(&bp->b_pin_count) == 0)
1004 return;
1005
1006 add_wait_queue(&bp->b_waiters, &wait);
1007 for (;;) {
1008 set_current_state(TASK_UNINTERRUPTIBLE);
1009 if (atomic_read(&bp->b_pin_count) == 0)
1010 break;
1011 if (atomic_read(&bp->b_io_remaining))
1012 blk_run_address_space(bp->b_target->bt_mapping);
1013 schedule();
1014 }
1015 remove_wait_queue(&bp->b_waiters, &wait);
1016 set_current_state(TASK_RUNNING);
1017 }
1018
1019 /*
1020 * Buffer Utility Routines
1021 */
1022
1023 STATIC void
1024 xfs_buf_iodone_work(
1025 struct work_struct *work)
1026 {
1027 xfs_buf_t *bp =
1028 container_of(work, xfs_buf_t, b_iodone_work);
1029
1030 /*
1031 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
1032 * ordered flag and reissue them. Because we can't tell the higher
1033 * layers directly that they should not issue ordered I/O anymore, they
1034 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
1035 */
1036 if ((bp->b_error == EOPNOTSUPP) &&
1037 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
1038 XB_TRACE(bp, "ordered_retry", bp->b_iodone);
1039 bp->b_flags &= ~XBF_ORDERED;
1040 bp->b_flags |= _XFS_BARRIER_FAILED;
1041 xfs_buf_iorequest(bp);
1042 } else if (bp->b_iodone)
1043 (*(bp->b_iodone))(bp);
1044 else if (bp->b_flags & XBF_ASYNC)
1045 xfs_buf_relse(bp);
1046 }
1047
1048 void
1049 xfs_buf_ioend(
1050 xfs_buf_t *bp,
1051 int schedule)
1052 {
1053 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1054 if (bp->b_error == 0)
1055 bp->b_flags |= XBF_DONE;
1056
1057 XB_TRACE(bp, "iodone", bp->b_iodone);
1058
1059 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1060 if (schedule) {
1061 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1062 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1063 } else {
1064 xfs_buf_iodone_work(&bp->b_iodone_work);
1065 }
1066 } else {
1067 complete(&bp->b_iowait);
1068 }
1069 }
1070
1071 void
1072 xfs_buf_ioerror(
1073 xfs_buf_t *bp,
1074 int error)
1075 {
1076 ASSERT(error >= 0 && error <= 0xffff);
1077 bp->b_error = (unsigned short)error;
1078 XB_TRACE(bp, "ioerror", (unsigned long)error);
1079 }
1080
1081 int
1082 xfs_bawrite(
1083 void *mp,
1084 struct xfs_buf *bp)
1085 {
1086 XB_TRACE(bp, "bawrite", 0);
1087
1088 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
1089
1090 xfs_buf_delwri_dequeue(bp);
1091
1092 bp->b_flags &= ~(XBF_READ | XBF_DELWRI | XBF_READ_AHEAD);
1093 bp->b_flags |= (XBF_WRITE | XBF_ASYNC | _XBF_RUN_QUEUES);
1094
1095 bp->b_mount = mp;
1096 bp->b_strat = xfs_bdstrat_cb;
1097 return xfs_bdstrat_cb(bp);
1098 }
1099
1100 void
1101 xfs_bdwrite(
1102 void *mp,
1103 struct xfs_buf *bp)
1104 {
1105 XB_TRACE(bp, "bdwrite", 0);
1106
1107 bp->b_strat = xfs_bdstrat_cb;
1108 bp->b_mount = mp;
1109
1110 bp->b_flags &= ~XBF_READ;
1111 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1112
1113 xfs_buf_delwri_queue(bp, 1);
1114 }
1115
1116 STATIC_INLINE void
1117 _xfs_buf_ioend(
1118 xfs_buf_t *bp,
1119 int schedule)
1120 {
1121 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1122 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1123 xfs_buf_ioend(bp, schedule);
1124 }
1125 }
1126
1127 STATIC void
1128 xfs_buf_bio_end_io(
1129 struct bio *bio,
1130 int error)
1131 {
1132 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1133 unsigned int blocksize = bp->b_target->bt_bsize;
1134 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1135
1136 xfs_buf_ioerror(bp, -error);
1137
1138 do {
1139 struct page *page = bvec->bv_page;
1140
1141 ASSERT(!PagePrivate(page));
1142 if (unlikely(bp->b_error)) {
1143 if (bp->b_flags & XBF_READ)
1144 ClearPageUptodate(page);
1145 } else if (blocksize >= PAGE_CACHE_SIZE) {
1146 SetPageUptodate(page);
1147 } else if (!PagePrivate(page) &&
1148 (bp->b_flags & _XBF_PAGE_CACHE)) {
1149 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1150 }
1151
1152 if (--bvec >= bio->bi_io_vec)
1153 prefetchw(&bvec->bv_page->flags);
1154
1155 if (bp->b_flags & _XBF_PAGE_LOCKED)
1156 unlock_page(page);
1157 } while (bvec >= bio->bi_io_vec);
1158
1159 _xfs_buf_ioend(bp, 1);
1160 bio_put(bio);
1161 }
1162
1163 STATIC void
1164 _xfs_buf_ioapply(
1165 xfs_buf_t *bp)
1166 {
1167 int rw, map_i, total_nr_pages, nr_pages;
1168 struct bio *bio;
1169 int offset = bp->b_offset;
1170 int size = bp->b_count_desired;
1171 sector_t sector = bp->b_bn;
1172 unsigned int blocksize = bp->b_target->bt_bsize;
1173
1174 total_nr_pages = bp->b_page_count;
1175 map_i = 0;
1176
1177 if (bp->b_flags & XBF_ORDERED) {
1178 ASSERT(!(bp->b_flags & XBF_READ));
1179 rw = WRITE_BARRIER;
1180 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1181 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1182 bp->b_flags &= ~_XBF_RUN_QUEUES;
1183 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1184 } else {
1185 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1186 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1187 }
1188
1189 /* Special code path for reading a sub page size buffer in --
1190 * we populate up the whole page, and hence the other metadata
1191 * in the same page. This optimization is only valid when the
1192 * filesystem block size is not smaller than the page size.
1193 */
1194 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1195 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1196 (XBF_READ|_XBF_PAGE_LOCKED)) &&
1197 (blocksize >= PAGE_CACHE_SIZE)) {
1198 bio = bio_alloc(GFP_NOIO, 1);
1199
1200 bio->bi_bdev = bp->b_target->bt_bdev;
1201 bio->bi_sector = sector - (offset >> BBSHIFT);
1202 bio->bi_end_io = xfs_buf_bio_end_io;
1203 bio->bi_private = bp;
1204
1205 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1206 size = 0;
1207
1208 atomic_inc(&bp->b_io_remaining);
1209
1210 goto submit_io;
1211 }
1212
1213 next_chunk:
1214 atomic_inc(&bp->b_io_remaining);
1215 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1216 if (nr_pages > total_nr_pages)
1217 nr_pages = total_nr_pages;
1218
1219 bio = bio_alloc(GFP_NOIO, nr_pages);
1220 bio->bi_bdev = bp->b_target->bt_bdev;
1221 bio->bi_sector = sector;
1222 bio->bi_end_io = xfs_buf_bio_end_io;
1223 bio->bi_private = bp;
1224
1225 for (; size && nr_pages; nr_pages--, map_i++) {
1226 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1227
1228 if (nbytes > size)
1229 nbytes = size;
1230
1231 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1232 if (rbytes < nbytes)
1233 break;
1234
1235 offset = 0;
1236 sector += nbytes >> BBSHIFT;
1237 size -= nbytes;
1238 total_nr_pages--;
1239 }
1240
1241 submit_io:
1242 if (likely(bio->bi_size)) {
1243 submit_bio(rw, bio);
1244 if (size)
1245 goto next_chunk;
1246 } else {
1247 bio_put(bio);
1248 xfs_buf_ioerror(bp, EIO);
1249 }
1250 }
1251
1252 int
1253 xfs_buf_iorequest(
1254 xfs_buf_t *bp)
1255 {
1256 XB_TRACE(bp, "iorequest", 0);
1257
1258 if (bp->b_flags & XBF_DELWRI) {
1259 xfs_buf_delwri_queue(bp, 1);
1260 return 0;
1261 }
1262
1263 if (bp->b_flags & XBF_WRITE) {
1264 xfs_buf_wait_unpin(bp);
1265 }
1266
1267 xfs_buf_hold(bp);
1268
1269 /* Set the count to 1 initially, this will stop an I/O
1270 * completion callout which happens before we have started
1271 * all the I/O from calling xfs_buf_ioend too early.
1272 */
1273 atomic_set(&bp->b_io_remaining, 1);
1274 _xfs_buf_ioapply(bp);
1275 _xfs_buf_ioend(bp, 0);
1276
1277 xfs_buf_rele(bp);
1278 return 0;
1279 }
1280
1281 /*
1282 * Waits for I/O to complete on the buffer supplied.
1283 * It returns immediately if no I/O is pending.
1284 * It returns the I/O error code, if any, or 0 if there was no error.
1285 */
1286 int
1287 xfs_buf_iowait(
1288 xfs_buf_t *bp)
1289 {
1290 XB_TRACE(bp, "iowait", 0);
1291 if (atomic_read(&bp->b_io_remaining))
1292 blk_run_address_space(bp->b_target->bt_mapping);
1293 wait_for_completion(&bp->b_iowait);
1294 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1295 return bp->b_error;
1296 }
1297
1298 xfs_caddr_t
1299 xfs_buf_offset(
1300 xfs_buf_t *bp,
1301 size_t offset)
1302 {
1303 struct page *page;
1304
1305 if (bp->b_flags & XBF_MAPPED)
1306 return XFS_BUF_PTR(bp) + offset;
1307
1308 offset += bp->b_offset;
1309 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1310 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1311 }
1312
1313 /*
1314 * Move data into or out of a buffer.
1315 */
1316 void
1317 xfs_buf_iomove(
1318 xfs_buf_t *bp, /* buffer to process */
1319 size_t boff, /* starting buffer offset */
1320 size_t bsize, /* length to copy */
1321 caddr_t data, /* data address */
1322 xfs_buf_rw_t mode) /* read/write/zero flag */
1323 {
1324 size_t bend, cpoff, csize;
1325 struct page *page;
1326
1327 bend = boff + bsize;
1328 while (boff < bend) {
1329 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1330 cpoff = xfs_buf_poff(boff + bp->b_offset);
1331 csize = min_t(size_t,
1332 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1333
1334 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1335
1336 switch (mode) {
1337 case XBRW_ZERO:
1338 memset(page_address(page) + cpoff, 0, csize);
1339 break;
1340 case XBRW_READ:
1341 memcpy(data, page_address(page) + cpoff, csize);
1342 break;
1343 case XBRW_WRITE:
1344 memcpy(page_address(page) + cpoff, data, csize);
1345 }
1346
1347 boff += csize;
1348 data += csize;
1349 }
1350 }
1351
1352 /*
1353 * Handling of buffer targets (buftargs).
1354 */
1355
1356 /*
1357 * Wait for any bufs with callbacks that have been submitted but
1358 * have not yet returned... walk the hash list for the target.
1359 */
1360 void
1361 xfs_wait_buftarg(
1362 xfs_buftarg_t *btp)
1363 {
1364 xfs_buf_t *bp, *n;
1365 xfs_bufhash_t *hash;
1366 uint i;
1367
1368 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1369 hash = &btp->bt_hash[i];
1370 again:
1371 spin_lock(&hash->bh_lock);
1372 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1373 ASSERT(btp == bp->b_target);
1374 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1375 spin_unlock(&hash->bh_lock);
1376 /*
1377 * Catch superblock reference count leaks
1378 * immediately
1379 */
1380 BUG_ON(bp->b_bn == 0);
1381 delay(100);
1382 goto again;
1383 }
1384 }
1385 spin_unlock(&hash->bh_lock);
1386 }
1387 }
1388
1389 /*
1390 * Allocate buffer hash table for a given target.
1391 * For devices containing metadata (i.e. not the log/realtime devices)
1392 * we need to allocate a much larger hash table.
1393 */
1394 STATIC void
1395 xfs_alloc_bufhash(
1396 xfs_buftarg_t *btp,
1397 int external)
1398 {
1399 unsigned int i;
1400
1401 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1402 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1403 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1404 sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1405 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1406 spin_lock_init(&btp->bt_hash[i].bh_lock);
1407 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1408 }
1409 }
1410
1411 STATIC void
1412 xfs_free_bufhash(
1413 xfs_buftarg_t *btp)
1414 {
1415 kmem_free(btp->bt_hash);
1416 btp->bt_hash = NULL;
1417 }
1418
1419 /*
1420 * buftarg list for delwrite queue processing
1421 */
1422 static LIST_HEAD(xfs_buftarg_list);
1423 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1424
1425 STATIC void
1426 xfs_register_buftarg(
1427 xfs_buftarg_t *btp)
1428 {
1429 spin_lock(&xfs_buftarg_lock);
1430 list_add(&btp->bt_list, &xfs_buftarg_list);
1431 spin_unlock(&xfs_buftarg_lock);
1432 }
1433
1434 STATIC void
1435 xfs_unregister_buftarg(
1436 xfs_buftarg_t *btp)
1437 {
1438 spin_lock(&xfs_buftarg_lock);
1439 list_del(&btp->bt_list);
1440 spin_unlock(&xfs_buftarg_lock);
1441 }
1442
1443 void
1444 xfs_free_buftarg(
1445 struct xfs_mount *mp,
1446 struct xfs_buftarg *btp)
1447 {
1448 xfs_flush_buftarg(btp, 1);
1449 if (mp->m_flags & XFS_MOUNT_BARRIER)
1450 xfs_blkdev_issue_flush(btp);
1451 xfs_free_bufhash(btp);
1452 iput(btp->bt_mapping->host);
1453
1454 /* Unregister the buftarg first so that we don't get a
1455 * wakeup finding a non-existent task
1456 */
1457 xfs_unregister_buftarg(btp);
1458 kthread_stop(btp->bt_task);
1459
1460 kmem_free(btp);
1461 }
1462
1463 STATIC int
1464 xfs_setsize_buftarg_flags(
1465 xfs_buftarg_t *btp,
1466 unsigned int blocksize,
1467 unsigned int sectorsize,
1468 int verbose)
1469 {
1470 btp->bt_bsize = blocksize;
1471 btp->bt_sshift = ffs(sectorsize) - 1;
1472 btp->bt_smask = sectorsize - 1;
1473
1474 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1475 printk(KERN_WARNING
1476 "XFS: Cannot set_blocksize to %u on device %s\n",
1477 sectorsize, XFS_BUFTARG_NAME(btp));
1478 return EINVAL;
1479 }
1480
1481 if (verbose &&
1482 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1483 printk(KERN_WARNING
1484 "XFS: %u byte sectors in use on device %s. "
1485 "This is suboptimal; %u or greater is ideal.\n",
1486 sectorsize, XFS_BUFTARG_NAME(btp),
1487 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1488 }
1489
1490 return 0;
1491 }
1492
1493 /*
1494 * When allocating the initial buffer target we have not yet
1495 * read in the superblock, so don't know what sized sectors
1496 * are being used is at this early stage. Play safe.
1497 */
1498 STATIC int
1499 xfs_setsize_buftarg_early(
1500 xfs_buftarg_t *btp,
1501 struct block_device *bdev)
1502 {
1503 return xfs_setsize_buftarg_flags(btp,
1504 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1505 }
1506
1507 int
1508 xfs_setsize_buftarg(
1509 xfs_buftarg_t *btp,
1510 unsigned int blocksize,
1511 unsigned int sectorsize)
1512 {
1513 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1514 }
1515
1516 STATIC int
1517 xfs_mapping_buftarg(
1518 xfs_buftarg_t *btp,
1519 struct block_device *bdev)
1520 {
1521 struct backing_dev_info *bdi;
1522 struct inode *inode;
1523 struct address_space *mapping;
1524 static const struct address_space_operations mapping_aops = {
1525 .sync_page = block_sync_page,
1526 .migratepage = fail_migrate_page,
1527 };
1528
1529 inode = new_inode(bdev->bd_inode->i_sb);
1530 if (!inode) {
1531 printk(KERN_WARNING
1532 "XFS: Cannot allocate mapping inode for device %s\n",
1533 XFS_BUFTARG_NAME(btp));
1534 return ENOMEM;
1535 }
1536 inode->i_mode = S_IFBLK;
1537 inode->i_bdev = bdev;
1538 inode->i_rdev = bdev->bd_dev;
1539 bdi = blk_get_backing_dev_info(bdev);
1540 if (!bdi)
1541 bdi = &default_backing_dev_info;
1542 mapping = &inode->i_data;
1543 mapping->a_ops = &mapping_aops;
1544 mapping->backing_dev_info = bdi;
1545 mapping_set_gfp_mask(mapping, GFP_NOFS);
1546 btp->bt_mapping = mapping;
1547 return 0;
1548 }
1549
1550 STATIC int
1551 xfs_alloc_delwrite_queue(
1552 xfs_buftarg_t *btp)
1553 {
1554 int error = 0;
1555
1556 INIT_LIST_HEAD(&btp->bt_list);
1557 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1558 spin_lock_init(&btp->bt_delwrite_lock);
1559 btp->bt_flags = 0;
1560 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1561 if (IS_ERR(btp->bt_task)) {
1562 error = PTR_ERR(btp->bt_task);
1563 goto out_error;
1564 }
1565 xfs_register_buftarg(btp);
1566 out_error:
1567 return error;
1568 }
1569
1570 xfs_buftarg_t *
1571 xfs_alloc_buftarg(
1572 struct block_device *bdev,
1573 int external)
1574 {
1575 xfs_buftarg_t *btp;
1576
1577 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1578
1579 btp->bt_dev = bdev->bd_dev;
1580 btp->bt_bdev = bdev;
1581 if (xfs_setsize_buftarg_early(btp, bdev))
1582 goto error;
1583 if (xfs_mapping_buftarg(btp, bdev))
1584 goto error;
1585 if (xfs_alloc_delwrite_queue(btp))
1586 goto error;
1587 xfs_alloc_bufhash(btp, external);
1588 return btp;
1589
1590 error:
1591 kmem_free(btp);
1592 return NULL;
1593 }
1594
1595
1596 /*
1597 * Delayed write buffer handling
1598 */
1599 STATIC void
1600 xfs_buf_delwri_queue(
1601 xfs_buf_t *bp,
1602 int unlock)
1603 {
1604 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1605 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1606
1607 XB_TRACE(bp, "delwri_q", (long)unlock);
1608 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1609
1610 spin_lock(dwlk);
1611 /* If already in the queue, dequeue and place at tail */
1612 if (!list_empty(&bp->b_list)) {
1613 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1614 if (unlock)
1615 atomic_dec(&bp->b_hold);
1616 list_del(&bp->b_list);
1617 }
1618
1619 bp->b_flags |= _XBF_DELWRI_Q;
1620 list_add_tail(&bp->b_list, dwq);
1621 bp->b_queuetime = jiffies;
1622 spin_unlock(dwlk);
1623
1624 if (unlock)
1625 xfs_buf_unlock(bp);
1626 }
1627
1628 void
1629 xfs_buf_delwri_dequeue(
1630 xfs_buf_t *bp)
1631 {
1632 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1633 int dequeued = 0;
1634
1635 spin_lock(dwlk);
1636 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1637 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1638 list_del_init(&bp->b_list);
1639 dequeued = 1;
1640 }
1641 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1642 spin_unlock(dwlk);
1643
1644 if (dequeued)
1645 xfs_buf_rele(bp);
1646
1647 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1648 }
1649
1650 STATIC void
1651 xfs_buf_runall_queues(
1652 struct workqueue_struct *queue)
1653 {
1654 flush_workqueue(queue);
1655 }
1656
1657 STATIC int
1658 xfsbufd_wakeup(
1659 int priority,
1660 gfp_t mask)
1661 {
1662 xfs_buftarg_t *btp;
1663
1664 spin_lock(&xfs_buftarg_lock);
1665 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1666 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1667 continue;
1668 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1669 wake_up_process(btp->bt_task);
1670 }
1671 spin_unlock(&xfs_buftarg_lock);
1672 return 0;
1673 }
1674
1675 /*
1676 * Move as many buffers as specified to the supplied list
1677 * idicating if we skipped any buffers to prevent deadlocks.
1678 */
1679 STATIC int
1680 xfs_buf_delwri_split(
1681 xfs_buftarg_t *target,
1682 struct list_head *list,
1683 unsigned long age)
1684 {
1685 xfs_buf_t *bp, *n;
1686 struct list_head *dwq = &target->bt_delwrite_queue;
1687 spinlock_t *dwlk = &target->bt_delwrite_lock;
1688 int skipped = 0;
1689 int force;
1690
1691 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1692 INIT_LIST_HEAD(list);
1693 spin_lock(dwlk);
1694 list_for_each_entry_safe(bp, n, dwq, b_list) {
1695 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1696 ASSERT(bp->b_flags & XBF_DELWRI);
1697
1698 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1699 if (!force &&
1700 time_before(jiffies, bp->b_queuetime + age)) {
1701 xfs_buf_unlock(bp);
1702 break;
1703 }
1704
1705 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1706 _XBF_RUN_QUEUES);
1707 bp->b_flags |= XBF_WRITE;
1708 list_move_tail(&bp->b_list, list);
1709 } else
1710 skipped++;
1711 }
1712 spin_unlock(dwlk);
1713
1714 return skipped;
1715
1716 }
1717
1718 STATIC int
1719 xfsbufd(
1720 void *data)
1721 {
1722 struct list_head tmp;
1723 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1724 int count;
1725 xfs_buf_t *bp;
1726
1727 current->flags |= PF_MEMALLOC;
1728
1729 set_freezable();
1730
1731 do {
1732 if (unlikely(freezing(current))) {
1733 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1734 refrigerator();
1735 } else {
1736 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1737 }
1738
1739 schedule_timeout_interruptible(
1740 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1741
1742 xfs_buf_delwri_split(target, &tmp,
1743 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1744
1745 count = 0;
1746 while (!list_empty(&tmp)) {
1747 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1748 ASSERT(target == bp->b_target);
1749
1750 list_del_init(&bp->b_list);
1751 xfs_buf_iostrategy(bp);
1752 count++;
1753 }
1754
1755 if (as_list_len > 0)
1756 purge_addresses();
1757 if (count)
1758 blk_run_address_space(target->bt_mapping);
1759
1760 } while (!kthread_should_stop());
1761
1762 return 0;
1763 }
1764
1765 /*
1766 * Go through all incore buffers, and release buffers if they belong to
1767 * the given device. This is used in filesystem error handling to
1768 * preserve the consistency of its metadata.
1769 */
1770 int
1771 xfs_flush_buftarg(
1772 xfs_buftarg_t *target,
1773 int wait)
1774 {
1775 struct list_head tmp;
1776 xfs_buf_t *bp, *n;
1777 int pincount = 0;
1778
1779 xfs_buf_runall_queues(xfsconvertd_workqueue);
1780 xfs_buf_runall_queues(xfsdatad_workqueue);
1781 xfs_buf_runall_queues(xfslogd_workqueue);
1782
1783 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1784 pincount = xfs_buf_delwri_split(target, &tmp, 0);
1785
1786 /*
1787 * Dropped the delayed write list lock, now walk the temporary list
1788 */
1789 list_for_each_entry_safe(bp, n, &tmp, b_list) {
1790 ASSERT(target == bp->b_target);
1791 if (wait)
1792 bp->b_flags &= ~XBF_ASYNC;
1793 else
1794 list_del_init(&bp->b_list);
1795
1796 xfs_buf_iostrategy(bp);
1797 }
1798
1799 if (wait)
1800 blk_run_address_space(target->bt_mapping);
1801
1802 /*
1803 * Remaining list items must be flushed before returning
1804 */
1805 while (!list_empty(&tmp)) {
1806 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1807
1808 list_del_init(&bp->b_list);
1809 xfs_iowait(bp);
1810 xfs_buf_relse(bp);
1811 }
1812
1813 return pincount;
1814 }
1815
1816 int __init
1817 xfs_buf_init(void)
1818 {
1819 #ifdef XFS_BUF_TRACE
1820 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_NOFS);
1821 #endif
1822
1823 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1824 KM_ZONE_HWALIGN, NULL);
1825 if (!xfs_buf_zone)
1826 goto out_free_trace_buf;
1827
1828 xfslogd_workqueue = create_workqueue("xfslogd");
1829 if (!xfslogd_workqueue)
1830 goto out_free_buf_zone;
1831
1832 xfsdatad_workqueue = create_workqueue("xfsdatad");
1833 if (!xfsdatad_workqueue)
1834 goto out_destroy_xfslogd_workqueue;
1835
1836 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1837 if (!xfsconvertd_workqueue)
1838 goto out_destroy_xfsdatad_workqueue;
1839
1840 register_shrinker(&xfs_buf_shake);
1841 return 0;
1842
1843 out_destroy_xfsdatad_workqueue:
1844 destroy_workqueue(xfsdatad_workqueue);
1845 out_destroy_xfslogd_workqueue:
1846 destroy_workqueue(xfslogd_workqueue);
1847 out_free_buf_zone:
1848 kmem_zone_destroy(xfs_buf_zone);
1849 out_free_trace_buf:
1850 #ifdef XFS_BUF_TRACE
1851 ktrace_free(xfs_buf_trace_buf);
1852 #endif
1853 return -ENOMEM;
1854 }
1855
1856 void
1857 xfs_buf_terminate(void)
1858 {
1859 unregister_shrinker(&xfs_buf_shake);
1860 destroy_workqueue(xfsconvertd_workqueue);
1861 destroy_workqueue(xfsdatad_workqueue);
1862 destroy_workqueue(xfslogd_workqueue);
1863 kmem_zone_destroy(xfs_buf_zone);
1864 #ifdef XFS_BUF_TRACE
1865 ktrace_free(xfs_buf_trace_buf);
1866 #endif
1867 }
1868
1869 #ifdef CONFIG_KDB_MODULES
1870 struct list_head *
1871 xfs_get_buftarg_list(void)
1872 {
1873 return &xfs_buftarg_list;
1874 }
1875 #endif