]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/linux-2.6/xfs_buf.c
mm: add context argument to shrinker callback
[mirror_ubuntu-artful-kernel.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_dmapi.h"
43 #include "xfs_mount.h"
44 #include "xfs_trace.h"
45
46 static kmem_zone_t *xfs_buf_zone;
47 STATIC int xfsbufd(void *);
48 STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
49 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
50 static struct shrinker xfs_buf_shake = {
51 .shrink = xfsbufd_wakeup,
52 .seeks = DEFAULT_SEEKS,
53 };
54
55 static struct workqueue_struct *xfslogd_workqueue;
56 struct workqueue_struct *xfsdatad_workqueue;
57 struct workqueue_struct *xfsconvertd_workqueue;
58
59 #ifdef XFS_BUF_LOCK_TRACKING
60 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
61 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
62 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
63 #else
64 # define XB_SET_OWNER(bp) do { } while (0)
65 # define XB_CLEAR_OWNER(bp) do { } while (0)
66 # define XB_GET_OWNER(bp) do { } while (0)
67 #endif
68
69 #define xb_to_gfp(flags) \
70 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
71 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
72
73 #define xb_to_km(flags) \
74 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
75
76 #define xfs_buf_allocate(flags) \
77 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
78 #define xfs_buf_deallocate(bp) \
79 kmem_zone_free(xfs_buf_zone, (bp));
80
81 static inline int
82 xfs_buf_is_vmapped(
83 struct xfs_buf *bp)
84 {
85 /*
86 * Return true if the buffer is vmapped.
87 *
88 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
89 * code is clever enough to know it doesn't have to map a single page,
90 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
91 */
92 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
93 }
94
95 static inline int
96 xfs_buf_vmap_len(
97 struct xfs_buf *bp)
98 {
99 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
100 }
101
102 /*
103 * Page Region interfaces.
104 *
105 * For pages in filesystems where the blocksize is smaller than the
106 * pagesize, we use the page->private field (long) to hold a bitmap
107 * of uptodate regions within the page.
108 *
109 * Each such region is "bytes per page / bits per long" bytes long.
110 *
111 * NBPPR == number-of-bytes-per-page-region
112 * BTOPR == bytes-to-page-region (rounded up)
113 * BTOPRT == bytes-to-page-region-truncated (rounded down)
114 */
115 #if (BITS_PER_LONG == 32)
116 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
117 #elif (BITS_PER_LONG == 64)
118 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
119 #else
120 #error BITS_PER_LONG must be 32 or 64
121 #endif
122 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
123 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
124 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
125
126 STATIC unsigned long
127 page_region_mask(
128 size_t offset,
129 size_t length)
130 {
131 unsigned long mask;
132 int first, final;
133
134 first = BTOPR(offset);
135 final = BTOPRT(offset + length - 1);
136 first = min(first, final);
137
138 mask = ~0UL;
139 mask <<= BITS_PER_LONG - (final - first);
140 mask >>= BITS_PER_LONG - (final);
141
142 ASSERT(offset + length <= PAGE_CACHE_SIZE);
143 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
144
145 return mask;
146 }
147
148 STATIC void
149 set_page_region(
150 struct page *page,
151 size_t offset,
152 size_t length)
153 {
154 set_page_private(page,
155 page_private(page) | page_region_mask(offset, length));
156 if (page_private(page) == ~0UL)
157 SetPageUptodate(page);
158 }
159
160 STATIC int
161 test_page_region(
162 struct page *page,
163 size_t offset,
164 size_t length)
165 {
166 unsigned long mask = page_region_mask(offset, length);
167
168 return (mask && (page_private(page) & mask) == mask);
169 }
170
171 /*
172 * Internal xfs_buf_t object manipulation
173 */
174
175 STATIC void
176 _xfs_buf_initialize(
177 xfs_buf_t *bp,
178 xfs_buftarg_t *target,
179 xfs_off_t range_base,
180 size_t range_length,
181 xfs_buf_flags_t flags)
182 {
183 /*
184 * We don't want certain flags to appear in b_flags.
185 */
186 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
187
188 memset(bp, 0, sizeof(xfs_buf_t));
189 atomic_set(&bp->b_hold, 1);
190 init_completion(&bp->b_iowait);
191 INIT_LIST_HEAD(&bp->b_list);
192 INIT_LIST_HEAD(&bp->b_hash_list);
193 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
194 XB_SET_OWNER(bp);
195 bp->b_target = target;
196 bp->b_file_offset = range_base;
197 /*
198 * Set buffer_length and count_desired to the same value initially.
199 * I/O routines should use count_desired, which will be the same in
200 * most cases but may be reset (e.g. XFS recovery).
201 */
202 bp->b_buffer_length = bp->b_count_desired = range_length;
203 bp->b_flags = flags;
204 bp->b_bn = XFS_BUF_DADDR_NULL;
205 atomic_set(&bp->b_pin_count, 0);
206 init_waitqueue_head(&bp->b_waiters);
207
208 XFS_STATS_INC(xb_create);
209
210 trace_xfs_buf_init(bp, _RET_IP_);
211 }
212
213 /*
214 * Allocate a page array capable of holding a specified number
215 * of pages, and point the page buf at it.
216 */
217 STATIC int
218 _xfs_buf_get_pages(
219 xfs_buf_t *bp,
220 int page_count,
221 xfs_buf_flags_t flags)
222 {
223 /* Make sure that we have a page list */
224 if (bp->b_pages == NULL) {
225 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
226 bp->b_page_count = page_count;
227 if (page_count <= XB_PAGES) {
228 bp->b_pages = bp->b_page_array;
229 } else {
230 bp->b_pages = kmem_alloc(sizeof(struct page *) *
231 page_count, xb_to_km(flags));
232 if (bp->b_pages == NULL)
233 return -ENOMEM;
234 }
235 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
236 }
237 return 0;
238 }
239
240 /*
241 * Frees b_pages if it was allocated.
242 */
243 STATIC void
244 _xfs_buf_free_pages(
245 xfs_buf_t *bp)
246 {
247 if (bp->b_pages != bp->b_page_array) {
248 kmem_free(bp->b_pages);
249 bp->b_pages = NULL;
250 }
251 }
252
253 /*
254 * Releases the specified buffer.
255 *
256 * The modification state of any associated pages is left unchanged.
257 * The buffer most not be on any hash - use xfs_buf_rele instead for
258 * hashed and refcounted buffers
259 */
260 void
261 xfs_buf_free(
262 xfs_buf_t *bp)
263 {
264 trace_xfs_buf_free(bp, _RET_IP_);
265
266 ASSERT(list_empty(&bp->b_hash_list));
267
268 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
269 uint i;
270
271 if (xfs_buf_is_vmapped(bp))
272 vm_unmap_ram(bp->b_addr - bp->b_offset,
273 bp->b_page_count);
274
275 for (i = 0; i < bp->b_page_count; i++) {
276 struct page *page = bp->b_pages[i];
277
278 if (bp->b_flags & _XBF_PAGE_CACHE)
279 ASSERT(!PagePrivate(page));
280 page_cache_release(page);
281 }
282 }
283 _xfs_buf_free_pages(bp);
284 xfs_buf_deallocate(bp);
285 }
286
287 /*
288 * Finds all pages for buffer in question and builds it's page list.
289 */
290 STATIC int
291 _xfs_buf_lookup_pages(
292 xfs_buf_t *bp,
293 uint flags)
294 {
295 struct address_space *mapping = bp->b_target->bt_mapping;
296 size_t blocksize = bp->b_target->bt_bsize;
297 size_t size = bp->b_count_desired;
298 size_t nbytes, offset;
299 gfp_t gfp_mask = xb_to_gfp(flags);
300 unsigned short page_count, i;
301 pgoff_t first;
302 xfs_off_t end;
303 int error;
304
305 end = bp->b_file_offset + bp->b_buffer_length;
306 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
307
308 error = _xfs_buf_get_pages(bp, page_count, flags);
309 if (unlikely(error))
310 return error;
311 bp->b_flags |= _XBF_PAGE_CACHE;
312
313 offset = bp->b_offset;
314 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
315
316 for (i = 0; i < bp->b_page_count; i++) {
317 struct page *page;
318 uint retries = 0;
319
320 retry:
321 page = find_or_create_page(mapping, first + i, gfp_mask);
322 if (unlikely(page == NULL)) {
323 if (flags & XBF_READ_AHEAD) {
324 bp->b_page_count = i;
325 for (i = 0; i < bp->b_page_count; i++)
326 unlock_page(bp->b_pages[i]);
327 return -ENOMEM;
328 }
329
330 /*
331 * This could deadlock.
332 *
333 * But until all the XFS lowlevel code is revamped to
334 * handle buffer allocation failures we can't do much.
335 */
336 if (!(++retries % 100))
337 printk(KERN_ERR
338 "XFS: possible memory allocation "
339 "deadlock in %s (mode:0x%x)\n",
340 __func__, gfp_mask);
341
342 XFS_STATS_INC(xb_page_retries);
343 xfsbufd_wakeup(NULL, 0, gfp_mask);
344 congestion_wait(BLK_RW_ASYNC, HZ/50);
345 goto retry;
346 }
347
348 XFS_STATS_INC(xb_page_found);
349
350 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
351 size -= nbytes;
352
353 ASSERT(!PagePrivate(page));
354 if (!PageUptodate(page)) {
355 page_count--;
356 if (blocksize >= PAGE_CACHE_SIZE) {
357 if (flags & XBF_READ)
358 bp->b_flags |= _XBF_PAGE_LOCKED;
359 } else if (!PagePrivate(page)) {
360 if (test_page_region(page, offset, nbytes))
361 page_count++;
362 }
363 }
364
365 bp->b_pages[i] = page;
366 offset = 0;
367 }
368
369 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
370 for (i = 0; i < bp->b_page_count; i++)
371 unlock_page(bp->b_pages[i]);
372 }
373
374 if (page_count == bp->b_page_count)
375 bp->b_flags |= XBF_DONE;
376
377 return error;
378 }
379
380 /*
381 * Map buffer into kernel address-space if nessecary.
382 */
383 STATIC int
384 _xfs_buf_map_pages(
385 xfs_buf_t *bp,
386 uint flags)
387 {
388 /* A single page buffer is always mappable */
389 if (bp->b_page_count == 1) {
390 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
391 bp->b_flags |= XBF_MAPPED;
392 } else if (flags & XBF_MAPPED) {
393 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
394 -1, PAGE_KERNEL);
395 if (unlikely(bp->b_addr == NULL))
396 return -ENOMEM;
397 bp->b_addr += bp->b_offset;
398 bp->b_flags |= XBF_MAPPED;
399 }
400
401 return 0;
402 }
403
404 /*
405 * Finding and Reading Buffers
406 */
407
408 /*
409 * Look up, and creates if absent, a lockable buffer for
410 * a given range of an inode. The buffer is returned
411 * locked. If other overlapping buffers exist, they are
412 * released before the new buffer is created and locked,
413 * which may imply that this call will block until those buffers
414 * are unlocked. No I/O is implied by this call.
415 */
416 xfs_buf_t *
417 _xfs_buf_find(
418 xfs_buftarg_t *btp, /* block device target */
419 xfs_off_t ioff, /* starting offset of range */
420 size_t isize, /* length of range */
421 xfs_buf_flags_t flags,
422 xfs_buf_t *new_bp)
423 {
424 xfs_off_t range_base;
425 size_t range_length;
426 xfs_bufhash_t *hash;
427 xfs_buf_t *bp, *n;
428
429 range_base = (ioff << BBSHIFT);
430 range_length = (isize << BBSHIFT);
431
432 /* Check for IOs smaller than the sector size / not sector aligned */
433 ASSERT(!(range_length < (1 << btp->bt_sshift)));
434 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
435
436 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
437
438 spin_lock(&hash->bh_lock);
439
440 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
441 ASSERT(btp == bp->b_target);
442 if (bp->b_file_offset == range_base &&
443 bp->b_buffer_length == range_length) {
444 /*
445 * If we look at something, bring it to the
446 * front of the list for next time.
447 */
448 atomic_inc(&bp->b_hold);
449 list_move(&bp->b_hash_list, &hash->bh_list);
450 goto found;
451 }
452 }
453
454 /* No match found */
455 if (new_bp) {
456 _xfs_buf_initialize(new_bp, btp, range_base,
457 range_length, flags);
458 new_bp->b_hash = hash;
459 list_add(&new_bp->b_hash_list, &hash->bh_list);
460 } else {
461 XFS_STATS_INC(xb_miss_locked);
462 }
463
464 spin_unlock(&hash->bh_lock);
465 return new_bp;
466
467 found:
468 spin_unlock(&hash->bh_lock);
469
470 /* Attempt to get the semaphore without sleeping,
471 * if this does not work then we need to drop the
472 * spinlock and do a hard attempt on the semaphore.
473 */
474 if (down_trylock(&bp->b_sema)) {
475 if (!(flags & XBF_TRYLOCK)) {
476 /* wait for buffer ownership */
477 xfs_buf_lock(bp);
478 XFS_STATS_INC(xb_get_locked_waited);
479 } else {
480 /* We asked for a trylock and failed, no need
481 * to look at file offset and length here, we
482 * know that this buffer at least overlaps our
483 * buffer and is locked, therefore our buffer
484 * either does not exist, or is this buffer.
485 */
486 xfs_buf_rele(bp);
487 XFS_STATS_INC(xb_busy_locked);
488 return NULL;
489 }
490 } else {
491 /* trylock worked */
492 XB_SET_OWNER(bp);
493 }
494
495 if (bp->b_flags & XBF_STALE) {
496 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
497 bp->b_flags &= XBF_MAPPED;
498 }
499
500 trace_xfs_buf_find(bp, flags, _RET_IP_);
501 XFS_STATS_INC(xb_get_locked);
502 return bp;
503 }
504
505 /*
506 * Assembles a buffer covering the specified range.
507 * Storage in memory for all portions of the buffer will be allocated,
508 * although backing storage may not be.
509 */
510 xfs_buf_t *
511 xfs_buf_get(
512 xfs_buftarg_t *target,/* target for buffer */
513 xfs_off_t ioff, /* starting offset of range */
514 size_t isize, /* length of range */
515 xfs_buf_flags_t flags)
516 {
517 xfs_buf_t *bp, *new_bp;
518 int error = 0, i;
519
520 new_bp = xfs_buf_allocate(flags);
521 if (unlikely(!new_bp))
522 return NULL;
523
524 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
525 if (bp == new_bp) {
526 error = _xfs_buf_lookup_pages(bp, flags);
527 if (error)
528 goto no_buffer;
529 } else {
530 xfs_buf_deallocate(new_bp);
531 if (unlikely(bp == NULL))
532 return NULL;
533 }
534
535 for (i = 0; i < bp->b_page_count; i++)
536 mark_page_accessed(bp->b_pages[i]);
537
538 if (!(bp->b_flags & XBF_MAPPED)) {
539 error = _xfs_buf_map_pages(bp, flags);
540 if (unlikely(error)) {
541 printk(KERN_WARNING "%s: failed to map pages\n",
542 __func__);
543 goto no_buffer;
544 }
545 }
546
547 XFS_STATS_INC(xb_get);
548
549 /*
550 * Always fill in the block number now, the mapped cases can do
551 * their own overlay of this later.
552 */
553 bp->b_bn = ioff;
554 bp->b_count_desired = bp->b_buffer_length;
555
556 trace_xfs_buf_get(bp, flags, _RET_IP_);
557 return bp;
558
559 no_buffer:
560 if (flags & (XBF_LOCK | XBF_TRYLOCK))
561 xfs_buf_unlock(bp);
562 xfs_buf_rele(bp);
563 return NULL;
564 }
565
566 STATIC int
567 _xfs_buf_read(
568 xfs_buf_t *bp,
569 xfs_buf_flags_t flags)
570 {
571 int status;
572
573 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
574 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
575
576 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
577 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
578 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
579 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
580
581 status = xfs_buf_iorequest(bp);
582 if (!status && !(flags & XBF_ASYNC))
583 status = xfs_buf_iowait(bp);
584 return status;
585 }
586
587 xfs_buf_t *
588 xfs_buf_read(
589 xfs_buftarg_t *target,
590 xfs_off_t ioff,
591 size_t isize,
592 xfs_buf_flags_t flags)
593 {
594 xfs_buf_t *bp;
595
596 flags |= XBF_READ;
597
598 bp = xfs_buf_get(target, ioff, isize, flags);
599 if (bp) {
600 trace_xfs_buf_read(bp, flags, _RET_IP_);
601
602 if (!XFS_BUF_ISDONE(bp)) {
603 XFS_STATS_INC(xb_get_read);
604 _xfs_buf_read(bp, flags);
605 } else if (flags & XBF_ASYNC) {
606 /*
607 * Read ahead call which is already satisfied,
608 * drop the buffer
609 */
610 goto no_buffer;
611 } else {
612 /* We do not want read in the flags */
613 bp->b_flags &= ~XBF_READ;
614 }
615 }
616
617 return bp;
618
619 no_buffer:
620 if (flags & (XBF_LOCK | XBF_TRYLOCK))
621 xfs_buf_unlock(bp);
622 xfs_buf_rele(bp);
623 return NULL;
624 }
625
626 /*
627 * If we are not low on memory then do the readahead in a deadlock
628 * safe manner.
629 */
630 void
631 xfs_buf_readahead(
632 xfs_buftarg_t *target,
633 xfs_off_t ioff,
634 size_t isize,
635 xfs_buf_flags_t flags)
636 {
637 struct backing_dev_info *bdi;
638
639 bdi = target->bt_mapping->backing_dev_info;
640 if (bdi_read_congested(bdi))
641 return;
642
643 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
644 xfs_buf_read(target, ioff, isize, flags);
645 }
646
647 xfs_buf_t *
648 xfs_buf_get_empty(
649 size_t len,
650 xfs_buftarg_t *target)
651 {
652 xfs_buf_t *bp;
653
654 bp = xfs_buf_allocate(0);
655 if (bp)
656 _xfs_buf_initialize(bp, target, 0, len, 0);
657 return bp;
658 }
659
660 static inline struct page *
661 mem_to_page(
662 void *addr)
663 {
664 if ((!is_vmalloc_addr(addr))) {
665 return virt_to_page(addr);
666 } else {
667 return vmalloc_to_page(addr);
668 }
669 }
670
671 int
672 xfs_buf_associate_memory(
673 xfs_buf_t *bp,
674 void *mem,
675 size_t len)
676 {
677 int rval;
678 int i = 0;
679 unsigned long pageaddr;
680 unsigned long offset;
681 size_t buflen;
682 int page_count;
683
684 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
685 offset = (unsigned long)mem - pageaddr;
686 buflen = PAGE_CACHE_ALIGN(len + offset);
687 page_count = buflen >> PAGE_CACHE_SHIFT;
688
689 /* Free any previous set of page pointers */
690 if (bp->b_pages)
691 _xfs_buf_free_pages(bp);
692
693 bp->b_pages = NULL;
694 bp->b_addr = mem;
695
696 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
697 if (rval)
698 return rval;
699
700 bp->b_offset = offset;
701
702 for (i = 0; i < bp->b_page_count; i++) {
703 bp->b_pages[i] = mem_to_page((void *)pageaddr);
704 pageaddr += PAGE_CACHE_SIZE;
705 }
706
707 bp->b_count_desired = len;
708 bp->b_buffer_length = buflen;
709 bp->b_flags |= XBF_MAPPED;
710 bp->b_flags &= ~_XBF_PAGE_LOCKED;
711
712 return 0;
713 }
714
715 xfs_buf_t *
716 xfs_buf_get_noaddr(
717 size_t len,
718 xfs_buftarg_t *target)
719 {
720 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
721 int error, i;
722 xfs_buf_t *bp;
723
724 bp = xfs_buf_allocate(0);
725 if (unlikely(bp == NULL))
726 goto fail;
727 _xfs_buf_initialize(bp, target, 0, len, 0);
728
729 error = _xfs_buf_get_pages(bp, page_count, 0);
730 if (error)
731 goto fail_free_buf;
732
733 for (i = 0; i < page_count; i++) {
734 bp->b_pages[i] = alloc_page(GFP_KERNEL);
735 if (!bp->b_pages[i])
736 goto fail_free_mem;
737 }
738 bp->b_flags |= _XBF_PAGES;
739
740 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
741 if (unlikely(error)) {
742 printk(KERN_WARNING "%s: failed to map pages\n",
743 __func__);
744 goto fail_free_mem;
745 }
746
747 xfs_buf_unlock(bp);
748
749 trace_xfs_buf_get_noaddr(bp, _RET_IP_);
750 return bp;
751
752 fail_free_mem:
753 while (--i >= 0)
754 __free_page(bp->b_pages[i]);
755 _xfs_buf_free_pages(bp);
756 fail_free_buf:
757 xfs_buf_deallocate(bp);
758 fail:
759 return NULL;
760 }
761
762 /*
763 * Increment reference count on buffer, to hold the buffer concurrently
764 * with another thread which may release (free) the buffer asynchronously.
765 * Must hold the buffer already to call this function.
766 */
767 void
768 xfs_buf_hold(
769 xfs_buf_t *bp)
770 {
771 trace_xfs_buf_hold(bp, _RET_IP_);
772 atomic_inc(&bp->b_hold);
773 }
774
775 /*
776 * Releases a hold on the specified buffer. If the
777 * the hold count is 1, calls xfs_buf_free.
778 */
779 void
780 xfs_buf_rele(
781 xfs_buf_t *bp)
782 {
783 xfs_bufhash_t *hash = bp->b_hash;
784
785 trace_xfs_buf_rele(bp, _RET_IP_);
786
787 if (unlikely(!hash)) {
788 ASSERT(!bp->b_relse);
789 if (atomic_dec_and_test(&bp->b_hold))
790 xfs_buf_free(bp);
791 return;
792 }
793
794 ASSERT(atomic_read(&bp->b_hold) > 0);
795 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
796 if (bp->b_relse) {
797 atomic_inc(&bp->b_hold);
798 spin_unlock(&hash->bh_lock);
799 (*(bp->b_relse)) (bp);
800 } else if (bp->b_flags & XBF_FS_MANAGED) {
801 spin_unlock(&hash->bh_lock);
802 } else {
803 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
804 list_del_init(&bp->b_hash_list);
805 spin_unlock(&hash->bh_lock);
806 xfs_buf_free(bp);
807 }
808 }
809 }
810
811
812 /*
813 * Mutual exclusion on buffers. Locking model:
814 *
815 * Buffers associated with inodes for which buffer locking
816 * is not enabled are not protected by semaphores, and are
817 * assumed to be exclusively owned by the caller. There is a
818 * spinlock in the buffer, used by the caller when concurrent
819 * access is possible.
820 */
821
822 /*
823 * Locks a buffer object, if it is not already locked.
824 * Note that this in no way locks the underlying pages, so it is only
825 * useful for synchronizing concurrent use of buffer objects, not for
826 * synchronizing independent access to the underlying pages.
827 */
828 int
829 xfs_buf_cond_lock(
830 xfs_buf_t *bp)
831 {
832 int locked;
833
834 locked = down_trylock(&bp->b_sema) == 0;
835 if (locked)
836 XB_SET_OWNER(bp);
837
838 trace_xfs_buf_cond_lock(bp, _RET_IP_);
839 return locked ? 0 : -EBUSY;
840 }
841
842 int
843 xfs_buf_lock_value(
844 xfs_buf_t *bp)
845 {
846 return bp->b_sema.count;
847 }
848
849 /*
850 * Locks a buffer object.
851 * Note that this in no way locks the underlying pages, so it is only
852 * useful for synchronizing concurrent use of buffer objects, not for
853 * synchronizing independent access to the underlying pages.
854 *
855 * If we come across a stale, pinned, locked buffer, we know that we
856 * are being asked to lock a buffer that has been reallocated. Because
857 * it is pinned, we know that the log has not been pushed to disk and
858 * hence it will still be locked. Rather than sleeping until someone
859 * else pushes the log, push it ourselves before trying to get the lock.
860 */
861 void
862 xfs_buf_lock(
863 xfs_buf_t *bp)
864 {
865 trace_xfs_buf_lock(bp, _RET_IP_);
866
867 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
868 xfs_log_force(bp->b_mount, 0);
869 if (atomic_read(&bp->b_io_remaining))
870 blk_run_address_space(bp->b_target->bt_mapping);
871 down(&bp->b_sema);
872 XB_SET_OWNER(bp);
873
874 trace_xfs_buf_lock_done(bp, _RET_IP_);
875 }
876
877 /*
878 * Releases the lock on the buffer object.
879 * If the buffer is marked delwri but is not queued, do so before we
880 * unlock the buffer as we need to set flags correctly. We also need to
881 * take a reference for the delwri queue because the unlocker is going to
882 * drop their's and they don't know we just queued it.
883 */
884 void
885 xfs_buf_unlock(
886 xfs_buf_t *bp)
887 {
888 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
889 atomic_inc(&bp->b_hold);
890 bp->b_flags |= XBF_ASYNC;
891 xfs_buf_delwri_queue(bp, 0);
892 }
893
894 XB_CLEAR_OWNER(bp);
895 up(&bp->b_sema);
896
897 trace_xfs_buf_unlock(bp, _RET_IP_);
898 }
899
900
901 /*
902 * Pinning Buffer Storage in Memory
903 * Ensure that no attempt to force a buffer to disk will succeed.
904 */
905 void
906 xfs_buf_pin(
907 xfs_buf_t *bp)
908 {
909 trace_xfs_buf_pin(bp, _RET_IP_);
910 atomic_inc(&bp->b_pin_count);
911 }
912
913 void
914 xfs_buf_unpin(
915 xfs_buf_t *bp)
916 {
917 trace_xfs_buf_unpin(bp, _RET_IP_);
918
919 if (atomic_dec_and_test(&bp->b_pin_count))
920 wake_up_all(&bp->b_waiters);
921 }
922
923 int
924 xfs_buf_ispin(
925 xfs_buf_t *bp)
926 {
927 return atomic_read(&bp->b_pin_count);
928 }
929
930 STATIC void
931 xfs_buf_wait_unpin(
932 xfs_buf_t *bp)
933 {
934 DECLARE_WAITQUEUE (wait, current);
935
936 if (atomic_read(&bp->b_pin_count) == 0)
937 return;
938
939 add_wait_queue(&bp->b_waiters, &wait);
940 for (;;) {
941 set_current_state(TASK_UNINTERRUPTIBLE);
942 if (atomic_read(&bp->b_pin_count) == 0)
943 break;
944 if (atomic_read(&bp->b_io_remaining))
945 blk_run_address_space(bp->b_target->bt_mapping);
946 schedule();
947 }
948 remove_wait_queue(&bp->b_waiters, &wait);
949 set_current_state(TASK_RUNNING);
950 }
951
952 /*
953 * Buffer Utility Routines
954 */
955
956 STATIC void
957 xfs_buf_iodone_work(
958 struct work_struct *work)
959 {
960 xfs_buf_t *bp =
961 container_of(work, xfs_buf_t, b_iodone_work);
962
963 /*
964 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
965 * ordered flag and reissue them. Because we can't tell the higher
966 * layers directly that they should not issue ordered I/O anymore, they
967 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
968 */
969 if ((bp->b_error == EOPNOTSUPP) &&
970 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
971 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
972 bp->b_flags &= ~XBF_ORDERED;
973 bp->b_flags |= _XFS_BARRIER_FAILED;
974 xfs_buf_iorequest(bp);
975 } else if (bp->b_iodone)
976 (*(bp->b_iodone))(bp);
977 else if (bp->b_flags & XBF_ASYNC)
978 xfs_buf_relse(bp);
979 }
980
981 void
982 xfs_buf_ioend(
983 xfs_buf_t *bp,
984 int schedule)
985 {
986 trace_xfs_buf_iodone(bp, _RET_IP_);
987
988 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
989 if (bp->b_error == 0)
990 bp->b_flags |= XBF_DONE;
991
992 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
993 if (schedule) {
994 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
995 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
996 } else {
997 xfs_buf_iodone_work(&bp->b_iodone_work);
998 }
999 } else {
1000 complete(&bp->b_iowait);
1001 }
1002 }
1003
1004 void
1005 xfs_buf_ioerror(
1006 xfs_buf_t *bp,
1007 int error)
1008 {
1009 ASSERT(error >= 0 && error <= 0xffff);
1010 bp->b_error = (unsigned short)error;
1011 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1012 }
1013
1014 int
1015 xfs_bwrite(
1016 struct xfs_mount *mp,
1017 struct xfs_buf *bp)
1018 {
1019 int error;
1020
1021 bp->b_strat = xfs_bdstrat_cb;
1022 bp->b_mount = mp;
1023 bp->b_flags |= XBF_WRITE;
1024 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1025
1026 xfs_buf_delwri_dequeue(bp);
1027 xfs_buf_iostrategy(bp);
1028
1029 error = xfs_buf_iowait(bp);
1030 if (error)
1031 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1032 xfs_buf_relse(bp);
1033 return error;
1034 }
1035
1036 void
1037 xfs_bdwrite(
1038 void *mp,
1039 struct xfs_buf *bp)
1040 {
1041 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1042
1043 bp->b_strat = xfs_bdstrat_cb;
1044 bp->b_mount = mp;
1045
1046 bp->b_flags &= ~XBF_READ;
1047 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1048
1049 xfs_buf_delwri_queue(bp, 1);
1050 }
1051
1052 /*
1053 * Called when we want to stop a buffer from getting written or read.
1054 * We attach the EIO error, muck with its flags, and call biodone
1055 * so that the proper iodone callbacks get called.
1056 */
1057 STATIC int
1058 xfs_bioerror(
1059 xfs_buf_t *bp)
1060 {
1061 #ifdef XFSERRORDEBUG
1062 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1063 #endif
1064
1065 /*
1066 * No need to wait until the buffer is unpinned, we aren't flushing it.
1067 */
1068 XFS_BUF_ERROR(bp, EIO);
1069
1070 /*
1071 * We're calling biodone, so delete XBF_DONE flag.
1072 */
1073 XFS_BUF_UNREAD(bp);
1074 XFS_BUF_UNDELAYWRITE(bp);
1075 XFS_BUF_UNDONE(bp);
1076 XFS_BUF_STALE(bp);
1077
1078 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
1079 xfs_biodone(bp);
1080
1081 return EIO;
1082 }
1083
1084 /*
1085 * Same as xfs_bioerror, except that we are releasing the buffer
1086 * here ourselves, and avoiding the biodone call.
1087 * This is meant for userdata errors; metadata bufs come with
1088 * iodone functions attached, so that we can track down errors.
1089 */
1090 STATIC int
1091 xfs_bioerror_relse(
1092 struct xfs_buf *bp)
1093 {
1094 int64_t fl = XFS_BUF_BFLAGS(bp);
1095 /*
1096 * No need to wait until the buffer is unpinned.
1097 * We aren't flushing it.
1098 *
1099 * chunkhold expects B_DONE to be set, whether
1100 * we actually finish the I/O or not. We don't want to
1101 * change that interface.
1102 */
1103 XFS_BUF_UNREAD(bp);
1104 XFS_BUF_UNDELAYWRITE(bp);
1105 XFS_BUF_DONE(bp);
1106 XFS_BUF_STALE(bp);
1107 XFS_BUF_CLR_IODONE_FUNC(bp);
1108 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
1109 if (!(fl & XBF_ASYNC)) {
1110 /*
1111 * Mark b_error and B_ERROR _both_.
1112 * Lot's of chunkcache code assumes that.
1113 * There's no reason to mark error for
1114 * ASYNC buffers.
1115 */
1116 XFS_BUF_ERROR(bp, EIO);
1117 XFS_BUF_FINISH_IOWAIT(bp);
1118 } else {
1119 xfs_buf_relse(bp);
1120 }
1121
1122 return EIO;
1123 }
1124
1125
1126 /*
1127 * All xfs metadata buffers except log state machine buffers
1128 * get this attached as their b_bdstrat callback function.
1129 * This is so that we can catch a buffer
1130 * after prematurely unpinning it to forcibly shutdown the filesystem.
1131 */
1132 int
1133 xfs_bdstrat_cb(
1134 struct xfs_buf *bp)
1135 {
1136 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1137 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1138 /*
1139 * Metadata write that didn't get logged but
1140 * written delayed anyway. These aren't associated
1141 * with a transaction, and can be ignored.
1142 */
1143 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1144 return xfs_bioerror_relse(bp);
1145 else
1146 return xfs_bioerror(bp);
1147 }
1148
1149 xfs_buf_iorequest(bp);
1150 return 0;
1151 }
1152
1153 /*
1154 * Wrapper around bdstrat so that we can stop data from going to disk in case
1155 * we are shutting down the filesystem. Typically user data goes thru this
1156 * path; one of the exceptions is the superblock.
1157 */
1158 void
1159 xfsbdstrat(
1160 struct xfs_mount *mp,
1161 struct xfs_buf *bp)
1162 {
1163 if (XFS_FORCED_SHUTDOWN(mp)) {
1164 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1165 xfs_bioerror_relse(bp);
1166 return;
1167 }
1168
1169 xfs_buf_iorequest(bp);
1170 }
1171
1172 STATIC void
1173 _xfs_buf_ioend(
1174 xfs_buf_t *bp,
1175 int schedule)
1176 {
1177 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1178 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1179 xfs_buf_ioend(bp, schedule);
1180 }
1181 }
1182
1183 STATIC void
1184 xfs_buf_bio_end_io(
1185 struct bio *bio,
1186 int error)
1187 {
1188 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1189 unsigned int blocksize = bp->b_target->bt_bsize;
1190 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1191
1192 xfs_buf_ioerror(bp, -error);
1193
1194 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1195 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1196
1197 do {
1198 struct page *page = bvec->bv_page;
1199
1200 ASSERT(!PagePrivate(page));
1201 if (unlikely(bp->b_error)) {
1202 if (bp->b_flags & XBF_READ)
1203 ClearPageUptodate(page);
1204 } else if (blocksize >= PAGE_CACHE_SIZE) {
1205 SetPageUptodate(page);
1206 } else if (!PagePrivate(page) &&
1207 (bp->b_flags & _XBF_PAGE_CACHE)) {
1208 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1209 }
1210
1211 if (--bvec >= bio->bi_io_vec)
1212 prefetchw(&bvec->bv_page->flags);
1213
1214 if (bp->b_flags & _XBF_PAGE_LOCKED)
1215 unlock_page(page);
1216 } while (bvec >= bio->bi_io_vec);
1217
1218 _xfs_buf_ioend(bp, 1);
1219 bio_put(bio);
1220 }
1221
1222 STATIC void
1223 _xfs_buf_ioapply(
1224 xfs_buf_t *bp)
1225 {
1226 int rw, map_i, total_nr_pages, nr_pages;
1227 struct bio *bio;
1228 int offset = bp->b_offset;
1229 int size = bp->b_count_desired;
1230 sector_t sector = bp->b_bn;
1231 unsigned int blocksize = bp->b_target->bt_bsize;
1232
1233 total_nr_pages = bp->b_page_count;
1234 map_i = 0;
1235
1236 if (bp->b_flags & XBF_ORDERED) {
1237 ASSERT(!(bp->b_flags & XBF_READ));
1238 rw = WRITE_BARRIER;
1239 } else if (bp->b_flags & XBF_LOG_BUFFER) {
1240 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1241 bp->b_flags &= ~_XBF_RUN_QUEUES;
1242 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1243 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1244 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1245 bp->b_flags &= ~_XBF_RUN_QUEUES;
1246 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1247 } else {
1248 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1249 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1250 }
1251
1252 /* Special code path for reading a sub page size buffer in --
1253 * we populate up the whole page, and hence the other metadata
1254 * in the same page. This optimization is only valid when the
1255 * filesystem block size is not smaller than the page size.
1256 */
1257 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1258 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1259 (XBF_READ|_XBF_PAGE_LOCKED)) &&
1260 (blocksize >= PAGE_CACHE_SIZE)) {
1261 bio = bio_alloc(GFP_NOIO, 1);
1262
1263 bio->bi_bdev = bp->b_target->bt_bdev;
1264 bio->bi_sector = sector - (offset >> BBSHIFT);
1265 bio->bi_end_io = xfs_buf_bio_end_io;
1266 bio->bi_private = bp;
1267
1268 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1269 size = 0;
1270
1271 atomic_inc(&bp->b_io_remaining);
1272
1273 goto submit_io;
1274 }
1275
1276 next_chunk:
1277 atomic_inc(&bp->b_io_remaining);
1278 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1279 if (nr_pages > total_nr_pages)
1280 nr_pages = total_nr_pages;
1281
1282 bio = bio_alloc(GFP_NOIO, nr_pages);
1283 bio->bi_bdev = bp->b_target->bt_bdev;
1284 bio->bi_sector = sector;
1285 bio->bi_end_io = xfs_buf_bio_end_io;
1286 bio->bi_private = bp;
1287
1288 for (; size && nr_pages; nr_pages--, map_i++) {
1289 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1290
1291 if (nbytes > size)
1292 nbytes = size;
1293
1294 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1295 if (rbytes < nbytes)
1296 break;
1297
1298 offset = 0;
1299 sector += nbytes >> BBSHIFT;
1300 size -= nbytes;
1301 total_nr_pages--;
1302 }
1303
1304 submit_io:
1305 if (likely(bio->bi_size)) {
1306 if (xfs_buf_is_vmapped(bp)) {
1307 flush_kernel_vmap_range(bp->b_addr,
1308 xfs_buf_vmap_len(bp));
1309 }
1310 submit_bio(rw, bio);
1311 if (size)
1312 goto next_chunk;
1313 } else {
1314 bio_put(bio);
1315 xfs_buf_ioerror(bp, EIO);
1316 }
1317 }
1318
1319 int
1320 xfs_buf_iorequest(
1321 xfs_buf_t *bp)
1322 {
1323 trace_xfs_buf_iorequest(bp, _RET_IP_);
1324
1325 if (bp->b_flags & XBF_DELWRI) {
1326 xfs_buf_delwri_queue(bp, 1);
1327 return 0;
1328 }
1329
1330 if (bp->b_flags & XBF_WRITE) {
1331 xfs_buf_wait_unpin(bp);
1332 }
1333
1334 xfs_buf_hold(bp);
1335
1336 /* Set the count to 1 initially, this will stop an I/O
1337 * completion callout which happens before we have started
1338 * all the I/O from calling xfs_buf_ioend too early.
1339 */
1340 atomic_set(&bp->b_io_remaining, 1);
1341 _xfs_buf_ioapply(bp);
1342 _xfs_buf_ioend(bp, 0);
1343
1344 xfs_buf_rele(bp);
1345 return 0;
1346 }
1347
1348 /*
1349 * Waits for I/O to complete on the buffer supplied.
1350 * It returns immediately if no I/O is pending.
1351 * It returns the I/O error code, if any, or 0 if there was no error.
1352 */
1353 int
1354 xfs_buf_iowait(
1355 xfs_buf_t *bp)
1356 {
1357 trace_xfs_buf_iowait(bp, _RET_IP_);
1358
1359 if (atomic_read(&bp->b_io_remaining))
1360 blk_run_address_space(bp->b_target->bt_mapping);
1361 wait_for_completion(&bp->b_iowait);
1362
1363 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1364 return bp->b_error;
1365 }
1366
1367 xfs_caddr_t
1368 xfs_buf_offset(
1369 xfs_buf_t *bp,
1370 size_t offset)
1371 {
1372 struct page *page;
1373
1374 if (bp->b_flags & XBF_MAPPED)
1375 return XFS_BUF_PTR(bp) + offset;
1376
1377 offset += bp->b_offset;
1378 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1379 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1380 }
1381
1382 /*
1383 * Move data into or out of a buffer.
1384 */
1385 void
1386 xfs_buf_iomove(
1387 xfs_buf_t *bp, /* buffer to process */
1388 size_t boff, /* starting buffer offset */
1389 size_t bsize, /* length to copy */
1390 void *data, /* data address */
1391 xfs_buf_rw_t mode) /* read/write/zero flag */
1392 {
1393 size_t bend, cpoff, csize;
1394 struct page *page;
1395
1396 bend = boff + bsize;
1397 while (boff < bend) {
1398 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1399 cpoff = xfs_buf_poff(boff + bp->b_offset);
1400 csize = min_t(size_t,
1401 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1402
1403 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1404
1405 switch (mode) {
1406 case XBRW_ZERO:
1407 memset(page_address(page) + cpoff, 0, csize);
1408 break;
1409 case XBRW_READ:
1410 memcpy(data, page_address(page) + cpoff, csize);
1411 break;
1412 case XBRW_WRITE:
1413 memcpy(page_address(page) + cpoff, data, csize);
1414 }
1415
1416 boff += csize;
1417 data += csize;
1418 }
1419 }
1420
1421 /*
1422 * Handling of buffer targets (buftargs).
1423 */
1424
1425 /*
1426 * Wait for any bufs with callbacks that have been submitted but
1427 * have not yet returned... walk the hash list for the target.
1428 */
1429 void
1430 xfs_wait_buftarg(
1431 xfs_buftarg_t *btp)
1432 {
1433 xfs_buf_t *bp, *n;
1434 xfs_bufhash_t *hash;
1435 uint i;
1436
1437 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1438 hash = &btp->bt_hash[i];
1439 again:
1440 spin_lock(&hash->bh_lock);
1441 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1442 ASSERT(btp == bp->b_target);
1443 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1444 spin_unlock(&hash->bh_lock);
1445 /*
1446 * Catch superblock reference count leaks
1447 * immediately
1448 */
1449 BUG_ON(bp->b_bn == 0);
1450 delay(100);
1451 goto again;
1452 }
1453 }
1454 spin_unlock(&hash->bh_lock);
1455 }
1456 }
1457
1458 /*
1459 * Allocate buffer hash table for a given target.
1460 * For devices containing metadata (i.e. not the log/realtime devices)
1461 * we need to allocate a much larger hash table.
1462 */
1463 STATIC void
1464 xfs_alloc_bufhash(
1465 xfs_buftarg_t *btp,
1466 int external)
1467 {
1468 unsigned int i;
1469
1470 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1471 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1472 btp->bt_hash = kmem_zalloc_large((1 << btp->bt_hashshift) *
1473 sizeof(xfs_bufhash_t));
1474 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1475 spin_lock_init(&btp->bt_hash[i].bh_lock);
1476 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1477 }
1478 }
1479
1480 STATIC void
1481 xfs_free_bufhash(
1482 xfs_buftarg_t *btp)
1483 {
1484 kmem_free_large(btp->bt_hash);
1485 btp->bt_hash = NULL;
1486 }
1487
1488 /*
1489 * buftarg list for delwrite queue processing
1490 */
1491 static LIST_HEAD(xfs_buftarg_list);
1492 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1493
1494 STATIC void
1495 xfs_register_buftarg(
1496 xfs_buftarg_t *btp)
1497 {
1498 spin_lock(&xfs_buftarg_lock);
1499 list_add(&btp->bt_list, &xfs_buftarg_list);
1500 spin_unlock(&xfs_buftarg_lock);
1501 }
1502
1503 STATIC void
1504 xfs_unregister_buftarg(
1505 xfs_buftarg_t *btp)
1506 {
1507 spin_lock(&xfs_buftarg_lock);
1508 list_del(&btp->bt_list);
1509 spin_unlock(&xfs_buftarg_lock);
1510 }
1511
1512 void
1513 xfs_free_buftarg(
1514 struct xfs_mount *mp,
1515 struct xfs_buftarg *btp)
1516 {
1517 xfs_flush_buftarg(btp, 1);
1518 if (mp->m_flags & XFS_MOUNT_BARRIER)
1519 xfs_blkdev_issue_flush(btp);
1520 xfs_free_bufhash(btp);
1521 iput(btp->bt_mapping->host);
1522
1523 /* Unregister the buftarg first so that we don't get a
1524 * wakeup finding a non-existent task
1525 */
1526 xfs_unregister_buftarg(btp);
1527 kthread_stop(btp->bt_task);
1528
1529 kmem_free(btp);
1530 }
1531
1532 STATIC int
1533 xfs_setsize_buftarg_flags(
1534 xfs_buftarg_t *btp,
1535 unsigned int blocksize,
1536 unsigned int sectorsize,
1537 int verbose)
1538 {
1539 btp->bt_bsize = blocksize;
1540 btp->bt_sshift = ffs(sectorsize) - 1;
1541 btp->bt_smask = sectorsize - 1;
1542
1543 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1544 printk(KERN_WARNING
1545 "XFS: Cannot set_blocksize to %u on device %s\n",
1546 sectorsize, XFS_BUFTARG_NAME(btp));
1547 return EINVAL;
1548 }
1549
1550 if (verbose &&
1551 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1552 printk(KERN_WARNING
1553 "XFS: %u byte sectors in use on device %s. "
1554 "This is suboptimal; %u or greater is ideal.\n",
1555 sectorsize, XFS_BUFTARG_NAME(btp),
1556 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1557 }
1558
1559 return 0;
1560 }
1561
1562 /*
1563 * When allocating the initial buffer target we have not yet
1564 * read in the superblock, so don't know what sized sectors
1565 * are being used is at this early stage. Play safe.
1566 */
1567 STATIC int
1568 xfs_setsize_buftarg_early(
1569 xfs_buftarg_t *btp,
1570 struct block_device *bdev)
1571 {
1572 return xfs_setsize_buftarg_flags(btp,
1573 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1574 }
1575
1576 int
1577 xfs_setsize_buftarg(
1578 xfs_buftarg_t *btp,
1579 unsigned int blocksize,
1580 unsigned int sectorsize)
1581 {
1582 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1583 }
1584
1585 STATIC int
1586 xfs_mapping_buftarg(
1587 xfs_buftarg_t *btp,
1588 struct block_device *bdev)
1589 {
1590 struct backing_dev_info *bdi;
1591 struct inode *inode;
1592 struct address_space *mapping;
1593 static const struct address_space_operations mapping_aops = {
1594 .sync_page = block_sync_page,
1595 .migratepage = fail_migrate_page,
1596 };
1597
1598 inode = new_inode(bdev->bd_inode->i_sb);
1599 if (!inode) {
1600 printk(KERN_WARNING
1601 "XFS: Cannot allocate mapping inode for device %s\n",
1602 XFS_BUFTARG_NAME(btp));
1603 return ENOMEM;
1604 }
1605 inode->i_mode = S_IFBLK;
1606 inode->i_bdev = bdev;
1607 inode->i_rdev = bdev->bd_dev;
1608 bdi = blk_get_backing_dev_info(bdev);
1609 if (!bdi)
1610 bdi = &default_backing_dev_info;
1611 mapping = &inode->i_data;
1612 mapping->a_ops = &mapping_aops;
1613 mapping->backing_dev_info = bdi;
1614 mapping_set_gfp_mask(mapping, GFP_NOFS);
1615 btp->bt_mapping = mapping;
1616 return 0;
1617 }
1618
1619 STATIC int
1620 xfs_alloc_delwrite_queue(
1621 xfs_buftarg_t *btp,
1622 const char *fsname)
1623 {
1624 int error = 0;
1625
1626 INIT_LIST_HEAD(&btp->bt_list);
1627 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1628 spin_lock_init(&btp->bt_delwrite_lock);
1629 btp->bt_flags = 0;
1630 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1631 if (IS_ERR(btp->bt_task)) {
1632 error = PTR_ERR(btp->bt_task);
1633 goto out_error;
1634 }
1635 xfs_register_buftarg(btp);
1636 out_error:
1637 return error;
1638 }
1639
1640 xfs_buftarg_t *
1641 xfs_alloc_buftarg(
1642 struct block_device *bdev,
1643 int external,
1644 const char *fsname)
1645 {
1646 xfs_buftarg_t *btp;
1647
1648 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1649
1650 btp->bt_dev = bdev->bd_dev;
1651 btp->bt_bdev = bdev;
1652 if (xfs_setsize_buftarg_early(btp, bdev))
1653 goto error;
1654 if (xfs_mapping_buftarg(btp, bdev))
1655 goto error;
1656 if (xfs_alloc_delwrite_queue(btp, fsname))
1657 goto error;
1658 xfs_alloc_bufhash(btp, external);
1659 return btp;
1660
1661 error:
1662 kmem_free(btp);
1663 return NULL;
1664 }
1665
1666
1667 /*
1668 * Delayed write buffer handling
1669 */
1670 STATIC void
1671 xfs_buf_delwri_queue(
1672 xfs_buf_t *bp,
1673 int unlock)
1674 {
1675 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1676 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1677
1678 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1679
1680 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1681
1682 spin_lock(dwlk);
1683 /* If already in the queue, dequeue and place at tail */
1684 if (!list_empty(&bp->b_list)) {
1685 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1686 if (unlock)
1687 atomic_dec(&bp->b_hold);
1688 list_del(&bp->b_list);
1689 }
1690
1691 if (list_empty(dwq)) {
1692 /* start xfsbufd as it is about to have something to do */
1693 wake_up_process(bp->b_target->bt_task);
1694 }
1695
1696 bp->b_flags |= _XBF_DELWRI_Q;
1697 list_add_tail(&bp->b_list, dwq);
1698 bp->b_queuetime = jiffies;
1699 spin_unlock(dwlk);
1700
1701 if (unlock)
1702 xfs_buf_unlock(bp);
1703 }
1704
1705 void
1706 xfs_buf_delwri_dequeue(
1707 xfs_buf_t *bp)
1708 {
1709 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1710 int dequeued = 0;
1711
1712 spin_lock(dwlk);
1713 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1714 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1715 list_del_init(&bp->b_list);
1716 dequeued = 1;
1717 }
1718 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1719 spin_unlock(dwlk);
1720
1721 if (dequeued)
1722 xfs_buf_rele(bp);
1723
1724 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1725 }
1726
1727 /*
1728 * If a delwri buffer needs to be pushed before it has aged out, then promote
1729 * it to the head of the delwri queue so that it will be flushed on the next
1730 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1731 * than the age currently needed to flush the buffer. Hence the next time the
1732 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1733 */
1734 void
1735 xfs_buf_delwri_promote(
1736 struct xfs_buf *bp)
1737 {
1738 struct xfs_buftarg *btp = bp->b_target;
1739 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1740
1741 ASSERT(bp->b_flags & XBF_DELWRI);
1742 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1743
1744 /*
1745 * Check the buffer age before locking the delayed write queue as we
1746 * don't need to promote buffers that are already past the flush age.
1747 */
1748 if (bp->b_queuetime < jiffies - age)
1749 return;
1750 bp->b_queuetime = jiffies - age;
1751 spin_lock(&btp->bt_delwrite_lock);
1752 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1753 spin_unlock(&btp->bt_delwrite_lock);
1754 }
1755
1756 STATIC void
1757 xfs_buf_runall_queues(
1758 struct workqueue_struct *queue)
1759 {
1760 flush_workqueue(queue);
1761 }
1762
1763 STATIC int
1764 xfsbufd_wakeup(
1765 struct shrinker *shrink,
1766 int priority,
1767 gfp_t mask)
1768 {
1769 xfs_buftarg_t *btp;
1770
1771 spin_lock(&xfs_buftarg_lock);
1772 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1773 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1774 continue;
1775 if (list_empty(&btp->bt_delwrite_queue))
1776 continue;
1777 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1778 wake_up_process(btp->bt_task);
1779 }
1780 spin_unlock(&xfs_buftarg_lock);
1781 return 0;
1782 }
1783
1784 /*
1785 * Move as many buffers as specified to the supplied list
1786 * idicating if we skipped any buffers to prevent deadlocks.
1787 */
1788 STATIC int
1789 xfs_buf_delwri_split(
1790 xfs_buftarg_t *target,
1791 struct list_head *list,
1792 unsigned long age)
1793 {
1794 xfs_buf_t *bp, *n;
1795 struct list_head *dwq = &target->bt_delwrite_queue;
1796 spinlock_t *dwlk = &target->bt_delwrite_lock;
1797 int skipped = 0;
1798 int force;
1799
1800 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1801 INIT_LIST_HEAD(list);
1802 spin_lock(dwlk);
1803 list_for_each_entry_safe(bp, n, dwq, b_list) {
1804 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1805 ASSERT(bp->b_flags & XBF_DELWRI);
1806
1807 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1808 if (!force &&
1809 time_before(jiffies, bp->b_queuetime + age)) {
1810 xfs_buf_unlock(bp);
1811 break;
1812 }
1813
1814 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1815 _XBF_RUN_QUEUES);
1816 bp->b_flags |= XBF_WRITE;
1817 list_move_tail(&bp->b_list, list);
1818 } else
1819 skipped++;
1820 }
1821 spin_unlock(dwlk);
1822
1823 return skipped;
1824
1825 }
1826
1827 /*
1828 * Compare function is more complex than it needs to be because
1829 * the return value is only 32 bits and we are doing comparisons
1830 * on 64 bit values
1831 */
1832 static int
1833 xfs_buf_cmp(
1834 void *priv,
1835 struct list_head *a,
1836 struct list_head *b)
1837 {
1838 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1839 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1840 xfs_daddr_t diff;
1841
1842 diff = ap->b_bn - bp->b_bn;
1843 if (diff < 0)
1844 return -1;
1845 if (diff > 0)
1846 return 1;
1847 return 0;
1848 }
1849
1850 void
1851 xfs_buf_delwri_sort(
1852 xfs_buftarg_t *target,
1853 struct list_head *list)
1854 {
1855 list_sort(NULL, list, xfs_buf_cmp);
1856 }
1857
1858 STATIC int
1859 xfsbufd(
1860 void *data)
1861 {
1862 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1863
1864 current->flags |= PF_MEMALLOC;
1865
1866 set_freezable();
1867
1868 do {
1869 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1870 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1871 int count = 0;
1872 struct list_head tmp;
1873
1874 if (unlikely(freezing(current))) {
1875 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1876 refrigerator();
1877 } else {
1878 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1879 }
1880
1881 /* sleep for a long time if there is nothing to do. */
1882 if (list_empty(&target->bt_delwrite_queue))
1883 tout = MAX_SCHEDULE_TIMEOUT;
1884 schedule_timeout_interruptible(tout);
1885
1886 xfs_buf_delwri_split(target, &tmp, age);
1887 list_sort(NULL, &tmp, xfs_buf_cmp);
1888 while (!list_empty(&tmp)) {
1889 struct xfs_buf *bp;
1890 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1891 list_del_init(&bp->b_list);
1892 xfs_buf_iostrategy(bp);
1893 count++;
1894 }
1895 if (count)
1896 blk_run_address_space(target->bt_mapping);
1897
1898 } while (!kthread_should_stop());
1899
1900 return 0;
1901 }
1902
1903 /*
1904 * Go through all incore buffers, and release buffers if they belong to
1905 * the given device. This is used in filesystem error handling to
1906 * preserve the consistency of its metadata.
1907 */
1908 int
1909 xfs_flush_buftarg(
1910 xfs_buftarg_t *target,
1911 int wait)
1912 {
1913 xfs_buf_t *bp;
1914 int pincount = 0;
1915 LIST_HEAD(tmp_list);
1916 LIST_HEAD(wait_list);
1917
1918 xfs_buf_runall_queues(xfsconvertd_workqueue);
1919 xfs_buf_runall_queues(xfsdatad_workqueue);
1920 xfs_buf_runall_queues(xfslogd_workqueue);
1921
1922 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1923 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1924
1925 /*
1926 * Dropped the delayed write list lock, now walk the temporary list.
1927 * All I/O is issued async and then if we need to wait for completion
1928 * we do that after issuing all the IO.
1929 */
1930 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1931 while (!list_empty(&tmp_list)) {
1932 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1933 ASSERT(target == bp->b_target);
1934 list_del_init(&bp->b_list);
1935 if (wait) {
1936 bp->b_flags &= ~XBF_ASYNC;
1937 list_add(&bp->b_list, &wait_list);
1938 }
1939 xfs_buf_iostrategy(bp);
1940 }
1941
1942 if (wait) {
1943 /* Expedite and wait for IO to complete. */
1944 blk_run_address_space(target->bt_mapping);
1945 while (!list_empty(&wait_list)) {
1946 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1947
1948 list_del_init(&bp->b_list);
1949 xfs_iowait(bp);
1950 xfs_buf_relse(bp);
1951 }
1952 }
1953
1954 return pincount;
1955 }
1956
1957 int __init
1958 xfs_buf_init(void)
1959 {
1960 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1961 KM_ZONE_HWALIGN, NULL);
1962 if (!xfs_buf_zone)
1963 goto out;
1964
1965 xfslogd_workqueue = create_workqueue("xfslogd");
1966 if (!xfslogd_workqueue)
1967 goto out_free_buf_zone;
1968
1969 xfsdatad_workqueue = create_workqueue("xfsdatad");
1970 if (!xfsdatad_workqueue)
1971 goto out_destroy_xfslogd_workqueue;
1972
1973 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1974 if (!xfsconvertd_workqueue)
1975 goto out_destroy_xfsdatad_workqueue;
1976
1977 register_shrinker(&xfs_buf_shake);
1978 return 0;
1979
1980 out_destroy_xfsdatad_workqueue:
1981 destroy_workqueue(xfsdatad_workqueue);
1982 out_destroy_xfslogd_workqueue:
1983 destroy_workqueue(xfslogd_workqueue);
1984 out_free_buf_zone:
1985 kmem_zone_destroy(xfs_buf_zone);
1986 out:
1987 return -ENOMEM;
1988 }
1989
1990 void
1991 xfs_buf_terminate(void)
1992 {
1993 unregister_shrinker(&xfs_buf_shake);
1994 destroy_workqueue(xfsconvertd_workqueue);
1995 destroy_workqueue(xfsdatad_workqueue);
1996 destroy_workqueue(xfslogd_workqueue);
1997 kmem_zone_destroy(xfs_buf_zone);
1998 }
1999
2000 #ifdef CONFIG_KDB_MODULES
2001 struct list_head *
2002 xfs_get_buftarg_list(void)
2003 {
2004 return &xfs_buftarg_list;
2005 }
2006 #endif