]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/linux-2.6/xfs_super.c
[XFS] clean up vnode/inode tracing
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_clnt.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_attr.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_utils.h"
49 #include "xfs_vnodeops.h"
50 #include "xfs_vfsops.h"
51 #include "xfs_version.h"
52
53 #include <linux/namei.h>
54 #include <linux/init.h>
55 #include <linux/mount.h>
56 #include <linux/mempool.h>
57 #include <linux/writeback.h>
58 #include <linux/kthread.h>
59 #include <linux/freezer.h>
60
61 static struct quotactl_ops xfs_quotactl_operations;
62 static struct super_operations xfs_super_operations;
63 static kmem_zone_t *xfs_vnode_zone;
64 static kmem_zone_t *xfs_ioend_zone;
65 mempool_t *xfs_ioend_pool;
66
67 STATIC struct xfs_mount_args *
68 xfs_args_allocate(
69 struct super_block *sb,
70 int silent)
71 {
72 struct xfs_mount_args *args;
73
74 args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
75 args->logbufs = args->logbufsize = -1;
76 strncpy(args->fsname, sb->s_id, MAXNAMELEN);
77
78 /* Copy the already-parsed mount(2) flags we're interested in */
79 if (sb->s_flags & MS_DIRSYNC)
80 args->flags |= XFSMNT_DIRSYNC;
81 if (sb->s_flags & MS_SYNCHRONOUS)
82 args->flags |= XFSMNT_WSYNC;
83 if (silent)
84 args->flags |= XFSMNT_QUIET;
85 args->flags |= XFSMNT_32BITINODES;
86
87 return args;
88 }
89
90 __uint64_t
91 xfs_max_file_offset(
92 unsigned int blockshift)
93 {
94 unsigned int pagefactor = 1;
95 unsigned int bitshift = BITS_PER_LONG - 1;
96
97 /* Figure out maximum filesize, on Linux this can depend on
98 * the filesystem blocksize (on 32 bit platforms).
99 * __block_prepare_write does this in an [unsigned] long...
100 * page->index << (PAGE_CACHE_SHIFT - bbits)
101 * So, for page sized blocks (4K on 32 bit platforms),
102 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
103 * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
104 * but for smaller blocksizes it is less (bbits = log2 bsize).
105 * Note1: get_block_t takes a long (implicit cast from above)
106 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
107 * can optionally convert the [unsigned] long from above into
108 * an [unsigned] long long.
109 */
110
111 #if BITS_PER_LONG == 32
112 # if defined(CONFIG_LBD)
113 ASSERT(sizeof(sector_t) == 8);
114 pagefactor = PAGE_CACHE_SIZE;
115 bitshift = BITS_PER_LONG;
116 # else
117 pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
118 # endif
119 #endif
120
121 return (((__uint64_t)pagefactor) << bitshift) - 1;
122 }
123
124 STATIC_INLINE void
125 xfs_set_inodeops(
126 struct inode *inode)
127 {
128 switch (inode->i_mode & S_IFMT) {
129 case S_IFREG:
130 inode->i_op = &xfs_inode_operations;
131 inode->i_fop = &xfs_file_operations;
132 inode->i_mapping->a_ops = &xfs_address_space_operations;
133 break;
134 case S_IFDIR:
135 inode->i_op = &xfs_dir_inode_operations;
136 inode->i_fop = &xfs_dir_file_operations;
137 break;
138 case S_IFLNK:
139 inode->i_op = &xfs_symlink_inode_operations;
140 if (inode->i_blocks)
141 inode->i_mapping->a_ops = &xfs_address_space_operations;
142 break;
143 default:
144 inode->i_op = &xfs_inode_operations;
145 init_special_inode(inode, inode->i_mode, inode->i_rdev);
146 break;
147 }
148 }
149
150 STATIC_INLINE void
151 xfs_revalidate_inode(
152 xfs_mount_t *mp,
153 bhv_vnode_t *vp,
154 xfs_inode_t *ip)
155 {
156 struct inode *inode = vn_to_inode(vp);
157
158 inode->i_mode = ip->i_d.di_mode;
159 inode->i_nlink = ip->i_d.di_nlink;
160 inode->i_uid = ip->i_d.di_uid;
161 inode->i_gid = ip->i_d.di_gid;
162
163 switch (inode->i_mode & S_IFMT) {
164 case S_IFBLK:
165 case S_IFCHR:
166 inode->i_rdev =
167 MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
168 sysv_minor(ip->i_df.if_u2.if_rdev));
169 break;
170 default:
171 inode->i_rdev = 0;
172 break;
173 }
174
175 inode->i_generation = ip->i_d.di_gen;
176 i_size_write(inode, ip->i_d.di_size);
177 inode->i_blocks =
178 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
179 inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
180 inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
181 inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
182 inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
183 inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
184 inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
185 if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
186 inode->i_flags |= S_IMMUTABLE;
187 else
188 inode->i_flags &= ~S_IMMUTABLE;
189 if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
190 inode->i_flags |= S_APPEND;
191 else
192 inode->i_flags &= ~S_APPEND;
193 if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
194 inode->i_flags |= S_SYNC;
195 else
196 inode->i_flags &= ~S_SYNC;
197 if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
198 inode->i_flags |= S_NOATIME;
199 else
200 inode->i_flags &= ~S_NOATIME;
201 xfs_iflags_clear(ip, XFS_IMODIFIED);
202 }
203
204 void
205 xfs_initialize_vnode(
206 struct xfs_mount *mp,
207 bhv_vnode_t *vp,
208 struct xfs_inode *ip)
209 {
210 struct inode *inode = vn_to_inode(vp);
211
212 if (!ip->i_vnode) {
213 ip->i_vnode = vp;
214 inode->i_private = ip;
215 }
216
217 /*
218 * We need to set the ops vectors, and unlock the inode, but if
219 * we have been called during the new inode create process, it is
220 * too early to fill in the Linux inode. We will get called a
221 * second time once the inode is properly set up, and then we can
222 * finish our work.
223 */
224 if (ip->i_d.di_mode != 0 && (inode->i_state & I_NEW)) {
225 xfs_revalidate_inode(mp, vp, ip);
226 xfs_set_inodeops(inode);
227
228 xfs_iflags_clear(ip, XFS_INEW);
229 barrier();
230
231 unlock_new_inode(inode);
232 }
233 }
234
235 int
236 xfs_blkdev_get(
237 xfs_mount_t *mp,
238 const char *name,
239 struct block_device **bdevp)
240 {
241 int error = 0;
242
243 *bdevp = open_bdev_excl(name, 0, mp);
244 if (IS_ERR(*bdevp)) {
245 error = PTR_ERR(*bdevp);
246 printk("XFS: Invalid device [%s], error=%d\n", name, error);
247 }
248
249 return -error;
250 }
251
252 void
253 xfs_blkdev_put(
254 struct block_device *bdev)
255 {
256 if (bdev)
257 close_bdev_excl(bdev);
258 }
259
260 /*
261 * Try to write out the superblock using barriers.
262 */
263 STATIC int
264 xfs_barrier_test(
265 xfs_mount_t *mp)
266 {
267 xfs_buf_t *sbp = xfs_getsb(mp, 0);
268 int error;
269
270 XFS_BUF_UNDONE(sbp);
271 XFS_BUF_UNREAD(sbp);
272 XFS_BUF_UNDELAYWRITE(sbp);
273 XFS_BUF_WRITE(sbp);
274 XFS_BUF_UNASYNC(sbp);
275 XFS_BUF_ORDERED(sbp);
276
277 xfsbdstrat(mp, sbp);
278 error = xfs_iowait(sbp);
279
280 /*
281 * Clear all the flags we set and possible error state in the
282 * buffer. We only did the write to try out whether barriers
283 * worked and shouldn't leave any traces in the superblock
284 * buffer.
285 */
286 XFS_BUF_DONE(sbp);
287 XFS_BUF_ERROR(sbp, 0);
288 XFS_BUF_UNORDERED(sbp);
289
290 xfs_buf_relse(sbp);
291 return error;
292 }
293
294 void
295 xfs_mountfs_check_barriers(xfs_mount_t *mp)
296 {
297 int error;
298
299 if (mp->m_logdev_targp != mp->m_ddev_targp) {
300 xfs_fs_cmn_err(CE_NOTE, mp,
301 "Disabling barriers, not supported with external log device");
302 mp->m_flags &= ~XFS_MOUNT_BARRIER;
303 return;
304 }
305
306 if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
307 QUEUE_ORDERED_NONE) {
308 xfs_fs_cmn_err(CE_NOTE, mp,
309 "Disabling barriers, not supported by the underlying device");
310 mp->m_flags &= ~XFS_MOUNT_BARRIER;
311 return;
312 }
313
314 if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
315 xfs_fs_cmn_err(CE_NOTE, mp,
316 "Disabling barriers, underlying device is readonly");
317 mp->m_flags &= ~XFS_MOUNT_BARRIER;
318 return;
319 }
320
321 error = xfs_barrier_test(mp);
322 if (error) {
323 xfs_fs_cmn_err(CE_NOTE, mp,
324 "Disabling barriers, trial barrier write failed");
325 mp->m_flags &= ~XFS_MOUNT_BARRIER;
326 return;
327 }
328 }
329
330 void
331 xfs_blkdev_issue_flush(
332 xfs_buftarg_t *buftarg)
333 {
334 blkdev_issue_flush(buftarg->bt_bdev, NULL);
335 }
336
337 STATIC struct inode *
338 xfs_fs_alloc_inode(
339 struct super_block *sb)
340 {
341 bhv_vnode_t *vp;
342
343 vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
344 if (unlikely(!vp))
345 return NULL;
346 return vn_to_inode(vp);
347 }
348
349 STATIC void
350 xfs_fs_destroy_inode(
351 struct inode *inode)
352 {
353 kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
354 }
355
356 STATIC void
357 xfs_fs_inode_init_once(
358 kmem_zone_t *zonep,
359 void *vnode)
360 {
361 inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
362 }
363
364 STATIC int
365 xfs_init_zones(void)
366 {
367 xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
368 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
369 KM_ZONE_SPREAD,
370 xfs_fs_inode_init_once);
371 if (!xfs_vnode_zone)
372 goto out;
373
374 xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
375 if (!xfs_ioend_zone)
376 goto out_destroy_vnode_zone;
377
378 xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
379 xfs_ioend_zone);
380 if (!xfs_ioend_pool)
381 goto out_free_ioend_zone;
382 return 0;
383
384 out_free_ioend_zone:
385 kmem_zone_destroy(xfs_ioend_zone);
386 out_destroy_vnode_zone:
387 kmem_zone_destroy(xfs_vnode_zone);
388 out:
389 return -ENOMEM;
390 }
391
392 STATIC void
393 xfs_destroy_zones(void)
394 {
395 mempool_destroy(xfs_ioend_pool);
396 kmem_zone_destroy(xfs_vnode_zone);
397 kmem_zone_destroy(xfs_ioend_zone);
398 }
399
400 /*
401 * Attempt to flush the inode, this will actually fail
402 * if the inode is pinned, but we dirty the inode again
403 * at the point when it is unpinned after a log write,
404 * since this is when the inode itself becomes flushable.
405 */
406 STATIC int
407 xfs_fs_write_inode(
408 struct inode *inode,
409 int sync)
410 {
411 int error = 0, flags = FLUSH_INODE;
412
413 xfs_itrace_entry(XFS_I(inode));
414 if (sync) {
415 filemap_fdatawait(inode->i_mapping);
416 flags |= FLUSH_SYNC;
417 }
418 error = xfs_inode_flush(XFS_I(inode), flags);
419 /*
420 * if we failed to write out the inode then mark
421 * it dirty again so we'll try again later.
422 */
423 if (error)
424 mark_inode_dirty_sync(inode);
425
426 return -error;
427 }
428
429 STATIC void
430 xfs_fs_clear_inode(
431 struct inode *inode)
432 {
433 xfs_inode_t *ip = XFS_I(inode);
434
435 /*
436 * ip can be null when xfs_iget_core calls xfs_idestroy if we
437 * find an inode with di_mode == 0 but without IGET_CREATE set.
438 */
439 if (ip) {
440 xfs_itrace_entry(ip);
441 XFS_STATS_INC(vn_rele);
442 XFS_STATS_INC(vn_remove);
443 XFS_STATS_INC(vn_reclaim);
444 XFS_STATS_DEC(vn_active);
445
446 xfs_inactive(ip);
447 xfs_iflags_clear(ip, XFS_IMODIFIED);
448 if (xfs_reclaim(ip))
449 panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, inode);
450 }
451
452 ASSERT(XFS_I(inode) == NULL);
453 }
454
455 /*
456 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
457 * Doing this has two advantages:
458 * - It saves on stack space, which is tight in certain situations
459 * - It can be used (with care) as a mechanism to avoid deadlocks.
460 * Flushing while allocating in a full filesystem requires both.
461 */
462 STATIC void
463 xfs_syncd_queue_work(
464 struct xfs_mount *mp,
465 void *data,
466 void (*syncer)(struct xfs_mount *, void *))
467 {
468 struct bhv_vfs_sync_work *work;
469
470 work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
471 INIT_LIST_HEAD(&work->w_list);
472 work->w_syncer = syncer;
473 work->w_data = data;
474 work->w_mount = mp;
475 spin_lock(&mp->m_sync_lock);
476 list_add_tail(&work->w_list, &mp->m_sync_list);
477 spin_unlock(&mp->m_sync_lock);
478 wake_up_process(mp->m_sync_task);
479 }
480
481 /*
482 * Flush delayed allocate data, attempting to free up reserved space
483 * from existing allocations. At this point a new allocation attempt
484 * has failed with ENOSPC and we are in the process of scratching our
485 * heads, looking about for more room...
486 */
487 STATIC void
488 xfs_flush_inode_work(
489 struct xfs_mount *mp,
490 void *arg)
491 {
492 struct inode *inode = arg;
493 filemap_flush(inode->i_mapping);
494 iput(inode);
495 }
496
497 void
498 xfs_flush_inode(
499 xfs_inode_t *ip)
500 {
501 struct inode *inode = ip->i_vnode;
502
503 igrab(inode);
504 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work);
505 delay(msecs_to_jiffies(500));
506 }
507
508 /*
509 * This is the "bigger hammer" version of xfs_flush_inode_work...
510 * (IOW, "If at first you don't succeed, use a Bigger Hammer").
511 */
512 STATIC void
513 xfs_flush_device_work(
514 struct xfs_mount *mp,
515 void *arg)
516 {
517 struct inode *inode = arg;
518 sync_blockdev(mp->m_super->s_bdev);
519 iput(inode);
520 }
521
522 void
523 xfs_flush_device(
524 xfs_inode_t *ip)
525 {
526 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
527
528 igrab(inode);
529 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work);
530 delay(msecs_to_jiffies(500));
531 xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
532 }
533
534 STATIC void
535 xfs_sync_worker(
536 struct xfs_mount *mp,
537 void *unused)
538 {
539 int error;
540
541 if (!(mp->m_flags & XFS_MOUNT_RDONLY))
542 error = xfs_sync(mp, SYNC_FSDATA | SYNC_BDFLUSH | SYNC_ATTR |
543 SYNC_REFCACHE | SYNC_SUPER);
544 mp->m_sync_seq++;
545 wake_up(&mp->m_wait_single_sync_task);
546 }
547
548 STATIC int
549 xfssyncd(
550 void *arg)
551 {
552 struct xfs_mount *mp = arg;
553 long timeleft;
554 bhv_vfs_sync_work_t *work, *n;
555 LIST_HEAD (tmp);
556
557 set_freezable();
558 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
559 for (;;) {
560 timeleft = schedule_timeout_interruptible(timeleft);
561 /* swsusp */
562 try_to_freeze();
563 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
564 break;
565
566 spin_lock(&mp->m_sync_lock);
567 /*
568 * We can get woken by laptop mode, to do a sync -
569 * that's the (only!) case where the list would be
570 * empty with time remaining.
571 */
572 if (!timeleft || list_empty(&mp->m_sync_list)) {
573 if (!timeleft)
574 timeleft = xfs_syncd_centisecs *
575 msecs_to_jiffies(10);
576 INIT_LIST_HEAD(&mp->m_sync_work.w_list);
577 list_add_tail(&mp->m_sync_work.w_list,
578 &mp->m_sync_list);
579 }
580 list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
581 list_move(&work->w_list, &tmp);
582 spin_unlock(&mp->m_sync_lock);
583
584 list_for_each_entry_safe(work, n, &tmp, w_list) {
585 (*work->w_syncer)(mp, work->w_data);
586 list_del(&work->w_list);
587 if (work == &mp->m_sync_work)
588 continue;
589 kmem_free(work, sizeof(struct bhv_vfs_sync_work));
590 }
591 }
592
593 return 0;
594 }
595
596 STATIC void
597 xfs_fs_put_super(
598 struct super_block *sb)
599 {
600 struct xfs_mount *mp = XFS_M(sb);
601 int error;
602
603 kthread_stop(mp->m_sync_task);
604
605 xfs_sync(mp, SYNC_ATTR | SYNC_DELWRI);
606 error = xfs_unmount(mp, 0, NULL);
607 if (error)
608 printk("XFS: unmount got error=%d\n", error);
609 }
610
611 STATIC void
612 xfs_fs_write_super(
613 struct super_block *sb)
614 {
615 if (!(sb->s_flags & MS_RDONLY))
616 xfs_sync(XFS_M(sb), SYNC_FSDATA);
617 sb->s_dirt = 0;
618 }
619
620 STATIC int
621 xfs_fs_sync_super(
622 struct super_block *sb,
623 int wait)
624 {
625 struct xfs_mount *mp = XFS_M(sb);
626 int error;
627 int flags;
628
629 /*
630 * Treat a sync operation like a freeze. This is to work
631 * around a race in sync_inodes() which works in two phases
632 * - an asynchronous flush, which can write out an inode
633 * without waiting for file size updates to complete, and a
634 * synchronous flush, which wont do anything because the
635 * async flush removed the inode's dirty flag. Also
636 * sync_inodes() will not see any files that just have
637 * outstanding transactions to be flushed because we don't
638 * dirty the Linux inode until after the transaction I/O
639 * completes.
640 */
641 if (wait || unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
642 /*
643 * First stage of freeze - no more writers will make progress
644 * now we are here, so we flush delwri and delalloc buffers
645 * here, then wait for all I/O to complete. Data is frozen at
646 * that point. Metadata is not frozen, transactions can still
647 * occur here so don't bother flushing the buftarg (i.e
648 * SYNC_QUIESCE) because it'll just get dirty again.
649 */
650 flags = SYNC_DATA_QUIESCE;
651 } else
652 flags = SYNC_FSDATA;
653
654 error = xfs_sync(mp, flags);
655 sb->s_dirt = 0;
656
657 if (unlikely(laptop_mode)) {
658 int prev_sync_seq = mp->m_sync_seq;
659
660 /*
661 * The disk must be active because we're syncing.
662 * We schedule xfssyncd now (now that the disk is
663 * active) instead of later (when it might not be).
664 */
665 wake_up_process(mp->m_sync_task);
666 /*
667 * We have to wait for the sync iteration to complete.
668 * If we don't, the disk activity caused by the sync
669 * will come after the sync is completed, and that
670 * triggers another sync from laptop mode.
671 */
672 wait_event(mp->m_wait_single_sync_task,
673 mp->m_sync_seq != prev_sync_seq);
674 }
675
676 return -error;
677 }
678
679 STATIC int
680 xfs_fs_statfs(
681 struct dentry *dentry,
682 struct kstatfs *statp)
683 {
684 return -xfs_statvfs(XFS_M(dentry->d_sb), statp,
685 vn_from_inode(dentry->d_inode));
686 }
687
688 STATIC int
689 xfs_fs_remount(
690 struct super_block *sb,
691 int *flags,
692 char *options)
693 {
694 struct xfs_mount *mp = XFS_M(sb);
695 struct xfs_mount_args *args = xfs_args_allocate(sb, 0);
696 int error;
697
698 error = xfs_parseargs(mp, options, args, 1);
699 if (!error)
700 error = xfs_mntupdate(mp, flags, args);
701 kmem_free(args, sizeof(*args));
702 return -error;
703 }
704
705 STATIC void
706 xfs_fs_lockfs(
707 struct super_block *sb)
708 {
709 xfs_freeze(XFS_M(sb));
710 }
711
712 STATIC int
713 xfs_fs_show_options(
714 struct seq_file *m,
715 struct vfsmount *mnt)
716 {
717 return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
718 }
719
720 STATIC int
721 xfs_fs_quotasync(
722 struct super_block *sb,
723 int type)
724 {
725 return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XQUOTASYNC, 0, NULL);
726 }
727
728 STATIC int
729 xfs_fs_getxstate(
730 struct super_block *sb,
731 struct fs_quota_stat *fqs)
732 {
733 return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
734 }
735
736 STATIC int
737 xfs_fs_setxstate(
738 struct super_block *sb,
739 unsigned int flags,
740 int op)
741 {
742 return -XFS_QM_QUOTACTL(XFS_M(sb), op, 0, (caddr_t)&flags);
743 }
744
745 STATIC int
746 xfs_fs_getxquota(
747 struct super_block *sb,
748 int type,
749 qid_t id,
750 struct fs_disk_quota *fdq)
751 {
752 return -XFS_QM_QUOTACTL(XFS_M(sb),
753 (type == USRQUOTA) ? Q_XGETQUOTA :
754 ((type == GRPQUOTA) ? Q_XGETGQUOTA :
755 Q_XGETPQUOTA), id, (caddr_t)fdq);
756 }
757
758 STATIC int
759 xfs_fs_setxquota(
760 struct super_block *sb,
761 int type,
762 qid_t id,
763 struct fs_disk_quota *fdq)
764 {
765 return -XFS_QM_QUOTACTL(XFS_M(sb),
766 (type == USRQUOTA) ? Q_XSETQLIM :
767 ((type == GRPQUOTA) ? Q_XSETGQLIM :
768 Q_XSETPQLIM), id, (caddr_t)fdq);
769 }
770
771 STATIC int
772 xfs_fs_fill_super(
773 struct super_block *sb,
774 void *data,
775 int silent)
776 {
777 struct inode *rootvp;
778 struct xfs_mount *mp = NULL;
779 struct xfs_mount_args *args = xfs_args_allocate(sb, silent);
780 struct kstatfs statvfs;
781 int error;
782
783 mp = xfs_mount_init();
784
785 INIT_LIST_HEAD(&mp->m_sync_list);
786 spin_lock_init(&mp->m_sync_lock);
787 init_waitqueue_head(&mp->m_wait_single_sync_task);
788
789 mp->m_super = sb;
790 sb->s_fs_info = mp;
791
792 if (sb->s_flags & MS_RDONLY)
793 mp->m_flags |= XFS_MOUNT_RDONLY;
794
795 error = xfs_parseargs(mp, (char *)data, args, 0);
796 if (error)
797 goto fail_vfsop;
798
799 sb_min_blocksize(sb, BBSIZE);
800 sb->s_export_op = &xfs_export_operations;
801 sb->s_qcop = &xfs_quotactl_operations;
802 sb->s_op = &xfs_super_operations;
803
804 error = xfs_mount(mp, args, NULL);
805 if (error)
806 goto fail_vfsop;
807
808 error = xfs_statvfs(mp, &statvfs, NULL);
809 if (error)
810 goto fail_unmount;
811
812 sb->s_dirt = 1;
813 sb->s_magic = statvfs.f_type;
814 sb->s_blocksize = statvfs.f_bsize;
815 sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
816 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
817 sb->s_time_gran = 1;
818 set_posix_acl_flag(sb);
819
820 error = xfs_root(mp, &rootvp);
821 if (error)
822 goto fail_unmount;
823
824 sb->s_root = d_alloc_root(vn_to_inode(rootvp));
825 if (!sb->s_root) {
826 error = ENOMEM;
827 goto fail_vnrele;
828 }
829 if (is_bad_inode(sb->s_root->d_inode)) {
830 error = EINVAL;
831 goto fail_vnrele;
832 }
833
834 mp->m_sync_work.w_syncer = xfs_sync_worker;
835 mp->m_sync_work.w_mount = mp;
836 mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
837 if (IS_ERR(mp->m_sync_task)) {
838 error = -PTR_ERR(mp->m_sync_task);
839 goto fail_vnrele;
840 }
841
842 xfs_itrace_exit(XFS_I(sb->s_root->d_inode));
843
844 kmem_free(args, sizeof(*args));
845 return 0;
846
847 fail_vnrele:
848 if (sb->s_root) {
849 dput(sb->s_root);
850 sb->s_root = NULL;
851 } else {
852 VN_RELE(rootvp);
853 }
854
855 fail_unmount:
856 xfs_unmount(mp, 0, NULL);
857
858 fail_vfsop:
859 kmem_free(args, sizeof(*args));
860 return -error;
861 }
862
863 STATIC int
864 xfs_fs_get_sb(
865 struct file_system_type *fs_type,
866 int flags,
867 const char *dev_name,
868 void *data,
869 struct vfsmount *mnt)
870 {
871 return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
872 mnt);
873 }
874
875 static struct super_operations xfs_super_operations = {
876 .alloc_inode = xfs_fs_alloc_inode,
877 .destroy_inode = xfs_fs_destroy_inode,
878 .write_inode = xfs_fs_write_inode,
879 .clear_inode = xfs_fs_clear_inode,
880 .put_super = xfs_fs_put_super,
881 .write_super = xfs_fs_write_super,
882 .sync_fs = xfs_fs_sync_super,
883 .write_super_lockfs = xfs_fs_lockfs,
884 .statfs = xfs_fs_statfs,
885 .remount_fs = xfs_fs_remount,
886 .show_options = xfs_fs_show_options,
887 };
888
889 static struct quotactl_ops xfs_quotactl_operations = {
890 .quota_sync = xfs_fs_quotasync,
891 .get_xstate = xfs_fs_getxstate,
892 .set_xstate = xfs_fs_setxstate,
893 .get_xquota = xfs_fs_getxquota,
894 .set_xquota = xfs_fs_setxquota,
895 };
896
897 static struct file_system_type xfs_fs_type = {
898 .owner = THIS_MODULE,
899 .name = "xfs",
900 .get_sb = xfs_fs_get_sb,
901 .kill_sb = kill_block_super,
902 .fs_flags = FS_REQUIRES_DEV,
903 };
904
905
906 STATIC int __init
907 init_xfs_fs( void )
908 {
909 int error;
910 static char message[] __initdata = KERN_INFO \
911 XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
912
913 printk(message);
914
915 ktrace_init(64);
916
917 error = xfs_init_zones();
918 if (error < 0)
919 goto undo_zones;
920
921 error = xfs_buf_init();
922 if (error < 0)
923 goto undo_buffers;
924
925 vn_init();
926 xfs_init();
927 uuid_init();
928 vfs_initquota();
929
930 error = register_filesystem(&xfs_fs_type);
931 if (error)
932 goto undo_register;
933 return 0;
934
935 undo_register:
936 xfs_buf_terminate();
937
938 undo_buffers:
939 xfs_destroy_zones();
940
941 undo_zones:
942 return error;
943 }
944
945 STATIC void __exit
946 exit_xfs_fs( void )
947 {
948 vfs_exitquota();
949 unregister_filesystem(&xfs_fs_type);
950 xfs_cleanup();
951 xfs_buf_terminate();
952 xfs_destroy_zones();
953 ktrace_uninit();
954 }
955
956 module_init(init_xfs_fs);
957 module_exit(exit_xfs_fs);
958
959 MODULE_AUTHOR("Silicon Graphics, Inc.");
960 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
961 MODULE_LICENSE("GPL");