]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/xfs/linux-2.6/xfs_buf.c
xfs: Remove macro XFS_BUF_SET_START
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_sb.h"
38 #include "xfs_inum.h"
39 #include "xfs_log.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43
44 static kmem_zone_t *xfs_buf_zone;
45 STATIC int xfsbufd(void *);
46 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
47
48 static struct workqueue_struct *xfslogd_workqueue;
49 struct workqueue_struct *xfsdatad_workqueue;
50 struct workqueue_struct *xfsconvertd_workqueue;
51
52 #ifdef XFS_BUF_LOCK_TRACKING
53 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
54 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
55 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
56 #else
57 # define XB_SET_OWNER(bp) do { } while (0)
58 # define XB_CLEAR_OWNER(bp) do { } while (0)
59 # define XB_GET_OWNER(bp) do { } while (0)
60 #endif
61
62 #define xb_to_gfp(flags) \
63 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
64 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
65
66 #define xb_to_km(flags) \
67 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
68
69 #define xfs_buf_allocate(flags) \
70 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
71 #define xfs_buf_deallocate(bp) \
72 kmem_zone_free(xfs_buf_zone, (bp));
73
74 static inline int
75 xfs_buf_is_vmapped(
76 struct xfs_buf *bp)
77 {
78 /*
79 * Return true if the buffer is vmapped.
80 *
81 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
82 * code is clever enough to know it doesn't have to map a single page,
83 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
84 */
85 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
86 }
87
88 static inline int
89 xfs_buf_vmap_len(
90 struct xfs_buf *bp)
91 {
92 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
93 }
94
95 /*
96 * xfs_buf_lru_add - add a buffer to the LRU.
97 *
98 * The LRU takes a new reference to the buffer so that it will only be freed
99 * once the shrinker takes the buffer off the LRU.
100 */
101 STATIC void
102 xfs_buf_lru_add(
103 struct xfs_buf *bp)
104 {
105 struct xfs_buftarg *btp = bp->b_target;
106
107 spin_lock(&btp->bt_lru_lock);
108 if (list_empty(&bp->b_lru)) {
109 atomic_inc(&bp->b_hold);
110 list_add_tail(&bp->b_lru, &btp->bt_lru);
111 btp->bt_lru_nr++;
112 }
113 spin_unlock(&btp->bt_lru_lock);
114 }
115
116 /*
117 * xfs_buf_lru_del - remove a buffer from the LRU
118 *
119 * The unlocked check is safe here because it only occurs when there are not
120 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
121 * to optimise the shrinker removing the buffer from the LRU and calling
122 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
123 * bt_lru_lock.
124 */
125 STATIC void
126 xfs_buf_lru_del(
127 struct xfs_buf *bp)
128 {
129 struct xfs_buftarg *btp = bp->b_target;
130
131 if (list_empty(&bp->b_lru))
132 return;
133
134 spin_lock(&btp->bt_lru_lock);
135 if (!list_empty(&bp->b_lru)) {
136 list_del_init(&bp->b_lru);
137 btp->bt_lru_nr--;
138 }
139 spin_unlock(&btp->bt_lru_lock);
140 }
141
142 /*
143 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144 * b_lru_ref count so that the buffer is freed immediately when the buffer
145 * reference count falls to zero. If the buffer is already on the LRU, we need
146 * to remove the reference that LRU holds on the buffer.
147 *
148 * This prevents build-up of stale buffers on the LRU.
149 */
150 void
151 xfs_buf_stale(
152 struct xfs_buf *bp)
153 {
154 bp->b_flags |= XBF_STALE;
155 atomic_set(&(bp)->b_lru_ref, 0);
156 if (!list_empty(&bp->b_lru)) {
157 struct xfs_buftarg *btp = bp->b_target;
158
159 spin_lock(&btp->bt_lru_lock);
160 if (!list_empty(&bp->b_lru)) {
161 list_del_init(&bp->b_lru);
162 btp->bt_lru_nr--;
163 atomic_dec(&bp->b_hold);
164 }
165 spin_unlock(&btp->bt_lru_lock);
166 }
167 ASSERT(atomic_read(&bp->b_hold) >= 1);
168 }
169
170 STATIC void
171 _xfs_buf_initialize(
172 xfs_buf_t *bp,
173 xfs_buftarg_t *target,
174 xfs_off_t range_base,
175 size_t range_length,
176 xfs_buf_flags_t flags)
177 {
178 /*
179 * We don't want certain flags to appear in b_flags.
180 */
181 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
182
183 memset(bp, 0, sizeof(xfs_buf_t));
184 atomic_set(&bp->b_hold, 1);
185 atomic_set(&bp->b_lru_ref, 1);
186 init_completion(&bp->b_iowait);
187 INIT_LIST_HEAD(&bp->b_lru);
188 INIT_LIST_HEAD(&bp->b_list);
189 RB_CLEAR_NODE(&bp->b_rbnode);
190 sema_init(&bp->b_sema, 0); /* held, no waiters */
191 XB_SET_OWNER(bp);
192 bp->b_target = target;
193 bp->b_file_offset = range_base;
194 /*
195 * Set buffer_length and count_desired to the same value initially.
196 * I/O routines should use count_desired, which will be the same in
197 * most cases but may be reset (e.g. XFS recovery).
198 */
199 bp->b_buffer_length = bp->b_count_desired = range_length;
200 bp->b_flags = flags;
201 bp->b_bn = XFS_BUF_DADDR_NULL;
202 atomic_set(&bp->b_pin_count, 0);
203 init_waitqueue_head(&bp->b_waiters);
204
205 XFS_STATS_INC(xb_create);
206
207 trace_xfs_buf_init(bp, _RET_IP_);
208 }
209
210 /*
211 * Allocate a page array capable of holding a specified number
212 * of pages, and point the page buf at it.
213 */
214 STATIC int
215 _xfs_buf_get_pages(
216 xfs_buf_t *bp,
217 int page_count,
218 xfs_buf_flags_t flags)
219 {
220 /* Make sure that we have a page list */
221 if (bp->b_pages == NULL) {
222 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
223 bp->b_page_count = page_count;
224 if (page_count <= XB_PAGES) {
225 bp->b_pages = bp->b_page_array;
226 } else {
227 bp->b_pages = kmem_alloc(sizeof(struct page *) *
228 page_count, xb_to_km(flags));
229 if (bp->b_pages == NULL)
230 return -ENOMEM;
231 }
232 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
233 }
234 return 0;
235 }
236
237 /*
238 * Frees b_pages if it was allocated.
239 */
240 STATIC void
241 _xfs_buf_free_pages(
242 xfs_buf_t *bp)
243 {
244 if (bp->b_pages != bp->b_page_array) {
245 kmem_free(bp->b_pages);
246 bp->b_pages = NULL;
247 }
248 }
249
250 /*
251 * Releases the specified buffer.
252 *
253 * The modification state of any associated pages is left unchanged.
254 * The buffer most not be on any hash - use xfs_buf_rele instead for
255 * hashed and refcounted buffers
256 */
257 void
258 xfs_buf_free(
259 xfs_buf_t *bp)
260 {
261 trace_xfs_buf_free(bp, _RET_IP_);
262
263 ASSERT(list_empty(&bp->b_lru));
264
265 if (bp->b_flags & _XBF_PAGES) {
266 uint i;
267
268 if (xfs_buf_is_vmapped(bp))
269 vm_unmap_ram(bp->b_addr - bp->b_offset,
270 bp->b_page_count);
271
272 for (i = 0; i < bp->b_page_count; i++) {
273 struct page *page = bp->b_pages[i];
274
275 __free_page(page);
276 }
277 } else if (bp->b_flags & _XBF_KMEM)
278 kmem_free(bp->b_addr);
279 _xfs_buf_free_pages(bp);
280 xfs_buf_deallocate(bp);
281 }
282
283 /*
284 * Allocates all the pages for buffer in question and builds it's page list.
285 */
286 STATIC int
287 xfs_buf_allocate_memory(
288 xfs_buf_t *bp,
289 uint flags)
290 {
291 size_t size = bp->b_count_desired;
292 size_t nbytes, offset;
293 gfp_t gfp_mask = xb_to_gfp(flags);
294 unsigned short page_count, i;
295 xfs_off_t end;
296 int error;
297
298 /*
299 * for buffers that are contained within a single page, just allocate
300 * the memory from the heap - there's no need for the complexity of
301 * page arrays to keep allocation down to order 0.
302 */
303 if (bp->b_buffer_length < PAGE_SIZE) {
304 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
305 if (!bp->b_addr) {
306 /* low memory - use alloc_page loop instead */
307 goto use_alloc_page;
308 }
309
310 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
311 PAGE_MASK) !=
312 ((unsigned long)bp->b_addr & PAGE_MASK)) {
313 /* b_addr spans two pages - use alloc_page instead */
314 kmem_free(bp->b_addr);
315 bp->b_addr = NULL;
316 goto use_alloc_page;
317 }
318 bp->b_offset = offset_in_page(bp->b_addr);
319 bp->b_pages = bp->b_page_array;
320 bp->b_pages[0] = virt_to_page(bp->b_addr);
321 bp->b_page_count = 1;
322 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
323 return 0;
324 }
325
326 use_alloc_page:
327 end = bp->b_file_offset + bp->b_buffer_length;
328 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
329 error = _xfs_buf_get_pages(bp, page_count, flags);
330 if (unlikely(error))
331 return error;
332
333 offset = bp->b_offset;
334 bp->b_flags |= _XBF_PAGES;
335
336 for (i = 0; i < bp->b_page_count; i++) {
337 struct page *page;
338 uint retries = 0;
339 retry:
340 page = alloc_page(gfp_mask);
341 if (unlikely(page == NULL)) {
342 if (flags & XBF_READ_AHEAD) {
343 bp->b_page_count = i;
344 error = ENOMEM;
345 goto out_free_pages;
346 }
347
348 /*
349 * This could deadlock.
350 *
351 * But until all the XFS lowlevel code is revamped to
352 * handle buffer allocation failures we can't do much.
353 */
354 if (!(++retries % 100))
355 xfs_err(NULL,
356 "possible memory allocation deadlock in %s (mode:0x%x)",
357 __func__, gfp_mask);
358
359 XFS_STATS_INC(xb_page_retries);
360 congestion_wait(BLK_RW_ASYNC, HZ/50);
361 goto retry;
362 }
363
364 XFS_STATS_INC(xb_page_found);
365
366 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
367 size -= nbytes;
368 bp->b_pages[i] = page;
369 offset = 0;
370 }
371 return 0;
372
373 out_free_pages:
374 for (i = 0; i < bp->b_page_count; i++)
375 __free_page(bp->b_pages[i]);
376 return error;
377 }
378
379 /*
380 * Map buffer into kernel address-space if necessary.
381 */
382 STATIC int
383 _xfs_buf_map_pages(
384 xfs_buf_t *bp,
385 uint flags)
386 {
387 ASSERT(bp->b_flags & _XBF_PAGES);
388 if (bp->b_page_count == 1) {
389 /* A single page buffer is always mappable */
390 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
391 bp->b_flags |= XBF_MAPPED;
392 } else if (flags & XBF_MAPPED) {
393 int retried = 0;
394
395 do {
396 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
397 -1, PAGE_KERNEL);
398 if (bp->b_addr)
399 break;
400 vm_unmap_aliases();
401 } while (retried++ <= 1);
402
403 if (!bp->b_addr)
404 return -ENOMEM;
405 bp->b_addr += bp->b_offset;
406 bp->b_flags |= XBF_MAPPED;
407 }
408
409 return 0;
410 }
411
412 /*
413 * Finding and Reading Buffers
414 */
415
416 /*
417 * Look up, and creates if absent, a lockable buffer for
418 * a given range of an inode. The buffer is returned
419 * locked. If other overlapping buffers exist, they are
420 * released before the new buffer is created and locked,
421 * which may imply that this call will block until those buffers
422 * are unlocked. No I/O is implied by this call.
423 */
424 xfs_buf_t *
425 _xfs_buf_find(
426 xfs_buftarg_t *btp, /* block device target */
427 xfs_off_t ioff, /* starting offset of range */
428 size_t isize, /* length of range */
429 xfs_buf_flags_t flags,
430 xfs_buf_t *new_bp)
431 {
432 xfs_off_t range_base;
433 size_t range_length;
434 struct xfs_perag *pag;
435 struct rb_node **rbp;
436 struct rb_node *parent;
437 xfs_buf_t *bp;
438
439 range_base = (ioff << BBSHIFT);
440 range_length = (isize << BBSHIFT);
441
442 /* Check for IOs smaller than the sector size / not sector aligned */
443 ASSERT(!(range_length < (1 << btp->bt_sshift)));
444 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
445
446 /* get tree root */
447 pag = xfs_perag_get(btp->bt_mount,
448 xfs_daddr_to_agno(btp->bt_mount, ioff));
449
450 /* walk tree */
451 spin_lock(&pag->pag_buf_lock);
452 rbp = &pag->pag_buf_tree.rb_node;
453 parent = NULL;
454 bp = NULL;
455 while (*rbp) {
456 parent = *rbp;
457 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
458
459 if (range_base < bp->b_file_offset)
460 rbp = &(*rbp)->rb_left;
461 else if (range_base > bp->b_file_offset)
462 rbp = &(*rbp)->rb_right;
463 else {
464 /*
465 * found a block offset match. If the range doesn't
466 * match, the only way this is allowed is if the buffer
467 * in the cache is stale and the transaction that made
468 * it stale has not yet committed. i.e. we are
469 * reallocating a busy extent. Skip this buffer and
470 * continue searching to the right for an exact match.
471 */
472 if (bp->b_buffer_length != range_length) {
473 ASSERT(bp->b_flags & XBF_STALE);
474 rbp = &(*rbp)->rb_right;
475 continue;
476 }
477 atomic_inc(&bp->b_hold);
478 goto found;
479 }
480 }
481
482 /* No match found */
483 if (new_bp) {
484 _xfs_buf_initialize(new_bp, btp, range_base,
485 range_length, flags);
486 rb_link_node(&new_bp->b_rbnode, parent, rbp);
487 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
488 /* the buffer keeps the perag reference until it is freed */
489 new_bp->b_pag = pag;
490 spin_unlock(&pag->pag_buf_lock);
491 } else {
492 XFS_STATS_INC(xb_miss_locked);
493 spin_unlock(&pag->pag_buf_lock);
494 xfs_perag_put(pag);
495 }
496 return new_bp;
497
498 found:
499 spin_unlock(&pag->pag_buf_lock);
500 xfs_perag_put(pag);
501
502 if (!xfs_buf_trylock(bp)) {
503 if (flags & XBF_TRYLOCK) {
504 xfs_buf_rele(bp);
505 XFS_STATS_INC(xb_busy_locked);
506 return NULL;
507 }
508 xfs_buf_lock(bp);
509 XFS_STATS_INC(xb_get_locked_waited);
510 }
511
512 /*
513 * if the buffer is stale, clear all the external state associated with
514 * it. We need to keep flags such as how we allocated the buffer memory
515 * intact here.
516 */
517 if (bp->b_flags & XBF_STALE) {
518 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
519 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
520 }
521
522 trace_xfs_buf_find(bp, flags, _RET_IP_);
523 XFS_STATS_INC(xb_get_locked);
524 return bp;
525 }
526
527 /*
528 * Assembles a buffer covering the specified range.
529 * Storage in memory for all portions of the buffer will be allocated,
530 * although backing storage may not be.
531 */
532 xfs_buf_t *
533 xfs_buf_get(
534 xfs_buftarg_t *target,/* target for buffer */
535 xfs_off_t ioff, /* starting offset of range */
536 size_t isize, /* length of range */
537 xfs_buf_flags_t flags)
538 {
539 xfs_buf_t *bp, *new_bp;
540 int error = 0;
541
542 new_bp = xfs_buf_allocate(flags);
543 if (unlikely(!new_bp))
544 return NULL;
545
546 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
547 if (bp == new_bp) {
548 error = xfs_buf_allocate_memory(bp, flags);
549 if (error)
550 goto no_buffer;
551 } else {
552 xfs_buf_deallocate(new_bp);
553 if (unlikely(bp == NULL))
554 return NULL;
555 }
556
557 if (!(bp->b_flags & XBF_MAPPED)) {
558 error = _xfs_buf_map_pages(bp, flags);
559 if (unlikely(error)) {
560 xfs_warn(target->bt_mount,
561 "%s: failed to map pages\n", __func__);
562 goto no_buffer;
563 }
564 }
565
566 XFS_STATS_INC(xb_get);
567
568 /*
569 * Always fill in the block number now, the mapped cases can do
570 * their own overlay of this later.
571 */
572 bp->b_bn = ioff;
573 bp->b_count_desired = bp->b_buffer_length;
574
575 trace_xfs_buf_get(bp, flags, _RET_IP_);
576 return bp;
577
578 no_buffer:
579 if (flags & (XBF_LOCK | XBF_TRYLOCK))
580 xfs_buf_unlock(bp);
581 xfs_buf_rele(bp);
582 return NULL;
583 }
584
585 STATIC int
586 _xfs_buf_read(
587 xfs_buf_t *bp,
588 xfs_buf_flags_t flags)
589 {
590 int status;
591
592 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
593 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
594
595 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD);
596 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
597
598 status = xfs_buf_iorequest(bp);
599 if (status || bp->b_error || (flags & XBF_ASYNC))
600 return status;
601 return xfs_buf_iowait(bp);
602 }
603
604 xfs_buf_t *
605 xfs_buf_read(
606 xfs_buftarg_t *target,
607 xfs_off_t ioff,
608 size_t isize,
609 xfs_buf_flags_t flags)
610 {
611 xfs_buf_t *bp;
612
613 flags |= XBF_READ;
614
615 bp = xfs_buf_get(target, ioff, isize, flags);
616 if (bp) {
617 trace_xfs_buf_read(bp, flags, _RET_IP_);
618
619 if (!XFS_BUF_ISDONE(bp)) {
620 XFS_STATS_INC(xb_get_read);
621 _xfs_buf_read(bp, flags);
622 } else if (flags & XBF_ASYNC) {
623 /*
624 * Read ahead call which is already satisfied,
625 * drop the buffer
626 */
627 goto no_buffer;
628 } else {
629 /* We do not want read in the flags */
630 bp->b_flags &= ~XBF_READ;
631 }
632 }
633
634 return bp;
635
636 no_buffer:
637 if (flags & (XBF_LOCK | XBF_TRYLOCK))
638 xfs_buf_unlock(bp);
639 xfs_buf_rele(bp);
640 return NULL;
641 }
642
643 /*
644 * If we are not low on memory then do the readahead in a deadlock
645 * safe manner.
646 */
647 void
648 xfs_buf_readahead(
649 xfs_buftarg_t *target,
650 xfs_off_t ioff,
651 size_t isize)
652 {
653 if (bdi_read_congested(target->bt_bdi))
654 return;
655
656 xfs_buf_read(target, ioff, isize,
657 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
658 }
659
660 /*
661 * Read an uncached buffer from disk. Allocates and returns a locked
662 * buffer containing the disk contents or nothing.
663 */
664 struct xfs_buf *
665 xfs_buf_read_uncached(
666 struct xfs_mount *mp,
667 struct xfs_buftarg *target,
668 xfs_daddr_t daddr,
669 size_t length,
670 int flags)
671 {
672 xfs_buf_t *bp;
673 int error;
674
675 bp = xfs_buf_get_uncached(target, length, flags);
676 if (!bp)
677 return NULL;
678
679 /* set up the buffer for a read IO */
680 XFS_BUF_SET_ADDR(bp, daddr);
681 XFS_BUF_READ(bp);
682
683 xfsbdstrat(mp, bp);
684 error = xfs_buf_iowait(bp);
685 if (error || bp->b_error) {
686 xfs_buf_relse(bp);
687 return NULL;
688 }
689 return bp;
690 }
691
692 xfs_buf_t *
693 xfs_buf_get_empty(
694 size_t len,
695 xfs_buftarg_t *target)
696 {
697 xfs_buf_t *bp;
698
699 bp = xfs_buf_allocate(0);
700 if (bp)
701 _xfs_buf_initialize(bp, target, 0, len, 0);
702 return bp;
703 }
704
705 /*
706 * Return a buffer allocated as an empty buffer and associated to external
707 * memory via xfs_buf_associate_memory() back to it's empty state.
708 */
709 void
710 xfs_buf_set_empty(
711 struct xfs_buf *bp,
712 size_t len)
713 {
714 if (bp->b_pages)
715 _xfs_buf_free_pages(bp);
716
717 bp->b_pages = NULL;
718 bp->b_page_count = 0;
719 bp->b_addr = NULL;
720 bp->b_file_offset = 0;
721 bp->b_buffer_length = bp->b_count_desired = len;
722 bp->b_bn = XFS_BUF_DADDR_NULL;
723 bp->b_flags &= ~XBF_MAPPED;
724 }
725
726 static inline struct page *
727 mem_to_page(
728 void *addr)
729 {
730 if ((!is_vmalloc_addr(addr))) {
731 return virt_to_page(addr);
732 } else {
733 return vmalloc_to_page(addr);
734 }
735 }
736
737 int
738 xfs_buf_associate_memory(
739 xfs_buf_t *bp,
740 void *mem,
741 size_t len)
742 {
743 int rval;
744 int i = 0;
745 unsigned long pageaddr;
746 unsigned long offset;
747 size_t buflen;
748 int page_count;
749
750 pageaddr = (unsigned long)mem & PAGE_MASK;
751 offset = (unsigned long)mem - pageaddr;
752 buflen = PAGE_ALIGN(len + offset);
753 page_count = buflen >> PAGE_SHIFT;
754
755 /* Free any previous set of page pointers */
756 if (bp->b_pages)
757 _xfs_buf_free_pages(bp);
758
759 bp->b_pages = NULL;
760 bp->b_addr = mem;
761
762 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
763 if (rval)
764 return rval;
765
766 bp->b_offset = offset;
767
768 for (i = 0; i < bp->b_page_count; i++) {
769 bp->b_pages[i] = mem_to_page((void *)pageaddr);
770 pageaddr += PAGE_SIZE;
771 }
772
773 bp->b_count_desired = len;
774 bp->b_buffer_length = buflen;
775 bp->b_flags |= XBF_MAPPED;
776
777 return 0;
778 }
779
780 xfs_buf_t *
781 xfs_buf_get_uncached(
782 struct xfs_buftarg *target,
783 size_t len,
784 int flags)
785 {
786 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
787 int error, i;
788 xfs_buf_t *bp;
789
790 bp = xfs_buf_allocate(0);
791 if (unlikely(bp == NULL))
792 goto fail;
793 _xfs_buf_initialize(bp, target, 0, len, 0);
794
795 error = _xfs_buf_get_pages(bp, page_count, 0);
796 if (error)
797 goto fail_free_buf;
798
799 for (i = 0; i < page_count; i++) {
800 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
801 if (!bp->b_pages[i])
802 goto fail_free_mem;
803 }
804 bp->b_flags |= _XBF_PAGES;
805
806 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
807 if (unlikely(error)) {
808 xfs_warn(target->bt_mount,
809 "%s: failed to map pages\n", __func__);
810 goto fail_free_mem;
811 }
812
813 trace_xfs_buf_get_uncached(bp, _RET_IP_);
814 return bp;
815
816 fail_free_mem:
817 while (--i >= 0)
818 __free_page(bp->b_pages[i]);
819 _xfs_buf_free_pages(bp);
820 fail_free_buf:
821 xfs_buf_deallocate(bp);
822 fail:
823 return NULL;
824 }
825
826 /*
827 * Increment reference count on buffer, to hold the buffer concurrently
828 * with another thread which may release (free) the buffer asynchronously.
829 * Must hold the buffer already to call this function.
830 */
831 void
832 xfs_buf_hold(
833 xfs_buf_t *bp)
834 {
835 trace_xfs_buf_hold(bp, _RET_IP_);
836 atomic_inc(&bp->b_hold);
837 }
838
839 /*
840 * Releases a hold on the specified buffer. If the
841 * the hold count is 1, calls xfs_buf_free.
842 */
843 void
844 xfs_buf_rele(
845 xfs_buf_t *bp)
846 {
847 struct xfs_perag *pag = bp->b_pag;
848
849 trace_xfs_buf_rele(bp, _RET_IP_);
850
851 if (!pag) {
852 ASSERT(list_empty(&bp->b_lru));
853 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
854 if (atomic_dec_and_test(&bp->b_hold))
855 xfs_buf_free(bp);
856 return;
857 }
858
859 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
860
861 ASSERT(atomic_read(&bp->b_hold) > 0);
862 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
863 if (!(bp->b_flags & XBF_STALE) &&
864 atomic_read(&bp->b_lru_ref)) {
865 xfs_buf_lru_add(bp);
866 spin_unlock(&pag->pag_buf_lock);
867 } else {
868 xfs_buf_lru_del(bp);
869 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
870 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
871 spin_unlock(&pag->pag_buf_lock);
872 xfs_perag_put(pag);
873 xfs_buf_free(bp);
874 }
875 }
876 }
877
878
879 /*
880 * Lock a buffer object, if it is not already locked.
881 *
882 * If we come across a stale, pinned, locked buffer, we know that we are
883 * being asked to lock a buffer that has been reallocated. Because it is
884 * pinned, we know that the log has not been pushed to disk and hence it
885 * will still be locked. Rather than continuing to have trylock attempts
886 * fail until someone else pushes the log, push it ourselves before
887 * returning. This means that the xfsaild will not get stuck trying
888 * to push on stale inode buffers.
889 */
890 int
891 xfs_buf_trylock(
892 struct xfs_buf *bp)
893 {
894 int locked;
895
896 locked = down_trylock(&bp->b_sema) == 0;
897 if (locked)
898 XB_SET_OWNER(bp);
899 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
900 xfs_log_force(bp->b_target->bt_mount, 0);
901
902 trace_xfs_buf_trylock(bp, _RET_IP_);
903 return locked;
904 }
905
906 /*
907 * Lock a buffer object.
908 *
909 * If we come across a stale, pinned, locked buffer, we know that we
910 * are being asked to lock a buffer that has been reallocated. Because
911 * it is pinned, we know that the log has not been pushed to disk and
912 * hence it will still be locked. Rather than sleeping until someone
913 * else pushes the log, push it ourselves before trying to get the lock.
914 */
915 void
916 xfs_buf_lock(
917 struct xfs_buf *bp)
918 {
919 trace_xfs_buf_lock(bp, _RET_IP_);
920
921 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
922 xfs_log_force(bp->b_target->bt_mount, 0);
923 down(&bp->b_sema);
924 XB_SET_OWNER(bp);
925
926 trace_xfs_buf_lock_done(bp, _RET_IP_);
927 }
928
929 /*
930 * Releases the lock on the buffer object.
931 * If the buffer is marked delwri but is not queued, do so before we
932 * unlock the buffer as we need to set flags correctly. We also need to
933 * take a reference for the delwri queue because the unlocker is going to
934 * drop their's and they don't know we just queued it.
935 */
936 void
937 xfs_buf_unlock(
938 struct xfs_buf *bp)
939 {
940 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
941 atomic_inc(&bp->b_hold);
942 bp->b_flags |= XBF_ASYNC;
943 xfs_buf_delwri_queue(bp, 0);
944 }
945
946 XB_CLEAR_OWNER(bp);
947 up(&bp->b_sema);
948
949 trace_xfs_buf_unlock(bp, _RET_IP_);
950 }
951
952 STATIC void
953 xfs_buf_wait_unpin(
954 xfs_buf_t *bp)
955 {
956 DECLARE_WAITQUEUE (wait, current);
957
958 if (atomic_read(&bp->b_pin_count) == 0)
959 return;
960
961 add_wait_queue(&bp->b_waiters, &wait);
962 for (;;) {
963 set_current_state(TASK_UNINTERRUPTIBLE);
964 if (atomic_read(&bp->b_pin_count) == 0)
965 break;
966 io_schedule();
967 }
968 remove_wait_queue(&bp->b_waiters, &wait);
969 set_current_state(TASK_RUNNING);
970 }
971
972 /*
973 * Buffer Utility Routines
974 */
975
976 STATIC void
977 xfs_buf_iodone_work(
978 struct work_struct *work)
979 {
980 xfs_buf_t *bp =
981 container_of(work, xfs_buf_t, b_iodone_work);
982
983 if (bp->b_iodone)
984 (*(bp->b_iodone))(bp);
985 else if (bp->b_flags & XBF_ASYNC)
986 xfs_buf_relse(bp);
987 }
988
989 void
990 xfs_buf_ioend(
991 xfs_buf_t *bp,
992 int schedule)
993 {
994 trace_xfs_buf_iodone(bp, _RET_IP_);
995
996 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
997 if (bp->b_error == 0)
998 bp->b_flags |= XBF_DONE;
999
1000 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1001 if (schedule) {
1002 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1003 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1004 } else {
1005 xfs_buf_iodone_work(&bp->b_iodone_work);
1006 }
1007 } else {
1008 complete(&bp->b_iowait);
1009 }
1010 }
1011
1012 void
1013 xfs_buf_ioerror(
1014 xfs_buf_t *bp,
1015 int error)
1016 {
1017 ASSERT(error >= 0 && error <= 0xffff);
1018 bp->b_error = (unsigned short)error;
1019 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1020 }
1021
1022 int
1023 xfs_bwrite(
1024 struct xfs_mount *mp,
1025 struct xfs_buf *bp)
1026 {
1027 int error;
1028
1029 bp->b_flags |= XBF_WRITE;
1030 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1031
1032 xfs_buf_delwri_dequeue(bp);
1033 xfs_bdstrat_cb(bp);
1034
1035 error = xfs_buf_iowait(bp);
1036 if (error)
1037 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1038 xfs_buf_relse(bp);
1039 return error;
1040 }
1041
1042 void
1043 xfs_bdwrite(
1044 void *mp,
1045 struct xfs_buf *bp)
1046 {
1047 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1048
1049 bp->b_flags &= ~XBF_READ;
1050 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1051
1052 xfs_buf_delwri_queue(bp, 1);
1053 }
1054
1055 /*
1056 * Called when we want to stop a buffer from getting written or read.
1057 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1058 * so that the proper iodone callbacks get called.
1059 */
1060 STATIC int
1061 xfs_bioerror(
1062 xfs_buf_t *bp)
1063 {
1064 #ifdef XFSERRORDEBUG
1065 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1066 #endif
1067
1068 /*
1069 * No need to wait until the buffer is unpinned, we aren't flushing it.
1070 */
1071 xfs_buf_ioerror(bp, EIO);
1072
1073 /*
1074 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1075 */
1076 XFS_BUF_UNREAD(bp);
1077 XFS_BUF_UNDELAYWRITE(bp);
1078 XFS_BUF_UNDONE(bp);
1079 XFS_BUF_STALE(bp);
1080
1081 xfs_buf_ioend(bp, 0);
1082
1083 return EIO;
1084 }
1085
1086 /*
1087 * Same as xfs_bioerror, except that we are releasing the buffer
1088 * here ourselves, and avoiding the xfs_buf_ioend call.
1089 * This is meant for userdata errors; metadata bufs come with
1090 * iodone functions attached, so that we can track down errors.
1091 */
1092 STATIC int
1093 xfs_bioerror_relse(
1094 struct xfs_buf *bp)
1095 {
1096 int64_t fl = bp->b_flags;
1097 /*
1098 * No need to wait until the buffer is unpinned.
1099 * We aren't flushing it.
1100 *
1101 * chunkhold expects B_DONE to be set, whether
1102 * we actually finish the I/O or not. We don't want to
1103 * change that interface.
1104 */
1105 XFS_BUF_UNREAD(bp);
1106 XFS_BUF_UNDELAYWRITE(bp);
1107 XFS_BUF_DONE(bp);
1108 XFS_BUF_STALE(bp);
1109 bp->b_iodone = NULL;
1110 if (!(fl & XBF_ASYNC)) {
1111 /*
1112 * Mark b_error and B_ERROR _both_.
1113 * Lot's of chunkcache code assumes that.
1114 * There's no reason to mark error for
1115 * ASYNC buffers.
1116 */
1117 xfs_buf_ioerror(bp, EIO);
1118 XFS_BUF_FINISH_IOWAIT(bp);
1119 } else {
1120 xfs_buf_relse(bp);
1121 }
1122
1123 return EIO;
1124 }
1125
1126
1127 /*
1128 * All xfs metadata buffers except log state machine buffers
1129 * get this attached as their b_bdstrat callback function.
1130 * This is so that we can catch a buffer
1131 * after prematurely unpinning it to forcibly shutdown the filesystem.
1132 */
1133 int
1134 xfs_bdstrat_cb(
1135 struct xfs_buf *bp)
1136 {
1137 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1138 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1139 /*
1140 * Metadata write that didn't get logged but
1141 * written delayed anyway. These aren't associated
1142 * with a transaction, and can be ignored.
1143 */
1144 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1145 return xfs_bioerror_relse(bp);
1146 else
1147 return xfs_bioerror(bp);
1148 }
1149
1150 xfs_buf_iorequest(bp);
1151 return 0;
1152 }
1153
1154 /*
1155 * Wrapper around bdstrat so that we can stop data from going to disk in case
1156 * we are shutting down the filesystem. Typically user data goes thru this
1157 * path; one of the exceptions is the superblock.
1158 */
1159 void
1160 xfsbdstrat(
1161 struct xfs_mount *mp,
1162 struct xfs_buf *bp)
1163 {
1164 if (XFS_FORCED_SHUTDOWN(mp)) {
1165 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1166 xfs_bioerror_relse(bp);
1167 return;
1168 }
1169
1170 xfs_buf_iorequest(bp);
1171 }
1172
1173 STATIC void
1174 _xfs_buf_ioend(
1175 xfs_buf_t *bp,
1176 int schedule)
1177 {
1178 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1179 xfs_buf_ioend(bp, schedule);
1180 }
1181
1182 STATIC void
1183 xfs_buf_bio_end_io(
1184 struct bio *bio,
1185 int error)
1186 {
1187 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1188
1189 xfs_buf_ioerror(bp, -error);
1190
1191 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1192 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1193
1194 _xfs_buf_ioend(bp, 1);
1195 bio_put(bio);
1196 }
1197
1198 STATIC void
1199 _xfs_buf_ioapply(
1200 xfs_buf_t *bp)
1201 {
1202 int rw, map_i, total_nr_pages, nr_pages;
1203 struct bio *bio;
1204 int offset = bp->b_offset;
1205 int size = bp->b_count_desired;
1206 sector_t sector = bp->b_bn;
1207
1208 total_nr_pages = bp->b_page_count;
1209 map_i = 0;
1210
1211 if (bp->b_flags & XBF_WRITE) {
1212 if (bp->b_flags & XBF_SYNCIO)
1213 rw = WRITE_SYNC;
1214 else
1215 rw = WRITE;
1216 if (bp->b_flags & XBF_FUA)
1217 rw |= REQ_FUA;
1218 if (bp->b_flags & XBF_FLUSH)
1219 rw |= REQ_FLUSH;
1220 } else if (bp->b_flags & XBF_READ_AHEAD) {
1221 rw = READA;
1222 } else {
1223 rw = READ;
1224 }
1225
1226 next_chunk:
1227 atomic_inc(&bp->b_io_remaining);
1228 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1229 if (nr_pages > total_nr_pages)
1230 nr_pages = total_nr_pages;
1231
1232 bio = bio_alloc(GFP_NOIO, nr_pages);
1233 bio->bi_bdev = bp->b_target->bt_bdev;
1234 bio->bi_sector = sector;
1235 bio->bi_end_io = xfs_buf_bio_end_io;
1236 bio->bi_private = bp;
1237
1238
1239 for (; size && nr_pages; nr_pages--, map_i++) {
1240 int rbytes, nbytes = PAGE_SIZE - offset;
1241
1242 if (nbytes > size)
1243 nbytes = size;
1244
1245 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1246 if (rbytes < nbytes)
1247 break;
1248
1249 offset = 0;
1250 sector += nbytes >> BBSHIFT;
1251 size -= nbytes;
1252 total_nr_pages--;
1253 }
1254
1255 if (likely(bio->bi_size)) {
1256 if (xfs_buf_is_vmapped(bp)) {
1257 flush_kernel_vmap_range(bp->b_addr,
1258 xfs_buf_vmap_len(bp));
1259 }
1260 submit_bio(rw, bio);
1261 if (size)
1262 goto next_chunk;
1263 } else {
1264 xfs_buf_ioerror(bp, EIO);
1265 bio_put(bio);
1266 }
1267 }
1268
1269 int
1270 xfs_buf_iorequest(
1271 xfs_buf_t *bp)
1272 {
1273 trace_xfs_buf_iorequest(bp, _RET_IP_);
1274
1275 if (bp->b_flags & XBF_DELWRI) {
1276 xfs_buf_delwri_queue(bp, 1);
1277 return 0;
1278 }
1279
1280 if (bp->b_flags & XBF_WRITE) {
1281 xfs_buf_wait_unpin(bp);
1282 }
1283
1284 xfs_buf_hold(bp);
1285
1286 /* Set the count to 1 initially, this will stop an I/O
1287 * completion callout which happens before we have started
1288 * all the I/O from calling xfs_buf_ioend too early.
1289 */
1290 atomic_set(&bp->b_io_remaining, 1);
1291 _xfs_buf_ioapply(bp);
1292 _xfs_buf_ioend(bp, 0);
1293
1294 xfs_buf_rele(bp);
1295 return 0;
1296 }
1297
1298 /*
1299 * Waits for I/O to complete on the buffer supplied.
1300 * It returns immediately if no I/O is pending.
1301 * It returns the I/O error code, if any, or 0 if there was no error.
1302 */
1303 int
1304 xfs_buf_iowait(
1305 xfs_buf_t *bp)
1306 {
1307 trace_xfs_buf_iowait(bp, _RET_IP_);
1308
1309 wait_for_completion(&bp->b_iowait);
1310
1311 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1312 return bp->b_error;
1313 }
1314
1315 xfs_caddr_t
1316 xfs_buf_offset(
1317 xfs_buf_t *bp,
1318 size_t offset)
1319 {
1320 struct page *page;
1321
1322 if (bp->b_flags & XBF_MAPPED)
1323 return XFS_BUF_PTR(bp) + offset;
1324
1325 offset += bp->b_offset;
1326 page = bp->b_pages[offset >> PAGE_SHIFT];
1327 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1328 }
1329
1330 /*
1331 * Move data into or out of a buffer.
1332 */
1333 void
1334 xfs_buf_iomove(
1335 xfs_buf_t *bp, /* buffer to process */
1336 size_t boff, /* starting buffer offset */
1337 size_t bsize, /* length to copy */
1338 void *data, /* data address */
1339 xfs_buf_rw_t mode) /* read/write/zero flag */
1340 {
1341 size_t bend, cpoff, csize;
1342 struct page *page;
1343
1344 bend = boff + bsize;
1345 while (boff < bend) {
1346 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1347 cpoff = xfs_buf_poff(boff + bp->b_offset);
1348 csize = min_t(size_t,
1349 PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1350
1351 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1352
1353 switch (mode) {
1354 case XBRW_ZERO:
1355 memset(page_address(page) + cpoff, 0, csize);
1356 break;
1357 case XBRW_READ:
1358 memcpy(data, page_address(page) + cpoff, csize);
1359 break;
1360 case XBRW_WRITE:
1361 memcpy(page_address(page) + cpoff, data, csize);
1362 }
1363
1364 boff += csize;
1365 data += csize;
1366 }
1367 }
1368
1369 /*
1370 * Handling of buffer targets (buftargs).
1371 */
1372
1373 /*
1374 * Wait for any bufs with callbacks that have been submitted but have not yet
1375 * returned. These buffers will have an elevated hold count, so wait on those
1376 * while freeing all the buffers only held by the LRU.
1377 */
1378 void
1379 xfs_wait_buftarg(
1380 struct xfs_buftarg *btp)
1381 {
1382 struct xfs_buf *bp;
1383
1384 restart:
1385 spin_lock(&btp->bt_lru_lock);
1386 while (!list_empty(&btp->bt_lru)) {
1387 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1388 if (atomic_read(&bp->b_hold) > 1) {
1389 spin_unlock(&btp->bt_lru_lock);
1390 delay(100);
1391 goto restart;
1392 }
1393 /*
1394 * clear the LRU reference count so the bufer doesn't get
1395 * ignored in xfs_buf_rele().
1396 */
1397 atomic_set(&bp->b_lru_ref, 0);
1398 spin_unlock(&btp->bt_lru_lock);
1399 xfs_buf_rele(bp);
1400 spin_lock(&btp->bt_lru_lock);
1401 }
1402 spin_unlock(&btp->bt_lru_lock);
1403 }
1404
1405 int
1406 xfs_buftarg_shrink(
1407 struct shrinker *shrink,
1408 struct shrink_control *sc)
1409 {
1410 struct xfs_buftarg *btp = container_of(shrink,
1411 struct xfs_buftarg, bt_shrinker);
1412 struct xfs_buf *bp;
1413 int nr_to_scan = sc->nr_to_scan;
1414 LIST_HEAD(dispose);
1415
1416 if (!nr_to_scan)
1417 return btp->bt_lru_nr;
1418
1419 spin_lock(&btp->bt_lru_lock);
1420 while (!list_empty(&btp->bt_lru)) {
1421 if (nr_to_scan-- <= 0)
1422 break;
1423
1424 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1425
1426 /*
1427 * Decrement the b_lru_ref count unless the value is already
1428 * zero. If the value is already zero, we need to reclaim the
1429 * buffer, otherwise it gets another trip through the LRU.
1430 */
1431 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1432 list_move_tail(&bp->b_lru, &btp->bt_lru);
1433 continue;
1434 }
1435
1436 /*
1437 * remove the buffer from the LRU now to avoid needing another
1438 * lock round trip inside xfs_buf_rele().
1439 */
1440 list_move(&bp->b_lru, &dispose);
1441 btp->bt_lru_nr--;
1442 }
1443 spin_unlock(&btp->bt_lru_lock);
1444
1445 while (!list_empty(&dispose)) {
1446 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1447 list_del_init(&bp->b_lru);
1448 xfs_buf_rele(bp);
1449 }
1450
1451 return btp->bt_lru_nr;
1452 }
1453
1454 void
1455 xfs_free_buftarg(
1456 struct xfs_mount *mp,
1457 struct xfs_buftarg *btp)
1458 {
1459 unregister_shrinker(&btp->bt_shrinker);
1460
1461 xfs_flush_buftarg(btp, 1);
1462 if (mp->m_flags & XFS_MOUNT_BARRIER)
1463 xfs_blkdev_issue_flush(btp);
1464
1465 kthread_stop(btp->bt_task);
1466 kmem_free(btp);
1467 }
1468
1469 STATIC int
1470 xfs_setsize_buftarg_flags(
1471 xfs_buftarg_t *btp,
1472 unsigned int blocksize,
1473 unsigned int sectorsize,
1474 int verbose)
1475 {
1476 btp->bt_bsize = blocksize;
1477 btp->bt_sshift = ffs(sectorsize) - 1;
1478 btp->bt_smask = sectorsize - 1;
1479
1480 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1481 xfs_warn(btp->bt_mount,
1482 "Cannot set_blocksize to %u on device %s\n",
1483 sectorsize, XFS_BUFTARG_NAME(btp));
1484 return EINVAL;
1485 }
1486
1487 return 0;
1488 }
1489
1490 /*
1491 * When allocating the initial buffer target we have not yet
1492 * read in the superblock, so don't know what sized sectors
1493 * are being used is at this early stage. Play safe.
1494 */
1495 STATIC int
1496 xfs_setsize_buftarg_early(
1497 xfs_buftarg_t *btp,
1498 struct block_device *bdev)
1499 {
1500 return xfs_setsize_buftarg_flags(btp,
1501 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1502 }
1503
1504 int
1505 xfs_setsize_buftarg(
1506 xfs_buftarg_t *btp,
1507 unsigned int blocksize,
1508 unsigned int sectorsize)
1509 {
1510 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1511 }
1512
1513 STATIC int
1514 xfs_alloc_delwrite_queue(
1515 xfs_buftarg_t *btp,
1516 const char *fsname)
1517 {
1518 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1519 spin_lock_init(&btp->bt_delwrite_lock);
1520 btp->bt_flags = 0;
1521 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1522 if (IS_ERR(btp->bt_task))
1523 return PTR_ERR(btp->bt_task);
1524 return 0;
1525 }
1526
1527 xfs_buftarg_t *
1528 xfs_alloc_buftarg(
1529 struct xfs_mount *mp,
1530 struct block_device *bdev,
1531 int external,
1532 const char *fsname)
1533 {
1534 xfs_buftarg_t *btp;
1535
1536 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1537
1538 btp->bt_mount = mp;
1539 btp->bt_dev = bdev->bd_dev;
1540 btp->bt_bdev = bdev;
1541 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1542 if (!btp->bt_bdi)
1543 goto error;
1544
1545 INIT_LIST_HEAD(&btp->bt_lru);
1546 spin_lock_init(&btp->bt_lru_lock);
1547 if (xfs_setsize_buftarg_early(btp, bdev))
1548 goto error;
1549 if (xfs_alloc_delwrite_queue(btp, fsname))
1550 goto error;
1551 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1552 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1553 register_shrinker(&btp->bt_shrinker);
1554 return btp;
1555
1556 error:
1557 kmem_free(btp);
1558 return NULL;
1559 }
1560
1561
1562 /*
1563 * Delayed write buffer handling
1564 */
1565 STATIC void
1566 xfs_buf_delwri_queue(
1567 xfs_buf_t *bp,
1568 int unlock)
1569 {
1570 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1571 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1572
1573 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1574
1575 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1576
1577 spin_lock(dwlk);
1578 /* If already in the queue, dequeue and place at tail */
1579 if (!list_empty(&bp->b_list)) {
1580 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1581 if (unlock)
1582 atomic_dec(&bp->b_hold);
1583 list_del(&bp->b_list);
1584 }
1585
1586 if (list_empty(dwq)) {
1587 /* start xfsbufd as it is about to have something to do */
1588 wake_up_process(bp->b_target->bt_task);
1589 }
1590
1591 bp->b_flags |= _XBF_DELWRI_Q;
1592 list_add_tail(&bp->b_list, dwq);
1593 bp->b_queuetime = jiffies;
1594 spin_unlock(dwlk);
1595
1596 if (unlock)
1597 xfs_buf_unlock(bp);
1598 }
1599
1600 void
1601 xfs_buf_delwri_dequeue(
1602 xfs_buf_t *bp)
1603 {
1604 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1605 int dequeued = 0;
1606
1607 spin_lock(dwlk);
1608 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1609 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1610 list_del_init(&bp->b_list);
1611 dequeued = 1;
1612 }
1613 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1614 spin_unlock(dwlk);
1615
1616 if (dequeued)
1617 xfs_buf_rele(bp);
1618
1619 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1620 }
1621
1622 /*
1623 * If a delwri buffer needs to be pushed before it has aged out, then promote
1624 * it to the head of the delwri queue so that it will be flushed on the next
1625 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1626 * than the age currently needed to flush the buffer. Hence the next time the
1627 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1628 */
1629 void
1630 xfs_buf_delwri_promote(
1631 struct xfs_buf *bp)
1632 {
1633 struct xfs_buftarg *btp = bp->b_target;
1634 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1635
1636 ASSERT(bp->b_flags & XBF_DELWRI);
1637 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1638
1639 /*
1640 * Check the buffer age before locking the delayed write queue as we
1641 * don't need to promote buffers that are already past the flush age.
1642 */
1643 if (bp->b_queuetime < jiffies - age)
1644 return;
1645 bp->b_queuetime = jiffies - age;
1646 spin_lock(&btp->bt_delwrite_lock);
1647 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1648 spin_unlock(&btp->bt_delwrite_lock);
1649 }
1650
1651 STATIC void
1652 xfs_buf_runall_queues(
1653 struct workqueue_struct *queue)
1654 {
1655 flush_workqueue(queue);
1656 }
1657
1658 /*
1659 * Move as many buffers as specified to the supplied list
1660 * idicating if we skipped any buffers to prevent deadlocks.
1661 */
1662 STATIC int
1663 xfs_buf_delwri_split(
1664 xfs_buftarg_t *target,
1665 struct list_head *list,
1666 unsigned long age)
1667 {
1668 xfs_buf_t *bp, *n;
1669 struct list_head *dwq = &target->bt_delwrite_queue;
1670 spinlock_t *dwlk = &target->bt_delwrite_lock;
1671 int skipped = 0;
1672 int force;
1673
1674 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1675 INIT_LIST_HEAD(list);
1676 spin_lock(dwlk);
1677 list_for_each_entry_safe(bp, n, dwq, b_list) {
1678 ASSERT(bp->b_flags & XBF_DELWRI);
1679
1680 if (!XFS_BUF_ISPINNED(bp) && xfs_buf_trylock(bp)) {
1681 if (!force &&
1682 time_before(jiffies, bp->b_queuetime + age)) {
1683 xfs_buf_unlock(bp);
1684 break;
1685 }
1686
1687 bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q);
1688 bp->b_flags |= XBF_WRITE;
1689 list_move_tail(&bp->b_list, list);
1690 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1691 } else
1692 skipped++;
1693 }
1694 spin_unlock(dwlk);
1695
1696 return skipped;
1697
1698 }
1699
1700 /*
1701 * Compare function is more complex than it needs to be because
1702 * the return value is only 32 bits and we are doing comparisons
1703 * on 64 bit values
1704 */
1705 static int
1706 xfs_buf_cmp(
1707 void *priv,
1708 struct list_head *a,
1709 struct list_head *b)
1710 {
1711 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1712 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1713 xfs_daddr_t diff;
1714
1715 diff = ap->b_bn - bp->b_bn;
1716 if (diff < 0)
1717 return -1;
1718 if (diff > 0)
1719 return 1;
1720 return 0;
1721 }
1722
1723 STATIC int
1724 xfsbufd(
1725 void *data)
1726 {
1727 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1728
1729 current->flags |= PF_MEMALLOC;
1730
1731 set_freezable();
1732
1733 do {
1734 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1735 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1736 struct list_head tmp;
1737 struct blk_plug plug;
1738
1739 if (unlikely(freezing(current))) {
1740 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1741 refrigerator();
1742 } else {
1743 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1744 }
1745
1746 /* sleep for a long time if there is nothing to do. */
1747 if (list_empty(&target->bt_delwrite_queue))
1748 tout = MAX_SCHEDULE_TIMEOUT;
1749 schedule_timeout_interruptible(tout);
1750
1751 xfs_buf_delwri_split(target, &tmp, age);
1752 list_sort(NULL, &tmp, xfs_buf_cmp);
1753
1754 blk_start_plug(&plug);
1755 while (!list_empty(&tmp)) {
1756 struct xfs_buf *bp;
1757 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1758 list_del_init(&bp->b_list);
1759 xfs_bdstrat_cb(bp);
1760 }
1761 blk_finish_plug(&plug);
1762 } while (!kthread_should_stop());
1763
1764 return 0;
1765 }
1766
1767 /*
1768 * Go through all incore buffers, and release buffers if they belong to
1769 * the given device. This is used in filesystem error handling to
1770 * preserve the consistency of its metadata.
1771 */
1772 int
1773 xfs_flush_buftarg(
1774 xfs_buftarg_t *target,
1775 int wait)
1776 {
1777 xfs_buf_t *bp;
1778 int pincount = 0;
1779 LIST_HEAD(tmp_list);
1780 LIST_HEAD(wait_list);
1781 struct blk_plug plug;
1782
1783 xfs_buf_runall_queues(xfsconvertd_workqueue);
1784 xfs_buf_runall_queues(xfsdatad_workqueue);
1785 xfs_buf_runall_queues(xfslogd_workqueue);
1786
1787 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1788 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1789
1790 /*
1791 * Dropped the delayed write list lock, now walk the temporary list.
1792 * All I/O is issued async and then if we need to wait for completion
1793 * we do that after issuing all the IO.
1794 */
1795 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1796
1797 blk_start_plug(&plug);
1798 while (!list_empty(&tmp_list)) {
1799 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1800 ASSERT(target == bp->b_target);
1801 list_del_init(&bp->b_list);
1802 if (wait) {
1803 bp->b_flags &= ~XBF_ASYNC;
1804 list_add(&bp->b_list, &wait_list);
1805 }
1806 xfs_bdstrat_cb(bp);
1807 }
1808 blk_finish_plug(&plug);
1809
1810 if (wait) {
1811 /* Wait for IO to complete. */
1812 while (!list_empty(&wait_list)) {
1813 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1814
1815 list_del_init(&bp->b_list);
1816 xfs_buf_iowait(bp);
1817 xfs_buf_relse(bp);
1818 }
1819 }
1820
1821 return pincount;
1822 }
1823
1824 int __init
1825 xfs_buf_init(void)
1826 {
1827 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1828 KM_ZONE_HWALIGN, NULL);
1829 if (!xfs_buf_zone)
1830 goto out;
1831
1832 xfslogd_workqueue = alloc_workqueue("xfslogd",
1833 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1834 if (!xfslogd_workqueue)
1835 goto out_free_buf_zone;
1836
1837 xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1838 if (!xfsdatad_workqueue)
1839 goto out_destroy_xfslogd_workqueue;
1840
1841 xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1842 WQ_MEM_RECLAIM, 1);
1843 if (!xfsconvertd_workqueue)
1844 goto out_destroy_xfsdatad_workqueue;
1845
1846 return 0;
1847
1848 out_destroy_xfsdatad_workqueue:
1849 destroy_workqueue(xfsdatad_workqueue);
1850 out_destroy_xfslogd_workqueue:
1851 destroy_workqueue(xfslogd_workqueue);
1852 out_free_buf_zone:
1853 kmem_zone_destroy(xfs_buf_zone);
1854 out:
1855 return -ENOMEM;
1856 }
1857
1858 void
1859 xfs_buf_terminate(void)
1860 {
1861 destroy_workqueue(xfsconvertd_workqueue);
1862 destroy_workqueue(xfsdatad_workqueue);
1863 destroy_workqueue(xfslogd_workqueue);
1864 kmem_zone_destroy(xfs_buf_zone);
1865 }
1866
1867 #ifdef CONFIG_KDB_MODULES
1868 struct list_head *
1869 xfs_get_buftarg_list(void)
1870 {
1871 return &xfs_buftarg_list;
1872 }
1873 #endif