]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/linux-2.6/xfs_super.c
Merge commit 'linus/master' into bkl/core
[mirror_ubuntu-artful-kernel.git] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18
19 #include "xfs.h"
20 #include "xfs_bit.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_quota.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_btree_trace.h"
37 #include "xfs_ialloc.h"
38 #include "xfs_bmap.h"
39 #include "xfs_rtalloc.h"
40 #include "xfs_error.h"
41 #include "xfs_itable.h"
42 #include "xfs_fsops.h"
43 #include "xfs_attr.h"
44 #include "xfs_buf_item.h"
45 #include "xfs_utils.h"
46 #include "xfs_vnodeops.h"
47 #include "xfs_version.h"
48 #include "xfs_log_priv.h"
49 #include "xfs_trans_priv.h"
50 #include "xfs_filestream.h"
51 #include "xfs_da_btree.h"
52 #include "xfs_extfree_item.h"
53 #include "xfs_mru_cache.h"
54 #include "xfs_inode_item.h"
55 #include "xfs_sync.h"
56 #include "xfs_trace.h"
57
58 #include <linux/namei.h>
59 #include <linux/init.h>
60 #include <linux/slab.h>
61 #include <linux/mount.h>
62 #include <linux/mempool.h>
63 #include <linux/writeback.h>
64 #include <linux/kthread.h>
65 #include <linux/freezer.h>
66 #include <linux/parser.h>
67
68 static const struct super_operations xfs_super_operations;
69 static kmem_zone_t *xfs_ioend_zone;
70 mempool_t *xfs_ioend_pool;
71
72 #define MNTOPT_LOGBUFS "logbufs" /* number of XFS log buffers */
73 #define MNTOPT_LOGBSIZE "logbsize" /* size of XFS log buffers */
74 #define MNTOPT_LOGDEV "logdev" /* log device */
75 #define MNTOPT_RTDEV "rtdev" /* realtime I/O device */
76 #define MNTOPT_BIOSIZE "biosize" /* log2 of preferred buffered io size */
77 #define MNTOPT_WSYNC "wsync" /* safe-mode nfs compatible mount */
78 #define MNTOPT_NOALIGN "noalign" /* turn off stripe alignment */
79 #define MNTOPT_SWALLOC "swalloc" /* turn on stripe width allocation */
80 #define MNTOPT_SUNIT "sunit" /* data volume stripe unit */
81 #define MNTOPT_SWIDTH "swidth" /* data volume stripe width */
82 #define MNTOPT_NOUUID "nouuid" /* ignore filesystem UUID */
83 #define MNTOPT_MTPT "mtpt" /* filesystem mount point */
84 #define MNTOPT_GRPID "grpid" /* group-ID from parent directory */
85 #define MNTOPT_NOGRPID "nogrpid" /* group-ID from current process */
86 #define MNTOPT_BSDGROUPS "bsdgroups" /* group-ID from parent directory */
87 #define MNTOPT_SYSVGROUPS "sysvgroups" /* group-ID from current process */
88 #define MNTOPT_ALLOCSIZE "allocsize" /* preferred allocation size */
89 #define MNTOPT_NORECOVERY "norecovery" /* don't run XFS recovery */
90 #define MNTOPT_BARRIER "barrier" /* use writer barriers for log write and
91 * unwritten extent conversion */
92 #define MNTOPT_NOBARRIER "nobarrier" /* .. disable */
93 #define MNTOPT_64BITINODE "inode64" /* inodes can be allocated anywhere */
94 #define MNTOPT_IKEEP "ikeep" /* do not free empty inode clusters */
95 #define MNTOPT_NOIKEEP "noikeep" /* free empty inode clusters */
96 #define MNTOPT_LARGEIO "largeio" /* report large I/O sizes in stat() */
97 #define MNTOPT_NOLARGEIO "nolargeio" /* do not report large I/O sizes
98 * in stat(). */
99 #define MNTOPT_ATTR2 "attr2" /* do use attr2 attribute format */
100 #define MNTOPT_NOATTR2 "noattr2" /* do not use attr2 attribute format */
101 #define MNTOPT_FILESTREAM "filestreams" /* use filestreams allocator */
102 #define MNTOPT_QUOTA "quota" /* disk quotas (user) */
103 #define MNTOPT_NOQUOTA "noquota" /* no quotas */
104 #define MNTOPT_USRQUOTA "usrquota" /* user quota enabled */
105 #define MNTOPT_GRPQUOTA "grpquota" /* group quota enabled */
106 #define MNTOPT_PRJQUOTA "prjquota" /* project quota enabled */
107 #define MNTOPT_UQUOTA "uquota" /* user quota (IRIX variant) */
108 #define MNTOPT_GQUOTA "gquota" /* group quota (IRIX variant) */
109 #define MNTOPT_PQUOTA "pquota" /* project quota (IRIX variant) */
110 #define MNTOPT_UQUOTANOENF "uqnoenforce"/* user quota limit enforcement */
111 #define MNTOPT_GQUOTANOENF "gqnoenforce"/* group quota limit enforcement */
112 #define MNTOPT_PQUOTANOENF "pqnoenforce"/* project quota limit enforcement */
113 #define MNTOPT_QUOTANOENF "qnoenforce" /* same as uqnoenforce */
114 #define MNTOPT_DELAYLOG "delaylog" /* Delayed loging enabled */
115 #define MNTOPT_NODELAYLOG "nodelaylog" /* Delayed loging disabled */
116
117 /*
118 * Table driven mount option parser.
119 *
120 * Currently only used for remount, but it will be used for mount
121 * in the future, too.
122 */
123 enum {
124 Opt_barrier, Opt_nobarrier, Opt_err
125 };
126
127 static const match_table_t tokens = {
128 {Opt_barrier, "barrier"},
129 {Opt_nobarrier, "nobarrier"},
130 {Opt_err, NULL}
131 };
132
133
134 STATIC unsigned long
135 suffix_strtoul(char *s, char **endp, unsigned int base)
136 {
137 int last, shift_left_factor = 0;
138 char *value = s;
139
140 last = strlen(value) - 1;
141 if (value[last] == 'K' || value[last] == 'k') {
142 shift_left_factor = 10;
143 value[last] = '\0';
144 }
145 if (value[last] == 'M' || value[last] == 'm') {
146 shift_left_factor = 20;
147 value[last] = '\0';
148 }
149 if (value[last] == 'G' || value[last] == 'g') {
150 shift_left_factor = 30;
151 value[last] = '\0';
152 }
153
154 return simple_strtoul((const char *)s, endp, base) << shift_left_factor;
155 }
156
157 /*
158 * This function fills in xfs_mount_t fields based on mount args.
159 * Note: the superblock has _not_ yet been read in.
160 *
161 * Note that this function leaks the various device name allocations on
162 * failure. The caller takes care of them.
163 */
164 STATIC int
165 xfs_parseargs(
166 struct xfs_mount *mp,
167 char *options)
168 {
169 struct super_block *sb = mp->m_super;
170 char *this_char, *value, *eov;
171 int dsunit = 0;
172 int dswidth = 0;
173 int iosize = 0;
174 __uint8_t iosizelog = 0;
175
176 /*
177 * Copy binary VFS mount flags we are interested in.
178 */
179 if (sb->s_flags & MS_RDONLY)
180 mp->m_flags |= XFS_MOUNT_RDONLY;
181 if (sb->s_flags & MS_DIRSYNC)
182 mp->m_flags |= XFS_MOUNT_DIRSYNC;
183 if (sb->s_flags & MS_SYNCHRONOUS)
184 mp->m_flags |= XFS_MOUNT_WSYNC;
185
186 /*
187 * Set some default flags that could be cleared by the mount option
188 * parsing.
189 */
190 mp->m_flags |= XFS_MOUNT_BARRIER;
191 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
192 mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
193
194 /*
195 * These can be overridden by the mount option parsing.
196 */
197 mp->m_logbufs = -1;
198 mp->m_logbsize = -1;
199
200 if (!options)
201 goto done;
202
203 while ((this_char = strsep(&options, ",")) != NULL) {
204 if (!*this_char)
205 continue;
206 if ((value = strchr(this_char, '=')) != NULL)
207 *value++ = 0;
208
209 if (!strcmp(this_char, MNTOPT_LOGBUFS)) {
210 if (!value || !*value) {
211 cmn_err(CE_WARN,
212 "XFS: %s option requires an argument",
213 this_char);
214 return EINVAL;
215 }
216 mp->m_logbufs = simple_strtoul(value, &eov, 10);
217 } else if (!strcmp(this_char, MNTOPT_LOGBSIZE)) {
218 if (!value || !*value) {
219 cmn_err(CE_WARN,
220 "XFS: %s option requires an argument",
221 this_char);
222 return EINVAL;
223 }
224 mp->m_logbsize = suffix_strtoul(value, &eov, 10);
225 } else if (!strcmp(this_char, MNTOPT_LOGDEV)) {
226 if (!value || !*value) {
227 cmn_err(CE_WARN,
228 "XFS: %s option requires an argument",
229 this_char);
230 return EINVAL;
231 }
232 mp->m_logname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
233 if (!mp->m_logname)
234 return ENOMEM;
235 } else if (!strcmp(this_char, MNTOPT_MTPT)) {
236 cmn_err(CE_WARN,
237 "XFS: %s option not allowed on this system",
238 this_char);
239 return EINVAL;
240 } else if (!strcmp(this_char, MNTOPT_RTDEV)) {
241 if (!value || !*value) {
242 cmn_err(CE_WARN,
243 "XFS: %s option requires an argument",
244 this_char);
245 return EINVAL;
246 }
247 mp->m_rtname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
248 if (!mp->m_rtname)
249 return ENOMEM;
250 } else if (!strcmp(this_char, MNTOPT_BIOSIZE)) {
251 if (!value || !*value) {
252 cmn_err(CE_WARN,
253 "XFS: %s option requires an argument",
254 this_char);
255 return EINVAL;
256 }
257 iosize = simple_strtoul(value, &eov, 10);
258 iosizelog = ffs(iosize) - 1;
259 } else if (!strcmp(this_char, MNTOPT_ALLOCSIZE)) {
260 if (!value || !*value) {
261 cmn_err(CE_WARN,
262 "XFS: %s option requires an argument",
263 this_char);
264 return EINVAL;
265 }
266 iosize = suffix_strtoul(value, &eov, 10);
267 iosizelog = ffs(iosize) - 1;
268 } else if (!strcmp(this_char, MNTOPT_GRPID) ||
269 !strcmp(this_char, MNTOPT_BSDGROUPS)) {
270 mp->m_flags |= XFS_MOUNT_GRPID;
271 } else if (!strcmp(this_char, MNTOPT_NOGRPID) ||
272 !strcmp(this_char, MNTOPT_SYSVGROUPS)) {
273 mp->m_flags &= ~XFS_MOUNT_GRPID;
274 } else if (!strcmp(this_char, MNTOPT_WSYNC)) {
275 mp->m_flags |= XFS_MOUNT_WSYNC;
276 } else if (!strcmp(this_char, MNTOPT_NORECOVERY)) {
277 mp->m_flags |= XFS_MOUNT_NORECOVERY;
278 } else if (!strcmp(this_char, MNTOPT_NOALIGN)) {
279 mp->m_flags |= XFS_MOUNT_NOALIGN;
280 } else if (!strcmp(this_char, MNTOPT_SWALLOC)) {
281 mp->m_flags |= XFS_MOUNT_SWALLOC;
282 } else if (!strcmp(this_char, MNTOPT_SUNIT)) {
283 if (!value || !*value) {
284 cmn_err(CE_WARN,
285 "XFS: %s option requires an argument",
286 this_char);
287 return EINVAL;
288 }
289 dsunit = simple_strtoul(value, &eov, 10);
290 } else if (!strcmp(this_char, MNTOPT_SWIDTH)) {
291 if (!value || !*value) {
292 cmn_err(CE_WARN,
293 "XFS: %s option requires an argument",
294 this_char);
295 return EINVAL;
296 }
297 dswidth = simple_strtoul(value, &eov, 10);
298 } else if (!strcmp(this_char, MNTOPT_64BITINODE)) {
299 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
300 #if !XFS_BIG_INUMS
301 cmn_err(CE_WARN,
302 "XFS: %s option not allowed on this system",
303 this_char);
304 return EINVAL;
305 #endif
306 } else if (!strcmp(this_char, MNTOPT_NOUUID)) {
307 mp->m_flags |= XFS_MOUNT_NOUUID;
308 } else if (!strcmp(this_char, MNTOPT_BARRIER)) {
309 mp->m_flags |= XFS_MOUNT_BARRIER;
310 } else if (!strcmp(this_char, MNTOPT_NOBARRIER)) {
311 mp->m_flags &= ~XFS_MOUNT_BARRIER;
312 } else if (!strcmp(this_char, MNTOPT_IKEEP)) {
313 mp->m_flags |= XFS_MOUNT_IKEEP;
314 } else if (!strcmp(this_char, MNTOPT_NOIKEEP)) {
315 mp->m_flags &= ~XFS_MOUNT_IKEEP;
316 } else if (!strcmp(this_char, MNTOPT_LARGEIO)) {
317 mp->m_flags &= ~XFS_MOUNT_COMPAT_IOSIZE;
318 } else if (!strcmp(this_char, MNTOPT_NOLARGEIO)) {
319 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
320 } else if (!strcmp(this_char, MNTOPT_ATTR2)) {
321 mp->m_flags |= XFS_MOUNT_ATTR2;
322 } else if (!strcmp(this_char, MNTOPT_NOATTR2)) {
323 mp->m_flags &= ~XFS_MOUNT_ATTR2;
324 mp->m_flags |= XFS_MOUNT_NOATTR2;
325 } else if (!strcmp(this_char, MNTOPT_FILESTREAM)) {
326 mp->m_flags |= XFS_MOUNT_FILESTREAMS;
327 } else if (!strcmp(this_char, MNTOPT_NOQUOTA)) {
328 mp->m_qflags &= ~(XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
329 XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
330 XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
331 XFS_UQUOTA_ENFD | XFS_OQUOTA_ENFD);
332 } else if (!strcmp(this_char, MNTOPT_QUOTA) ||
333 !strcmp(this_char, MNTOPT_UQUOTA) ||
334 !strcmp(this_char, MNTOPT_USRQUOTA)) {
335 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
336 XFS_UQUOTA_ENFD);
337 } else if (!strcmp(this_char, MNTOPT_QUOTANOENF) ||
338 !strcmp(this_char, MNTOPT_UQUOTANOENF)) {
339 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
340 mp->m_qflags &= ~XFS_UQUOTA_ENFD;
341 } else if (!strcmp(this_char, MNTOPT_PQUOTA) ||
342 !strcmp(this_char, MNTOPT_PRJQUOTA)) {
343 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
344 XFS_OQUOTA_ENFD);
345 } else if (!strcmp(this_char, MNTOPT_PQUOTANOENF)) {
346 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
347 mp->m_qflags &= ~XFS_OQUOTA_ENFD;
348 } else if (!strcmp(this_char, MNTOPT_GQUOTA) ||
349 !strcmp(this_char, MNTOPT_GRPQUOTA)) {
350 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
351 XFS_OQUOTA_ENFD);
352 } else if (!strcmp(this_char, MNTOPT_GQUOTANOENF)) {
353 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
354 mp->m_qflags &= ~XFS_OQUOTA_ENFD;
355 } else if (!strcmp(this_char, MNTOPT_DELAYLOG)) {
356 mp->m_flags |= XFS_MOUNT_DELAYLOG;
357 cmn_err(CE_WARN,
358 "Enabling EXPERIMENTAL delayed logging feature "
359 "- use at your own risk.\n");
360 } else if (!strcmp(this_char, MNTOPT_NODELAYLOG)) {
361 mp->m_flags &= ~XFS_MOUNT_DELAYLOG;
362 } else if (!strcmp(this_char, "ihashsize")) {
363 cmn_err(CE_WARN,
364 "XFS: ihashsize no longer used, option is deprecated.");
365 } else if (!strcmp(this_char, "osyncisdsync")) {
366 cmn_err(CE_WARN,
367 "XFS: osyncisdsync has no effect, option is deprecated.");
368 } else if (!strcmp(this_char, "osyncisosync")) {
369 cmn_err(CE_WARN,
370 "XFS: osyncisosync has no effect, option is deprecated.");
371 } else if (!strcmp(this_char, "irixsgid")) {
372 cmn_err(CE_WARN,
373 "XFS: irixsgid is now a sysctl(2) variable, option is deprecated.");
374 } else {
375 cmn_err(CE_WARN,
376 "XFS: unknown mount option [%s].", this_char);
377 return EINVAL;
378 }
379 }
380
381 /*
382 * no recovery flag requires a read-only mount
383 */
384 if ((mp->m_flags & XFS_MOUNT_NORECOVERY) &&
385 !(mp->m_flags & XFS_MOUNT_RDONLY)) {
386 cmn_err(CE_WARN, "XFS: no-recovery mounts must be read-only.");
387 return EINVAL;
388 }
389
390 if ((mp->m_flags & XFS_MOUNT_NOALIGN) && (dsunit || dswidth)) {
391 cmn_err(CE_WARN,
392 "XFS: sunit and swidth options incompatible with the noalign option");
393 return EINVAL;
394 }
395
396 #ifndef CONFIG_XFS_QUOTA
397 if (XFS_IS_QUOTA_RUNNING(mp)) {
398 cmn_err(CE_WARN,
399 "XFS: quota support not available in this kernel.");
400 return EINVAL;
401 }
402 #endif
403
404 if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) &&
405 (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE))) {
406 cmn_err(CE_WARN,
407 "XFS: cannot mount with both project and group quota");
408 return EINVAL;
409 }
410
411 if ((dsunit && !dswidth) || (!dsunit && dswidth)) {
412 cmn_err(CE_WARN,
413 "XFS: sunit and swidth must be specified together");
414 return EINVAL;
415 }
416
417 if (dsunit && (dswidth % dsunit != 0)) {
418 cmn_err(CE_WARN,
419 "XFS: stripe width (%d) must be a multiple of the stripe unit (%d)",
420 dswidth, dsunit);
421 return EINVAL;
422 }
423
424 done:
425 if (!(mp->m_flags & XFS_MOUNT_NOALIGN)) {
426 /*
427 * At this point the superblock has not been read
428 * in, therefore we do not know the block size.
429 * Before the mount call ends we will convert
430 * these to FSBs.
431 */
432 if (dsunit) {
433 mp->m_dalign = dsunit;
434 mp->m_flags |= XFS_MOUNT_RETERR;
435 }
436
437 if (dswidth)
438 mp->m_swidth = dswidth;
439 }
440
441 if (mp->m_logbufs != -1 &&
442 mp->m_logbufs != 0 &&
443 (mp->m_logbufs < XLOG_MIN_ICLOGS ||
444 mp->m_logbufs > XLOG_MAX_ICLOGS)) {
445 cmn_err(CE_WARN,
446 "XFS: invalid logbufs value: %d [not %d-%d]",
447 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
448 return XFS_ERROR(EINVAL);
449 }
450 if (mp->m_logbsize != -1 &&
451 mp->m_logbsize != 0 &&
452 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
453 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
454 !is_power_of_2(mp->m_logbsize))) {
455 cmn_err(CE_WARN,
456 "XFS: invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
457 mp->m_logbsize);
458 return XFS_ERROR(EINVAL);
459 }
460
461 mp->m_fsname = kstrndup(sb->s_id, MAXNAMELEN, GFP_KERNEL);
462 if (!mp->m_fsname)
463 return ENOMEM;
464 mp->m_fsname_len = strlen(mp->m_fsname) + 1;
465
466 if (iosizelog) {
467 if (iosizelog > XFS_MAX_IO_LOG ||
468 iosizelog < XFS_MIN_IO_LOG) {
469 cmn_err(CE_WARN,
470 "XFS: invalid log iosize: %d [not %d-%d]",
471 iosizelog, XFS_MIN_IO_LOG,
472 XFS_MAX_IO_LOG);
473 return XFS_ERROR(EINVAL);
474 }
475
476 mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
477 mp->m_readio_log = iosizelog;
478 mp->m_writeio_log = iosizelog;
479 }
480
481 return 0;
482 }
483
484 struct proc_xfs_info {
485 int flag;
486 char *str;
487 };
488
489 STATIC int
490 xfs_showargs(
491 struct xfs_mount *mp,
492 struct seq_file *m)
493 {
494 static struct proc_xfs_info xfs_info_set[] = {
495 /* the few simple ones we can get from the mount struct */
496 { XFS_MOUNT_IKEEP, "," MNTOPT_IKEEP },
497 { XFS_MOUNT_WSYNC, "," MNTOPT_WSYNC },
498 { XFS_MOUNT_NOALIGN, "," MNTOPT_NOALIGN },
499 { XFS_MOUNT_SWALLOC, "," MNTOPT_SWALLOC },
500 { XFS_MOUNT_NOUUID, "," MNTOPT_NOUUID },
501 { XFS_MOUNT_NORECOVERY, "," MNTOPT_NORECOVERY },
502 { XFS_MOUNT_ATTR2, "," MNTOPT_ATTR2 },
503 { XFS_MOUNT_FILESTREAMS, "," MNTOPT_FILESTREAM },
504 { XFS_MOUNT_GRPID, "," MNTOPT_GRPID },
505 { XFS_MOUNT_DELAYLOG, "," MNTOPT_DELAYLOG },
506 { 0, NULL }
507 };
508 static struct proc_xfs_info xfs_info_unset[] = {
509 /* the few simple ones we can get from the mount struct */
510 { XFS_MOUNT_COMPAT_IOSIZE, "," MNTOPT_LARGEIO },
511 { XFS_MOUNT_BARRIER, "," MNTOPT_NOBARRIER },
512 { XFS_MOUNT_SMALL_INUMS, "," MNTOPT_64BITINODE },
513 { 0, NULL }
514 };
515 struct proc_xfs_info *xfs_infop;
516
517 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
518 if (mp->m_flags & xfs_infop->flag)
519 seq_puts(m, xfs_infop->str);
520 }
521 for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) {
522 if (!(mp->m_flags & xfs_infop->flag))
523 seq_puts(m, xfs_infop->str);
524 }
525
526 if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)
527 seq_printf(m, "," MNTOPT_ALLOCSIZE "=%dk",
528 (int)(1 << mp->m_writeio_log) >> 10);
529
530 if (mp->m_logbufs > 0)
531 seq_printf(m, "," MNTOPT_LOGBUFS "=%d", mp->m_logbufs);
532 if (mp->m_logbsize > 0)
533 seq_printf(m, "," MNTOPT_LOGBSIZE "=%dk", mp->m_logbsize >> 10);
534
535 if (mp->m_logname)
536 seq_printf(m, "," MNTOPT_LOGDEV "=%s", mp->m_logname);
537 if (mp->m_rtname)
538 seq_printf(m, "," MNTOPT_RTDEV "=%s", mp->m_rtname);
539
540 if (mp->m_dalign > 0)
541 seq_printf(m, "," MNTOPT_SUNIT "=%d",
542 (int)XFS_FSB_TO_BB(mp, mp->m_dalign));
543 if (mp->m_swidth > 0)
544 seq_printf(m, "," MNTOPT_SWIDTH "=%d",
545 (int)XFS_FSB_TO_BB(mp, mp->m_swidth));
546
547 if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD))
548 seq_puts(m, "," MNTOPT_USRQUOTA);
549 else if (mp->m_qflags & XFS_UQUOTA_ACCT)
550 seq_puts(m, "," MNTOPT_UQUOTANOENF);
551
552 /* Either project or group quotas can be active, not both */
553
554 if (mp->m_qflags & XFS_PQUOTA_ACCT) {
555 if (mp->m_qflags & XFS_OQUOTA_ENFD)
556 seq_puts(m, "," MNTOPT_PRJQUOTA);
557 else
558 seq_puts(m, "," MNTOPT_PQUOTANOENF);
559 } else if (mp->m_qflags & XFS_GQUOTA_ACCT) {
560 if (mp->m_qflags & XFS_OQUOTA_ENFD)
561 seq_puts(m, "," MNTOPT_GRPQUOTA);
562 else
563 seq_puts(m, "," MNTOPT_GQUOTANOENF);
564 }
565
566 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
567 seq_puts(m, "," MNTOPT_NOQUOTA);
568
569 return 0;
570 }
571 __uint64_t
572 xfs_max_file_offset(
573 unsigned int blockshift)
574 {
575 unsigned int pagefactor = 1;
576 unsigned int bitshift = BITS_PER_LONG - 1;
577
578 /* Figure out maximum filesize, on Linux this can depend on
579 * the filesystem blocksize (on 32 bit platforms).
580 * __block_prepare_write does this in an [unsigned] long...
581 * page->index << (PAGE_CACHE_SHIFT - bbits)
582 * So, for page sized blocks (4K on 32 bit platforms),
583 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
584 * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
585 * but for smaller blocksizes it is less (bbits = log2 bsize).
586 * Note1: get_block_t takes a long (implicit cast from above)
587 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
588 * can optionally convert the [unsigned] long from above into
589 * an [unsigned] long long.
590 */
591
592 #if BITS_PER_LONG == 32
593 # if defined(CONFIG_LBDAF)
594 ASSERT(sizeof(sector_t) == 8);
595 pagefactor = PAGE_CACHE_SIZE;
596 bitshift = BITS_PER_LONG;
597 # else
598 pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
599 # endif
600 #endif
601
602 return (((__uint64_t)pagefactor) << bitshift) - 1;
603 }
604
605 STATIC int
606 xfs_blkdev_get(
607 xfs_mount_t *mp,
608 const char *name,
609 struct block_device **bdevp)
610 {
611 int error = 0;
612
613 *bdevp = open_bdev_exclusive(name, FMODE_READ|FMODE_WRITE, mp);
614 if (IS_ERR(*bdevp)) {
615 error = PTR_ERR(*bdevp);
616 printk("XFS: Invalid device [%s], error=%d\n", name, error);
617 }
618
619 return -error;
620 }
621
622 STATIC void
623 xfs_blkdev_put(
624 struct block_device *bdev)
625 {
626 if (bdev)
627 close_bdev_exclusive(bdev, FMODE_READ|FMODE_WRITE);
628 }
629
630 /*
631 * Try to write out the superblock using barriers.
632 */
633 STATIC int
634 xfs_barrier_test(
635 xfs_mount_t *mp)
636 {
637 xfs_buf_t *sbp = xfs_getsb(mp, 0);
638 int error;
639
640 XFS_BUF_UNDONE(sbp);
641 XFS_BUF_UNREAD(sbp);
642 XFS_BUF_UNDELAYWRITE(sbp);
643 XFS_BUF_WRITE(sbp);
644 XFS_BUF_UNASYNC(sbp);
645 XFS_BUF_ORDERED(sbp);
646
647 xfsbdstrat(mp, sbp);
648 error = xfs_iowait(sbp);
649
650 /*
651 * Clear all the flags we set and possible error state in the
652 * buffer. We only did the write to try out whether barriers
653 * worked and shouldn't leave any traces in the superblock
654 * buffer.
655 */
656 XFS_BUF_DONE(sbp);
657 XFS_BUF_ERROR(sbp, 0);
658 XFS_BUF_UNORDERED(sbp);
659
660 xfs_buf_relse(sbp);
661 return error;
662 }
663
664 STATIC void
665 xfs_mountfs_check_barriers(xfs_mount_t *mp)
666 {
667 int error;
668
669 if (mp->m_logdev_targp != mp->m_ddev_targp) {
670 xfs_fs_cmn_err(CE_NOTE, mp,
671 "Disabling barriers, not supported with external log device");
672 mp->m_flags &= ~XFS_MOUNT_BARRIER;
673 return;
674 }
675
676 if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
677 xfs_fs_cmn_err(CE_NOTE, mp,
678 "Disabling barriers, underlying device is readonly");
679 mp->m_flags &= ~XFS_MOUNT_BARRIER;
680 return;
681 }
682
683 error = xfs_barrier_test(mp);
684 if (error) {
685 xfs_fs_cmn_err(CE_NOTE, mp,
686 "Disabling barriers, trial barrier write failed");
687 mp->m_flags &= ~XFS_MOUNT_BARRIER;
688 return;
689 }
690 }
691
692 void
693 xfs_blkdev_issue_flush(
694 xfs_buftarg_t *buftarg)
695 {
696 blkdev_issue_flush(buftarg->bt_bdev, GFP_KERNEL, NULL,
697 BLKDEV_IFL_WAIT);
698 }
699
700 STATIC void
701 xfs_close_devices(
702 struct xfs_mount *mp)
703 {
704 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
705 struct block_device *logdev = mp->m_logdev_targp->bt_bdev;
706 xfs_free_buftarg(mp, mp->m_logdev_targp);
707 xfs_blkdev_put(logdev);
708 }
709 if (mp->m_rtdev_targp) {
710 struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev;
711 xfs_free_buftarg(mp, mp->m_rtdev_targp);
712 xfs_blkdev_put(rtdev);
713 }
714 xfs_free_buftarg(mp, mp->m_ddev_targp);
715 }
716
717 /*
718 * The file system configurations are:
719 * (1) device (partition) with data and internal log
720 * (2) logical volume with data and log subvolumes.
721 * (3) logical volume with data, log, and realtime subvolumes.
722 *
723 * We only have to handle opening the log and realtime volumes here if
724 * they are present. The data subvolume has already been opened by
725 * get_sb_bdev() and is stored in sb->s_bdev.
726 */
727 STATIC int
728 xfs_open_devices(
729 struct xfs_mount *mp)
730 {
731 struct block_device *ddev = mp->m_super->s_bdev;
732 struct block_device *logdev = NULL, *rtdev = NULL;
733 int error;
734
735 /*
736 * Open real time and log devices - order is important.
737 */
738 if (mp->m_logname) {
739 error = xfs_blkdev_get(mp, mp->m_logname, &logdev);
740 if (error)
741 goto out;
742 }
743
744 if (mp->m_rtname) {
745 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev);
746 if (error)
747 goto out_close_logdev;
748
749 if (rtdev == ddev || rtdev == logdev) {
750 cmn_err(CE_WARN,
751 "XFS: Cannot mount filesystem with identical rtdev and ddev/logdev.");
752 error = EINVAL;
753 goto out_close_rtdev;
754 }
755 }
756
757 /*
758 * Setup xfs_mount buffer target pointers
759 */
760 error = ENOMEM;
761 mp->m_ddev_targp = xfs_alloc_buftarg(ddev, 0, mp->m_fsname);
762 if (!mp->m_ddev_targp)
763 goto out_close_rtdev;
764
765 if (rtdev) {
766 mp->m_rtdev_targp = xfs_alloc_buftarg(rtdev, 1, mp->m_fsname);
767 if (!mp->m_rtdev_targp)
768 goto out_free_ddev_targ;
769 }
770
771 if (logdev && logdev != ddev) {
772 mp->m_logdev_targp = xfs_alloc_buftarg(logdev, 1, mp->m_fsname);
773 if (!mp->m_logdev_targp)
774 goto out_free_rtdev_targ;
775 } else {
776 mp->m_logdev_targp = mp->m_ddev_targp;
777 }
778
779 return 0;
780
781 out_free_rtdev_targ:
782 if (mp->m_rtdev_targp)
783 xfs_free_buftarg(mp, mp->m_rtdev_targp);
784 out_free_ddev_targ:
785 xfs_free_buftarg(mp, mp->m_ddev_targp);
786 out_close_rtdev:
787 if (rtdev)
788 xfs_blkdev_put(rtdev);
789 out_close_logdev:
790 if (logdev && logdev != ddev)
791 xfs_blkdev_put(logdev);
792 out:
793 return error;
794 }
795
796 /*
797 * Setup xfs_mount buffer target pointers based on superblock
798 */
799 STATIC int
800 xfs_setup_devices(
801 struct xfs_mount *mp)
802 {
803 int error;
804
805 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize,
806 mp->m_sb.sb_sectsize);
807 if (error)
808 return error;
809
810 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
811 unsigned int log_sector_size = BBSIZE;
812
813 if (xfs_sb_version_hassector(&mp->m_sb))
814 log_sector_size = mp->m_sb.sb_logsectsize;
815 error = xfs_setsize_buftarg(mp->m_logdev_targp,
816 mp->m_sb.sb_blocksize,
817 log_sector_size);
818 if (error)
819 return error;
820 }
821 if (mp->m_rtdev_targp) {
822 error = xfs_setsize_buftarg(mp->m_rtdev_targp,
823 mp->m_sb.sb_blocksize,
824 mp->m_sb.sb_sectsize);
825 if (error)
826 return error;
827 }
828
829 return 0;
830 }
831
832 /*
833 * XFS AIL push thread support
834 */
835 void
836 xfsaild_wakeup(
837 struct xfs_ail *ailp,
838 xfs_lsn_t threshold_lsn)
839 {
840 ailp->xa_target = threshold_lsn;
841 wake_up_process(ailp->xa_task);
842 }
843
844 STATIC int
845 xfsaild(
846 void *data)
847 {
848 struct xfs_ail *ailp = data;
849 xfs_lsn_t last_pushed_lsn = 0;
850 long tout = 0; /* milliseconds */
851
852 while (!kthread_should_stop()) {
853 schedule_timeout_interruptible(tout ?
854 msecs_to_jiffies(tout) : MAX_SCHEDULE_TIMEOUT);
855
856 /* swsusp */
857 try_to_freeze();
858
859 ASSERT(ailp->xa_mount->m_log);
860 if (XFS_FORCED_SHUTDOWN(ailp->xa_mount))
861 continue;
862
863 tout = xfsaild_push(ailp, &last_pushed_lsn);
864 }
865
866 return 0;
867 } /* xfsaild */
868
869 int
870 xfsaild_start(
871 struct xfs_ail *ailp)
872 {
873 ailp->xa_target = 0;
874 ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
875 ailp->xa_mount->m_fsname);
876 if (IS_ERR(ailp->xa_task))
877 return -PTR_ERR(ailp->xa_task);
878 return 0;
879 }
880
881 void
882 xfsaild_stop(
883 struct xfs_ail *ailp)
884 {
885 kthread_stop(ailp->xa_task);
886 }
887
888
889 /* Catch misguided souls that try to use this interface on XFS */
890 STATIC struct inode *
891 xfs_fs_alloc_inode(
892 struct super_block *sb)
893 {
894 BUG();
895 return NULL;
896 }
897
898 /*
899 * Now that the generic code is guaranteed not to be accessing
900 * the linux inode, we can reclaim the inode.
901 */
902 STATIC void
903 xfs_fs_destroy_inode(
904 struct inode *inode)
905 {
906 struct xfs_inode *ip = XFS_I(inode);
907
908 trace_xfs_destroy_inode(ip);
909
910 XFS_STATS_INC(vn_reclaim);
911
912 /* bad inode, get out here ASAP */
913 if (is_bad_inode(inode))
914 goto out_reclaim;
915
916 xfs_ioend_wait(ip);
917
918 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0);
919
920 /*
921 * We should never get here with one of the reclaim flags already set.
922 */
923 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
924 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
925
926 /*
927 * We always use background reclaim here because even if the
928 * inode is clean, it still may be under IO and hence we have
929 * to take the flush lock. The background reclaim path handles
930 * this more efficiently than we can here, so simply let background
931 * reclaim tear down all inodes.
932 */
933 out_reclaim:
934 xfs_inode_set_reclaim_tag(ip);
935 }
936
937 /*
938 * Slab object creation initialisation for the XFS inode.
939 * This covers only the idempotent fields in the XFS inode;
940 * all other fields need to be initialised on allocation
941 * from the slab. This avoids the need to repeatedly intialise
942 * fields in the xfs inode that left in the initialise state
943 * when freeing the inode.
944 */
945 STATIC void
946 xfs_fs_inode_init_once(
947 void *inode)
948 {
949 struct xfs_inode *ip = inode;
950
951 memset(ip, 0, sizeof(struct xfs_inode));
952
953 /* vfs inode */
954 inode_init_once(VFS_I(ip));
955
956 /* xfs inode */
957 atomic_set(&ip->i_iocount, 0);
958 atomic_set(&ip->i_pincount, 0);
959 spin_lock_init(&ip->i_flags_lock);
960 init_waitqueue_head(&ip->i_ipin_wait);
961 /*
962 * Because we want to use a counting completion, complete
963 * the flush completion once to allow a single access to
964 * the flush completion without blocking.
965 */
966 init_completion(&ip->i_flush);
967 complete(&ip->i_flush);
968
969 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
970 "xfsino", ip->i_ino);
971 }
972
973 /*
974 * Dirty the XFS inode when mark_inode_dirty_sync() is called so that
975 * we catch unlogged VFS level updates to the inode. Care must be taken
976 * here - the transaction code calls mark_inode_dirty_sync() to mark the
977 * VFS inode dirty in a transaction and clears the i_update_core field;
978 * it must clear the field after calling mark_inode_dirty_sync() to
979 * correctly indicate that the dirty state has been propagated into the
980 * inode log item.
981 *
982 * We need the barrier() to maintain correct ordering between unlogged
983 * updates and the transaction commit code that clears the i_update_core
984 * field. This requires all updates to be completed before marking the
985 * inode dirty.
986 */
987 STATIC void
988 xfs_fs_dirty_inode(
989 struct inode *inode)
990 {
991 barrier();
992 XFS_I(inode)->i_update_core = 1;
993 }
994
995 STATIC int
996 xfs_log_inode(
997 struct xfs_inode *ip)
998 {
999 struct xfs_mount *mp = ip->i_mount;
1000 struct xfs_trans *tp;
1001 int error;
1002
1003 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1004 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
1005 error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
1006
1007 if (error) {
1008 xfs_trans_cancel(tp, 0);
1009 /* we need to return with the lock hold shared */
1010 xfs_ilock(ip, XFS_ILOCK_SHARED);
1011 return error;
1012 }
1013
1014 xfs_ilock(ip, XFS_ILOCK_EXCL);
1015
1016 /*
1017 * Note - it's possible that we might have pushed ourselves out of the
1018 * way during trans_reserve which would flush the inode. But there's
1019 * no guarantee that the inode buffer has actually gone out yet (it's
1020 * delwri). Plus the buffer could be pinned anyway if it's part of
1021 * an inode in another recent transaction. So we play it safe and
1022 * fire off the transaction anyway.
1023 */
1024 xfs_trans_ijoin(tp, ip);
1025 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1026 error = xfs_trans_commit(tp, 0);
1027 xfs_ilock_demote(ip, XFS_ILOCK_EXCL);
1028
1029 return error;
1030 }
1031
1032 STATIC int
1033 xfs_fs_write_inode(
1034 struct inode *inode,
1035 struct writeback_control *wbc)
1036 {
1037 struct xfs_inode *ip = XFS_I(inode);
1038 struct xfs_mount *mp = ip->i_mount;
1039 int error = EAGAIN;
1040
1041 trace_xfs_write_inode(ip);
1042
1043 if (XFS_FORCED_SHUTDOWN(mp))
1044 return XFS_ERROR(EIO);
1045
1046 if (wbc->sync_mode == WB_SYNC_ALL) {
1047 /*
1048 * Make sure the inode has made it it into the log. Instead
1049 * of forcing it all the way to stable storage using a
1050 * synchronous transaction we let the log force inside the
1051 * ->sync_fs call do that for thus, which reduces the number
1052 * of synchronous log foces dramatically.
1053 */
1054 xfs_ioend_wait(ip);
1055 xfs_ilock(ip, XFS_ILOCK_SHARED);
1056 if (ip->i_update_core) {
1057 error = xfs_log_inode(ip);
1058 if (error)
1059 goto out_unlock;
1060 }
1061 } else {
1062 /*
1063 * We make this non-blocking if the inode is contended, return
1064 * EAGAIN to indicate to the caller that they did not succeed.
1065 * This prevents the flush path from blocking on inodes inside
1066 * another operation right now, they get caught later by
1067 * xfs_sync.
1068 */
1069 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
1070 goto out;
1071
1072 if (xfs_ipincount(ip) || !xfs_iflock_nowait(ip))
1073 goto out_unlock;
1074
1075 /*
1076 * Now we have the flush lock and the inode is not pinned, we
1077 * can check if the inode is really clean as we know that
1078 * there are no pending transaction completions, it is not
1079 * waiting on the delayed write queue and there is no IO in
1080 * progress.
1081 */
1082 if (xfs_inode_clean(ip)) {
1083 xfs_ifunlock(ip);
1084 error = 0;
1085 goto out_unlock;
1086 }
1087 error = xfs_iflush(ip, 0);
1088 }
1089
1090 out_unlock:
1091 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1092 out:
1093 /*
1094 * if we failed to write out the inode then mark
1095 * it dirty again so we'll try again later.
1096 */
1097 if (error)
1098 xfs_mark_inode_dirty_sync(ip);
1099 return -error;
1100 }
1101
1102 STATIC void
1103 xfs_fs_clear_inode(
1104 struct inode *inode)
1105 {
1106 xfs_inode_t *ip = XFS_I(inode);
1107
1108 trace_xfs_clear_inode(ip);
1109
1110 XFS_STATS_INC(vn_rele);
1111 XFS_STATS_INC(vn_remove);
1112 XFS_STATS_DEC(vn_active);
1113
1114 /*
1115 * The iolock is used by the file system to coordinate reads,
1116 * writes, and block truncates. Up to this point the lock
1117 * protected concurrent accesses by users of the inode. But
1118 * from here forward we're doing some final processing of the
1119 * inode because we're done with it, and although we reuse the
1120 * iolock for protection it is really a distinct lock class
1121 * (in the lockdep sense) from before. To keep lockdep happy
1122 * (and basically indicate what we are doing), we explicitly
1123 * re-init the iolock here.
1124 */
1125 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
1126 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
1127
1128 xfs_inactive(ip);
1129 }
1130
1131 STATIC void
1132 xfs_free_fsname(
1133 struct xfs_mount *mp)
1134 {
1135 kfree(mp->m_fsname);
1136 kfree(mp->m_rtname);
1137 kfree(mp->m_logname);
1138 }
1139
1140 STATIC void
1141 xfs_fs_put_super(
1142 struct super_block *sb)
1143 {
1144 struct xfs_mount *mp = XFS_M(sb);
1145
1146 /*
1147 * Unregister the memory shrinker before we tear down the mount
1148 * structure so we don't have memory reclaim racing with us here.
1149 */
1150 xfs_inode_shrinker_unregister(mp);
1151 xfs_syncd_stop(mp);
1152
1153 /*
1154 * Blow away any referenced inode in the filestreams cache.
1155 * This can and will cause log traffic as inodes go inactive
1156 * here.
1157 */
1158 xfs_filestream_unmount(mp);
1159
1160 XFS_bflush(mp->m_ddev_targp);
1161
1162 xfs_unmountfs(mp);
1163 xfs_freesb(mp);
1164 xfs_icsb_destroy_counters(mp);
1165 xfs_close_devices(mp);
1166 xfs_free_fsname(mp);
1167 kfree(mp);
1168 }
1169
1170 STATIC int
1171 xfs_fs_sync_fs(
1172 struct super_block *sb,
1173 int wait)
1174 {
1175 struct xfs_mount *mp = XFS_M(sb);
1176 int error;
1177
1178 /*
1179 * Not much we can do for the first async pass. Writing out the
1180 * superblock would be counter-productive as we are going to redirty
1181 * when writing out other data and metadata (and writing out a single
1182 * block is quite fast anyway).
1183 *
1184 * Try to asynchronously kick off quota syncing at least.
1185 */
1186 if (!wait) {
1187 xfs_qm_sync(mp, SYNC_TRYLOCK);
1188 return 0;
1189 }
1190
1191 error = xfs_quiesce_data(mp);
1192 if (error)
1193 return -error;
1194
1195 if (laptop_mode) {
1196 int prev_sync_seq = mp->m_sync_seq;
1197
1198 /*
1199 * The disk must be active because we're syncing.
1200 * We schedule xfssyncd now (now that the disk is
1201 * active) instead of later (when it might not be).
1202 */
1203 wake_up_process(mp->m_sync_task);
1204 /*
1205 * We have to wait for the sync iteration to complete.
1206 * If we don't, the disk activity caused by the sync
1207 * will come after the sync is completed, and that
1208 * triggers another sync from laptop mode.
1209 */
1210 wait_event(mp->m_wait_single_sync_task,
1211 mp->m_sync_seq != prev_sync_seq);
1212 }
1213
1214 return 0;
1215 }
1216
1217 STATIC int
1218 xfs_fs_statfs(
1219 struct dentry *dentry,
1220 struct kstatfs *statp)
1221 {
1222 struct xfs_mount *mp = XFS_M(dentry->d_sb);
1223 xfs_sb_t *sbp = &mp->m_sb;
1224 struct xfs_inode *ip = XFS_I(dentry->d_inode);
1225 __uint64_t fakeinos, id;
1226 xfs_extlen_t lsize;
1227
1228 statp->f_type = XFS_SB_MAGIC;
1229 statp->f_namelen = MAXNAMELEN - 1;
1230
1231 id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
1232 statp->f_fsid.val[0] = (u32)id;
1233 statp->f_fsid.val[1] = (u32)(id >> 32);
1234
1235 xfs_icsb_sync_counters(mp, XFS_ICSB_LAZY_COUNT);
1236
1237 spin_lock(&mp->m_sb_lock);
1238 statp->f_bsize = sbp->sb_blocksize;
1239 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
1240 statp->f_blocks = sbp->sb_dblocks - lsize;
1241 statp->f_bfree = statp->f_bavail =
1242 sbp->sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1243 fakeinos = statp->f_bfree << sbp->sb_inopblog;
1244 statp->f_files =
1245 MIN(sbp->sb_icount + fakeinos, (__uint64_t)XFS_MAXINUMBER);
1246 if (mp->m_maxicount)
1247 statp->f_files = min_t(typeof(statp->f_files),
1248 statp->f_files,
1249 mp->m_maxicount);
1250 statp->f_ffree = statp->f_files - (sbp->sb_icount - sbp->sb_ifree);
1251 spin_unlock(&mp->m_sb_lock);
1252
1253 if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) ||
1254 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))) ==
1255 (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))
1256 xfs_qm_statvfs(ip, statp);
1257 return 0;
1258 }
1259
1260 STATIC void
1261 xfs_save_resvblks(struct xfs_mount *mp)
1262 {
1263 __uint64_t resblks = 0;
1264
1265 mp->m_resblks_save = mp->m_resblks;
1266 xfs_reserve_blocks(mp, &resblks, NULL);
1267 }
1268
1269 STATIC void
1270 xfs_restore_resvblks(struct xfs_mount *mp)
1271 {
1272 __uint64_t resblks;
1273
1274 if (mp->m_resblks_save) {
1275 resblks = mp->m_resblks_save;
1276 mp->m_resblks_save = 0;
1277 } else
1278 resblks = xfs_default_resblks(mp);
1279
1280 xfs_reserve_blocks(mp, &resblks, NULL);
1281 }
1282
1283 STATIC int
1284 xfs_fs_remount(
1285 struct super_block *sb,
1286 int *flags,
1287 char *options)
1288 {
1289 struct xfs_mount *mp = XFS_M(sb);
1290 substring_t args[MAX_OPT_ARGS];
1291 char *p;
1292 int error;
1293
1294 while ((p = strsep(&options, ",")) != NULL) {
1295 int token;
1296
1297 if (!*p)
1298 continue;
1299
1300 token = match_token(p, tokens, args);
1301 switch (token) {
1302 case Opt_barrier:
1303 mp->m_flags |= XFS_MOUNT_BARRIER;
1304
1305 /*
1306 * Test if barriers are actually working if we can,
1307 * else delay this check until the filesystem is
1308 * marked writeable.
1309 */
1310 if (!(mp->m_flags & XFS_MOUNT_RDONLY))
1311 xfs_mountfs_check_barriers(mp);
1312 break;
1313 case Opt_nobarrier:
1314 mp->m_flags &= ~XFS_MOUNT_BARRIER;
1315 break;
1316 default:
1317 /*
1318 * Logically we would return an error here to prevent
1319 * users from believing they might have changed
1320 * mount options using remount which can't be changed.
1321 *
1322 * But unfortunately mount(8) adds all options from
1323 * mtab and fstab to the mount arguments in some cases
1324 * so we can't blindly reject options, but have to
1325 * check for each specified option if it actually
1326 * differs from the currently set option and only
1327 * reject it if that's the case.
1328 *
1329 * Until that is implemented we return success for
1330 * every remount request, and silently ignore all
1331 * options that we can't actually change.
1332 */
1333 #if 0
1334 printk(KERN_INFO
1335 "XFS: mount option \"%s\" not supported for remount\n", p);
1336 return -EINVAL;
1337 #else
1338 break;
1339 #endif
1340 }
1341 }
1342
1343 /* ro -> rw */
1344 if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(*flags & MS_RDONLY)) {
1345 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1346 if (mp->m_flags & XFS_MOUNT_BARRIER)
1347 xfs_mountfs_check_barriers(mp);
1348
1349 /*
1350 * If this is the first remount to writeable state we
1351 * might have some superblock changes to update.
1352 */
1353 if (mp->m_update_flags) {
1354 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1355 if (error) {
1356 cmn_err(CE_WARN,
1357 "XFS: failed to write sb changes");
1358 return error;
1359 }
1360 mp->m_update_flags = 0;
1361 }
1362
1363 /*
1364 * Fill out the reserve pool if it is empty. Use the stashed
1365 * value if it is non-zero, otherwise go with the default.
1366 */
1367 xfs_restore_resvblks(mp);
1368 }
1369
1370 /* rw -> ro */
1371 if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (*flags & MS_RDONLY)) {
1372 /*
1373 * After we have synced the data but before we sync the
1374 * metadata, we need to free up the reserve block pool so that
1375 * the used block count in the superblock on disk is correct at
1376 * the end of the remount. Stash the current reserve pool size
1377 * so that if we get remounted rw, we can return it to the same
1378 * size.
1379 */
1380
1381 xfs_quiesce_data(mp);
1382 xfs_save_resvblks(mp);
1383 xfs_quiesce_attr(mp);
1384 mp->m_flags |= XFS_MOUNT_RDONLY;
1385 }
1386
1387 return 0;
1388 }
1389
1390 /*
1391 * Second stage of a freeze. The data is already frozen so we only
1392 * need to take care of the metadata. Once that's done write a dummy
1393 * record to dirty the log in case of a crash while frozen.
1394 */
1395 STATIC int
1396 xfs_fs_freeze(
1397 struct super_block *sb)
1398 {
1399 struct xfs_mount *mp = XFS_M(sb);
1400
1401 xfs_save_resvblks(mp);
1402 xfs_quiesce_attr(mp);
1403 return -xfs_fs_log_dummy(mp);
1404 }
1405
1406 STATIC int
1407 xfs_fs_unfreeze(
1408 struct super_block *sb)
1409 {
1410 struct xfs_mount *mp = XFS_M(sb);
1411
1412 xfs_restore_resvblks(mp);
1413 return 0;
1414 }
1415
1416 STATIC int
1417 xfs_fs_show_options(
1418 struct seq_file *m,
1419 struct vfsmount *mnt)
1420 {
1421 return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
1422 }
1423
1424 /*
1425 * This function fills in xfs_mount_t fields based on mount args.
1426 * Note: the superblock _has_ now been read in.
1427 */
1428 STATIC int
1429 xfs_finish_flags(
1430 struct xfs_mount *mp)
1431 {
1432 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
1433
1434 /* Fail a mount where the logbuf is smaller than the log stripe */
1435 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1436 if (mp->m_logbsize <= 0 &&
1437 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
1438 mp->m_logbsize = mp->m_sb.sb_logsunit;
1439 } else if (mp->m_logbsize > 0 &&
1440 mp->m_logbsize < mp->m_sb.sb_logsunit) {
1441 cmn_err(CE_WARN,
1442 "XFS: logbuf size must be greater than or equal to log stripe size");
1443 return XFS_ERROR(EINVAL);
1444 }
1445 } else {
1446 /* Fail a mount if the logbuf is larger than 32K */
1447 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
1448 cmn_err(CE_WARN,
1449 "XFS: logbuf size for version 1 logs must be 16K or 32K");
1450 return XFS_ERROR(EINVAL);
1451 }
1452 }
1453
1454 /*
1455 * mkfs'ed attr2 will turn on attr2 mount unless explicitly
1456 * told by noattr2 to turn it off
1457 */
1458 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1459 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1460 mp->m_flags |= XFS_MOUNT_ATTR2;
1461
1462 /*
1463 * prohibit r/w mounts of read-only filesystems
1464 */
1465 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
1466 cmn_err(CE_WARN,
1467 "XFS: cannot mount a read-only filesystem as read-write");
1468 return XFS_ERROR(EROFS);
1469 }
1470
1471 return 0;
1472 }
1473
1474 STATIC int
1475 xfs_fs_fill_super(
1476 struct super_block *sb,
1477 void *data,
1478 int silent)
1479 {
1480 struct inode *root;
1481 struct xfs_mount *mp = NULL;
1482 int flags = 0, error = ENOMEM;
1483
1484 mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL);
1485 if (!mp)
1486 goto out;
1487
1488 spin_lock_init(&mp->m_sb_lock);
1489 mutex_init(&mp->m_growlock);
1490 atomic_set(&mp->m_active_trans, 0);
1491 INIT_LIST_HEAD(&mp->m_sync_list);
1492 spin_lock_init(&mp->m_sync_lock);
1493 init_waitqueue_head(&mp->m_wait_single_sync_task);
1494
1495 mp->m_super = sb;
1496 sb->s_fs_info = mp;
1497
1498 error = xfs_parseargs(mp, (char *)data);
1499 if (error)
1500 goto out_free_fsname;
1501
1502 sb_min_blocksize(sb, BBSIZE);
1503 sb->s_xattr = xfs_xattr_handlers;
1504 sb->s_export_op = &xfs_export_operations;
1505 #ifdef CONFIG_XFS_QUOTA
1506 sb->s_qcop = &xfs_quotactl_operations;
1507 #endif
1508 sb->s_op = &xfs_super_operations;
1509
1510 if (silent)
1511 flags |= XFS_MFSI_QUIET;
1512
1513 error = xfs_open_devices(mp);
1514 if (error)
1515 goto out_free_fsname;
1516
1517 if (xfs_icsb_init_counters(mp))
1518 mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
1519
1520 error = xfs_readsb(mp, flags);
1521 if (error)
1522 goto out_destroy_counters;
1523
1524 error = xfs_finish_flags(mp);
1525 if (error)
1526 goto out_free_sb;
1527
1528 error = xfs_setup_devices(mp);
1529 if (error)
1530 goto out_free_sb;
1531
1532 if (mp->m_flags & XFS_MOUNT_BARRIER)
1533 xfs_mountfs_check_barriers(mp);
1534
1535 error = xfs_filestream_mount(mp);
1536 if (error)
1537 goto out_free_sb;
1538
1539 error = xfs_mountfs(mp);
1540 if (error)
1541 goto out_filestream_unmount;
1542
1543 sb->s_magic = XFS_SB_MAGIC;
1544 sb->s_blocksize = mp->m_sb.sb_blocksize;
1545 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
1546 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
1547 sb->s_time_gran = 1;
1548 set_posix_acl_flag(sb);
1549
1550 root = igrab(VFS_I(mp->m_rootip));
1551 if (!root) {
1552 error = ENOENT;
1553 goto fail_unmount;
1554 }
1555 if (is_bad_inode(root)) {
1556 error = EINVAL;
1557 goto fail_vnrele;
1558 }
1559 sb->s_root = d_alloc_root(root);
1560 if (!sb->s_root) {
1561 error = ENOMEM;
1562 goto fail_vnrele;
1563 }
1564
1565 error = xfs_syncd_init(mp);
1566 if (error)
1567 goto fail_vnrele;
1568
1569 xfs_inode_shrinker_register(mp);
1570
1571 return 0;
1572
1573 out_filestream_unmount:
1574 xfs_filestream_unmount(mp);
1575 out_free_sb:
1576 xfs_freesb(mp);
1577 out_destroy_counters:
1578 xfs_icsb_destroy_counters(mp);
1579 xfs_close_devices(mp);
1580 out_free_fsname:
1581 xfs_free_fsname(mp);
1582 kfree(mp);
1583 out:
1584 return -error;
1585
1586 fail_vnrele:
1587 if (sb->s_root) {
1588 dput(sb->s_root);
1589 sb->s_root = NULL;
1590 } else {
1591 iput(root);
1592 }
1593
1594 fail_unmount:
1595 /*
1596 * Blow away any referenced inode in the filestreams cache.
1597 * This can and will cause log traffic as inodes go inactive
1598 * here.
1599 */
1600 xfs_filestream_unmount(mp);
1601
1602 XFS_bflush(mp->m_ddev_targp);
1603
1604 xfs_unmountfs(mp);
1605 goto out_free_sb;
1606 }
1607
1608 STATIC int
1609 xfs_fs_get_sb(
1610 struct file_system_type *fs_type,
1611 int flags,
1612 const char *dev_name,
1613 void *data,
1614 struct vfsmount *mnt)
1615 {
1616 return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
1617 mnt);
1618 }
1619
1620 static const struct super_operations xfs_super_operations = {
1621 .alloc_inode = xfs_fs_alloc_inode,
1622 .destroy_inode = xfs_fs_destroy_inode,
1623 .dirty_inode = xfs_fs_dirty_inode,
1624 .write_inode = xfs_fs_write_inode,
1625 .clear_inode = xfs_fs_clear_inode,
1626 .put_super = xfs_fs_put_super,
1627 .sync_fs = xfs_fs_sync_fs,
1628 .freeze_fs = xfs_fs_freeze,
1629 .unfreeze_fs = xfs_fs_unfreeze,
1630 .statfs = xfs_fs_statfs,
1631 .remount_fs = xfs_fs_remount,
1632 .show_options = xfs_fs_show_options,
1633 };
1634
1635 static struct file_system_type xfs_fs_type = {
1636 .owner = THIS_MODULE,
1637 .name = "xfs",
1638 .get_sb = xfs_fs_get_sb,
1639 .kill_sb = kill_block_super,
1640 .fs_flags = FS_REQUIRES_DEV,
1641 };
1642
1643 STATIC int __init
1644 xfs_init_zones(void)
1645 {
1646
1647 xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
1648 if (!xfs_ioend_zone)
1649 goto out;
1650
1651 xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
1652 xfs_ioend_zone);
1653 if (!xfs_ioend_pool)
1654 goto out_destroy_ioend_zone;
1655
1656 xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t),
1657 "xfs_log_ticket");
1658 if (!xfs_log_ticket_zone)
1659 goto out_destroy_ioend_pool;
1660
1661 xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t),
1662 "xfs_bmap_free_item");
1663 if (!xfs_bmap_free_item_zone)
1664 goto out_destroy_log_ticket_zone;
1665
1666 xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
1667 "xfs_btree_cur");
1668 if (!xfs_btree_cur_zone)
1669 goto out_destroy_bmap_free_item_zone;
1670
1671 xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t),
1672 "xfs_da_state");
1673 if (!xfs_da_state_zone)
1674 goto out_destroy_btree_cur_zone;
1675
1676 xfs_dabuf_zone = kmem_zone_init(sizeof(xfs_dabuf_t), "xfs_dabuf");
1677 if (!xfs_dabuf_zone)
1678 goto out_destroy_da_state_zone;
1679
1680 xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork");
1681 if (!xfs_ifork_zone)
1682 goto out_destroy_dabuf_zone;
1683
1684 xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
1685 if (!xfs_trans_zone)
1686 goto out_destroy_ifork_zone;
1687
1688 xfs_log_item_desc_zone =
1689 kmem_zone_init(sizeof(struct xfs_log_item_desc),
1690 "xfs_log_item_desc");
1691 if (!xfs_log_item_desc_zone)
1692 goto out_destroy_trans_zone;
1693
1694 /*
1695 * The size of the zone allocated buf log item is the maximum
1696 * size possible under XFS. This wastes a little bit of memory,
1697 * but it is much faster.
1698 */
1699 xfs_buf_item_zone = kmem_zone_init((sizeof(xfs_buf_log_item_t) +
1700 (((XFS_MAX_BLOCKSIZE / XFS_BLF_CHUNK) /
1701 NBWORD) * sizeof(int))), "xfs_buf_item");
1702 if (!xfs_buf_item_zone)
1703 goto out_destroy_log_item_desc_zone;
1704
1705 xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) +
1706 ((XFS_EFD_MAX_FAST_EXTENTS - 1) *
1707 sizeof(xfs_extent_t))), "xfs_efd_item");
1708 if (!xfs_efd_zone)
1709 goto out_destroy_buf_item_zone;
1710
1711 xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) +
1712 ((XFS_EFI_MAX_FAST_EXTENTS - 1) *
1713 sizeof(xfs_extent_t))), "xfs_efi_item");
1714 if (!xfs_efi_zone)
1715 goto out_destroy_efd_zone;
1716
1717 xfs_inode_zone =
1718 kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
1719 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD,
1720 xfs_fs_inode_init_once);
1721 if (!xfs_inode_zone)
1722 goto out_destroy_efi_zone;
1723
1724 xfs_ili_zone =
1725 kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
1726 KM_ZONE_SPREAD, NULL);
1727 if (!xfs_ili_zone)
1728 goto out_destroy_inode_zone;
1729
1730 return 0;
1731
1732 out_destroy_inode_zone:
1733 kmem_zone_destroy(xfs_inode_zone);
1734 out_destroy_efi_zone:
1735 kmem_zone_destroy(xfs_efi_zone);
1736 out_destroy_efd_zone:
1737 kmem_zone_destroy(xfs_efd_zone);
1738 out_destroy_buf_item_zone:
1739 kmem_zone_destroy(xfs_buf_item_zone);
1740 out_destroy_log_item_desc_zone:
1741 kmem_zone_destroy(xfs_log_item_desc_zone);
1742 out_destroy_trans_zone:
1743 kmem_zone_destroy(xfs_trans_zone);
1744 out_destroy_ifork_zone:
1745 kmem_zone_destroy(xfs_ifork_zone);
1746 out_destroy_dabuf_zone:
1747 kmem_zone_destroy(xfs_dabuf_zone);
1748 out_destroy_da_state_zone:
1749 kmem_zone_destroy(xfs_da_state_zone);
1750 out_destroy_btree_cur_zone:
1751 kmem_zone_destroy(xfs_btree_cur_zone);
1752 out_destroy_bmap_free_item_zone:
1753 kmem_zone_destroy(xfs_bmap_free_item_zone);
1754 out_destroy_log_ticket_zone:
1755 kmem_zone_destroy(xfs_log_ticket_zone);
1756 out_destroy_ioend_pool:
1757 mempool_destroy(xfs_ioend_pool);
1758 out_destroy_ioend_zone:
1759 kmem_zone_destroy(xfs_ioend_zone);
1760 out:
1761 return -ENOMEM;
1762 }
1763
1764 STATIC void
1765 xfs_destroy_zones(void)
1766 {
1767 kmem_zone_destroy(xfs_ili_zone);
1768 kmem_zone_destroy(xfs_inode_zone);
1769 kmem_zone_destroy(xfs_efi_zone);
1770 kmem_zone_destroy(xfs_efd_zone);
1771 kmem_zone_destroy(xfs_buf_item_zone);
1772 kmem_zone_destroy(xfs_log_item_desc_zone);
1773 kmem_zone_destroy(xfs_trans_zone);
1774 kmem_zone_destroy(xfs_ifork_zone);
1775 kmem_zone_destroy(xfs_dabuf_zone);
1776 kmem_zone_destroy(xfs_da_state_zone);
1777 kmem_zone_destroy(xfs_btree_cur_zone);
1778 kmem_zone_destroy(xfs_bmap_free_item_zone);
1779 kmem_zone_destroy(xfs_log_ticket_zone);
1780 mempool_destroy(xfs_ioend_pool);
1781 kmem_zone_destroy(xfs_ioend_zone);
1782
1783 }
1784
1785 STATIC int __init
1786 init_xfs_fs(void)
1787 {
1788 int error;
1789
1790 printk(KERN_INFO XFS_VERSION_STRING " with "
1791 XFS_BUILD_OPTIONS " enabled\n");
1792
1793 xfs_ioend_init();
1794 xfs_dir_startup();
1795
1796 error = xfs_init_zones();
1797 if (error)
1798 goto out;
1799
1800 error = xfs_mru_cache_init();
1801 if (error)
1802 goto out_destroy_zones;
1803
1804 error = xfs_filestream_init();
1805 if (error)
1806 goto out_mru_cache_uninit;
1807
1808 error = xfs_buf_init();
1809 if (error)
1810 goto out_filestream_uninit;
1811
1812 error = xfs_init_procfs();
1813 if (error)
1814 goto out_buf_terminate;
1815
1816 error = xfs_sysctl_register();
1817 if (error)
1818 goto out_cleanup_procfs;
1819
1820 vfs_initquota();
1821
1822 error = register_filesystem(&xfs_fs_type);
1823 if (error)
1824 goto out_sysctl_unregister;
1825 return 0;
1826
1827 out_sysctl_unregister:
1828 xfs_sysctl_unregister();
1829 out_cleanup_procfs:
1830 xfs_cleanup_procfs();
1831 out_buf_terminate:
1832 xfs_buf_terminate();
1833 out_filestream_uninit:
1834 xfs_filestream_uninit();
1835 out_mru_cache_uninit:
1836 xfs_mru_cache_uninit();
1837 out_destroy_zones:
1838 xfs_destroy_zones();
1839 out:
1840 return error;
1841 }
1842
1843 STATIC void __exit
1844 exit_xfs_fs(void)
1845 {
1846 vfs_exitquota();
1847 unregister_filesystem(&xfs_fs_type);
1848 xfs_sysctl_unregister();
1849 xfs_cleanup_procfs();
1850 xfs_buf_terminate();
1851 xfs_filestream_uninit();
1852 xfs_mru_cache_uninit();
1853 xfs_destroy_zones();
1854 }
1855
1856 module_init(init_xfs_fs);
1857 module_exit(exit_xfs_fs);
1858
1859 MODULE_AUTHOR("Silicon Graphics, Inc.");
1860 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
1861 MODULE_LICENSE("GPL");