]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/xfs/linux-2.6/xfs_buf.c
ASoC: Fix resource reclaim for osk5912
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
48 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
49 static struct shrinker xfs_buf_shake = {
50 .shrink = xfsbufd_wakeup,
51 .seeks = DEFAULT_SEEKS,
52 };
53
54 static struct workqueue_struct *xfslogd_workqueue;
55 struct workqueue_struct *xfsdatad_workqueue;
56 struct workqueue_struct *xfsconvertd_workqueue;
57
58 #ifdef XFS_BUF_LOCK_TRACKING
59 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
60 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
61 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
62 #else
63 # define XB_SET_OWNER(bp) do { } while (0)
64 # define XB_CLEAR_OWNER(bp) do { } while (0)
65 # define XB_GET_OWNER(bp) do { } while (0)
66 #endif
67
68 #define xb_to_gfp(flags) \
69 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
71
72 #define xb_to_km(flags) \
73 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
74
75 #define xfs_buf_allocate(flags) \
76 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77 #define xfs_buf_deallocate(bp) \
78 kmem_zone_free(xfs_buf_zone, (bp));
79
80 static inline int
81 xfs_buf_is_vmapped(
82 struct xfs_buf *bp)
83 {
84 /*
85 * Return true if the buffer is vmapped.
86 *
87 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88 * code is clever enough to know it doesn't have to map a single page,
89 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90 */
91 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92 }
93
94 static inline int
95 xfs_buf_vmap_len(
96 struct xfs_buf *bp)
97 {
98 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99 }
100
101 /*
102 * Page Region interfaces.
103 *
104 * For pages in filesystems where the blocksize is smaller than the
105 * pagesize, we use the page->private field (long) to hold a bitmap
106 * of uptodate regions within the page.
107 *
108 * Each such region is "bytes per page / bits per long" bytes long.
109 *
110 * NBPPR == number-of-bytes-per-page-region
111 * BTOPR == bytes-to-page-region (rounded up)
112 * BTOPRT == bytes-to-page-region-truncated (rounded down)
113 */
114 #if (BITS_PER_LONG == 32)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
116 #elif (BITS_PER_LONG == 64)
117 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
118 #else
119 #error BITS_PER_LONG must be 32 or 64
120 #endif
121 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
122 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
124
125 STATIC unsigned long
126 page_region_mask(
127 size_t offset,
128 size_t length)
129 {
130 unsigned long mask;
131 int first, final;
132
133 first = BTOPR(offset);
134 final = BTOPRT(offset + length - 1);
135 first = min(first, final);
136
137 mask = ~0UL;
138 mask <<= BITS_PER_LONG - (final - first);
139 mask >>= BITS_PER_LONG - (final);
140
141 ASSERT(offset + length <= PAGE_CACHE_SIZE);
142 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144 return mask;
145 }
146
147 STATIC void
148 set_page_region(
149 struct page *page,
150 size_t offset,
151 size_t length)
152 {
153 set_page_private(page,
154 page_private(page) | page_region_mask(offset, length));
155 if (page_private(page) == ~0UL)
156 SetPageUptodate(page);
157 }
158
159 STATIC int
160 test_page_region(
161 struct page *page,
162 size_t offset,
163 size_t length)
164 {
165 unsigned long mask = page_region_mask(offset, length);
166
167 return (mask && (page_private(page) & mask) == mask);
168 }
169
170 /*
171 * Internal xfs_buf_t object manipulation
172 */
173
174 STATIC void
175 _xfs_buf_initialize(
176 xfs_buf_t *bp,
177 xfs_buftarg_t *target,
178 xfs_off_t range_base,
179 size_t range_length,
180 xfs_buf_flags_t flags)
181 {
182 /*
183 * We don't want certain flags to appear in b_flags.
184 */
185 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187 memset(bp, 0, sizeof(xfs_buf_t));
188 atomic_set(&bp->b_hold, 1);
189 init_completion(&bp->b_iowait);
190 INIT_LIST_HEAD(&bp->b_list);
191 RB_CLEAR_NODE(&bp->b_rbnode);
192 sema_init(&bp->b_sema, 0); /* held, no waiters */
193 XB_SET_OWNER(bp);
194 bp->b_target = target;
195 bp->b_file_offset = range_base;
196 /*
197 * Set buffer_length and count_desired to the same value initially.
198 * I/O routines should use count_desired, which will be the same in
199 * most cases but may be reset (e.g. XFS recovery).
200 */
201 bp->b_buffer_length = bp->b_count_desired = range_length;
202 bp->b_flags = flags;
203 bp->b_bn = XFS_BUF_DADDR_NULL;
204 atomic_set(&bp->b_pin_count, 0);
205 init_waitqueue_head(&bp->b_waiters);
206
207 XFS_STATS_INC(xb_create);
208
209 trace_xfs_buf_init(bp, _RET_IP_);
210 }
211
212 /*
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
215 */
216 STATIC int
217 _xfs_buf_get_pages(
218 xfs_buf_t *bp,
219 int page_count,
220 xfs_buf_flags_t flags)
221 {
222 /* Make sure that we have a page list */
223 if (bp->b_pages == NULL) {
224 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225 bp->b_page_count = page_count;
226 if (page_count <= XB_PAGES) {
227 bp->b_pages = bp->b_page_array;
228 } else {
229 bp->b_pages = kmem_alloc(sizeof(struct page *) *
230 page_count, xb_to_km(flags));
231 if (bp->b_pages == NULL)
232 return -ENOMEM;
233 }
234 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
235 }
236 return 0;
237 }
238
239 /*
240 * Frees b_pages if it was allocated.
241 */
242 STATIC void
243 _xfs_buf_free_pages(
244 xfs_buf_t *bp)
245 {
246 if (bp->b_pages != bp->b_page_array) {
247 kmem_free(bp->b_pages);
248 bp->b_pages = NULL;
249 }
250 }
251
252 /*
253 * Releases the specified buffer.
254 *
255 * The modification state of any associated pages is left unchanged.
256 * The buffer most not be on any hash - use xfs_buf_rele instead for
257 * hashed and refcounted buffers
258 */
259 void
260 xfs_buf_free(
261 xfs_buf_t *bp)
262 {
263 trace_xfs_buf_free(bp, _RET_IP_);
264
265 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
266 uint i;
267
268 if (xfs_buf_is_vmapped(bp))
269 vm_unmap_ram(bp->b_addr - bp->b_offset,
270 bp->b_page_count);
271
272 for (i = 0; i < bp->b_page_count; i++) {
273 struct page *page = bp->b_pages[i];
274
275 if (bp->b_flags & _XBF_PAGE_CACHE)
276 ASSERT(!PagePrivate(page));
277 page_cache_release(page);
278 }
279 }
280 _xfs_buf_free_pages(bp);
281 xfs_buf_deallocate(bp);
282 }
283
284 /*
285 * Finds all pages for buffer in question and builds it's page list.
286 */
287 STATIC int
288 _xfs_buf_lookup_pages(
289 xfs_buf_t *bp,
290 uint flags)
291 {
292 struct address_space *mapping = bp->b_target->bt_mapping;
293 size_t blocksize = bp->b_target->bt_bsize;
294 size_t size = bp->b_count_desired;
295 size_t nbytes, offset;
296 gfp_t gfp_mask = xb_to_gfp(flags);
297 unsigned short page_count, i;
298 pgoff_t first;
299 xfs_off_t end;
300 int error;
301
302 end = bp->b_file_offset + bp->b_buffer_length;
303 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
304
305 error = _xfs_buf_get_pages(bp, page_count, flags);
306 if (unlikely(error))
307 return error;
308 bp->b_flags |= _XBF_PAGE_CACHE;
309
310 offset = bp->b_offset;
311 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
312
313 for (i = 0; i < bp->b_page_count; i++) {
314 struct page *page;
315 uint retries = 0;
316
317 retry:
318 page = find_or_create_page(mapping, first + i, gfp_mask);
319 if (unlikely(page == NULL)) {
320 if (flags & XBF_READ_AHEAD) {
321 bp->b_page_count = i;
322 for (i = 0; i < bp->b_page_count; i++)
323 unlock_page(bp->b_pages[i]);
324 return -ENOMEM;
325 }
326
327 /*
328 * This could deadlock.
329 *
330 * But until all the XFS lowlevel code is revamped to
331 * handle buffer allocation failures we can't do much.
332 */
333 if (!(++retries % 100))
334 printk(KERN_ERR
335 "XFS: possible memory allocation "
336 "deadlock in %s (mode:0x%x)\n",
337 __func__, gfp_mask);
338
339 XFS_STATS_INC(xb_page_retries);
340 xfsbufd_wakeup(NULL, 0, gfp_mask);
341 congestion_wait(BLK_RW_ASYNC, HZ/50);
342 goto retry;
343 }
344
345 XFS_STATS_INC(xb_page_found);
346
347 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
348 size -= nbytes;
349
350 ASSERT(!PagePrivate(page));
351 if (!PageUptodate(page)) {
352 page_count--;
353 if (blocksize >= PAGE_CACHE_SIZE) {
354 if (flags & XBF_READ)
355 bp->b_flags |= _XBF_PAGE_LOCKED;
356 } else if (!PagePrivate(page)) {
357 if (test_page_region(page, offset, nbytes))
358 page_count++;
359 }
360 }
361
362 bp->b_pages[i] = page;
363 offset = 0;
364 }
365
366 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
367 for (i = 0; i < bp->b_page_count; i++)
368 unlock_page(bp->b_pages[i]);
369 }
370
371 if (page_count == bp->b_page_count)
372 bp->b_flags |= XBF_DONE;
373
374 return error;
375 }
376
377 /*
378 * Map buffer into kernel address-space if nessecary.
379 */
380 STATIC int
381 _xfs_buf_map_pages(
382 xfs_buf_t *bp,
383 uint flags)
384 {
385 /* A single page buffer is always mappable */
386 if (bp->b_page_count == 1) {
387 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
388 bp->b_flags |= XBF_MAPPED;
389 } else if (flags & XBF_MAPPED) {
390 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
391 -1, PAGE_KERNEL);
392 if (unlikely(bp->b_addr == NULL))
393 return -ENOMEM;
394 bp->b_addr += bp->b_offset;
395 bp->b_flags |= XBF_MAPPED;
396 }
397
398 return 0;
399 }
400
401 /*
402 * Finding and Reading Buffers
403 */
404
405 /*
406 * Look up, and creates if absent, a lockable buffer for
407 * a given range of an inode. The buffer is returned
408 * locked. If other overlapping buffers exist, they are
409 * released before the new buffer is created and locked,
410 * which may imply that this call will block until those buffers
411 * are unlocked. No I/O is implied by this call.
412 */
413 xfs_buf_t *
414 _xfs_buf_find(
415 xfs_buftarg_t *btp, /* block device target */
416 xfs_off_t ioff, /* starting offset of range */
417 size_t isize, /* length of range */
418 xfs_buf_flags_t flags,
419 xfs_buf_t *new_bp)
420 {
421 xfs_off_t range_base;
422 size_t range_length;
423 struct xfs_perag *pag;
424 struct rb_node **rbp;
425 struct rb_node *parent;
426 xfs_buf_t *bp;
427
428 range_base = (ioff << BBSHIFT);
429 range_length = (isize << BBSHIFT);
430
431 /* Check for IOs smaller than the sector size / not sector aligned */
432 ASSERT(!(range_length < (1 << btp->bt_sshift)));
433 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
434
435 /* get tree root */
436 pag = xfs_perag_get(btp->bt_mount,
437 xfs_daddr_to_agno(btp->bt_mount, ioff));
438
439 /* walk tree */
440 spin_lock(&pag->pag_buf_lock);
441 rbp = &pag->pag_buf_tree.rb_node;
442 parent = NULL;
443 bp = NULL;
444 while (*rbp) {
445 parent = *rbp;
446 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
447
448 if (range_base < bp->b_file_offset)
449 rbp = &(*rbp)->rb_left;
450 else if (range_base > bp->b_file_offset)
451 rbp = &(*rbp)->rb_right;
452 else {
453 /*
454 * found a block offset match. If the range doesn't
455 * match, the only way this is allowed is if the buffer
456 * in the cache is stale and the transaction that made
457 * it stale has not yet committed. i.e. we are
458 * reallocating a busy extent. Skip this buffer and
459 * continue searching to the right for an exact match.
460 */
461 if (bp->b_buffer_length != range_length) {
462 ASSERT(bp->b_flags & XBF_STALE);
463 rbp = &(*rbp)->rb_right;
464 continue;
465 }
466 atomic_inc(&bp->b_hold);
467 goto found;
468 }
469 }
470
471 /* No match found */
472 if (new_bp) {
473 _xfs_buf_initialize(new_bp, btp, range_base,
474 range_length, flags);
475 rb_link_node(&new_bp->b_rbnode, parent, rbp);
476 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
477 /* the buffer keeps the perag reference until it is freed */
478 new_bp->b_pag = pag;
479 spin_unlock(&pag->pag_buf_lock);
480 } else {
481 XFS_STATS_INC(xb_miss_locked);
482 spin_unlock(&pag->pag_buf_lock);
483 xfs_perag_put(pag);
484 }
485 return new_bp;
486
487 found:
488 spin_unlock(&pag->pag_buf_lock);
489 xfs_perag_put(pag);
490
491 /* Attempt to get the semaphore without sleeping,
492 * if this does not work then we need to drop the
493 * spinlock and do a hard attempt on the semaphore.
494 */
495 if (down_trylock(&bp->b_sema)) {
496 if (!(flags & XBF_TRYLOCK)) {
497 /* wait for buffer ownership */
498 xfs_buf_lock(bp);
499 XFS_STATS_INC(xb_get_locked_waited);
500 } else {
501 /* We asked for a trylock and failed, no need
502 * to look at file offset and length here, we
503 * know that this buffer at least overlaps our
504 * buffer and is locked, therefore our buffer
505 * either does not exist, or is this buffer.
506 */
507 xfs_buf_rele(bp);
508 XFS_STATS_INC(xb_busy_locked);
509 return NULL;
510 }
511 } else {
512 /* trylock worked */
513 XB_SET_OWNER(bp);
514 }
515
516 if (bp->b_flags & XBF_STALE) {
517 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
518 bp->b_flags &= XBF_MAPPED;
519 }
520
521 trace_xfs_buf_find(bp, flags, _RET_IP_);
522 XFS_STATS_INC(xb_get_locked);
523 return bp;
524 }
525
526 /*
527 * Assembles a buffer covering the specified range.
528 * Storage in memory for all portions of the buffer will be allocated,
529 * although backing storage may not be.
530 */
531 xfs_buf_t *
532 xfs_buf_get(
533 xfs_buftarg_t *target,/* target for buffer */
534 xfs_off_t ioff, /* starting offset of range */
535 size_t isize, /* length of range */
536 xfs_buf_flags_t flags)
537 {
538 xfs_buf_t *bp, *new_bp;
539 int error = 0, i;
540
541 new_bp = xfs_buf_allocate(flags);
542 if (unlikely(!new_bp))
543 return NULL;
544
545 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
546 if (bp == new_bp) {
547 error = _xfs_buf_lookup_pages(bp, flags);
548 if (error)
549 goto no_buffer;
550 } else {
551 xfs_buf_deallocate(new_bp);
552 if (unlikely(bp == NULL))
553 return NULL;
554 }
555
556 for (i = 0; i < bp->b_page_count; i++)
557 mark_page_accessed(bp->b_pages[i]);
558
559 if (!(bp->b_flags & XBF_MAPPED)) {
560 error = _xfs_buf_map_pages(bp, flags);
561 if (unlikely(error)) {
562 printk(KERN_WARNING "%s: failed to map pages\n",
563 __func__);
564 goto no_buffer;
565 }
566 }
567
568 XFS_STATS_INC(xb_get);
569
570 /*
571 * Always fill in the block number now, the mapped cases can do
572 * their own overlay of this later.
573 */
574 bp->b_bn = ioff;
575 bp->b_count_desired = bp->b_buffer_length;
576
577 trace_xfs_buf_get(bp, flags, _RET_IP_);
578 return bp;
579
580 no_buffer:
581 if (flags & (XBF_LOCK | XBF_TRYLOCK))
582 xfs_buf_unlock(bp);
583 xfs_buf_rele(bp);
584 return NULL;
585 }
586
587 STATIC int
588 _xfs_buf_read(
589 xfs_buf_t *bp,
590 xfs_buf_flags_t flags)
591 {
592 int status;
593
594 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
595 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
596
597 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
598 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
599 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
600 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
601
602 status = xfs_buf_iorequest(bp);
603 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
604 return status;
605 return xfs_buf_iowait(bp);
606 }
607
608 xfs_buf_t *
609 xfs_buf_read(
610 xfs_buftarg_t *target,
611 xfs_off_t ioff,
612 size_t isize,
613 xfs_buf_flags_t flags)
614 {
615 xfs_buf_t *bp;
616
617 flags |= XBF_READ;
618
619 bp = xfs_buf_get(target, ioff, isize, flags);
620 if (bp) {
621 trace_xfs_buf_read(bp, flags, _RET_IP_);
622
623 if (!XFS_BUF_ISDONE(bp)) {
624 XFS_STATS_INC(xb_get_read);
625 _xfs_buf_read(bp, flags);
626 } else if (flags & XBF_ASYNC) {
627 /*
628 * Read ahead call which is already satisfied,
629 * drop the buffer
630 */
631 goto no_buffer;
632 } else {
633 /* We do not want read in the flags */
634 bp->b_flags &= ~XBF_READ;
635 }
636 }
637
638 return bp;
639
640 no_buffer:
641 if (flags & (XBF_LOCK | XBF_TRYLOCK))
642 xfs_buf_unlock(bp);
643 xfs_buf_rele(bp);
644 return NULL;
645 }
646
647 /*
648 * If we are not low on memory then do the readahead in a deadlock
649 * safe manner.
650 */
651 void
652 xfs_buf_readahead(
653 xfs_buftarg_t *target,
654 xfs_off_t ioff,
655 size_t isize)
656 {
657 struct backing_dev_info *bdi;
658
659 bdi = target->bt_mapping->backing_dev_info;
660 if (bdi_read_congested(bdi))
661 return;
662
663 xfs_buf_read(target, ioff, isize,
664 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
665 }
666
667 /*
668 * Read an uncached buffer from disk. Allocates and returns a locked
669 * buffer containing the disk contents or nothing.
670 */
671 struct xfs_buf *
672 xfs_buf_read_uncached(
673 struct xfs_mount *mp,
674 struct xfs_buftarg *target,
675 xfs_daddr_t daddr,
676 size_t length,
677 int flags)
678 {
679 xfs_buf_t *bp;
680 int error;
681
682 bp = xfs_buf_get_uncached(target, length, flags);
683 if (!bp)
684 return NULL;
685
686 /* set up the buffer for a read IO */
687 xfs_buf_lock(bp);
688 XFS_BUF_SET_ADDR(bp, daddr);
689 XFS_BUF_READ(bp);
690 XFS_BUF_BUSY(bp);
691
692 xfsbdstrat(mp, bp);
693 error = xfs_buf_iowait(bp);
694 if (error || bp->b_error) {
695 xfs_buf_relse(bp);
696 return NULL;
697 }
698 return bp;
699 }
700
701 xfs_buf_t *
702 xfs_buf_get_empty(
703 size_t len,
704 xfs_buftarg_t *target)
705 {
706 xfs_buf_t *bp;
707
708 bp = xfs_buf_allocate(0);
709 if (bp)
710 _xfs_buf_initialize(bp, target, 0, len, 0);
711 return bp;
712 }
713
714 static inline struct page *
715 mem_to_page(
716 void *addr)
717 {
718 if ((!is_vmalloc_addr(addr))) {
719 return virt_to_page(addr);
720 } else {
721 return vmalloc_to_page(addr);
722 }
723 }
724
725 int
726 xfs_buf_associate_memory(
727 xfs_buf_t *bp,
728 void *mem,
729 size_t len)
730 {
731 int rval;
732 int i = 0;
733 unsigned long pageaddr;
734 unsigned long offset;
735 size_t buflen;
736 int page_count;
737
738 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
739 offset = (unsigned long)mem - pageaddr;
740 buflen = PAGE_CACHE_ALIGN(len + offset);
741 page_count = buflen >> PAGE_CACHE_SHIFT;
742
743 /* Free any previous set of page pointers */
744 if (bp->b_pages)
745 _xfs_buf_free_pages(bp);
746
747 bp->b_pages = NULL;
748 bp->b_addr = mem;
749
750 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
751 if (rval)
752 return rval;
753
754 bp->b_offset = offset;
755
756 for (i = 0; i < bp->b_page_count; i++) {
757 bp->b_pages[i] = mem_to_page((void *)pageaddr);
758 pageaddr += PAGE_CACHE_SIZE;
759 }
760
761 bp->b_count_desired = len;
762 bp->b_buffer_length = buflen;
763 bp->b_flags |= XBF_MAPPED;
764 bp->b_flags &= ~_XBF_PAGE_LOCKED;
765
766 return 0;
767 }
768
769 xfs_buf_t *
770 xfs_buf_get_uncached(
771 struct xfs_buftarg *target,
772 size_t len,
773 int flags)
774 {
775 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
776 int error, i;
777 xfs_buf_t *bp;
778
779 bp = xfs_buf_allocate(0);
780 if (unlikely(bp == NULL))
781 goto fail;
782 _xfs_buf_initialize(bp, target, 0, len, 0);
783
784 error = _xfs_buf_get_pages(bp, page_count, 0);
785 if (error)
786 goto fail_free_buf;
787
788 for (i = 0; i < page_count; i++) {
789 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
790 if (!bp->b_pages[i])
791 goto fail_free_mem;
792 }
793 bp->b_flags |= _XBF_PAGES;
794
795 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
796 if (unlikely(error)) {
797 printk(KERN_WARNING "%s: failed to map pages\n",
798 __func__);
799 goto fail_free_mem;
800 }
801
802 xfs_buf_unlock(bp);
803
804 trace_xfs_buf_get_uncached(bp, _RET_IP_);
805 return bp;
806
807 fail_free_mem:
808 while (--i >= 0)
809 __free_page(bp->b_pages[i]);
810 _xfs_buf_free_pages(bp);
811 fail_free_buf:
812 xfs_buf_deallocate(bp);
813 fail:
814 return NULL;
815 }
816
817 /*
818 * Increment reference count on buffer, to hold the buffer concurrently
819 * with another thread which may release (free) the buffer asynchronously.
820 * Must hold the buffer already to call this function.
821 */
822 void
823 xfs_buf_hold(
824 xfs_buf_t *bp)
825 {
826 trace_xfs_buf_hold(bp, _RET_IP_);
827 atomic_inc(&bp->b_hold);
828 }
829
830 /*
831 * Releases a hold on the specified buffer. If the
832 * the hold count is 1, calls xfs_buf_free.
833 */
834 void
835 xfs_buf_rele(
836 xfs_buf_t *bp)
837 {
838 struct xfs_perag *pag = bp->b_pag;
839
840 trace_xfs_buf_rele(bp, _RET_IP_);
841
842 if (!pag) {
843 ASSERT(!bp->b_relse);
844 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
845 if (atomic_dec_and_test(&bp->b_hold))
846 xfs_buf_free(bp);
847 return;
848 }
849
850 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
851 ASSERT(atomic_read(&bp->b_hold) > 0);
852 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
853 if (bp->b_relse) {
854 atomic_inc(&bp->b_hold);
855 spin_unlock(&pag->pag_buf_lock);
856 bp->b_relse(bp);
857 } else {
858 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
859 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
860 spin_unlock(&pag->pag_buf_lock);
861 xfs_perag_put(pag);
862 xfs_buf_free(bp);
863 }
864 }
865 }
866
867
868 /*
869 * Mutual exclusion on buffers. Locking model:
870 *
871 * Buffers associated with inodes for which buffer locking
872 * is not enabled are not protected by semaphores, and are
873 * assumed to be exclusively owned by the caller. There is a
874 * spinlock in the buffer, used by the caller when concurrent
875 * access is possible.
876 */
877
878 /*
879 * Locks a buffer object, if it is not already locked.
880 * Note that this in no way locks the underlying pages, so it is only
881 * useful for synchronizing concurrent use of buffer objects, not for
882 * synchronizing independent access to the underlying pages.
883 */
884 int
885 xfs_buf_cond_lock(
886 xfs_buf_t *bp)
887 {
888 int locked;
889
890 locked = down_trylock(&bp->b_sema) == 0;
891 if (locked)
892 XB_SET_OWNER(bp);
893
894 trace_xfs_buf_cond_lock(bp, _RET_IP_);
895 return locked ? 0 : -EBUSY;
896 }
897
898 int
899 xfs_buf_lock_value(
900 xfs_buf_t *bp)
901 {
902 return bp->b_sema.count;
903 }
904
905 /*
906 * Locks a buffer object.
907 * Note that this in no way locks the underlying pages, so it is only
908 * useful for synchronizing concurrent use of buffer objects, not for
909 * synchronizing independent access to the underlying pages.
910 *
911 * If we come across a stale, pinned, locked buffer, we know that we
912 * are being asked to lock a buffer that has been reallocated. Because
913 * it is pinned, we know that the log has not been pushed to disk and
914 * hence it will still be locked. Rather than sleeping until someone
915 * else pushes the log, push it ourselves before trying to get the lock.
916 */
917 void
918 xfs_buf_lock(
919 xfs_buf_t *bp)
920 {
921 trace_xfs_buf_lock(bp, _RET_IP_);
922
923 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
924 xfs_log_force(bp->b_target->bt_mount, 0);
925 if (atomic_read(&bp->b_io_remaining))
926 blk_run_address_space(bp->b_target->bt_mapping);
927 down(&bp->b_sema);
928 XB_SET_OWNER(bp);
929
930 trace_xfs_buf_lock_done(bp, _RET_IP_);
931 }
932
933 /*
934 * Releases the lock on the buffer object.
935 * If the buffer is marked delwri but is not queued, do so before we
936 * unlock the buffer as we need to set flags correctly. We also need to
937 * take a reference for the delwri queue because the unlocker is going to
938 * drop their's and they don't know we just queued it.
939 */
940 void
941 xfs_buf_unlock(
942 xfs_buf_t *bp)
943 {
944 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
945 atomic_inc(&bp->b_hold);
946 bp->b_flags |= XBF_ASYNC;
947 xfs_buf_delwri_queue(bp, 0);
948 }
949
950 XB_CLEAR_OWNER(bp);
951 up(&bp->b_sema);
952
953 trace_xfs_buf_unlock(bp, _RET_IP_);
954 }
955
956 STATIC void
957 xfs_buf_wait_unpin(
958 xfs_buf_t *bp)
959 {
960 DECLARE_WAITQUEUE (wait, current);
961
962 if (atomic_read(&bp->b_pin_count) == 0)
963 return;
964
965 add_wait_queue(&bp->b_waiters, &wait);
966 for (;;) {
967 set_current_state(TASK_UNINTERRUPTIBLE);
968 if (atomic_read(&bp->b_pin_count) == 0)
969 break;
970 if (atomic_read(&bp->b_io_remaining))
971 blk_run_address_space(bp->b_target->bt_mapping);
972 schedule();
973 }
974 remove_wait_queue(&bp->b_waiters, &wait);
975 set_current_state(TASK_RUNNING);
976 }
977
978 /*
979 * Buffer Utility Routines
980 */
981
982 STATIC void
983 xfs_buf_iodone_work(
984 struct work_struct *work)
985 {
986 xfs_buf_t *bp =
987 container_of(work, xfs_buf_t, b_iodone_work);
988
989 if (bp->b_iodone)
990 (*(bp->b_iodone))(bp);
991 else if (bp->b_flags & XBF_ASYNC)
992 xfs_buf_relse(bp);
993 }
994
995 void
996 xfs_buf_ioend(
997 xfs_buf_t *bp,
998 int schedule)
999 {
1000 trace_xfs_buf_iodone(bp, _RET_IP_);
1001
1002 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1003 if (bp->b_error == 0)
1004 bp->b_flags |= XBF_DONE;
1005
1006 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1007 if (schedule) {
1008 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1009 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1010 } else {
1011 xfs_buf_iodone_work(&bp->b_iodone_work);
1012 }
1013 } else {
1014 complete(&bp->b_iowait);
1015 }
1016 }
1017
1018 void
1019 xfs_buf_ioerror(
1020 xfs_buf_t *bp,
1021 int error)
1022 {
1023 ASSERT(error >= 0 && error <= 0xffff);
1024 bp->b_error = (unsigned short)error;
1025 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1026 }
1027
1028 int
1029 xfs_bwrite(
1030 struct xfs_mount *mp,
1031 struct xfs_buf *bp)
1032 {
1033 int error;
1034
1035 bp->b_flags |= XBF_WRITE;
1036 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1037
1038 xfs_buf_delwri_dequeue(bp);
1039 xfs_bdstrat_cb(bp);
1040
1041 error = xfs_buf_iowait(bp);
1042 if (error)
1043 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1044 xfs_buf_relse(bp);
1045 return error;
1046 }
1047
1048 void
1049 xfs_bdwrite(
1050 void *mp,
1051 struct xfs_buf *bp)
1052 {
1053 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1054
1055 bp->b_flags &= ~XBF_READ;
1056 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1057
1058 xfs_buf_delwri_queue(bp, 1);
1059 }
1060
1061 /*
1062 * Called when we want to stop a buffer from getting written or read.
1063 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1064 * so that the proper iodone callbacks get called.
1065 */
1066 STATIC int
1067 xfs_bioerror(
1068 xfs_buf_t *bp)
1069 {
1070 #ifdef XFSERRORDEBUG
1071 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1072 #endif
1073
1074 /*
1075 * No need to wait until the buffer is unpinned, we aren't flushing it.
1076 */
1077 XFS_BUF_ERROR(bp, EIO);
1078
1079 /*
1080 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1081 */
1082 XFS_BUF_UNREAD(bp);
1083 XFS_BUF_UNDELAYWRITE(bp);
1084 XFS_BUF_UNDONE(bp);
1085 XFS_BUF_STALE(bp);
1086
1087 xfs_buf_ioend(bp, 0);
1088
1089 return EIO;
1090 }
1091
1092 /*
1093 * Same as xfs_bioerror, except that we are releasing the buffer
1094 * here ourselves, and avoiding the xfs_buf_ioend call.
1095 * This is meant for userdata errors; metadata bufs come with
1096 * iodone functions attached, so that we can track down errors.
1097 */
1098 STATIC int
1099 xfs_bioerror_relse(
1100 struct xfs_buf *bp)
1101 {
1102 int64_t fl = XFS_BUF_BFLAGS(bp);
1103 /*
1104 * No need to wait until the buffer is unpinned.
1105 * We aren't flushing it.
1106 *
1107 * chunkhold expects B_DONE to be set, whether
1108 * we actually finish the I/O or not. We don't want to
1109 * change that interface.
1110 */
1111 XFS_BUF_UNREAD(bp);
1112 XFS_BUF_UNDELAYWRITE(bp);
1113 XFS_BUF_DONE(bp);
1114 XFS_BUF_STALE(bp);
1115 XFS_BUF_CLR_IODONE_FUNC(bp);
1116 if (!(fl & XBF_ASYNC)) {
1117 /*
1118 * Mark b_error and B_ERROR _both_.
1119 * Lot's of chunkcache code assumes that.
1120 * There's no reason to mark error for
1121 * ASYNC buffers.
1122 */
1123 XFS_BUF_ERROR(bp, EIO);
1124 XFS_BUF_FINISH_IOWAIT(bp);
1125 } else {
1126 xfs_buf_relse(bp);
1127 }
1128
1129 return EIO;
1130 }
1131
1132
1133 /*
1134 * All xfs metadata buffers except log state machine buffers
1135 * get this attached as their b_bdstrat callback function.
1136 * This is so that we can catch a buffer
1137 * after prematurely unpinning it to forcibly shutdown the filesystem.
1138 */
1139 int
1140 xfs_bdstrat_cb(
1141 struct xfs_buf *bp)
1142 {
1143 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1144 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1145 /*
1146 * Metadata write that didn't get logged but
1147 * written delayed anyway. These aren't associated
1148 * with a transaction, and can be ignored.
1149 */
1150 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1151 return xfs_bioerror_relse(bp);
1152 else
1153 return xfs_bioerror(bp);
1154 }
1155
1156 xfs_buf_iorequest(bp);
1157 return 0;
1158 }
1159
1160 /*
1161 * Wrapper around bdstrat so that we can stop data from going to disk in case
1162 * we are shutting down the filesystem. Typically user data goes thru this
1163 * path; one of the exceptions is the superblock.
1164 */
1165 void
1166 xfsbdstrat(
1167 struct xfs_mount *mp,
1168 struct xfs_buf *bp)
1169 {
1170 if (XFS_FORCED_SHUTDOWN(mp)) {
1171 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1172 xfs_bioerror_relse(bp);
1173 return;
1174 }
1175
1176 xfs_buf_iorequest(bp);
1177 }
1178
1179 STATIC void
1180 _xfs_buf_ioend(
1181 xfs_buf_t *bp,
1182 int schedule)
1183 {
1184 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1185 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1186 xfs_buf_ioend(bp, schedule);
1187 }
1188 }
1189
1190 STATIC void
1191 xfs_buf_bio_end_io(
1192 struct bio *bio,
1193 int error)
1194 {
1195 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1196 unsigned int blocksize = bp->b_target->bt_bsize;
1197 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1198
1199 xfs_buf_ioerror(bp, -error);
1200
1201 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1202 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1203
1204 do {
1205 struct page *page = bvec->bv_page;
1206
1207 ASSERT(!PagePrivate(page));
1208 if (unlikely(bp->b_error)) {
1209 if (bp->b_flags & XBF_READ)
1210 ClearPageUptodate(page);
1211 } else if (blocksize >= PAGE_CACHE_SIZE) {
1212 SetPageUptodate(page);
1213 } else if (!PagePrivate(page) &&
1214 (bp->b_flags & _XBF_PAGE_CACHE)) {
1215 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1216 }
1217
1218 if (--bvec >= bio->bi_io_vec)
1219 prefetchw(&bvec->bv_page->flags);
1220
1221 if (bp->b_flags & _XBF_PAGE_LOCKED)
1222 unlock_page(page);
1223 } while (bvec >= bio->bi_io_vec);
1224
1225 _xfs_buf_ioend(bp, 1);
1226 bio_put(bio);
1227 }
1228
1229 STATIC void
1230 _xfs_buf_ioapply(
1231 xfs_buf_t *bp)
1232 {
1233 int rw, map_i, total_nr_pages, nr_pages;
1234 struct bio *bio;
1235 int offset = bp->b_offset;
1236 int size = bp->b_count_desired;
1237 sector_t sector = bp->b_bn;
1238 unsigned int blocksize = bp->b_target->bt_bsize;
1239
1240 total_nr_pages = bp->b_page_count;
1241 map_i = 0;
1242
1243 if (bp->b_flags & XBF_ORDERED) {
1244 ASSERT(!(bp->b_flags & XBF_READ));
1245 rw = WRITE_FLUSH_FUA;
1246 } else if (bp->b_flags & XBF_LOG_BUFFER) {
1247 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1248 bp->b_flags &= ~_XBF_RUN_QUEUES;
1249 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1250 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1251 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1252 bp->b_flags &= ~_XBF_RUN_QUEUES;
1253 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1254 } else {
1255 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1256 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1257 }
1258
1259 /* Special code path for reading a sub page size buffer in --
1260 * we populate up the whole page, and hence the other metadata
1261 * in the same page. This optimization is only valid when the
1262 * filesystem block size is not smaller than the page size.
1263 */
1264 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1265 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1266 (XBF_READ|_XBF_PAGE_LOCKED)) &&
1267 (blocksize >= PAGE_CACHE_SIZE)) {
1268 bio = bio_alloc(GFP_NOIO, 1);
1269
1270 bio->bi_bdev = bp->b_target->bt_bdev;
1271 bio->bi_sector = sector - (offset >> BBSHIFT);
1272 bio->bi_end_io = xfs_buf_bio_end_io;
1273 bio->bi_private = bp;
1274
1275 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1276 size = 0;
1277
1278 atomic_inc(&bp->b_io_remaining);
1279
1280 goto submit_io;
1281 }
1282
1283 next_chunk:
1284 atomic_inc(&bp->b_io_remaining);
1285 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1286 if (nr_pages > total_nr_pages)
1287 nr_pages = total_nr_pages;
1288
1289 bio = bio_alloc(GFP_NOIO, nr_pages);
1290 bio->bi_bdev = bp->b_target->bt_bdev;
1291 bio->bi_sector = sector;
1292 bio->bi_end_io = xfs_buf_bio_end_io;
1293 bio->bi_private = bp;
1294
1295 for (; size && nr_pages; nr_pages--, map_i++) {
1296 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1297
1298 if (nbytes > size)
1299 nbytes = size;
1300
1301 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1302 if (rbytes < nbytes)
1303 break;
1304
1305 offset = 0;
1306 sector += nbytes >> BBSHIFT;
1307 size -= nbytes;
1308 total_nr_pages--;
1309 }
1310
1311 submit_io:
1312 if (likely(bio->bi_size)) {
1313 if (xfs_buf_is_vmapped(bp)) {
1314 flush_kernel_vmap_range(bp->b_addr,
1315 xfs_buf_vmap_len(bp));
1316 }
1317 submit_bio(rw, bio);
1318 if (size)
1319 goto next_chunk;
1320 } else {
1321 /*
1322 * if we get here, no pages were added to the bio. However,
1323 * we can't just error out here - if the pages are locked then
1324 * we have to unlock them otherwise we can hang on a later
1325 * access to the page.
1326 */
1327 xfs_buf_ioerror(bp, EIO);
1328 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1329 int i;
1330 for (i = 0; i < bp->b_page_count; i++)
1331 unlock_page(bp->b_pages[i]);
1332 }
1333 bio_put(bio);
1334 }
1335 }
1336
1337 int
1338 xfs_buf_iorequest(
1339 xfs_buf_t *bp)
1340 {
1341 trace_xfs_buf_iorequest(bp, _RET_IP_);
1342
1343 if (bp->b_flags & XBF_DELWRI) {
1344 xfs_buf_delwri_queue(bp, 1);
1345 return 0;
1346 }
1347
1348 if (bp->b_flags & XBF_WRITE) {
1349 xfs_buf_wait_unpin(bp);
1350 }
1351
1352 xfs_buf_hold(bp);
1353
1354 /* Set the count to 1 initially, this will stop an I/O
1355 * completion callout which happens before we have started
1356 * all the I/O from calling xfs_buf_ioend too early.
1357 */
1358 atomic_set(&bp->b_io_remaining, 1);
1359 _xfs_buf_ioapply(bp);
1360 _xfs_buf_ioend(bp, 0);
1361
1362 xfs_buf_rele(bp);
1363 return 0;
1364 }
1365
1366 /*
1367 * Waits for I/O to complete on the buffer supplied.
1368 * It returns immediately if no I/O is pending.
1369 * It returns the I/O error code, if any, or 0 if there was no error.
1370 */
1371 int
1372 xfs_buf_iowait(
1373 xfs_buf_t *bp)
1374 {
1375 trace_xfs_buf_iowait(bp, _RET_IP_);
1376
1377 if (atomic_read(&bp->b_io_remaining))
1378 blk_run_address_space(bp->b_target->bt_mapping);
1379 wait_for_completion(&bp->b_iowait);
1380
1381 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1382 return bp->b_error;
1383 }
1384
1385 xfs_caddr_t
1386 xfs_buf_offset(
1387 xfs_buf_t *bp,
1388 size_t offset)
1389 {
1390 struct page *page;
1391
1392 if (bp->b_flags & XBF_MAPPED)
1393 return XFS_BUF_PTR(bp) + offset;
1394
1395 offset += bp->b_offset;
1396 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1397 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1398 }
1399
1400 /*
1401 * Move data into or out of a buffer.
1402 */
1403 void
1404 xfs_buf_iomove(
1405 xfs_buf_t *bp, /* buffer to process */
1406 size_t boff, /* starting buffer offset */
1407 size_t bsize, /* length to copy */
1408 void *data, /* data address */
1409 xfs_buf_rw_t mode) /* read/write/zero flag */
1410 {
1411 size_t bend, cpoff, csize;
1412 struct page *page;
1413
1414 bend = boff + bsize;
1415 while (boff < bend) {
1416 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1417 cpoff = xfs_buf_poff(boff + bp->b_offset);
1418 csize = min_t(size_t,
1419 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1420
1421 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1422
1423 switch (mode) {
1424 case XBRW_ZERO:
1425 memset(page_address(page) + cpoff, 0, csize);
1426 break;
1427 case XBRW_READ:
1428 memcpy(data, page_address(page) + cpoff, csize);
1429 break;
1430 case XBRW_WRITE:
1431 memcpy(page_address(page) + cpoff, data, csize);
1432 }
1433
1434 boff += csize;
1435 data += csize;
1436 }
1437 }
1438
1439 /*
1440 * Handling of buffer targets (buftargs).
1441 */
1442
1443 /*
1444 * Wait for any bufs with callbacks that have been submitted but
1445 * have not yet returned... walk the hash list for the target.
1446 */
1447 void
1448 xfs_wait_buftarg(
1449 struct xfs_buftarg *btp)
1450 {
1451 struct xfs_perag *pag;
1452 uint i;
1453
1454 for (i = 0; i < btp->bt_mount->m_sb.sb_agcount; i++) {
1455 pag = xfs_perag_get(btp->bt_mount, i);
1456 spin_lock(&pag->pag_buf_lock);
1457 while (rb_first(&pag->pag_buf_tree)) {
1458 spin_unlock(&pag->pag_buf_lock);
1459 delay(100);
1460 spin_lock(&pag->pag_buf_lock);
1461 }
1462 spin_unlock(&pag->pag_buf_lock);
1463 xfs_perag_put(pag);
1464 }
1465 }
1466
1467 /*
1468 * buftarg list for delwrite queue processing
1469 */
1470 static LIST_HEAD(xfs_buftarg_list);
1471 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1472
1473 STATIC void
1474 xfs_register_buftarg(
1475 xfs_buftarg_t *btp)
1476 {
1477 spin_lock(&xfs_buftarg_lock);
1478 list_add(&btp->bt_list, &xfs_buftarg_list);
1479 spin_unlock(&xfs_buftarg_lock);
1480 }
1481
1482 STATIC void
1483 xfs_unregister_buftarg(
1484 xfs_buftarg_t *btp)
1485 {
1486 spin_lock(&xfs_buftarg_lock);
1487 list_del(&btp->bt_list);
1488 spin_unlock(&xfs_buftarg_lock);
1489 }
1490
1491 void
1492 xfs_free_buftarg(
1493 struct xfs_mount *mp,
1494 struct xfs_buftarg *btp)
1495 {
1496 xfs_flush_buftarg(btp, 1);
1497 if (mp->m_flags & XFS_MOUNT_BARRIER)
1498 xfs_blkdev_issue_flush(btp);
1499 iput(btp->bt_mapping->host);
1500
1501 /* Unregister the buftarg first so that we don't get a
1502 * wakeup finding a non-existent task
1503 */
1504 xfs_unregister_buftarg(btp);
1505 kthread_stop(btp->bt_task);
1506
1507 kmem_free(btp);
1508 }
1509
1510 STATIC int
1511 xfs_setsize_buftarg_flags(
1512 xfs_buftarg_t *btp,
1513 unsigned int blocksize,
1514 unsigned int sectorsize,
1515 int verbose)
1516 {
1517 btp->bt_bsize = blocksize;
1518 btp->bt_sshift = ffs(sectorsize) - 1;
1519 btp->bt_smask = sectorsize - 1;
1520
1521 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1522 printk(KERN_WARNING
1523 "XFS: Cannot set_blocksize to %u on device %s\n",
1524 sectorsize, XFS_BUFTARG_NAME(btp));
1525 return EINVAL;
1526 }
1527
1528 if (verbose &&
1529 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1530 printk(KERN_WARNING
1531 "XFS: %u byte sectors in use on device %s. "
1532 "This is suboptimal; %u or greater is ideal.\n",
1533 sectorsize, XFS_BUFTARG_NAME(btp),
1534 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1535 }
1536
1537 return 0;
1538 }
1539
1540 /*
1541 * When allocating the initial buffer target we have not yet
1542 * read in the superblock, so don't know what sized sectors
1543 * are being used is at this early stage. Play safe.
1544 */
1545 STATIC int
1546 xfs_setsize_buftarg_early(
1547 xfs_buftarg_t *btp,
1548 struct block_device *bdev)
1549 {
1550 return xfs_setsize_buftarg_flags(btp,
1551 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1552 }
1553
1554 int
1555 xfs_setsize_buftarg(
1556 xfs_buftarg_t *btp,
1557 unsigned int blocksize,
1558 unsigned int sectorsize)
1559 {
1560 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1561 }
1562
1563 STATIC int
1564 xfs_mapping_buftarg(
1565 xfs_buftarg_t *btp,
1566 struct block_device *bdev)
1567 {
1568 struct backing_dev_info *bdi;
1569 struct inode *inode;
1570 struct address_space *mapping;
1571 static const struct address_space_operations mapping_aops = {
1572 .sync_page = block_sync_page,
1573 .migratepage = fail_migrate_page,
1574 };
1575
1576 inode = new_inode(bdev->bd_inode->i_sb);
1577 if (!inode) {
1578 printk(KERN_WARNING
1579 "XFS: Cannot allocate mapping inode for device %s\n",
1580 XFS_BUFTARG_NAME(btp));
1581 return ENOMEM;
1582 }
1583 inode->i_ino = get_next_ino();
1584 inode->i_mode = S_IFBLK;
1585 inode->i_bdev = bdev;
1586 inode->i_rdev = bdev->bd_dev;
1587 bdi = blk_get_backing_dev_info(bdev);
1588 if (!bdi)
1589 bdi = &default_backing_dev_info;
1590 mapping = &inode->i_data;
1591 mapping->a_ops = &mapping_aops;
1592 mapping->backing_dev_info = bdi;
1593 mapping_set_gfp_mask(mapping, GFP_NOFS);
1594 btp->bt_mapping = mapping;
1595 return 0;
1596 }
1597
1598 STATIC int
1599 xfs_alloc_delwrite_queue(
1600 xfs_buftarg_t *btp,
1601 const char *fsname)
1602 {
1603 int error = 0;
1604
1605 INIT_LIST_HEAD(&btp->bt_list);
1606 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1607 spin_lock_init(&btp->bt_delwrite_lock);
1608 btp->bt_flags = 0;
1609 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1610 if (IS_ERR(btp->bt_task)) {
1611 error = PTR_ERR(btp->bt_task);
1612 goto out_error;
1613 }
1614 xfs_register_buftarg(btp);
1615 out_error:
1616 return error;
1617 }
1618
1619 xfs_buftarg_t *
1620 xfs_alloc_buftarg(
1621 struct xfs_mount *mp,
1622 struct block_device *bdev,
1623 int external,
1624 const char *fsname)
1625 {
1626 xfs_buftarg_t *btp;
1627
1628 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1629
1630 btp->bt_mount = mp;
1631 btp->bt_dev = bdev->bd_dev;
1632 btp->bt_bdev = bdev;
1633 if (xfs_setsize_buftarg_early(btp, bdev))
1634 goto error;
1635 if (xfs_mapping_buftarg(btp, bdev))
1636 goto error;
1637 if (xfs_alloc_delwrite_queue(btp, fsname))
1638 goto error;
1639 return btp;
1640
1641 error:
1642 kmem_free(btp);
1643 return NULL;
1644 }
1645
1646
1647 /*
1648 * Delayed write buffer handling
1649 */
1650 STATIC void
1651 xfs_buf_delwri_queue(
1652 xfs_buf_t *bp,
1653 int unlock)
1654 {
1655 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1656 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1657
1658 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1659
1660 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1661
1662 spin_lock(dwlk);
1663 /* If already in the queue, dequeue and place at tail */
1664 if (!list_empty(&bp->b_list)) {
1665 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1666 if (unlock)
1667 atomic_dec(&bp->b_hold);
1668 list_del(&bp->b_list);
1669 }
1670
1671 if (list_empty(dwq)) {
1672 /* start xfsbufd as it is about to have something to do */
1673 wake_up_process(bp->b_target->bt_task);
1674 }
1675
1676 bp->b_flags |= _XBF_DELWRI_Q;
1677 list_add_tail(&bp->b_list, dwq);
1678 bp->b_queuetime = jiffies;
1679 spin_unlock(dwlk);
1680
1681 if (unlock)
1682 xfs_buf_unlock(bp);
1683 }
1684
1685 void
1686 xfs_buf_delwri_dequeue(
1687 xfs_buf_t *bp)
1688 {
1689 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1690 int dequeued = 0;
1691
1692 spin_lock(dwlk);
1693 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1694 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1695 list_del_init(&bp->b_list);
1696 dequeued = 1;
1697 }
1698 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1699 spin_unlock(dwlk);
1700
1701 if (dequeued)
1702 xfs_buf_rele(bp);
1703
1704 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1705 }
1706
1707 /*
1708 * If a delwri buffer needs to be pushed before it has aged out, then promote
1709 * it to the head of the delwri queue so that it will be flushed on the next
1710 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1711 * than the age currently needed to flush the buffer. Hence the next time the
1712 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1713 */
1714 void
1715 xfs_buf_delwri_promote(
1716 struct xfs_buf *bp)
1717 {
1718 struct xfs_buftarg *btp = bp->b_target;
1719 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1720
1721 ASSERT(bp->b_flags & XBF_DELWRI);
1722 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1723
1724 /*
1725 * Check the buffer age before locking the delayed write queue as we
1726 * don't need to promote buffers that are already past the flush age.
1727 */
1728 if (bp->b_queuetime < jiffies - age)
1729 return;
1730 bp->b_queuetime = jiffies - age;
1731 spin_lock(&btp->bt_delwrite_lock);
1732 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1733 spin_unlock(&btp->bt_delwrite_lock);
1734 }
1735
1736 STATIC void
1737 xfs_buf_runall_queues(
1738 struct workqueue_struct *queue)
1739 {
1740 flush_workqueue(queue);
1741 }
1742
1743 STATIC int
1744 xfsbufd_wakeup(
1745 struct shrinker *shrink,
1746 int priority,
1747 gfp_t mask)
1748 {
1749 xfs_buftarg_t *btp;
1750
1751 spin_lock(&xfs_buftarg_lock);
1752 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1753 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1754 continue;
1755 if (list_empty(&btp->bt_delwrite_queue))
1756 continue;
1757 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1758 wake_up_process(btp->bt_task);
1759 }
1760 spin_unlock(&xfs_buftarg_lock);
1761 return 0;
1762 }
1763
1764 /*
1765 * Move as many buffers as specified to the supplied list
1766 * idicating if we skipped any buffers to prevent deadlocks.
1767 */
1768 STATIC int
1769 xfs_buf_delwri_split(
1770 xfs_buftarg_t *target,
1771 struct list_head *list,
1772 unsigned long age)
1773 {
1774 xfs_buf_t *bp, *n;
1775 struct list_head *dwq = &target->bt_delwrite_queue;
1776 spinlock_t *dwlk = &target->bt_delwrite_lock;
1777 int skipped = 0;
1778 int force;
1779
1780 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1781 INIT_LIST_HEAD(list);
1782 spin_lock(dwlk);
1783 list_for_each_entry_safe(bp, n, dwq, b_list) {
1784 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1785 ASSERT(bp->b_flags & XBF_DELWRI);
1786
1787 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1788 if (!force &&
1789 time_before(jiffies, bp->b_queuetime + age)) {
1790 xfs_buf_unlock(bp);
1791 break;
1792 }
1793
1794 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1795 _XBF_RUN_QUEUES);
1796 bp->b_flags |= XBF_WRITE;
1797 list_move_tail(&bp->b_list, list);
1798 } else
1799 skipped++;
1800 }
1801 spin_unlock(dwlk);
1802
1803 return skipped;
1804
1805 }
1806
1807 /*
1808 * Compare function is more complex than it needs to be because
1809 * the return value is only 32 bits and we are doing comparisons
1810 * on 64 bit values
1811 */
1812 static int
1813 xfs_buf_cmp(
1814 void *priv,
1815 struct list_head *a,
1816 struct list_head *b)
1817 {
1818 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1819 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1820 xfs_daddr_t diff;
1821
1822 diff = ap->b_bn - bp->b_bn;
1823 if (diff < 0)
1824 return -1;
1825 if (diff > 0)
1826 return 1;
1827 return 0;
1828 }
1829
1830 void
1831 xfs_buf_delwri_sort(
1832 xfs_buftarg_t *target,
1833 struct list_head *list)
1834 {
1835 list_sort(NULL, list, xfs_buf_cmp);
1836 }
1837
1838 STATIC int
1839 xfsbufd(
1840 void *data)
1841 {
1842 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1843
1844 current->flags |= PF_MEMALLOC;
1845
1846 set_freezable();
1847
1848 do {
1849 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1850 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1851 int count = 0;
1852 struct list_head tmp;
1853
1854 if (unlikely(freezing(current))) {
1855 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1856 refrigerator();
1857 } else {
1858 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1859 }
1860
1861 /* sleep for a long time if there is nothing to do. */
1862 if (list_empty(&target->bt_delwrite_queue))
1863 tout = MAX_SCHEDULE_TIMEOUT;
1864 schedule_timeout_interruptible(tout);
1865
1866 xfs_buf_delwri_split(target, &tmp, age);
1867 list_sort(NULL, &tmp, xfs_buf_cmp);
1868 while (!list_empty(&tmp)) {
1869 struct xfs_buf *bp;
1870 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1871 list_del_init(&bp->b_list);
1872 xfs_bdstrat_cb(bp);
1873 count++;
1874 }
1875 if (count)
1876 blk_run_address_space(target->bt_mapping);
1877
1878 } while (!kthread_should_stop());
1879
1880 return 0;
1881 }
1882
1883 /*
1884 * Go through all incore buffers, and release buffers if they belong to
1885 * the given device. This is used in filesystem error handling to
1886 * preserve the consistency of its metadata.
1887 */
1888 int
1889 xfs_flush_buftarg(
1890 xfs_buftarg_t *target,
1891 int wait)
1892 {
1893 xfs_buf_t *bp;
1894 int pincount = 0;
1895 LIST_HEAD(tmp_list);
1896 LIST_HEAD(wait_list);
1897
1898 xfs_buf_runall_queues(xfsconvertd_workqueue);
1899 xfs_buf_runall_queues(xfsdatad_workqueue);
1900 xfs_buf_runall_queues(xfslogd_workqueue);
1901
1902 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1903 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1904
1905 /*
1906 * Dropped the delayed write list lock, now walk the temporary list.
1907 * All I/O is issued async and then if we need to wait for completion
1908 * we do that after issuing all the IO.
1909 */
1910 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1911 while (!list_empty(&tmp_list)) {
1912 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1913 ASSERT(target == bp->b_target);
1914 list_del_init(&bp->b_list);
1915 if (wait) {
1916 bp->b_flags &= ~XBF_ASYNC;
1917 list_add(&bp->b_list, &wait_list);
1918 }
1919 xfs_bdstrat_cb(bp);
1920 }
1921
1922 if (wait) {
1923 /* Expedite and wait for IO to complete. */
1924 blk_run_address_space(target->bt_mapping);
1925 while (!list_empty(&wait_list)) {
1926 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1927
1928 list_del_init(&bp->b_list);
1929 xfs_buf_iowait(bp);
1930 xfs_buf_relse(bp);
1931 }
1932 }
1933
1934 return pincount;
1935 }
1936
1937 int __init
1938 xfs_buf_init(void)
1939 {
1940 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1941 KM_ZONE_HWALIGN, NULL);
1942 if (!xfs_buf_zone)
1943 goto out;
1944
1945 xfslogd_workqueue = alloc_workqueue("xfslogd",
1946 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1947 if (!xfslogd_workqueue)
1948 goto out_free_buf_zone;
1949
1950 xfsdatad_workqueue = create_workqueue("xfsdatad");
1951 if (!xfsdatad_workqueue)
1952 goto out_destroy_xfslogd_workqueue;
1953
1954 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1955 if (!xfsconvertd_workqueue)
1956 goto out_destroy_xfsdatad_workqueue;
1957
1958 register_shrinker(&xfs_buf_shake);
1959 return 0;
1960
1961 out_destroy_xfsdatad_workqueue:
1962 destroy_workqueue(xfsdatad_workqueue);
1963 out_destroy_xfslogd_workqueue:
1964 destroy_workqueue(xfslogd_workqueue);
1965 out_free_buf_zone:
1966 kmem_zone_destroy(xfs_buf_zone);
1967 out:
1968 return -ENOMEM;
1969 }
1970
1971 void
1972 xfs_buf_terminate(void)
1973 {
1974 unregister_shrinker(&xfs_buf_shake);
1975 destroy_workqueue(xfsconvertd_workqueue);
1976 destroy_workqueue(xfsdatad_workqueue);
1977 destroy_workqueue(xfslogd_workqueue);
1978 kmem_zone_destroy(xfs_buf_zone);
1979 }
1980
1981 #ifdef CONFIG_KDB_MODULES
1982 struct list_head *
1983 xfs_get_buftarg_list(void)
1984 {
1985 return &xfs_buftarg_list;
1986 }
1987 #endif